
Random Label Forests: An Ensemble Method with Label Subsampling
For Extreme Multi-Label Problems

Anonymous ACL submission

Abstract

Text classification is one of the essential top-001
ics in natural language process fields, and002
the prediction in text classification can usu-003
ally be multiple labels. Thus, a text classi-004
fication problem can be a particular problem005
in machine learning: a multi-label classifica-006
tion problem. Recently, the number of labels007
has become larger and larger, especially in the008
applications of e-commerce, so handling text-009
related e-commerce problems further requires010
more and more memory space in many exist-011
ing multi-label learning methods. Hence, uti-012
lizing distributed system to share those large013
memory requirement is a reasonable solution.014
We propose “random label forests”, a dis-015
tributed ensemble method with label subsam-016
pling, for handling extremely large-scale la-017
bels by label subsampling and parallel comput-018
ing. Random label forests can reduce the mem-019
ory usage per computer while keeping com-020
petitive performances over six real-world data021
sets.022

1 Introduction023

Text classification is one of the essential topics in024

natural language process fields. There are many025

valuable applications, such as product categoriza-026

tion for e-commerce (Shen et al., 2011; Agrawal027

et al., 2013; McAuley and Leskovec, 2013), cod-028

ing diagnosis and procedures in medical records029

(Nuthakki et al., 2019), and document tagging (Zu-030

biaga, 2009). Usually, the prediction in the text031

classification can be multiple labels, e.g., a docu-032

ment can be tagged as label-A and label-C. Hence,033

a text classification problem can be a particular034

problem in machine learning: a multi-label classifi-035

cation problem, which is to find the relevant labels036

of a data instance. For example, we can set the doc-037

ument ID, the document contents, and the taggings038

in the document tagging problem as the instances,039

features, and labels in a multi-label problem. Thus,040

we can utilize a multi-label classification method 041

to handle a text classification problem. 042

Recently, the number of labels has become 043

larger and larger, especially in the applications of 044

e-commerce. Thus, a particular topic has been 045

discussed recently: extreme multi-label learning 046

(XML), which focuses on large-scale candidate la- 047

bels, input instances, and input features. Because 048

of these three large-scale things, an XML method 049

should further consider the model training time and 050

memory usage, besides the performance. 051

In the earlier years, a multi-label classification 052

problem could be handled by the one-versus-rest 053

(OVR) method with linear models, but the time 054

complexity and model size directly depended on 055

the number of labels and features. Although the 056

OVR method is not a good solution for a millions- 057

label XML problem, there are two branches to use 058

OVR on the XML problem: 059

• DiSMEC (Babbar and Schölkopf, 2017) sepa- 060

rates the labels into many machines and utilizes 061

the distributed system to reduce the training time 062

and model size per machine. 063

• Tree-based linear methods (Tsoumakas et al.; 064

Prabhu et al., 2018; Khandagale et al., 2020; 065

Yu et al., 2022) utilize the divide-and-conquer 066

paradigm on labels via clustering methods such 067

as K-means and then apply the OVR method to 068

conquer the smaller problem on the clusters. The 069

details are discussed in Section 2.2. 070

Besides the linear methods, we can also use low- 071

rank embedding on features and labels to reduce the 072

training time and memory usage, e.g., (Bhatia et al., 073

2015; Yu et al., 2014), but some works (Khandagale 074

et al., 2020; Babbar and Schölkopf, 2017) report 075

that the long-tail distribution of positive instances 076

over labels, which is an essential phenomenon in 077

most XML data sets, causes the label space can- 078

not be well-approximated to a low-rank embedding 079

space. For the deep-learning methods, some ear- 080

lier works (Kim, 2014; Liu et al., 2017) only show 081
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competitive performance on short-text XML prob-082

