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ABSTRACT

Unlike standard training, deep neural networks can suffer from serious overfitting
problems in adversarial settings. Recent research (Xing et al., 2021b; Xiao et al.,
2022) suggested that adversarial training can have nonvanishing generalization er-
ror even if the sample size n goes to infinity. A natural question arises: can we
eliminate the generalization error floor in adversarial training? This paper gives an
affirmative answer. First, by an adaptation of information-theoretical lower bound
on the complexity of solving Lipschitz-convex problems using randomized algo-
rithms, we establish a minimax lower bound Ω(s(T )/n) given a training loss of
1/s(T ) for the generalization gap in non-smooth settings, where T is the number
of iterations, and s(T ) → +∞ as T → +∞. Next, by observing that the nonvan-
ishing generalization error of existing adversarial training algorithms comes from
the non-smoothness of the adversarial loss function, we employ a smoothing tech-
nique to smooth the adversarial loss function. Based on the smoothed loss func-
tion, we prove that a smoothed version of SGDmax algorithm can achieve a gen-
eralization bound O(s(T )/n), which eliminates the generalization error floor and
matches the minimax lower bound. Experimentally, we show that the Smoothed-
SGDmax algorithm improves adversarial generalization on common datasets.

1 INTRODUCTION

Deep neural networks (DNNs) (Krizhevsky et al., 2012; Hochreiter & Schmidhuber, 1997) is suc-
cessful and rarely suffered overfitting issues (Zhang et al., 2021). This phenomenon is also called
benign overfitting. A well-trained neural network model can generalize well to the test data. How-
ever, in adversarial machine learning, overfitting becomes a serious issue (Rice et al., 2020). Before
the training algorithms converge, the robust test error starts to increase. This special type of overfit-
ting is called robust overfitting and can be observed in the experiments on common datasets. See Fig.
1, orange curve. Therefore, mitigating the robust overfitting is important to increase the adversarial
robustness of a DNN model. Several recent works tried to figure out the causes of robust overfitting
and designed methods to mitigate it. See the discussion in Sec. 2.

A recent line of work (Xing et al., 2021b; Xiao et al., 2022) studied the robust overfitting issue of
adversarial training from a theoretical perspective, using the notion of uniform algorithmic stabil-
ity. Uniform algorithmic stability (UAS) (Bousquet & Elisseeff, 2002) was introduced to bound
the generalization gap in machine learning problems. It provides algorithm-specific generalization
bounds instead of algorithm-free generalization bounds such as classical results on VC-dimension
(Vapnik & Chervonenkis, 2015) and Rademacher complexity (Bartlett & Mendelson, 2002). Such
stability-based generalization bounds provide insight into understanding the generalization ability
of neural network models trained by different algorithms.

Traditional adversarial training is to perform stochastic gradient descent (SGD) on the max function
of the standard counterpart, which is also called SGDmax (Farnia & Ozdaglar, 2021). We will not
distinguish two algorithms, “SGDmax” and “adversarial training (AT)”, in the paper. The work of
(Xing et al., 2021b; Xiao et al., 2022) both showed that SGDmax incurs a stability-based general-
ization bound in O(c(T )+s(T )/n). Here T is the number of iterations, n is the number of samples,
s(T ) is a function satisfies s(T ) → +∞ as T → +∞, and c(T ) is a sample size-independent
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Table 1: Comparison of stability-based generalization bounds of adversarial generalization gap.
c1(T ) and c2(T ) are sample size-independent terms. Details of the form of s(T ), c1(T ), c2(T ) are
discussed in Sec. 4 and Sec. 5.

