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Abstract

Text classification is one of the essential top-
ics in natural language process fields, and
the prediction in text classification can usu-
ally be multiple labels. Thus, a text classi-
fication problem can be a particular problem
in machine learning: a multi-label classifica-
tion problem. Recently, the number of labels
has become larger and larger, especially in the
applications of e-commerce, so handling text-
related e-commerce problems further requires
more and more memory space in many exist-
ing multi-label learning methods. Hence, uti-
lizing distributed system to share those large
memory requirement is a reasonable solution.
We propose “random label forests”, a dis-
tributed ensemble method with label subsam-
pling, for handling extremely large-scale la-
bels by label subsampling and parallel comput-
ing. Random label forests can reduce the mem-
ory usage per computer while keeping com-
petitive performances over six real-world data
sets.

1 Introduction

Text classification is one of the essential topics in
natural language process fields. There are many
valuable applications, such as product categoriza-
tion for e-commerce (Shen et al., 2011; Agrawal
et al., 2013; McAuley and Leskovec, 2013), cod-
ing diagnosis and procedures in medical records
(Nuthakki et al., 2019), and document tagging (Zu-
biaga, 2009). Usually, the prediction in the text
classification can be multiple labels, e.g., a docu-
ment can be tagged as label-A and label-C. Hence,
a text classification problem can be a particular
problem in machine learning: a multi-label classifi-
cation problem, which is to find the relevant labels
of a data instance. For example, we can set the doc-
ument ID, the document contents, and the taggings
in the document tagging problem as the instances,
features, and labels in a multi-label problem. Thus,

we can utilize a multi-label classification method

to handle a text classification problem.

Recently, the number of labels has become
larger and larger, especially in the applications of
e-commerce. Thus, a particular topic has been
discussed recently: extreme multi-label learning
(XML), which focuses on large-scale candidate la-
bels, input instances, and input features. Because
of these three large-scale things, an XML method
should further consider the model training time and
memory usage, besides the performance.

In the earlier years, a multi-label classification
problem could be handled by the one-versus-rest
(OVR) method with linear models, but the time
complexity and model size directly depended on
the number of labels and features. Although the
OVR method is not a good solution for a millions-
label XML problem, there are two branches to use
OVR on the XML problem:

* DiSMEC (Babbar and Scholkopf, 2017) sepa-
rates the labels into many machines and utilizes
the distributed system to reduce the training time
and model size per machine.

¢ Tree-based linear methods (Tsoumakas et al.;
Prabhu et al., 2018; Khandagale et al., 2020;
Yu et al., 2022) utilize the divide-and-conquer
paradigm on labels via clustering methods such
as K-means and then apply the OVR method to
conquer the smaller problem on the clusters. The
details are discussed in Section 2.2.

Besides the linear methods, we can also use low-

rank embedding on features and labels to reduce the

training time and memory usage, e.g., (Bhatia et al.,

2015; Yu et al., 2014), but some works (Khandagale

et al., 2020; Babbar and Scholkopf, 2017) report

that the long-tail distribution of positive instances
over labels, which is an essential phenomenon in
most XML data sets, causes the label space can-
not be well-approximated to a low-rank embedding
space. For the deep-learning methods, some ear-
lier works (Kim, 2014; Liu et al., 2017) only show



competitive performance on short-text XML prob-

lems (Yu et al., 2022, Section 5.2). However, sev-

eral tree-based deep-learning methods (You et al.,

2019; Jiang et al., 2021; Zhang et al., 2021) can

rank better on the public XML benchmark (Bhatia

et al., 2016). Nevertheless, although neural net-
work models perform better in many fields, Lin

et al. (2023) point out that the linear model is still a

strong baseline for certain multi-label classification

data. Furthermore, the linear models are easy to
understand and more explainable, so we focus on
linear models in this work.

Let us back to discuss the linear methods. Al-
though DiSMEC and tree-based linear methods are
good solutions for XML problems, each method
still has disadvantages. DiSMEC can only han-
dle a small number of labels, but not large-scale
labels in each machine, and tree-based linear meth-
ods require huge memory space during the training.
Hence, we hope a method can take advantage of
DiSMEC and tree-based methods without taking
their disadvantages.

Label subsampling is another way to divide an
XML problem into many small-scale subproblems.
RAKEL (Tsoumakas and Vlahavas, 2007) is a pi-
oneer in using label subsampling with the ensem-
ble method. After the label subsampling, RAKEL
converts the smaller multi-label problem to a multi-
class one by considering every label combination as
a new class label. This setting, referred to as “label
powerset” in multi-label learning, is not scalable
to XML because covering the predictions of ex-
tremely large-scale labels by the powerset method
is almost impossible. The difference between our
method and RAKEL is discussed in Appendix A.

