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Abstract

Artificial Neural Networks are functionally equivalent to special-purpose comput-1

ers. Their inter-neuronal connection weights represent the learnt Neural Program2

that instructs the networks on how to compute the data. However, without stor-3

ing Neural Programs, they are restricted to only one, overwriting learnt programs4

when trained on new data. Here we design Neurocoder, a new class of general-5

purpose neural networks in which the neural network “codes” itself in a data-6

responsive way by composing relevant programs from a set of shareable, modular7

programs stored in external memory. For the first time, a Neural Program is ef-8

ficiently treated as a datum in memory. Integrating Neurocoder into current neu-9

ral architectures, we demonstrate new capacity to learn modular programs, reuse10

simple programs to build complex ones, handle pattern shifts and remember old11

programs as new ones are learnt, and show substantial performance improvement12

in solving object recognition, playing video games and continual learning tasks.13

1 Introduction14

From its inception in 1943 until recently, the fundamental architectures of Artificial Neural Net-15

works remained largely unchanged - a program is executed by passing data through a network of16

artificial neurons whose inter-neuronal connection weights are learnt through training with data.17

These inter-neuronal connection weights, or Neural Programs, correspond to a program in modern18

computers [32]. Memory Augmented Neural Networks (MANN) are an innovative solution allow-19

ing networks to access external memory for manipulating data [11, 12]. But they were still unable20

to store Neural Programs in such external memory, and this severely limits machine learning. Stor-21

ing inter-neuronal connection weights only in their network does not permit modular separation of22

Neural programs and is analogous to a computer with one fixed program. Recent works introduce23

conditional computation via adjusting or activating parts of a network in an input-dependent manner24

[39, 33, 4, 13, 28], but networks remain monolithic. Current networks forget when retrained, old25

inter-neuronal connection weights are merged with new ones or erased.26

The brain is modular, not a monolithic system [8, 6]. Neuroscience research indicates that the brain is27

divided into functional modules [19, 7, 9]. If the neural program for each module is kept in separate28

networks, networks proliferate. Modular neural networks, another form of conditional computation,29

combine the output of multiple expert networks, but as the experts grow, the networks grow drasti-30

cally [20, 14, 35, 29]. This requires huge computational storage and introduces redundancy as these31

experts do not share common basic programs.32

A pathway out of this bind is to keep such basic programs in memory and combine them as required.33

This brings neural networks towards modern general-purpose computers that use the stored-program34

principle [37, 40] to efficiently access reusable programs in external memory. Here we show how35

Neurocoder, a new neural framework, introduces a new class of general-purpose conditional compu-36
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Figure 1: Neurocoder (a) The Main Network uses a working program to compute the output for the
input. Here only the final layer of the Main Network is adaptively loaded with the working program
(1). Other layers use traditional Neural Programs as connection weights (fixed-after-training). (b)
The Program Controller’s composition network controls access to the Program Memory, emitting
queries and interpolating gate control signals in response to the input (2). It then performs recurrent
multi-head program attention to the Program Status (3), triggering attention weights to the Singular
Programs (4). The attended Singular Programs form an active program using low-rank approxi-
mation (5). Residual program produced by the Program Controller’s integration network (6) plus
the active program derives the working program. (c) The Program Memory stores the represen-
tations (singular programs) required to reconstruct the active program to be used by the Program
Controller. Access is controlled through the Program Status including keys (k), and slot usage (m)
that are updated during the training and computation (7).

tation machines in which a neural network can be “coded” in an input-dependent manner. Efficient37

decomposition of Neural Programs creates shareable modular components that can reconstruct the38

whole program space. These components change their “shapes” based on training and are stored39

in an external Program Memory. Then, in a data-responsive way, a Program Controller retrieves40

relevant components to build the Neural Program. This is analogous to shape-shifting Lego bricks41

that can be reused to build unlimited shapes and structures (See Appendix Fig. 4).42

Using adaptive modular components vastly increases the learning capacity of the neural network43

by allowing re-utilisation of parameters, effectively curbing network growth as programs increase.44