lems (Yu et al., 2022, Section 5.2). However, sev-083

eral tree-based deep-learning methods (You et al.,084

2019; Jiang et al., 2021; Zhang et al., 2021) can085

rank better on the public XML benchmark (Bhatia086

et al., 2016). Nevertheless, although neural net-087

work models perform better in many fields, Lin088

et al. (2023) point out that the linear model is still a089

strong baseline for certain multi-label classification090

data. Furthermore, the linear models are easy to091

understand and more explainable, so we focus on092

linear models in this work.093

Let us back to discuss the linear methods. Al-094

though DiSMEC and tree-based linear methods are095

good solutions for XML problems, each method096

still has disadvantages. DiSMEC can only han-097

dle a small number of labels, but not large-scale098

labels in each machine, and tree-based linear meth-099

ods require huge memory space during the training.100

Hence, we hope a method can take advantage of101

DiSMEC and tree-based methods without taking102

their disadvantages.103

Label subsampling is another way to divide an104

XML problem into many small-scale subproblems.105

RAKEL (Tsoumakas and Vlahavas, 2007) is a pi-106

oneer in using label subsampling with the ensem-107

ble method. After the label subsampling, RAKEL108

converts the smaller multi-label problem to a multi-109

class one by considering every label combination as110

a new class label. This setting, referred to as “label111

powerset” in multi-label learning, is not scalable112

to XML because covering the predictions of ex-113

tremely large-scale labels by the powerset method114

is almost impossible. The difference between our115

method and RAKEL is discussed in Appendix A.116

In this work, we utilize label subsampling and117

the distributed system to reduce the impact of118

the large-scale labels. For example, using many119

smaller XML subproblems with subsampling in120

labels can recover an extremely large-scale XML121

problem, and each computer can solve a smaller122

XML subproblem via some existing XML methods,123

such as tree-based linear methods. Hence, handling124

XML problems with billions of labels or more be-125

comes practical. Moreover, since we use the label126

subsampling technique with the tree-based linear127

method, we call this method “random label forests.”128

Let us list our contributions in the following:129

• We propose a native paralleled framework, ran-130

dom label forests, an ensemble method with label131

subsampling for the XML problem.132

• We explain the importance of negative instances133

in random label forests. 134

• Our experiments show that random label forests 135

are competitive with the tree-based methods with 136

all labels in many XML data sets. 137

• We analyze the model size of tree-based meth- 138

ods and explain why random label forests can 139

reduce memory usage in each computer of the 140

distributed system. 141

• We also analyze the time complexity of tree- 142

based methods. The training time of random 143

label forests is much faster than the tree-based 144

methods with all labels if computers are enough. 145

Section 2 discusses OVR and tree-based meth- 146

ods for XML problems and explains why we only 147

consider linear methods in this work. Section 3 148

focuses on how to distribute a tree-based model 149

and then presents random label forests, including 150

discussions on the data processing issue, time com- 151

plexity, and model size. We show the comparisons 152

between several linear methods in Section 4 for the 153

experiments. We further give the training time and 154

model size tables for a tree-based method with all 155

labels and random label forests. 156

2 Multi-Label Problems 157

Generally, a multi-label classification problem aims 158

to find a function f with the parameter θ that can 159

predict whether a given instance x, which is a fea- 160

ture vector in Rn, is associated with the label-j 161

for j = 1, . . . ,m, where n and m are the feature 162

dimension and the number of labels. We use 0 163

and 1 to represent the relation between an instance 164

and a label, where 0/1 means an instance is asso- 165

ciated without/with a label. Hence, we can denote 166

y ∈ {0, 1}m as the label vector of the instance 167

x ∈ Rn, so that the predictions f(x;θ) can be as 168

close with y as possible. By the aforementioned 169

definition, those past works (Babbar and Schölkopf, 170

2017; Prabhu et al., 2018; Khandagale et al., 2020; 171

Yu et al., 2022) utilize linear models to handle the 172

multi-label classification problem, and other works 173

(Kim, 2014; Liu et al., 2017; You et al., 2019; Jiang 174

et al., 2021; Zhang et al., 2021) use the different 175

architectures of neural networks. Although neural 176

network models perform better in many fields, Lin 177

et al. (2023) point out that the linear model is still a 178

strong baseline for certain multi-label classification 179

data. Furthermore, the linear models are easy to 180

understand and more explainable, so we focus on 181

linear models in this work. 182

2



2.1 One-Versus-Rest Method183

The one-versus-rest (OVR) method involves train-184

ing a single model per label, with the instances185

of that label as positives and all other instances186

as negatives. Thus, when training an OVR linear187

model on a multi-label classification problem with188

the training data set189

D = {(yi,xi) ∈ ({0, 1}m,Rn) | i = 1, . . . , l},190

where l is the number of the training instances, we191

solve m subproblems192

min
wj∈Rn

λ

2
wT

j wj +
l∑

i=1

ξ(wT
j xi, [yi]j), (1)193

for j = 1, . . . ,m. In each subproblem, λ is the194

hyper-parameter, [a]j denotes the jth component195

of the vector a, and ξ is the loss function for binary196

classification. Moreover, these subproblems in (1)197

can be easily handled by some mature binary clas-198

sification libraries such as LIBLINEAR (Fan et al.,199

2008). After the training, with a given instance x,200

we can give x the scores201

fOVR(x;w1 · · ·wm) =
[
wT

1 x · · · wT
mx
]

202

to each label by the OVR model. Moreover, we203

can use a 0-1 function δ to map the scores to a204

label vector
[
δ(wT

1 x) · · · δ(wT
mx)