Upper Bounds Worst-case Achieves minimax
Lower Bounds lower bound Ω(s(T )/n)

SGDmax O(c1(T ) +
s(T )
n ) Ω(c2(T ) +

s(T )
n ) %

Smoothed-SGDmax O( s(T )
n ) Ω( s(T )

n ) !

term and increase with T . Details of the form of s(T ), c(T ) are discussed in Sec. 4 and Sec. 5.
They also provided the matching lower bounds to show that the sample size-independent term is un-
avoidable for SGDmax-based adversarial training algorithms. It provides a possible explanation of
robust overfitting: even though we have arbitrarily large number of training samples, the adversarial
generalization gap still does not vanish. The first question arises: what is the lower bound of the gen-
eralization gap for algorithms in adversarial machine learning settings? To answer this question, we
develop a minimax lower bound, Ω(s(T )/n), for the generalization gap in non-smoothing settings
when the training loss is 1/s(T ). Clearly, SGDmax does not achieve the lower bound. Therefore,
we are motivated to design algorithms to reduce the non-vanishing sample size-independent term.
The following main question of our paper arises:

Can we eliminate the error floor in generalization bounds of adversarial generalization gap?

We call the term c(T ) as generalization error floor. It is observed that the term c(T ) comes from
the non-smoothness of the adversarial loss. Hence, stability analysis on some smoothed algorithms
has been studied recently. It includes noise-SGD and differential privacy-SGD (Bassily et al., 2020),
adding noise to weight and data (Xing et al., 2021b), stochastic weight averaging, and cyclic learning
rate (Xiao et al., 2022). Unfortunately, these smoothed algorithms cannot eliminate the generaliza-
tion error floor.
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Figure 1: Experiments of adversar-
ial training and Smoothed-SGDmax on
CIFAR-10.

In this paper, we employ a smoothing technique using
tools from Moreau envelope function to smooth the ad-
versarial loss and perform gradient descent to this smooth
surrogate. Following the name SGDmax, we refer the
smoothed version of SGDmax as Smoothed-SGDmax,
which improves adversarial generalization. We prove that
Smoothed-SGDmax has the same training loss 1/s(T ) on
adversarial loss. Most importantly, Smoothed-SGDmax
eliminates the generalization error floor and achieves the
minimax lower bound Ω(s(T )/n) of the generalization
gap. The comparison of the stability-based generalization
upper bound and lower bound of our proposed algorithm
with the SGDmax-based adversarial training algorithm is
given in Table 1. Additionally, our proposed algorithm
can be viewed as a general form of stochastic weight averaging (SWA (Izmailov et al., 2018)). As
a by-product, we provide an understanding of SWA in our framework, see more discussion in Sec.
5.4. In Fig. 1, we show the training procedure of our proposed algorithm as well as adversarial
training on CIFAR-10.

The contributions of our work are listed as follows:

1. Main result: we prove that the generalization error floor in non-smooth loss minimization can be
eliminated by a properly designed algorithm, which we called Smoothed-SGDmax.

2. We develop the minimax lower bound of the generalization gap in non-smooth loss minimization.
Specifically, we show that an algorithm has at least Ω(s(T )/n) generalization gap if the training
error training loss is 1/s(T ). Smoothed-SGDmax achieves the minimax lower bound.

3. Experiments on common datasets verify the theoretical results and show the effectiveness of our
proposed algorithm in practice.
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2 RELATED WORK

Adversarial Robustness. Starting from the work of (Szegedy et al., 2013), it has now been well
known that deep neural networks trained via standard gradient descent based algorithms are highly
susceptible to imperceptible corruptions to the input data (Goodfellow et al., 2014; Chen et al.,
2017; Carlini & Wagner, 2017). Adversarial training and its variants are proposed to improve the
adversarial robustness of DNNs (Madry et al., 2017; Wu et al., 2020; Gowal et al., 2020). Robust
Overfitting. Starting from the work of (Rice et al., 2020), a series of work studied the causes of
robust overfitting. (Yu et al., 2022) studied robust overfitting from the perspective of adversarial
distribution. (Chen et al., 2021) leveraged knowledge distillation and self-training to mitigate robust
overfitting.