More importantly, unlike pre-defined sub-networks or modules [20, 1] that combine at activation45

level, the construction of our modular components is dynamic and performed on the weight space.46

The Neural Program construction is learnt through training via traditional backpropagation [30] as47

the architecture is end-to-end differentiable.48

2 Methods49

2.1 System overview50

A Neurocoder is a neural network (Main Network) coupled to an external Program Memory through51

a Program Controller. The working program of the Main Network processes the input data to pro-52

duce the output. This working program is “coded” by the Program Controller by creating an input-53

dependent active program from the Program Memory (Fig. 1). The following gives a high-level54

description of the Neurocoder framework and then the details.55
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Neurocoder stores Singular Value Decomposition of Neural Programs in Program Memory56

The Neural Program needs to be stored efficiently in Program Memory. This is challenging as there57

may be millions of inter-neuronal connection weights, thus storing them directly ([22]) is grossly58

inefficient. Instead, the Neurocoder forms the basis of a subspace spanned by Neural Programs and59

stores the singular values and vectors of this subspace in memory slots of the Program Memory60

(hereafter referred to as singular programs). Based on the input, relevant singular programs are61

retrieved, a new program is reconstructed and then loaded in the Main Network to process the input.62

This representational choice significantly reduces the number of stored elements and allows each63

singular program to effectively represent a unitary function of the active program.64

The active program matrix P can be composed by standard low-rank approximation as65

P = USVT =

rm∑
n

σnunv
>
n (1)

where U and V are matrices of the left and right singular vectors, and S the matrix of singular values.66

rm is the total number of components we want to retrieve. {σn}rmn=1 is the attended singular values,67

{un}rmn=1 and {vn}rmn=1 the attended singular vectors of S, U, and V, respectively. The Program68

Memory is crafted as three singular program memories {MU ,MV ,MS}–each of their memory69

slot stores a singular component or singular program. The process “codes” the active program70

using singular programs from the program memories. The coding is conditioned on input xt, yet71

we drop index t for notation simplification and leave the details on the computation of σn, un, vn in72

Sec. 2.2.73

The Program Memory also maintains the status for each singular program in terms of access and74

usage. To access a singular program, program keys (k) are used. These keys are low-dimensional75

vectors that represent the singular program function and computed by a neural network that ef-76

fectively compresses the singular program. The program usage (m) measures memory utilisation,77

recording how much a memory slot is used in constructing a program. The components of the78

Program Memory are summarised in Fig. 1 (c).79

Recurrent multi-head program attention mechanisms for program storage and retrieval80

Neural networks use the concept of differentiable attention to access memory [11, 2]. This de-81

fines a weighting distribution over the memory slots essentially weighting the degree to which each82

memory slot participates in a read or write operation. This is unlike conventional computers that use83

a unique address to access a single memory slot.84

Here we use two kinds of attention. First is content-based attention [11, 12] to ensure that the singu-85

lar program is selected based on its functionality and the data input. This is achieved by producing86

a query vector based on the input and comparing it to the program keys (k) using cosine similarity.87

Higher cosine similarity scores indicate higher attention weights to the singular programs associated88

with those program keys. Second, to encourage better memory utilisation, higher attention weights89

are assigned to slots with lower program usage (m) through usage-based attention [12, 31]. The90

attention weights from the two schemas are then combined using interpolating gates to compose the91

final attention weights to the Program Memory.92

We adapt multi-head attention [11, 38] that applies multiple attentions in parallel to retrieveH singu-93

lar components. Besides, we introduce a recurrent attention mechanism, in which multi-head access94

is performed recurrently in J steps. The j-th set of H retrieved components is conditioned on the95

previous ones. This recurrent, multi-head attention allows the composition network to incrementally96

search for optimal components for building relevant active programs.97

Neurocoder learns to “code” a relevant working program via training98

The structure of the Program Memory and the role of the Program Controller facilitates the au-99

tomatic construction of working programs via training. The Program Controller controls memory100

access through its composition network that creates the attention weight defining how to weight the101

singular programs in the memories. A weighted summation of the singular programs results in the102

attended singular program. Applying the recurrent multi-head attention described earlier, multiple103

attended singular programs are retrieved to construct an active program (Eq. 1). Then the Program104