]
∈ {0, 1}m as205

the prediction.206

Many works (Babbar and Schölkopf, 2017; Lin207

et al., 2023) show that OVR linear models are pow-208

erful, but209

(i) the space requirement for the model parame-210

ter θ = (w1 · · ·wm) and211

(ii) the training time of (1)212

are directly increasing as m becomes larger and213

larger. When we consider some XML problems,214

the issues above become important.215

2.2 Tree-Based Methods216

To overcome the training time issue (ii), past works217

(e.g., Prabhu et al., 2018; Khandagale et al., 2020;218

Yu et al., 2022) utilize the tree structure to reduce219

the training time, which is recursively based on220

some clustering methods such as K-means method221

with some label information. However, the label in-222

formation may be missing in some datasets, so sev-223

eral methods are proposed in (Prabhu et al., 2018;224

Khandagale et al., 2020; Yu et al., 2022) to con-225

struct the label representations without knowing226

any information about labels, e.g., collecting all 227

positive instances of label-j as the representation 228∑
i[yi]jxi

‖
∑

i[yi]jxi‖2
. (2) 229

After learning about the label information issue, 230

let us show an example with a two-level tree. The 231

K-means divides the index set labels {1, . . . ,m} 232

into K partitions I1, . . . , IK . Then, we can train a 233

much smaller OVR linear model 234

min
w̃j̃∈Rn

λ

2
w̃T

j̃
w̃j̃ +

l∑
i=1

ξ(w̃T
j̃
xi, [zi]j̃), (3) 235

for j̃ = 1, . . . ,K, to determine whether x has 236

pseudo-label-j̃, where the pseudo-label vector z 237

is defined by 238

[z]j̃ =

{
1 x has any label in the partition Ij̃ ,
0 otherwise,

239

for all j̃ = 1, . . . ,K. Prabhu et al. (2018); Yu et al. 240

(2022) point out that the model trained by (3) can 241

estimate the probabilities 242

P (x has pseudo-label-j̃ | x, w̃j̃), (4) 243

for j̃ = 1, . . . ,K, via the transform function 244

σ(w̃T
j̃
x) = exp

(
−max(1− w̃T

j̃
x, 0)2

)
(5) 245

if ξ is square-hinge loss, but we are interested in 246

P (x has label-j | x,θ), ∀j = 1, . . . ,m, 247

where θ includes all the parameters (i.e., w̃j̃ , wj , 248

∀ j̃, j) in the model. Therefore, Prabhu et al. (2018) 249

utilize the property that 250

P (x has label-j | x,θ) 251

= P (x has label-j, j ∈ Ij̃ 252

| x,wj ,x has pseudo-label-j̃ ) · (4), (6) 253

so we can rely on a data subset 254

Dj̃ = {(yi,xi) | xi has any label in Ij̃ , ∀i} (7) 255

to train another OVR model 256

min
wj∈Rn

λ

2
wT

j wj +
∑

(yi,xi)∈Dj̃

ξ(wT
j xi, [yi]j), (8) 257
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{1, 2, . . . ,m}

I1

· · · · · ·

· · · Ij̃

· · · j · · ·

· · · IK

· · · · · ·

Figure 1: A two-level tree-based model.

for estimating258

P (x has label-j , j ∈ Ij̃
| x,wj ,x has pseudo-label-j̃ ),

(9)259

for all j ∈ Ij̃ . The estimation of (9) corresponds260

to the training process at the node Ij̃ in Figure 1.261

Specifically, at the node Ij̃ , we have a smaller multi-262

label problem with labels in Ij̃ and data points in263

Dj̃ . We still use the OVR setting for training. Thus,264

we overall have K linear models trained by the full265

data set D in level-1 of the tree, and m linear mod-266

els trained by K smaller data subsets D1, . . . , DK267

in level-2 of the tree. Furthermore, the transform268

function (5) and the property (6) estimates269

P (x has label-j | x,θ)

≈σ(w̃T
j̃
x) · σ(wT

j x),∀j ∈ Ij̃ ,
(10)270

for all j̃ = 1, . . . ,K, for predicting all labels with271

a given x. Note that we only show a two-level272

example here for describing the tree-based model.273

For the training time of linear models, a famous274

method (Hsieh et al., 2008) utilized several iter-275

ations for solving a binary problem and each it-276

eration costs O(ṅl) if x1, . . . ,xl is sparse vector,277

where ṅ is the average of non-zeros over all in-278

stances. Fortunately, we usually pre-process the279

instances x1, . . . ,xl to sparse feature representa-280

tions when using linear models, so training a binary281

problem with the full data set D can roughly cost282

O(ṅl). Therefore, training a standard OVR model283

costs O(mṅl). For a two-level tree-based model,284

we derive the training time as285

O
(
Kmc̃ṅR+ (K +

cm

K
)ṅl
)

(11)286

in Appendix B, which including the cost of K-287

means, where c ≥ 1 is bounded by the maximal288

label number of an instance, c̃ > 1 is the average289

increased rate of non-zeros of label representations,290

and R is the maximum iteration of K-means. For291

data with many instances, we generally have292

l� KRc̃,293

so the second part in (11) is the dommant term. If 294

we compare with the O(mṅl) cost of OVR, when 295

m is extremely large, a tree-based model costs 296

much less. 297

We have discussed a tree-based model to solve 298

the training time issue (ii). Let us check the model 299

size. To begin, we assume that before training any 300

binary problem, zero features have been removed. 301

Due to the use of l2 regularization (i.e., wT
j wj in 302

(1)), the resulting wj generally has non-zero com- 303

ponents. That is,wj is a dense vector. Now for the 304

OVR method, we need O(mn) space to store the 305

m linear models. On the other hand, the two-level 306

tree-based model has (K + m) linear models, so 307

the model size is O(Kn + mn), which is larger 308

than the OVR model. Fortunately, while we use 309

a training data subset (7) to train the model for 310

estimating (8), many instances may be removed. 311

Thus, there may exist some features that are not 312

used by any instance of a training data subset, so 313

that we can remove some dimensions of the origi- 314

nal feature space Rn in each subset. In particular, 315

the features of the instances x1, . . . ,xl are sparse 316

in the data set. Assume the reduced dimensions are 317

n1, . . . , nK that correspond to the training subsets 318

D1, . . . , DK , and take n̄ ≤ n as the average di- 319

mension of the feature space in the level-2 models. 320

Thus, the two-level tree-based model size becomes 321

O(Kn+mn̄), which can be less than OVR’s model 322

size O(mn) if n̄ is small enough. 323

3 Distributed Setting for Memory Issue 324

Using multiple computers to contain a model can 325

reduce the memory usage in each computer. In the 326

past, DiSMEC was a successful work that separated 327

the OVR model. However, training a DiSMEC 328

model requires more and more computers as the 329

label number m becomes larger and larger. Hence, 330

separating a tree-based model into many computers 331

is a practical solution for saving resources because 332

the training speed of a tree-based model is faster 333

than that of an OVR model. Therefore, we discuss 334

distributing a tree-based model in the following 335

subsections. 336

3.1 Distributing a Tree-Based Model 337

We discuss that a tree-based model separates the 338

labels to the partitions I1, . . . , IK in Section 2.2, 339

so distributing the sub-tree construction of these 340

partitions is a possible way. Assume we have K 341

machines. For the machine-j̃, to simulate the task 342
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Data set Max. labels Ratio of total labels
eur-lex-4k 422 0.11
wiki10-31k 3289 0.11
amazoncat-13k 2854 0.21
amazon-670k 106963 0.16
amazon-3m 352094 0.13
wiki-500k 88769 0.18