In this work, we utilize label subsampling and
the distributed system to reduce the impact of
the large-scale labels. For example, using many
smaller XML subproblems with subsampling in
labels can recover an extremely large-scale XML
problem, and each computer can solve a smaller
XML subproblem via some existing XML methods,
such as tree-based linear methods. Hence, handling
XML problems with billions of labels or more be-
comes practical. Moreover, since we use the label
subsampling technique with the tree-based linear
method, we call this method “random label forests.”
Let us list our contributions in the following:

* We propose a native paralleled framework, ran-
dom label forests, an ensemble method with label
subsampling for the XML problem.

* We explain the importance of negative instances

in random label forests.

* Our experiments show that random label forests
are competitive with the tree-based methods with
all labels in many XML data sets.

* We analyze the model size of tree-based meth-
ods and explain why random label forests can
reduce memory usage in each computer of the
distributed system.

* We also analyze the time complexity of tree-
based methods. The training time of random
label forests is much faster than the tree-based
methods with all labels if computers are enough.

Section 2 discusses OVR and tree-based meth-
ods for XML problems and explains why we only
consider linear methods in this work. Section 3
focuses on how to distribute a tree-based model
and then presents random label forests, including
discussions on the data processing issue, time com-
plexity, and model size. We show the comparisons
between several linear methods in Section 4 for the
experiments. We further give the training time and
model size tables for a tree-based method with all
labels and random label forests.

2 Multi-Label Problems

Generally, a multi-label classification problem aims
to find a function f with the parameter 6 that can
predict whether a given instance x, which is a fea-
ture vector in R"™, is associated with the label-j;
for j = 1,...,m, where n and m are the feature
dimension and the number of labels. We use 0
and 1 to represent the relation between an instance
and a label, where 0/1 means an instance is asso-
ciated without/with a label. Hence, we can denote
y € {0,1}™ as the label vector of the instance
x € R, so that the predictions f(x;0) can be as
close with y as possible. By the aforementioned
definition, those past works (Babbar and Scholkopf,
2017; Prabhu et al., 2018; Khandagale et al., 2020;
Yu et al., 2022) utilize linear models to handle the
multi-label classification problem, and other works
(Kim, 2014; Liu et al., 2017; You et al., 2019; Jiang
et al., 2021; Zhang et al., 2021) use the different
architectures of neural networks. Although neural
network models perform better in many fields, Lin
et al. (2023) point out that the linear model is still a
strong baseline for certain multi-label classification
data. Furthermore, the linear models are easy to
understand and more explainable, so we focus on
linear models in this work.



2.1 One-Versus-Rest Method

The one-versus-rest (OVR) method involves train-
ing a single model per label, with the instances
of that label as positives and all other instances
as negatives. Thus, when training an OVR linear
model on a multi-label classification problem with
the training data set
D= {(ywwl) € ({Oa 1}m’Rn) | 1=1,... 7l}7

where [ is the number of the training instances, we
solve m subproblems

min
w; cR"

A l
§ij'wj +) Cwlm,fyly), (D)

i=1

for 5 = 1,...,m. In each subproblem, \ is the
hyper-parameter, [a]; denotes the jth component
of the vector a, and £ is the loss function for binary
classification. Moreover, these subproblems in (1)
can be easily handled by some mature binary clas-
sification libraries such as LIBLINEAR (Fan et al.,
2008). After the training, with a given instance x,
we can give x the scores

fOVR(a:;wl W) = [wr{m w%m]
to each label by the OVR model. Moreover, we
can use a 0-1 function § to map the scores to a
label vector [§(w] ) ---d(wl x)] € {0,1}™ as
the prediction.

Many works (Babbar and Schélkopf, 2017; Lin
et al., 2023) show that OVR linear models are pow-
erful, but

(i) the space requirement for the model parame-

ter @ = (w; - - - w,,) and

(ii) the training time of (1)
are directly increasing as m becomes larger and
larger. When we consider some XML problems,

the issues above become important.

2.2 Tree-Based Methods

To overcome the training time issue (ii), past works
(e.g., Prabhu et al., 2018; Khandagale et al., 2020;
Yu et al., 2022) utilize the tree structure to reduce
the training time, which is recursively based on
some clustering methods such as K-means method
with some label information. However, the label in-
formation may be missing in some datasets, so sev-
eral methods are proposed in (Prabhu et al., 2018;
Khandagale et al., 2020; Yu et al., 2022) to con-
struct the label representations without knowing

any information about labels, e.g., collecting all
positive instances of label-j as the representation
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After learning about the label information issue,
let us show an example with a two-level tree. The
K-means divides the index set labels {1,...,m}
into K partitions Iy, ..., Ix. Then, we can train a
much smaller OVR linear model

2

l

A

Jnin o] w; waz,zz) 3)
J i=1

for j = 1,. .., K, to determine whether @ has
pseudo-label-j, where the pseudo-label vector z
is defined by

2] {1 a has any label in the partition [ i
Z|lx =
J

0 otherwise,

for all} =1,..., K. Prabhu et al. (2018); Yu et al.
(2022) point out that the model trained by (3) can
estimate the probabilities

P(z has pseudo-label-j | x, w3), 4)

for j =1,..., K, via the transform function

J(Ib;:.cm) = exp <— max(1 — fv?w, 0)2) (5)
if € is square-hinge loss, but we are interested in
P(x has label-j | x,0), Vj=1,...