Controller generates a residual program using its integration network, adding to the active program105
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to produce the working program of the Main Network. This addition enables creation of flexible106

higher-rank working programs, which compensates for the low-rank coding process. The structure107

of the Program Controller is illustrated in Fig. 1 (b).108

The singular programs are trained to represent unitary functions necessary for any computation109

whilst the composition and integration networks are trained to compose the relevant programs for110

the considering task. As such, beside minimising the task loss, we enforce orthogonality of stored111

singular vectors by minimising Lo = MUM
>
U − I+MVM

>
V − I. The parameters of the networks,112

and the stored singular programs are adjusted using gradient training via minimising the total loss113

L = Ltask + aLo (2)
where Ltask represents the supervised task loss and Lo represents the orthogonal loss weighted by114

a hyper-parameter a to enforce orthogonality of the singular vectors.115

2.2 Attention mechanisms for Program Memory116

Here we describe program attention mechanisms used in this paper. Given wuin, wvin, wσin (jointly117

denoted as wu,v,σin )–the attention weight to the i-th slot of the singular program memories MU , MV118

and MS , we retrieve the n-th singular vector as follows,119

un =

Pu∑
i=1

wuinMU (i) (3)

vn =

Pv∑
i=1

wvinMV (i) (4)

For the singular values, we need to enforce σ1 > σ2 > ... > σrm > 0, thus we retrieve using120

σn =

softplus
(∑Ps

i=1 w
σ
inMS (i)

)
n = rm

σn+1 + softplus
(∑Ps

i=1 w
σ
inMS (i)

)
n < rm

(5)

Here, Pu, Pv and Ps are the number of memory slots of MU , MV and MS , respectively. In this121

paper, we set P = Pu = Pv = Ps as the number of memory slots of the Program Memory. We note122

that these notations are specified for some data input xt and the index n later maps to an attention123

head h, and an attention step j, hence the full notation should be wu,v,σtijh . To simplify notations, we124

will drop u, v, σ from now and describe the computation of a representative wtijh for any of the125

three program memories in the following parts.126

Recurrent Access to the Program Memory via the composition network127

To perform program attention, the Program Controller employs a composition network (denoted128

as fθ), which takes the current input xt and produce program composition control signals (ξpt ).129

If fθ performs all attentions concurrently via multi-head attention as in [11, 38], it may lead to130

program collapse [22]. To have a better control of the component formation and alleviate program131

collapse, we propose to recurrently attend to the program memory. To this end, we implement fθ as132

a recurrent neural network (LSTM [16]) and let it access the program memory J times, resulting in133

ξpt =
{
ξptj
}J
j=1

. At access step j, the recurrent network updates its hidden states and generates ξptj134

using recurrent dynamics as135

ξptj , hj = fθ (xt, hj−1) (6)
where h0 is initialized as zeros and ξptj is the program composition control signal at step j that136

depends on both on the input data xt and the the previous state hj−1. Particularly, the control signal137

contains the queries and the interpolation gates for each head to compute the program attention138

weight: ξptj = {qtjh, gtijh}
H
h=1. Here, at each attention step, we perform multi-head attention with139

H as the number of attention heads and thus, each ξptj consists of H pairs of queries and gates.140

Hence, the total number of retrieved components rm = J ×H and the index n = j ×H + h.141
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Attending to Programs by “Name”142

Inspired by the content-based attention mechanism for data memory [11], we use the query to look143

for the singular programs. In computer programming, to find the appropriate program for some144

computation, we often refer to the program description or at least the name of the program. Here, we145

create the “name” for our neural programs by compressing the program content to a low-dimensional146

key vector. As such, we employ a neural network (fϕ) to compute the program memory keys as147

ki = fϕ (M (i)) (7)

where ki ∈ RK and i is the row index of the program memory. Here, fϕ learns to compress each148

memory slot into a K-dimensional vector. As the singular programs evolve, their keys get updated.149

In this paper, we update the program keys after each learning iteration during training.150