Table 1: The maximal label number of K-means parti-
tions over six data sets as K = 100.

at node Ij̃ in Figure 1, we must train a binary clas-343

sifier on344

data with labels in Ij̃ versus without. (12)345

To this end, the machine-j̃ must have the whole346

training set. After that, the machine-j̃ continues to347

construct the sub-tree. Therefore, the performance348

will be the same as the serial setting. However,349

there are two issues:350

(i) Unless we implement distributed K-means,351

theK-means procedure must be done on one352

computer to get the partitions.353

(ii) The partitions are imbalanced. Table 1 shows354

that there is a partition from I1, . . . , I100 that355

includes over 10% of the labels in each data356

set. Thus, the model sizes of the partitions357

are hard to estimate, so the specifications of358

each computer are challenging to decide.359

3.2 Random Label Forests360

One possible solution to overcome these two is-361

sues is to omit K-means and uniformly split labels362

to the partitions I1, . . . , IK in level-1, and every-363

thing else is the same. However, our experiment in364

Section 4.1 shows that the performance of a tree-365

based model using K-means partitions is better366

than using random partitions. The inferior perfor-367

mance seems to be from the poor estimations of368

level-1 probabilities. We know that for instances369

with similar or even identical feature values, their370

label sets should be similar. For a random split371

of labels, these similar instances may end up with372

being on both positive and negative sides of the373

problem (12), an ambiguous situation that may re-374

sult in a poor model. In contrast, K-means helps375

to put these labels into the same partition, so the376

issue may not occur. From the discussion so far,377

the question becomes how to alleviate the perfor-378

mance issue while controlling the model size per379

computer.380

We propose the following settings to address the381

issue.382

• In each machine, we consider a random label 383

subset, which allows us to control the model size. 384

• We propose bypassing the level-1 probability es- 385

timate. Instead, we run the standard tree-based 386

method on the label subset, so K-means is ap- 387

plied on every level. 388

For the random label subset in each computer, in- 389

stead of one partition from splitting the whole label 390

space, we can be general so that label subsets over- 391

lap. The remaining task is how to let each machine 392

procedure suitable probability estimate and how to 393

ensemble results from different machines. Because 394

each label subset corresponds to an independent 395

tree, our method is an ensemble method with label 396

subsampling. We call our method “random label 397

forests” due to the similar idea from random forests 398

(Breiman, 2001). 399

Let us formally discuss random label forests 400

in detail. Suppose we have N computers, and 401

use the sample rate r on subsampling the labels 402

{1, . . . ,m} to the subsets Ît, for all t = 1, . . . , N . 403

Without loss of generality, let us focus on t = 1 as 404

an example. Since the label part of the data set has 405

been subsampled, the label space is modified from 406

{0, 1}m to {0, 1}|Î1|, where we use a function φ1 407

to describe this label mapping. Our training data 408

subset becomes 409

D̂1 = {(φ1(yi),xi) | i = 1, . . . , l} 410

in the computer-1. We mention that the smaller 411

sample rate r we set, the more instances have 412

empty-labeled in D̂1, i.e., 413

φ1(y) = 0 ∈ {0, 1}|Î1|, ∃ (φ1(y),x) ∈ D̂1. 414

Thus, there is a choice of whether those empty- 415

labeled instances should be removed. 416

The training time of the models can be reduced if 417

we remove the empty-labeled instances. However, 418

the probability estimation (4) can be inaccurate 419

when using a tree-based model. Let us explain this 420

issue in the following example. 421

• Consider a multi-class problem, which is a spe- 422

cial case of multi-label problems, with three la- 423

bels {red circle, green triangle, blue cross} in 424

Figure 2a. If the red circle is the positive label 425

and the others are negative labels, a linear model 426

can be trained as the dark blue line in Figure 2a. 427

• If we uniformly sample the negative instances in 428

Figure 2b, the linear model may not be affected. 429

However, if we sample the negative instances by 430

the labels in Figure 2c, the linear model can be 431
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(a) Without negative sampling. (b) Negative sampling by instances. (c) Negative sampling by labels.