7m7

where 0 includes all the parameters (i.e., W= 5 Wy,

W ] , 7) in the model. Therefore, Prabhu et al. (2018)
utilize the property that

P(x has label-j | x,0)
= P(« has label-j,j € IJ~.
| @, w;, x has pseudo-label-j ) - (4), (6)

so we can rely on a data subset
D; = {(y;, x;) | x; has any label in I, Yi} (7)
to train another OVR model

min
w; cR™

A
Swiwi+ Y gl fyl), ©

(yivmi)eDj



NI N

Figure 1: A two-level tree-based model.

for estimating

P(x has label-j ,j € I ) ©
| &, w;, x has pseudo-label-j ),
forallj € I 5 The estimation of (9) corresponds
to the training process at the node I 5 in Figure 1.
Specifically, at the node I 5. we have a smaller multi-
label problem with labels in [; and data points in
Djr. We still use the OVR setting for training. Thus,
we overall have K linear models trained by the full
data set D in level-1 of the tree, and m linear mod-
els trained by K smaller data subsets D1, ..., Dg
in level-2 of the tree. Furthermore, the transform
function (5) and the property (6) estimates

P(x has label-j | x, 0)

xo(ﬁ)?m) . J(U}?.’I;),Vj € Ij, (10)
forall j = 1,..., K, for predicting all labels with
a given x. Note that we only show a two-level
example here for describing the tree-based model.

For the training time of linear models, a famous
method (Hsieh et al., 2008) utilized several iter-
ations for solving a binary problem and each it-
eration costs O(nl) if 1, ..., x; is sparse vector,
where 7 is the average of non-zeros over all in-
stances. Fortunately, we usually pre-process the
instances x1, ..., x; to sparse feature representa-
tions when using linear models, so training a binary
problem with the full data set D can roughly cost
O(nl). Therefore, training a standard OVR model
costs O(mnl). For a two-level tree-based model,
we derive the training time as

0 (KméhR + (K + %)m) (1)
in Appendix B, which including the cost of K-
means, where ¢ > 1 is bounded by the maximal
label number of an instance, ¢ > 1 is the average
increased rate of non-zeros of label representations,
and R is the maximum iteration of K-means. For
data with many instances, we generally have

> KR@,

so the second part in (11) is the dommant term. If
we compare with the O(mnl) cost of OVR, when
m is extremely large, a tree-based model costs
much less.

We have discussed a tree-based model to solve
the training time issue (ii). Let us check the model
size. To begin, we assume that before training any
binary problem, zero features have been removed.
Due to the use of I regularization (i.e., w;-F’w ;in
(1)), the resulting w; generally has non-zero com-
ponents. That is, w; is a dense vector. Now for the
OVR method, we need O(mn) space to store the
m linear models. On the other hand, the two-level
tree-based model has (K + m) linear models, so
the model size is O(Kn + mn), which is larger
than the OVR model. Fortunately, while we use
a training data subset (7) to train the model for
estimating (8), many instances may be removed.
Thus, there may exist some features that are not
used by any instance of a training data subset, so
that we can remove some dimensions of the origi-
nal feature space R"” in each subset. In particular,
the features of the instances a1, . . ., x; are sparse
in the data set. Assume the reduced dimensions are
ni,...,nx that correspond to the training subsets
Dy, ...,Dg, and take 7 < n as the average di-
mension of the feature space in the level-2 models.
Thus, the two-level tree-based model size becomes
O(Kn-+mn), which can be less than OVR’s model
size O(mn) if 7 is small enough.

3 Distributed Setting for Memory Issue

Using multiple computers to contain a model can
reduce the memory usage in each computer. In the
past, DISMEC was a successful work that separated
the OVR model. However, training a DiISMEC
model requires more and more computers as the
label number m becomes larger and larger. Hence,
separating a tree-based model into many computers
is a practical solution for saving resources because
the training speed of a tree-based model is faster
than that of an OVR model. Therefore, we discuss
distributing a tree-based model in the following
subsections.