Finally the content-based program memory attention ctijh is computed using cosine distance be-151

tween the program keys ki and the queries qtjh as152

ctijh = softmax(i)
(

qtjh · ki
||qtjh|| · ||ki||

)
(8)

Making Every Program Count153

Similarly to [12, 31], in addition to the content-based attention, we employ a least-used reading154

strategy to encourage the Program Controller to assign different singular programs to different com-155

ponents. In particular, we calculate the memory usage for each program slot across attentions as156

157

mtijh = max
j̃≤j

(
wtij̃h

)
(9)

Since we want to consider only lI amongst P memory slots that have smallest usages, let m̂lI
tjh158

denote the value of the lI -th smallest usage, then the least-used attention is computed as159

ltijh =

{
max
i

(mtijh)−mtijh ;mtijh ≤ m̂lI
tjh

0 ;mtijh > m̂lI
tjh

(10)

The final program memory attention is computed as160

wtijh = sigmoid (gtijh) ctijh + (1− sigmoid (gtijh)) ltijh (11)

Since the usage record are computed along the memory accesses, the multi-step Neurocoder utilises161

this attention mechanism better than the single-step Neurocoder, creating different attention styles162

(see Sec. 3.2). The composition the active program Pt is illustrated in Appendix’s Fig. 5.163

2.3 Program Integration via the integration network164

Since the working program Pt only contains top rm principal components, it is low-rank and may165

be not flexible enough for sophisticated computation. We propose to enhance Pt with a residual166

program R– a traditional connection weight trained as the integration network’s parameters, which167

is constant after training w.r.t t. The residual program represents the sum of the remaining less168

important components. To this end, we suppress R with a multiplier that is smaller than σtrm– the169

smallest singular value of the main components - resulting in the integration formula170

Wt = Pt + wrtσtrmR (12)

where wrt = sigmoid (fφ (xt)) is an adaptive gating value that controls the contribution of the171

residual program. fφ is the integration network in the Program Controller and hence, in our imple-172

mentation, the integration control signal sent by the Program Controller is λpt = {wrt , σtrm} . We173

note that in our experiments, the program integration can be disabled (Wt is directly set to Pt) to174

prove the contribution of Pt or reduce the number of parameters. The working program Wt is then175

used by the Main Network to execute the input data xt (see (Fig. 1 (a))). For example, with linear176
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(d)

(e)

Figure 2: (a) MNIST test set classification error vs the number of steps (J) in Neurocoder (blue),
compared with a linear classifier (red). (b) 1st column: Digit images; Middle column: Single-step
attention weights for 30 slots in MU (vertical axis) for first 3 singular vectors (horizontal axis) for
each digit; Last column: Multi-step attention weights for 10 slots in MU (vertical axis) for first 3
singular vectors (horizontal axis). Multi-step attention is able to produce far more diverse patterns
with fewer slots - 10 slots compared to single-step 30 slots. (c) Two attention patterns of single-
step Neurocoder. The binary decision tree derived from single-step Neurocoder’s attention patterns.
The two patterns across components represent the decisions going up and down across the binary
tree. Visualisation for (d) multi-step (J = 5, 20 memory slots) and (e) single-step (J = 1, 10
memory slots) cases showing while processing a sequence of the polynomial auto-regression task.
The Neurocoder’s attentions to MU that form the first component of the active program are shown
over sequence timesteps (upper) with Neurocoder’s yt prediction (orange) and ground truth (blue)
(lower). The vertical dash green lines separate polynomial chunks. Each chuck represents a local
pattern, and thus ideally requires a specific active program to compute the input xt. Although both
predict well, only the multi-step Neurocoder discovers the chunk boundaries, assigning program
attention to the first component in accordance with sequence changes.

classifier Main Network, the execution is yt = xtWt. Appendix’s Table 2 summarises the notations177

used for important parameters of Neurocoder.178

3 Results179

To demonstrate the flexibility of Neurocoder framework, we consider different learning paradigms:180

instance-based, sequential, multi-task and continual learning. We do not focus on breaking perfor-181

mance records by augmenting state-of-the-art models with Neurocoder. Rather our inquiry is on182

re-coding feed-forward layers with the Neurocoder’s programs and testing on varied data types to183

demonstrate its intrinsic properties. For some experiments, we include ablation studies.184