Figure 2: An example of different negative samplings.

impacted in the wrong place. The reason is that432

we completely remove the data from some labels.433

• Thus, a non-uniform negative sampling can af-434

fect (4) because the model does not estimate the435

probability well anymore.436

The example above shows a key point in a tree-437

based model training on a subset of labels. If438

we train a two-level tree-based model on the data439

subset D̂1, the training problem in level-1 will be440

changed from (3) to441

min
w̃j̃∈Rn

λ

2
w̃T

j̃
w̃j̃ +

l∑
i=1

ξ̂(w̃T
j̃
xi, [ẑi]j̃), (13)442

for j̃ = 1, . . . ,K. In contrast to z in (3), a pseudo-443

label vector ẑ of the data subset D̂1 is defined as444

[ẑ]j̃ =

{
1 x has any label in Ij̃ of D̂1,

0 otherwise.
445

Clearly, many ẑi = 0 if xi’s labels do not appear446

in the set Î1. If these xi are removed, it is like447

that we do a non-uniform negative sampling as448

in Figure 2c. The model trained by (13) may not449

estimate the probability (4) well. Therefore, we450

should not remove those empty-labeled instances451

in D̂1. Besides this crucial point, all other details in452

the tree construction are the same as those shown453

in Section 2.2 for the tree using all labels.454

With the label subsets Î1, . . . , ÎN and the train-455

ing subsets D̂1, . . . , D̂N , we can parallelly train456

the submodels θ1, . . . ,θN in N computers. Algo-457

rithm 1 shows the full training procedure.458

Next, let us discuss the prediction procedure. We459

still assume that two-level trees are used. Since the460

prediction probabilities can be estimated by (10),461

we can estimate P (x has label-j | x,θt) for all462

label-j in the subsampled subset Ît by the tth tree-463

based submodel θt. Because label-j may appear in464

several label subsets, a natural setting is to average465

Algorithm 1 Training random label forests.
Require: Training set D, # of submodels N , sample rate r

distributed for t = 1, . . . , N do
Ît ← subsample the label indices with the rate r on the

full index set {1, . . . ,m}.
D̂t ← update the label part of D with Ît.
θt ← train a tree-based submodel with the subset D̂t.

end distributed for

the several probability estimations. 466

P (x has label-j | x,θ1, . . . ,θN )

=

∑
t:j∈Ît P (x has label-j | x,θt)

|{t | j ∈ Ît, ∀t = 1, . . . , N}|
.

467

Nevertheless, an issue exists because a tree-based 468

submodel θt can only predict labels in the subsam- 469

pled subset Ît. Hence, if some labels are never sub- 470

sampled, our model can never predict those labels. 471

This situation occurs for some rare labels, so the 472

performance may not be affected much. Our com- 473

petitive performance shown in Section 4.2 seems 474

to support this point, though other ways of label 475

subsampling can be a future issue for investigation. 476

3.3 The Benefits of Random Label Forests 477

In Section 2.2, we discuss the time complexity and 478

model size of a two-level tree-based model. Now, 479

let us check the modifications of those complex- 480

ities in a computer when applying random label 481

forests with two-level tree-based submodels in the 482

distributed system. 483

• Space complexity. Since we can set the sample 484

rate as r, the number of a subsampled label set 485

becomes rm. Therefore, the model size changes 486

from O(Kn+mn̄) to O(Kn+ rmn̄). 487

• Time complexity. Similarly, the time complexity 488

changes from (11) to 489

O
(
Krmc̃ṅR+ (K +

crm

K
)ṅl
)
. 490
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Therefore, we can roughly control the model size491