3.1 Distributing a Tree-Based Model

We discuss that a tree-based model separates the
labels to the partitions Iy, ..., Ik in Section 2.2,
so distributing the sub-tree construction of these
partitions is a possible way. Assume we have K
machines. For the machine-J, to simulate the task



Data set | Max. labels | Ratio of total labels
eur-lex-4k 422 0.11
wikil0-31k 3289 0.11
amazoncat-13k 2854 0.21
amazon-670k 106963 0.16
amazon-3m 352094 0.13
wiki-500k 88769 0.18

Table 1: The maximal label number of K-means parti-
tions over six data sets as K = 100.

at node /5 in Figure 1, we must train a binary clas-
sifier on

data with labels in [ 5 versus without. (12)
To this end, the machine—j must have the whole
training set. After that, the machine-; continues to
construct the sub-tree. Therefore, the performance
will be the same as the serial setting. However,
there are two issues:

(i) Unless we implement distributed /-means,
the K -means procedure must be done on one
computer to get the partitions.

(i1) The partitions are imbalanced. Table 1 shows
that there is a partition from [y, . .., I1go that
includes over 10% of the labels in each data
set. Thus, the model sizes of the partitions
are hard to estimate, so the specifications of
each computer are challenging to decide.

3.2 Random Label Forests

One possible solution to overcome these two is-
sues is to omit K -means and uniformly split labels
to the partitions I, ..., Ik in level-1, and every-
thing else is the same. However, our experiment in
Section 4.1 shows that the performance of a tree-
based model using K-means partitions is better
than using random partitions. The inferior perfor-
mance seems to be from the poor estimations of
level-1 probabilities. We know that for instances
with similar or even identical feature values, their
label sets should be similar. For a random split
of labels, these similar instances may end up with
being on both positive and negative sides of the
problem (12), an ambiguous situation that may re-
sult in a poor model. In contrast, K -means helps
to put these labels into the same partition, so the
issue may not occur. From the discussion so far,
the question becomes how to alleviate the perfor-
mance issue while controlling the model size per
computer.

We propose the following settings to address the
issue.

¢ In each machine, we consider a random label
subset, which allows us to control the model size.
* We propose bypassing the level-1 probability es-
timate. Instead, we run the standard tree-based
method on the label subset, so K-means is ap-
plied on every level.
For the random label subset in each computer, in-
stead of one partition from splitting the whole label
space, we can be general so that label subsets over-
lap. The remaining task is how to let each machine
procedure suitable probability estimate and how to
ensemble results from different machines. Because
each label subset corresponds to an independent
tree, our method is an ensemble method with label
subsampling. We call our method “random label
forests” due to the similar idea from random forests
(Breiman, 2001).

Let us formally discuss random label forests
in detail. Suppose we have N computers, and
use the sample rate r on subsampling the labels
{1,...,m} to the subsets I;, forallt = 1,..., N.
Without loss of generality, let us focus on ¢ =1 as
an example. Since the label part of the data set has
been subsampled, the label space is modified from
{0,1}™ to {0,1}/11], where we use a function ¢
to describe this label mapping. Our training data
subset becomes

ﬁl = {(¢1(yz)7ml) | P = 17"')l}

in the computer-1. We mention that the smaller
sample rate » we set, the more instances have
empty-labeled in Dy, i.e.,

é1(y) = 0 € {0,131, 3 (¢, (y), @) € D1

Thus, there is a choice of whether those empty-
labeled instances should be removed.

The training time of the models can be reduced if
we remove the empty-labeled instances. However,
the probability estimation (4) can be inaccurate
when using a tree-based model. Let us explain this
issue in the following example.
 Consider a multi-class problem, which is a spe-

cial case of multi-label problems, with three la-

bels {red circle, green triangle, blue cross} in

Figure 2a. If the red circle is the positive label

and the others are negative labels, a linear model

can be trained as the dark blue line in Figure 2a.
* If we uniformly sample the negative instances in

Figure 2b, the linear model may not be affected.

However, if we sample the negative instances by

the labels in Figure 2c, the linear model can be



(a) Without negative sampling.

(b) Negative sampling by instances.

(c) Negative sampling by labels.

Figure 2: An example of different negative samplings.

impacted in the wrong place. The reason is that
we completely remove the data from some labels.
e Thus, a non-uniform negative sampling can af-
fect (4) because the model does not estimate the
probability well anymore.
The example above shows a key point in a tree-
based model training on a subset of labels. If
we train a two-level tree-based model on the data
subset Dy, the training problem in level-1 will be
changed from (3) to

min (13)
w3 cR™ el
forj =1,..., K. Incontrast to z in (3), a pseudo-

label vector 2 of the data subset D is defined as

z; )
0 otherwise.