We compare the performance of diverse Main Networks (MN) with and without Neurocoder. We185

also augment the Main Networks with other recent conditional computing methods, either modular186

(sparse Mixture of Experts, Neural Stored-program Memory) or monolithic (HyperNets, FiLM) to187

form stronger baselines across our experiments. In our experiments, we always apply Neurocoder188

to all layers of multi-layer perceptrons (MLP) or just the final feed-forward layer of deep CNN189

networks (LeNet, DenseNet, ResNet), RNNs (GRU, LSTM), MANN (NTM). Other competitors190

such as MOE, NSM, HyperNet and FiLM are applied to the Main Networks in the same manner.191
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Figure 3: Learning curves (mean and std. over 5 runs) on representative Atari 2600 games. All
baselines are applied to the actor/critic networks in the A3C agent.

3.1 Instance-based learning - Object Recognition192

We tested Neurocoder on instance-based learning through classical image classification tasks using193

MNIST [24] and CIFAR [21] datasets. The first experiment interpreted Neurocoder’s behaviour194

in classifying digits into 10 classes (0 − 9) using linear classifier Main Network. With equivalent195

model size, Neurocoder using the novel recurrent attention surpasses the performance of the linear196

classifier [24] by up to 5% (Fig. 2 (a)).197

To differentiate the input, Neurocoder attends to different components of the active program to198

guide the decision-making process. Fig. 2 (b) shows single-step and multi-step attention to the first199

3 singular vectors for each digit across memory slots. Multi-step attention produces richer patterns200

compared to single-step Neurocoder that manages only 2 attention weight patterns.201

Fig. 2 (c) illustrates how Neurocoder performs modular learning by showing the attention assign-202

ment for top 3 singular vectors as a binary decision tree. Digits under the same parental node share203

similar attention paths, and thereby similar active programs. Some digits look unique (e.g. 7) result-204

ing in active programs composed of unique attention paths, discriminating themselves early in the205

decision tree. Some digits (e.g. 0 and 9) share the same attention pattern for the first 3 components206

and are thus unclassifiable. They can only be distinguished by considering more singular vectors.207

We integrated Neurocoder with deep networks - 5-layer LeNet and 100-layer DenseNet - and tested208

on CIFAR datasets. Neurocoder significantly outperformed the original Main Networks with perfor-209

mance gain 1−5%. Compared with recent conditional computing models such as sparse Mixture of210

Experts (MOE [35]) and Neural Stored-program Memory (NSM [22]), Neurocoder required a tenth211

of the number of parameters and performed better by up to 8− 10% (see Appendix’s Table 3).212

3.2 Sequential learning - Adaption to sequence changes and game playing using213

reinforcement learning214

Recurrent neural networks (RNN) can learn from sequential data by updating the hidden states of215

the networks. However, this does not suffice when local patterns shift, as is often the case. We now216

demonstrate that Neurocoder helps RNNs overcome this limitation by composing diverse programs217

to handle sequence changes.218

Synthetic polynomial auto-regression We created a simple auto-regression task in which data219

points are sampled from polynomial function chunks that change over time. The Main Network is220

a strong RNN–Gated Recurrent Unit (GRU [5]). We found that GRU integrated with a single-step221

or multi-step Neurocoder converged much faster than all other baselines. The other conditional222

computing counterparts (HyperNet [13], FiLM [28]) adapt by re-scaling weights or activation of the223

GRU, which were shown inferior to our modular approach (Appendix’s Fig. 6).224

Visualising the first singular vector attention weights in MU , we find that the multi-step attention225

Neurocoder changes its attention following polynomial changes - it attends to the same singular pro-226

gram when processing data from the same polynomial and alters attention for data from a different227

polynomial (Fig. 2(d)). In contrast, the single-step Neurocoder only changes its attention when228

there is a remarkable change in y-coordinate values (Fig. 2(e)). Although single-step Neurocoder229
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Method MN (MLP [17]) MN (MLP ours) NSM Neurocoder
Adam 55.16±1.38 53.55±1.27 54.85±2.81 58.46±0.46