and training time by the rate r in random label492

forests if each computer only contains a tree-based493

submodel. We note that Yu et al. (2022) try to par-494

allelize the training of a single tree with all labels,495

but the implementation is complicated. Moreover,496

the time complexity ofK-means cannot be reduced497

in that scenario.498

4 Experiments499

We firstly analyze the impacts of different dis-500

tributed settings in Section 3.2 over four smaller501

XML data sets, and discuss which setting is the502

better choice in Section 4.1. After deciding the503

distributed setting, our experiment compares three504

linear models: OVR, a tree-based model with all505

labels, random label forests on six XML data sets506

in Section 4.2, where the label number m is shown507

after the name in each data set.508

We leave the details of data sets in Appendix C509

and discuss the hyper-parameters of the models in510

Appendix D. To measure the performance of an511

XML model, we follow the works (Prabhu et al.,512

2018; Khandagale et al., 2020; Yu et al., 2022; You513

et al., 2019; Jiang et al., 2021) to use precision at514

1, 3, and 5 as the metrics of the predictions.515

In the final, we discuss the model size in Sec-516

tion 4.3. Moreover, the training time comparisons517

are presented in Appendix E.518

4.1 Analysis of Different Distributed Settings519

In Section 3.2, we discuss that using random par-520

titions without overlaps is a possible solution for521

avoiding the disadvantages of K-means under the522

distributed setting, and now we have to check the523

performance between these two partition methods.524

Besides, we propose random label forests that by-525

pass the level-1 probability estimate of the tree-526

based method with random partitions. To compare527

those three methods reasonably, we should consider528

the following settings.529

• “Tree with all labels.” The standard tree-based530

method. Note that we set K = 100.531

• “Random 100 partitions.” The tree-based method532

with all labels that using random partitions533

I1, . . . , I100 instead of K-means in level-1.534

• “Random 10 partitions.” To compare random535

partitions with random label forests, we should536

consider the exact size of the partitions. As the537

label sample rate of random label forests is 0.1,538

random partitions should only contain 10 parti-539

tions that split whole labels. 540

• “Random label forests-A.” Similarly, we must 541

consider the sampling type in random label 542

forests in addition to the subset size. Thus, we 543

uniformly split the labels to 10 partitions for pro- 544

ducing ten submodels and re-do ten times that 545

the number of submodels is up to 100. The differ- 546

ences between random label forests-A and ran- 547

dom 10 partitions are the ensemble setting and 548

bypassing the level-1 probability estimate. 549

• “Random label forests-B.” Conversely, we con- 550

sider the label subsets setting instead of the label 551

partitions, so we use uniform subsampling with 552

a rate 0.1 for producing 100 submodels. Subsam- 553

pling methods usually use the uniform setting, 554

such as feature subsampling in random forests. 555

We have the following observations in Table 2. 556

• Using K-means for the label partitions is better 557

than using random partitions. 558

• A larger partition size may have stable results in 559

random partitions. 560

• Random label forests-A is better than random 10 561

partitions, so the ensemble setting and bypassing 562

the level-1 probability estimate are the critical 563

points in our method. 564

• The performances of random label forests-B are 565

slightly better than or similar to random label 566

forests-A. We think that the label overlaps in the 567

label subsampling method seem to be the connec- 568

tions between the submodels so that the predic- 569

tions of the submodels can be more meaningful 570

for ranking the labels. 571

In the final, we decided to use random label 572

forests-B as our distributed solution, and this sec- 573

tion shows that distributing a tree-based method is 574

not trivial. 575

4.2 Comparison in Performance 576

To mitigate randomization issues in tree-based 577

methods due to K-means, we execute training and 578

prediction procedures ten times on the data sets 579

“eur-lex-4k,” “wiki10-31k,” “amazoncat-13k,” and 580

“amazon-670k.” For the data sets “amazon-3m” 581

and “wiki-500k” because the training time is too 582

long, we only execute the procedures once. Ta- 583

ble 3 shows the comparison results and we have 584

the following observations. 585

• OVR is slightly better than tree-based methods. 586

This result is reasonable because tree-based meth- 587

ods are a kind of “hierarchical approximation” of 588

OVR to address the scalability issue. 589

• The proposed random label forests are consis- 590

7



Method P@1 P@3 P@5 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5
eur-lex-4k wiki10-31k amazoncat-13k amazon-670k

Tree with all labels 82.29 69.35 57.91 74.72 65.86 93.19 79.55 64.61 44.58 39.44 35.64
Random 100 partitions 80.52 67.56 56.30 73.02 63.82 92.56 77.90 62.76 38.52 32.49 27.90
Random 10 partitions 79.82 66.60 55.84 73.61 64.55 92.36 78.06 63.11 41.76 36.43 32.30

Random label forests-A 81.22 68.15 57.29 74.13 65.36 93.08 79.59 64.78 45.23 40.28 36.70
Random label forests-B 83.08 69.90 58.69 74.35 65.70 94.11 80.17 65.18 45.19 40.24 36.65

Table 2: Comparison of different distributed settings in precisions. For wiki10-31k, since half of the instances are
associated with a unique label, precision at 1 is not a discriminable metric on this data set. Therefore, for the space
limitation, we do not show the results of precision at 1 in wiki10-31k.

Method P@1 P@3 P@5 P@1 P@3 P@5
eur-lex-4k amazon-670k

One-versus-rest 83.47 70.62 59.05 45.41 40.41 36.97
Tree with all labels 82.29 ± 0.30 69.35 ± 0.09 57.91 ± 0.12 44.58 ± 0.07 39.44 ± 0.04 35.64 ± 0.03

Random label forests 83.08 ± 0.15 69.90 ± 0.08 58.69 ± 0.06 45.19 ± 0.05 40.24 ± 0.03 36.65 ± 0.01
wiki10-31k amazon-3m

One-versus-rest 85.23 75.80 67.11 - - -
Tree with all labels 84.72 ± 0.08 74.72 ± 0.17 65.86 ± 0.09 47.48 44.74 42.63

Random label forests 84.78 ± 0.14 74.35 ± 0.17 65.70 ± 0.08 48.69 45.67 43.49
amazoncat-13k wiki-500k

One-versus-rest 94.14 79.71 64.69 - - -
Tree with all labels 93.19 ± 0.03 79.55 ± 0.04 64.61 ± 0.03 68.39 48.90 38.00

Random label forests 94.11 ± 0.04 80.17 ± 0.02 65.18 ± 0.02 64.37 45.83 36.09

Table 3: Comparison of Random label forests and other linear methods in precision at 1, 3, and 5 over six data sets.
OVR results on “amazon-3m” and “wiki-500k” are unavailable due to lengthy running time.

Data set Tree with all labels Rand. label forests
eur-lex-4k 561.02 MB 49.25 MB
wiki10-31k 6.38 GB 749.07 MB
amazoncat-13k 1.72 GB 193.13 MB
amazon-670k 20.56 GB 2.92 GB
amazon-3m 135.89 GB 12.69 GB
wiki-500k 161.37 GB 13.65 GB

Table 4: The model size comparison between a tree
with all labels and a tree of random label forests. Note
that the sample rate is 0.1 in random label forests.