5] = {1 x has any label in I; of ﬁl,
Clearly, many z; = 0 if x;’s labels do not appear
in the set [ 1. If these x; are removed, it is like
that we do a non-uniform negative sampling as
in Figure 2c. The model trained by (13) may not
estimate the probability (4) well. Therefore, we
should not remove those empty-labeled instances
in 151. Besides this crucial point, all other details in
the tree construction are the same as those shown
in Section 2.2 for the tree using all labels.

With the label subsets [ Tyenns I ~ and the train-
ing subsets D1,..., Dy, we can parallelly train
the submodels 01, ...,0y in N computers. Algo-
rithm 1 shows the full training procedure.

Next, let us discuss the prediction procedure. We
still assume that two-level trees are used. Since the
prediction probabilities can be estimated by (10),
we can estimate P(a has label-j | x,8;) for all
label-j in the subsampled subset I, by the tth tree-
based submodel 8;. Because label-j may appear in
several label subsets, a natural setting is to average

Algorithm 1 Training random label forests.

Require: Training set D, # of submodels N, sample rate r
distributed for¢ =1,..., N do
I + subsample the label indices with the rate  on the
full index set {1,..., m}.
Dt < update the label part of D with fi.
0 + train a tree-based submodel with the subset D.
end distributed for

the several probability estimations.
P(x has label-j | «,01,...,0xN)
:Et:jeft P(« has label-j | x, 0;)

Nevertheless, an issue exists because a tree-based
submodel 8; can only predict labels in the subsam-
pled subset I;. Hence, if some labels are never sub-
sampled, our model can never predict those labels.
This situation occurs for some rare labels, so the
performance may not be affected much. Our com-
petitive performance shown in Section 4.2 seems
to support this point, though other ways of label
subsampling can be a future issue for investigation.

3.3 The Benefits of Random Label Forests

In Section 2.2, we discuss the time complexity and
model size of a two-level tree-based model. Now,
let us check the modifications of those complex-
ities in a computer when applying random label
forests with two-level tree-based submodels in the
distributed system.

* Space complexity. Since we can set the sample
rate as r, the number of a subsampled label set
becomes rm. Therefore, the model size changes
from O(Kn + mn) to O(Kn + rmn).

* Time complexity. Similarly, the time complexity
changes from (11) to

0 <Krm6hR + (K + %)m) .



Therefore, we can roughly control the model size
and training time by the rate r in random label
forests if each computer only contains a tree-based
submodel. We note that Yu et al. (2022) try to par-
allelize the training of a single tree with all labels,
but the implementation is complicated. Moreover,
the time complexity of K -means cannot be reduced
in that scenario.

4 Experiments

We firstly analyze the impacts of different dis-
tributed settings in Section 3.2 over four smaller
XML data sets, and discuss which setting is the
better choice in Section 4.1. After deciding the
distributed setting, our experiment compares three
linear models: OVR, a tree-based model with all
labels, random label forests on six XML data sets
in Section 4.2, where the label number m is shown
after the name in each data set.

We leave the details of data sets in Appendix C
and discuss the hyper-parameters of the models in
Appendix D. To measure the performance of an
XML model, we follow the works (Prabhu et al.,
2018; Khandagale et al., 2020; Yu et al., 2022; You
et al., 2019; Jiang et al., 2021) to use precision at
1, 3, and 5 as the metrics of the predictions.

In the final, we discuss the model size in Sec-
tion 4.3. Moreover, the training time comparisons
are presented in Appendix E.

4.1 Analysis of Different Distributed Settings

In Section 3.2, we discuss that using random par-

titions without overlaps is a possible solution for

avoiding the disadvantages of K -means under the
distributed setting, and now we have to check the
performance between these two partition methods.

Besides, we propose random label forests that by-

pass the level-1 probability estimate of the tree-

based method with random partitions. To compare
those three methods reasonably, we should consider
the following settings.

* “Tree with all labels.” The standard tree-based
method. Note that we set K = 100.

* “Random 100 partitions.” The tree-based method
with all labels that using random partitions
Ii,. .., I1go instead of K-means in level-1.

* “Random 10 partitions.” To compare random
partitions with random label forests, we should
consider the exact size of the partitions. As the
label sample rate of random label forests is 0.1,
random partitions should only contain 10 parti-

tions that split whole labels.

* “Random label forests-A.” Similarly, we must
consider the sampling type in random label
forests in addition to the subset size. Thus, we
uniformly split the labels to 10 partitions for pro-
ducing ten submodels and re-do ten times that
the number of submodels is up to 100. The differ-
ences between random label forests-A and ran-
dom 10 partitions are the ensemble setting and
bypassing the level-1 probability estimate.

* “Random label forests-B.” Conversely, we con-
sider the label subsets setting instead of the label
partitions, so we use uniform subsampling with
arate 0.1 for producing 100 submodels. Subsam-
pling methods usually use the uniform setting,
such as feature subsampling in random forests.

We have the following observations in Table 2.

» Using K-means for the label partitions is better
than using random partitions.