Adagrad 58.08±1.06 57.83±2.74 58.42±1.87 62.28±4.03
L2 66.00±3.73 64.37±2.40 62.83±7.21 69.89±1.72
SI 64.76±3.09 64.41±3.36 64.36±2.99 67.96±3.22

EWC 58.85±2.59 58.41±2.37 58.12±3.24 65.66±1.25
O-EWC 57.33±1.44 57.78±1.84 58.55±3.40 73.97±1.50

Table 1: Incremental domain continual learning with Split MNIST. Final test accuracy (mean and
std.) over 10 runs.

converges well, it did not discover the underlying structure of the data, and thus underperformed230

the multi-step Neurocoder. We hypothesise that when recurrence is employed, usage-based atten-231

tion takes effect, stipulating better memory utilisation and diverse attentions over timesteps. We ran232

multi-step Neurocoder without usage-based attention. The results were worse than the full multi-233

step Neurocoder, which confirms our hypothesis (Appendix’s Fig. 6).234

Atari game reinforcement learning We used reinforcement learning as a further testbed to show235

the ability to adapt to environmental changes. We performed experiments on several Atari 2600236

games [3] wherein the agent was implemented as the Asynchronous Advantage Actor-Critic (A3C237

[26]). In the Atari platform, agents are allowed to observe the screen snapshot of the games and act238

to earn the highest score. We augmented the A3C by employing Neurocoder’s working programs239

for feed-forward layers of the actor and critic networks, aiming to decompose the policy and value240

function into singular programs that were selected depending on the game state.241

Frostbite and Montezuma’s Revenge. These games are known to be challenging for A3C and other242

algorithms [26]. We trained A3C and HyperNet-based A3C for over 300 million steps, yet these243

models did not show any sign of learning, performing equivalently to random agents. For such com-244

plicated environments with sparse rewards, both the monolithic neural networks and the HyperNet’s245

unstored fast-weights fail to learn (almost zero scores). In contrast, Neurocoder enabled A3C to246

achieve from 1, 500 to 3, 000 scores on these environments (Fig. 3), confirming the importance of247

decomposing a complex solution to smaller, simple stored programs.248

3.3 Multi-task learning - Solving mutliple algorithms simultenously249

Here we explore the modular learning capability of Neurocoder in multi-task setting. Inspired by al-250

gorithmic sequencing tasks [22], we created a challenging sequential multi-task benchmark wherein251

the input sequence is a series of sub-sequences from 4 algorithms: Copy, Repeat Copy, Associative252

Recall and Priority Sort [11]. Each sub-sequence, following a task identification vector, represents253

the input for each task. In each input sequence, n tasks were sampled from the set of 4 algorithms254

randomly with replacement and the output sequences were created correspondingly.255

We trained a MANN–Neural Turing Machine (NTM [11]) Main Network with FiLM, HyperNet and256

our Neurocoder augmentation on sequences of n = 4 tasks, and tested with sequences of n = 4 and257

n = 8 tasks. Appendix’s Fig. 7 demonstrates that Neurocoder was performant in both test settings,258

not only achieving lowest error on n = 4, but also being the only one generalised well to n = 8259

scenario, which was unseen during training.260

3.4 Continual learning - Learning tasks sequentially without catastrophic forgetting261

In continual learning, standard neural networks often suffer from “catastrophic forgetting” in which262

they cannot retain knowledge acquired from old tasks upon learning new ones [10]. Our Neurocoder263

offers natural mitigation of such catastrophic forgetting in neural networks by attending to different264

singular programs whilst learning different tasks.265

In this case, in addition to the Main Network, we examine several continual learning algorithms266

with and without Neurocoder. These algorithms, including Elastic Weight Consolidation (EWC267