tently better than the tree-based method with all591

labels, except for “wiki-500k”. The performance592

is close to that of OVR.593

The worse results on “wiki-500k” is an example594

of the limitations in our method, and we discuss595

this issue in Section 6.1.596

4.3 Comparison in Model Size597

In Section 3.3, we have analyzed the model size of598

random label forests that use two-level tree-based599

submodels. However, because600

• the sparsity of data points can affect n̄, and601

• a tree-based model has more than two layers,602

we conduct experiments to check the model size603

in practice. Table 4 compares the model sizes be-604

tween a tree-based method with all labels and a tree605

in random label forests after training on the data606

sets. We can see that the reduced ratios between607

full and subsampled models are indeed approxi- 608

mately close to the sample rate r = 0.1. Hence, 609

random label forests can reduce the model size 610

in each computer of the distributed system, even 611

though the whole model may be larger than that 612

of a tree-based model with all labels, Therefore, 613

random label forests with the distributed system 614

deployment are a practical solution for handling an 615

XML problem with billions of labels or more. 616

5 Conclusion 617

In this work, we propose random label forests, a 618

distributed ensemble method with label subsam- 619

pling, and tree-based linear models as the back- 620

bone, giving competitive performances using much 621

less training time and memory usage in a machine. 622

Hence, handling an XML problem with billions of 623

labels or further more labels becomes practical. We 624

discuss that removing some the negative instances 625

will hurt the accurate of probability estimate if label 626

subsampling is used. Furthermore, we analyze time 627

complexity and model size in random label forests. 628

In the future, we plan to observe other cases of the 629

distributed ensemble method with label subsam- 630

pling, such as neural network methods, so that this 631

method can be a general solution in other XML 632

applications, such as image classification and other 633

natural language process problems. 634
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6 Limitations635

6.1 Breaking Label Relationships636

In Section 4.2, the performance of random label637

forests are gaping from that of a tree-based method638

with all labels over “wiki-500k” data set. After the639

investigation, we think the hierarchy correlation640

between the labels in “wiki-500k” may be higher641

than other data sets because the labels are the tags642

of the documents in Wikipedia. For example, the643

labels of the 14th instance in the raw data of “wiki-644

500k” are645

‘Apollo,’ ‘Arts gods,’ ‘Deities in the Iliad,’
‘Dragonslayers,’ ‘Health gods,’ ‘Knowledge
gods,’ ‘LGBT history in Greece,’ ‘LGBT
themes in mythology,’ ‘Muses,’ ‘Mythological
Greek archers,’ ‘Mythological rapists,’ ‘Oracu-
lar gods,’ ‘Roman gods,’ ‘Solar gods,’ ‘Temples
of Apollo,’

646

and there are many hierarchy relationships:647

Roman gods→ Apollo,

Solar gods→ Apollo, . . . , etc.
648

Thus, uniform sampling in labels breaks the re-649

lations, so the performance may be hurt. If we650

increase the sample rate from 0.1 to 0.15, the per-651

formance of “wiki-500k” will become better to652

P@1 P@3 P@5

65.45 46.84 36.92
653

However, that performance is still much lower654

than the tree-based model with all labels. There-655

fore, the label subsampling technique seems unsuit-656

able for the data sets that include many hierarchy-657

correlation labels.658

6.2 Requiring Distributed Resourse659

In Section 4.2 and Appendix E, we show that a tree660

of random label forests can use much less memory661

and training time than a tree-based model with662

all labels. However, random label forests require663

N tree-based submodels as an ensemble method.664

Hence, those benefits will be discounted if we do665

not have N machines.666

6.3 The Applications of Distributed667

Ensembles Method with Label668

Subsampling669

We only show an example, random label forests,670

of distributed ensemble methods with label sub-671

sampling and analyze the time complexity and672

model size. However, the conclusion may be differ- 673

ent when using neural networks as the submodel. 674

Hence, searching for more applications is vital if 675

distributed ensemble methods with label subsam- 676

pling are a general solution for reducing the mem- 677

ory usage of an XML method in a computer. 678
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A Difference between Random Label800

Forests and RAKEL801

Let us discuss the differences between random802

label forests and the pioneer label subsampling803

method RAKEL. The sharpest contrast is that ran-804

dom label forests are designed for XML problems,805

but RAKEL is not. The reason is that the label806

powerset method in RAKEL is only efficient on807

multi-label problems with small labels, so using808

that method with label subsampling in XML prob-809

lems may require extremely huge number of sam-810

pled label subsets to cover whole labels. Hence,811

applying other XML methods such as tree-based812

methods on each large-scale label subset can in-813

crease the sample rate in label subsampling, and814

the number of label subsets can then be reduced.815

Furthermore, we consider to use distributed setting816

such that each computer only handles a smaller817

XML problem with a label subset.818

B Time Complexity of Two-Level819

Tree-Based Model820

Because the level-1 of a two-level tree-based model821

is a smaller OVR model, the level-1 only costs822

O(Kṅl). For the level-2, since the instances can823

belong to several label partitions, we assume that824

the average number of instances in each of the825

subsets D1, . . . , DK is826

cl

K
,827

where c ≥ 1 is a small positive number. Moreover,828

c is bounded by the maximal label number of an in-829

stance1. Hence, taking the training cost of a subset830

in level-2 as831

O

(
ṅcl

K

)
832

is a reasonable assumption in the linear model set-833

ting, and the two-level tree-based model then costs834

O
(

(K +
cm

K
)ṅl
)
,835

which is different from the complexity of OVR836

O(mṅl). Besides the training time of linear mod-837

els, we must check the cost of running K-means.838

The process involves several iterations, in each of839

which we calculate the distance between each la-840

bel representation (2) and K centers of the current841

clusters. If the label representations are still sparse842

1Prabhu et al. (2018) assume O(log(m)) is the maximal
label number of an instance, so c is bounded by O(log(m)).