* A larger partition size may have stable results in
random partitions.

* Random label forests-A is better than random 10
partitions, so the ensemble setting and bypassing
the level-1 probability estimate are the critical
points in our method.

* The performances of random label forests-B are
slightly better than or similar to random label
forests-A. We think that the label overlaps in the
label subsampling method seem to be the connec-
tions between the submodels so that the predic-
tions of the submodels can be more meaningful
for ranking the labels.

In the final, we decided to use random label
forests-B as our distributed solution, and this sec-
tion shows that distributing a tree-based method is
not trivial.

4.2 Comparison in Performance

To mitigate randomization issues in tree-based
methods due to K -means, we execute training and
prediction procedures ten times on the data sets

“eur-lex-4k,” “wikil10-31k,” “amazoncat-13k,” and

“amazon-670k.” For the data sets “amazon-3m”

and “wiki-500k” because the training time is too

long, we only execute the procedures once. Ta-
ble 3 shows the comparison results and we have
the following observations.

* OVR is slightly better than tree-based methods.
This result is reasonable because tree-based meth-
ods are a kind of “hierarchical approximation” of
OVR to address the scalability issue.

* The proposed random label forests are consis-



Method P@l P@3 P@5 | P@3 P@5 |P@l P@3 P@5 |P@l P@3 P@5
eur-lex-4k wikil0-31k amazoncat-13k amazon-670k
Tree with all labels 8229 6935 5791 | 7472 65.86 | 93.19 79.55 64.61 | 4458 39.44 35.64
Random 100 partitions | 80.52 67.56 56.30 | 73.02 63.82 | 92.56 7790 62.76 | 38.52 3249 27.90
Random 10 partitions 79.82 66.60 55.84 | 73.61 6455 | 9236 78.06 63.11 | 41.76 36.43 32.30
Random label forests-A | 81.22 68.15 57.29 | 74.13 6536 | 93.08 79.59 64.78 | 4523 40.28 36.70
Random label forests-B | 83.08 69.90 58.69 | 7435 65.70 | 94.11 80.17 65.18 | 45.19 40.24 36.65

Table 2: Comparison of different distributed settings in precisions. For wikil0-31k, since half of the instances are
associated with a unique label, precision at 1 is not a discriminable metric on this data set. Therefore, for the space

limitation, we do not show the results of precision at 1 in wikil0-31k.

Method P@l1 P@3 P@5 P@1 P@3 P@5
eur-lex-4k amazon-670k
One-versus-rest 83.47 70.62 59.05 4541 40.41 36.97
Tree with all labels 8229 £0.30 69.354+0.09 5791 £0.12 | 4458 +£0.07 39.44 £0.04 35.64 +0.03
Random label forests | 83.08 &= 0.15 69.90 & 0.08 58.69 £ 0.06 | 45.19 £0.05 40.24 +=0.03 36.65 £ 0.01
wikil0-31k amazon-3m
One-versus-rest 85.23 75.80 67.11 - - -
Tree with all labels 84.72 £0.08 7472 £0.17 65.86 =0.09 | 47.48 44.74 42.63
Random label forests | 84.78 £0.14 74.35 4+ 0.17 65.70 £ 0.08 | 48.69 45.67 43.49
amazoncat-13k wiki-500k
One-versus-rest 94.14 79.71 64.69 - - -
Tree with all labels 93.19 £0.03 79.55+0.04 64.61 +0.03 | 68.39 48.90 38.00
Random label forests | 94.11 +0.04 80.17 = 0.02 65.18 £0.02 | 64.37 45.83 36.09

Table 3: Comparison of Random label forests and other linear methods in precision at 1, 3, and 5 over six data sets.
OVR results on “amazon-3m” and “wiki-500k™ are unavailable due to lengthy running time.

Data set | Tree with all labels | Rand. label forests 1] and subsampled models are indeed approxi-
eur-lex-4k 561.02 MB 49.25 MB

wikil0-31k 6.38 GB 74907 MB  Mately close to the sample rate » = 0.1. Hence,
amazoncat-13k 1.72 GB 193.13MB  random label forests can reduce the model size
amazon-670k 20.56 GB 2.92 GB : o]

amazon-3m 135.89 GB heoGe D each computer of the distributed system, even
wiki-500k 161.37 GB 13.65GB  though the whole model may be larger than that

Table 4: The model size comparison between a tree
with all labels and a tree of random label forests. Note
that the sample rate is 0.1 in random label forests.

tently better than the tree-based method with all

labels, except for “wiki-500k”. The performance

is close to that of OVR.

The worse results on “wiki-500k” is an example
of the limitations in our method, and we discuss
this issue in Section 6.1.