[41]) and Synaptic Intelligence (SI [41]), work by regularising the loss function and thus can be268

easily combined with Neurocoder by modifying the loss Ltask. We demonstrate that Neurocoder269
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can improve these continual learning algorithms without requiring additional assumptions as in other270

approaches [25, 36, 34] that either utilise task embedding or replay memory.271

Split MNIST We first considered the split MNIST dataset–a standard continual learning bench-272

mark wherein the original MNIST was split into a 5 2-way classification tasks, consecutively pre-273

sented to a Multi-layer Perceptron Main Network (MLP). We followed the benchmarking as in [17]274

in which various optimisers and state-of-the-art continual learning methods were examined under in-275

cremental task and domain scenarios. We measured the performance of the MLP versus Neurocoder276

and NSM under each continual learning method. In both scenarios, Neurocoder was compatible277

with all continual leaning methods, demonstrating superior performance over MLP and NSM with278

performance gain between 1 to 16% (see Appendix’s Table 5 and 1).279

Split CIFAR We verified the scalability of Neurocoder to more challenging datasets. We split280

CIFAR datasets as in the split MNIST, resulting in 5-task 2-way split CIFAR10 and a 20-task 5-way281

split CIFAR100. We used Main Network ResNet [15]–a very deep CNN architecture.282

When we stressed the orthogonal loss (a = 10) and used bigger program memory (100 slots), Neu-283

rocoder improved ResNet classification by 15% and 10% on CIFAR10 and CIFAR100, respectively.284

When we integrated Neurocoder with Synaptic Intelligence (SI [41]), the performance was further285

improved, maintaining a stable performance above 80% accuracy for CIFAR10 and outperforming286

using SI alone by 10% for CIFAR100 (see Appendix’s Fig. 8).287

4 Discussion288

Our experiments demonstrate that Neurocoder is capable of re-coding Neural Programs in distinctive289

neural networks, amplifying their capabilities in diverse learning scenarios: instance-based, sequen-290

tial, multi-task and continual learning. This consistently results in significant performance increase,291

and further creates novel robustness to pattern shift and catastrophic forgetting. This ability for each292

architecture to re-code itself is made possible without changing the way it is trained, or majorly293

increasing the number of parameters it needs to learn (see Appendix Table 7).294

The MNIST problem illustrates the reasoning process of Neurocoder when classifying digit images295

wherein its singular program assignment resembles a binary tree decision-making process - it shows296

how some singular programs are shared, others are not. The polynomial auto-regression problem297

highlights the importance of efficient memory utilisation in re-constructing the working program298

enabling discovery of hidden structures in sequential data. Training our framework with reinforce-299

ment learning, we enable neural agents to solve complex games wherein traditional methods fail300

or learn slowly. Neurocoder also works well with multi-task setting, as shown in the challenging301

multi-algorithm benchmark. Finally, continual learning problems show that Neurocoder mitigates302

catastrophic forgetting efficiently under different learning settings/algorithms.303

Our solution offers a single framework that is scalable and adaptable to various problems and learn-304

ing paradigms. Unlike previous attempts to employ a bank of separate big programs [20, 35, 22],305

Neurocoder maintains only shareable, smaller components that can reconstruct the whole program306

space, thereby heavily utilising the parameters and preventing the model from proliferating. We307

note that Neurocoder is orthogonal to approaches employing tensor decomposition to reduce the308

number of parameters or hasten the computation [27, 23]. Neurocoder composes rather than decom-309

pose the neural weights. Our aim is not only to enable efficient parameter usage, but also achieve310

general-purpose computing power, outperforming other methods in numerous learning problems.311

One limitation of this work is the number of additional hyperparameters, which prevents us from312

fully tuning Neurocoder. Our research aims to add new capabilities to current neural networks to313

improve their performance and make them robust in different learning scenario. Hence, we do314

not see any intermediate negative societal impact. In future work, we will extend Neurocoder’s315

application beyond feed-forward layers. It would be interesting to efficiently replace all neural layers316

including CNN or Transformer by Neurocoder’s programs. We can also further extend Neurocoder’s317

ability by allowing a growing Program Memory, in which the model decides to add or erase memory318

slots as the number of data patterns grows or shrinks beyond the current program space’s capacity.319

Such a system represents a more flexible general-purpose computer that can dynamically allocate320

computing resources by itself without human pre-specification.321
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