and the average of non-zeros is c̃ṅ, where c̃ > 1 is 843

a positive constant, checking the distance requires 844

O(c̃ṅ). 845

Thereby, one iteration of K-means requires 846

O(Kmc̃ṅ). 847

We usually set a constant R as the maximum itera- 848

tion, so the time complexity of K-means is 849

O(Kmc̃ṅR). 850

Hence, the total training time of a two-level tree- 851

based model is 852

O
(
Kmc̃ṅR+ (K +

cm

K
)ṅl
)
. 853

C Data Sets 854

We show the statistics of data sets in Table 5. The 855

sets “eur-lex-4k,” “wiki10-31k,” and “amazoncat- 856

13k” are downloaded from “LIBSVM Data: Multi- 857

label Classification2”. The sets “amazon-670k,” 858

“amazon-3m,” and “wiki-500k” are downloaded 859

from the link that is supported by Yu et al. (2022). 860

Note that those data sets have already been prepro- 861

cessed from documents to a popular sparse feature 862

representation, “TF-IDF.” Moreover, every data set 863

has further been split into training and test parts. 864

D Hyper-Parameter Setting 865

In an XML problem, many works (Prabhu et al., 866

2018; Khandagale et al., 2020; Yu et al., 2022; You 867

et al., 2019; Jiang et al., 2021; Zhang et al., 2021) 868

only fix a group of reasonable hyper-parameters on 869

their models because splitting a validation set from 870

a training set is a complex issue. The main reason 871

comes from the long-tail distribution of data over 872

the labels. If we uniformly split a validation set 873

from a training set, the distribution of the valida- 874

tion set is usually much different from the training 875

set in most rare labels, implying that tuning the 876

hyper-parameters in this validation set is not suit- 877

able. Hence, we follow those works (Prabhu et al., 878

2018; Khandagale et al., 2020; Yu et al., 2022; You 879

et al., 2019; Jiang et al., 2021; Zhang et al., 2021) 880

to set the commonly used hyper-parameters to keep 881

our results credible. 882

2https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html
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l n m
Data Set # of training instances # of test instances # features # labels
eur-lex-4k 15,449 3,865 186,104 3,956
wiki10-31k 14,146 6,616 104,374 30,938
amazoncat-13k 1,186,239 306,782 203,882 13,330
amazon-670k 490,449 153,025 135,909 670,091
amazon-3m 1,717,899 742,507 337,067 2,812,281
wiki-500k 1,779,881 769,421 2,381,304 501,070

Table 5: Statistics of data sets

In our experiments, we utilize the library Lib-883

MultiLabel3 to handle all of the model training884

and evaluation. Moreover, the linear classifiers are885

trained by LIBLINEAR (Fan et al., 2008) in Lib-886

MultiLabel. For the detail settings in LIBLINEAR,887

we consider the settings from the works (Prabhu888

et al., 2018; Khandagale et al., 2020; Yu et al.,889

2022):890

• using squared hinge loss (L2-SVM),891

• training the binary classifiers and892

• taking λ = 1 in the training problems.893

In the implementations of (Prabhu et al., 2018;894

Khandagale et al., 2020; Yu et al., 2022), they de-895

cided to early stop the training process in each896

linear model training, but we chose to spend more897

time in the model training to get a tight solution898

that is closer to the optimal solution of the training899

problem. The tree-based methods in LibMultiL-900

abel follow the implementation4 in Khandagale901

et al. (2020), and we consider the following hyper-902

parameters903

• K for K-means: 100,904

• max level of the tree: 10.905

For the random label forests, we consider uniform906

sampling with a sample rate of 0.1 on the labels907

because reducing model size by around 90% is908

a practical scenario. Moreover, we consider the909

default setting of random forests from scikit-learn910

(Pedregosa et al., 2011):911

training 100 tree-based submodels912

for our ensemble method.913

Data set Tree with all labels Rand. label forests
eur-lex-4k 224.42 s 32.18 s
wiki10-31k 4220.77 s 543.33 s
amazoncat-13k 5311.23 s 910.06 s
amazon-670k 32068.89 s 2120.25 s
amazon-3m 503575.79 s 23023.76 s
wiki-500k 202261.66 s 22987.20 s

Table 6: Training time comparison between a tree with
all labels and a tree of random label forests. Note that
the sample rate is 0.1 in random label forests.

E Comparison in Training Time 914

Section 3.3 further discussed the time complexity 915

of random forests that uses two-level tree-based 916

submodels. Table 6 shows the training time com- 917

parison between a tree-based model with all labels 918

and a tree of random label forests over different 919

data sets. We can see that the training time is re- 920

duced a lot in random label forests if each machine 921

only contains one tree-based submodel. The reduc- 922

tion becomes more apparent, especially when the 923

number of labels is larger. 924

3https://www.csie.ntu.edu.tw/~cjlin/
libmultilabel

4The work (Khandagale et al., 2020) ensembles the pre-
dictions of three tree-based models in their experiments, but
LibMultiLabel only considers the prediction of one tree-based
model.

13

https://www.csie.ntu.edu.tw/~cjlin/libmultilabel
https://www.csie.ntu.edu.tw/~cjlin/libmultilabel

	Introduction
	Multi-Label Problems
	One-Versus-Rest Method
	Tree-Based Methods

	Distributed Setting for Memory Issue
	Distributing a Tree-Based Model
	Random Label Forests
	The Benefits of Random Label Forests

	Experiments
	Analysis of Different Distributed Settings
	Comparison in Performance
	Comparison in Model Size

	Conclusion
	Limitations
	Breaking Label Relationships
	Requiring Distributed Resourse
	The Applications of Distributed Ensembles Method with Label Subsampling

	Difference between Random Label Forests and RAKEL
	Time Complexity of Two-Level Tree-Based Model
	Data Sets
	Hyper-Parameter Setting
	Comparison in Training Time