4.3 Comparison in Model Size

In Section 3.3, we have analyzed the model size of
random label forests that use two-level tree-based
submodels. However, because

* the sparsity of data points can affect 71, and

* atree-based model has more than two layers,
we conduct experiments to check the model size
in practice. Table 4 compares the model sizes be-
tween a tree-based method with all labels and a tree
in random label forests after training on the data
sets. We can see that the reduced ratios between

of a tree-based model with all labels, Therefore,
random label forests with the distributed system
deployment are a practical solution for handling an
XML problem with billions of labels or more.

5 Conclusion

In this work, we propose random label forests, a
distributed ensemble method with label subsam-
pling, and tree-based linear models as the back-
bone, giving competitive performances using much
less training time and memory usage in a machine.
Hence, handling an XML problem with billions of
labels or further more labels becomes practical. We
discuss that removing some the negative instances
will hurt the accurate of probability estimate if label
subsampling is used. Furthermore, we analyze time
complexity and model size in random label forests.
In the future, we plan to observe other cases of the
distributed ensemble method with label subsam-
pling, such as neural network methods, so that this
method can be a general solution in other XML
applications, such as image classification and other
natural language process problems.



6 Limitations

6.1 Breaking Label Relationships

In Section 4.2, the performance of random label
forests are gaping from that of a tree-based method
with all labels over “wiki-500k” data set. After the
investigation, we think the hierarchy correlation
between the labels in “wiki-500k” may be higher
than other data sets because the labels are the tags
of the documents in Wikipedia. For example, the
labels of the 14th instance in the raw data of “wiki-
500k” are

‘Apollo,” ‘Arts gods, ‘Deities in the Iliad,
‘Dragonslayers,” ‘Health gods,” ‘Knowledge
gods,” ‘LGBT history in Greece, ‘LGBT
themes in mythology,” ‘Muses,” ‘Mythological
Greek archers,” ‘Mythological rapists,” ‘Oracu-
lar gods,” ‘Roman gods,” ‘Solar gods,” ‘“Temples
of Apollo,

and there are many hierarchy relationships:

Roman gods — Apollo,
Solar gods — Apollo, ..., etc.

Thus, uniform sampling in labels breaks the re-
lations, so the performance may be hurt. If we
increase the sample rate from 0.1 to 0.15, the per-
formance of “wiki-500k” will become better to

PQ1 | P@3 | P@5
65.45 | 46.84 | 36.92

However, that performance is still much lower
than the tree-based model with all labels. There-
fore, the label subsampling technique seems unsuit-
able for the data sets that include many hierarchy-
correlation labels.

6.2 Requiring Distributed Resourse

In Section 4.2 and Appendix E, we show that a tree
of random label forests can use much less memory
and training time than a tree-based model with
all labels. However, random label forests require
N tree-based submodels as an ensemble method.
Hence, those benefits will be discounted if we do
not have N machines.

6.3 The Applications of Distributed
Ensembles Method with Label
Subsampling

We only show an example, random label forests,
of distributed ensemble methods with label sub-
sampling and analyze the time complexity and

model size. However, the conclusion may be differ-
ent when using neural networks as the submodel.
Hence, searching for more applications is vital if
distributed ensemble methods with label subsam-
pling are a general solution for reducing the mem-
ory usage of an XML method in a computer.
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A Difference between Random Label
Forests and RAKEL

Let us discuss the differences between random
label forests and the pioneer label subsampling
method RAKEL. The sharpest contrast is that ran-
dom label forests are designed for XML problems,
but RAKEL is not. The reason is that the label
powerset method in RAKEL is only efficient on
multi-label problems with small labels, so using
that method with label subsampling in XML prob-
lems may require extremely huge number of sam-
pled label subsets to cover whole labels. Hence,
applying other XML methods such as tree-based
methods on each large-scale label subset can in-
crease the sample rate in label subsampling, and
the number of label subsets can then be reduced.
Furthermore, we consider to use distributed setting
such that each computer only handles a smaller
XML problem with a label subset.

B Time Complexity of Two-Level
Tree-Based Model

Because the level-1 of a two-level tree-based model
is a smaller OVR model, the level-1 only costs
O(Knl). For the level-2, since the instances can
belong to several label partitions, we assume that
the average number of instances in each of the
subsets D1, ..., Dk is

cl
?7
where ¢ > 1 is a small positive number. Moreover,

c is bounded by the maximal label number of an in-
stance'. Hence, taking the training cost of a subset
ncl

in level-2 as
0]
(%)

is a reasonable assumption in the linear model set-
ting, and the two-level tree-based model then costs

yiat)

which is different from the complexity of OVR
O(mnl). Besides the training time of linear mod-
els, we must check the cost of running K -means.
The process involves several iterations, in each of
which we calculate the distance between each la-
bel representation (2) and K centers of the current
clusters. If the label representations are still sparse

O((K+%

"Prabhu et al. (2018) assume O(log(m)) is the maximal
label number of an instance, so c is bounded by O(log(m)).
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and the average of non-zeros is ¢n, where ¢ > 1 is
a positive constant, checking the distance requires

O(én).
Thereby, one iteration of K-means requires
O(Kmeén).

We usually set a constant R as the maximum itera-
tion, so the time complexity of K-means is

O(KménR).

Hence, the total training time of a two-level tree-
based model is

0 (KméhR + (K + %)m) .

C Data Sets

We show the statistics of data sets in Table 5. The
sets “eur-lex-4k,” “wikil0-31k,” and “amazoncat-
13k” are downloaded from “LIBSVM Data: Multi-
label Classification?”. The sets “amazon-670k,”
“amazon-3m,” and “wiki-500k™ are downloaded
from the link that is supported by Yu et al. (2022).
Note that those data sets have already been prepro-
cessed from documents to a popular sparse feature
representation, “TF-IDF.” Moreover, every data set
has further been split into training and test parts.

D Hyper-Parameter Setting

In an XML problem, many works (Prabhu et al.,
2018; Khandagale et al., 2020; Yu et al., 2022; You
et al., 2019; Jiang et al., 2021; Zhang et al., 2021)
only fix a group of reasonable hyper-parameters on
their models because splitting a validation set from
a training set is a complex issue. The main reason
comes from the long-tail distribution of data over
the labels. If we uniformly split a validation set
from a training set, the distribution of the valida-
tion set is usually much different from the training
set in most rare labels, implying that tuning the
hyper-parameters in this validation set is not suit-
able. Hence, we follow those works (Prabhu et al.,
2018; Khandagale et al., 2020; Yu et al., 2022; You
et al., 2019; Jiang et al., 2021; Zhang et al., 2021)
to set the commonly used hyper-parameters to keep
our results credible.

2https: //www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

l n m
Data Set # of training instances | # of test instances | # features # labels
eur-lex-4k 15,449 3,865 186,104 3,956
wikil0-31k 14,146 6,616 104,374 30,938
amazoncat-13k 1,186,239 306,782 203,882 13,330
amazon-670k 490,449 153,025 135,909 670,091
amazon-3m 1,717,899 742,507 337,067 | 2,812,281
wiki-500k 1,779,881 769,421 | 2,381,304 501,070

Table 5: Statistics of data sets

In our experiments, we utilize the library Lib-
MultiLabel® to handle all of the model training
and evaluation. Moreover, the linear classifiers are
trained by LIBLINEAR (Fan et al., 2008) in Lib-
MultiLabel. For the detail settings in LIBLINEAR,
we consider the settings from the works (Prabhu
et al., 2018; Khandagale et al., 2020; Yu et al.,
2022):

* using squared hinge loss (L2-SVM),
* training the binary classifiers and
e taking A = 1 in the training problems.

In the implementations of (Prabhu et al., 2018;
Khandagale et al., 2020; Yu et al., 2022), they de-
cided to early stop the training process in each
linear model training, but we chose to spend more
time in the model training to get a tight solution
that is closer to the optimal solution of the training
problem. The tree-based methods in LibMultiL-
abel follow the implementation* in Khandagale
et al. (2020), and we consider the following hyper-
parameters

e K for K-means: 100,
¢ max level of the tree: 10.

For the random label forests, we consider uniform
sampling with a sample rate of 0.1 on the labels
because reducing model size by around 90% is
a practical scenario. Moreover, we consider the
default setting of random forests from scikit-learn
(Pedregosa et al., 2011):

training 100 tree-based submodels

for our ensemble method.
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Data set | Tree with all labels | Rand. label forests
eur-lex-4k 22442 s 32.18 s
wikil0-31k 4220.77 s 543.33 s
amazoncat-13k 5311.23 s 910.06 s
amazon-670k 32068.89 s 2120.25s
amazon-3m 503575.79 s 23023.76 s
wiki-500k 202261.66 s 22987.20 s

Table 6: Training time comparison between a tree with
all labels and a tree of random label forests. Note that
the sample rate is 0.1 in random label forests.

E Comparison in Training Time

Section 3.3 further discussed the time complexity
of random forests that uses two-level tree-based
submodels. Table 6 shows the training time com-
parison between a tree-based model with all labels
and a tree of random label forests over different
data sets. We can see that the training time is re-
duced a lot in random label forests if each machine
only contains one tree-based submodel. The reduc-
tion becomes more apparent, especially when the
number of labels is larger.

3https://www.csie.ntu.edu.tw/~cjlin/
libmultilabel

*The work (Khandagale et al., 2020) ensembles the pre-
dictions of three tree-based models in their experiments, but
LibMultiLabel only considers the prediction of one tree-based
model.
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