Learning Theory for Adversarial Generalization. Classical learning theory. The work of (At-
tias et al., 2021; Montasser et al., 2019) explained generalization in adversarial settings using VC-
dimension. The work of (Yin et al., 2019; Khim & Loh, 2018) studied the poor generalization
of adversarial training using tools from Rademacher complexity. However, VC-dimension and
Rademacher complexity are algorithm-independent bounds for generalization. They cannot reveal
the effect of algorithms on generalization. Other theoretical analysis. (Sinha et al., 2017) study the
generalization of an adversarial training algorithm in terms of distributional robustness. The work
of (Xing et al., 2021a;c; Javanmard et al., 2020) studied the generalization properties in the setting
of linear regression. Gaussian mixture models are used to analyze adversarial generalization (Taheri
et al., 2020; Javanmard et al., 2020; Dan et al., 2020). The work of (Allen-Zhu & Li, 2020) explains
adversarial generalization through the lens of feature purification.

Uniform Stability. Stability can be traced back to the work of (Rogers & Wagner, 1978). In
statistical learning problems, it was well developed in analyzing the algorithm-based generalization
bounds (Bousquet & Elisseeff, 2002). These bounds have been significantly improved in a recent
sequence of works (Feldman & Vondrak, 2018; 2019). The work of (Chen et al., 2018) discussed
the optimal trade-off between stability and convergence. (Bassily et al., 2020) studied the stability
of SGD on non-smooth loss. They proved that the generalization bound contains a sample size-
independent term. The work of (Xing et al., 2021b; Xiao et al., 2022) showed that adversarial loss is
non-smooth and SGDmax-based adversarial training algorithms will incur the generalization error
floor.

3 PRELIMINARIES: STABILITY ANALYSIS FOR GENERALIZATION GAP

Let D be an unknown distribution in the sample space Z . Let S = {z1, . . . , zn} ∼ Dn be an sample
dataset drawn i.i.d. according to D. Our goal is to find a model w with small population risk, defined
as:

RD(w) = Ez∼Dh(w, z),

where h(·, ·) is the loss function. Since we cannot minimize the objective RD(w) directly, we instead
minimize the empirical risk, defined as

RS(w) =
1

n

n∑
i=1

h(w, zi).

Let w̄ be the optimal solution of RS(w). Then, for the algorithm output ŵ = A(S), we define the
expected generalization gap as

Egen(A, h, n,D) = ES∼Dn,A[RD(A(S))−RS(A(S))]. (3.1)

We define the the expected optimization gap as

Eopt(A, h, n,D) = ES∼Dn,A[RS(A(S))−RS(w̄)]. (3.2)

We use Egen and Eopt as short hand notations of the above definition. To bound the generalization
gap of a model ŵ = A(S) trained by a randomized algorithm A, we employ the following notion of
uniform stability.
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Definition 3.1. A randomized algorithm A is ε-uniformly stable if for all data sets S, S′ ∈ Zn such
that S and S′ differ in at most one example, we have

sup
z

EA [h(A(S); z)− h(A(S′); z)] ≤ ε . (3.3)

The following theorem shows that expected generalization gap can be attained from uniform stabil-
ity.
Theorem 3.1 (Generalization in expectation (Hardt et al., 2016)). Let A be ε-uniformly stable. Then,
the expected generalization gap satisfies

|Egen| = |ES,A[RD[A(S)]−RS [A(S)]]| ≤ ε .

Uniform Argument Stability (UAS). If h is L-Lipschitz, i.e., |h(w1; z) − h(w2; z)| ≤ L∥w1 −
w2∥, we can use UAS= E∥A(S)−A(S)′∥ to measure the generalization gap.

3.1 SGDMAX INCURS GENERALIZATION ERROR FLOOR

Adversarial Loss. In adversarial training, we consider the following adversarial loss

h(w; z) = max
∥z−z′∥≤ϵ

g(w; z′), (3.4)

where g(w; z) is the loss function of the standard counterpart. In practice, w is usually the parameter
of neural networks.

Generalization Error Floor. As discussed in (Xing et al., 2021b; Xiao et al., 2022), even if g
is a smooth function, h is not necessarily smooth. They assumed h to be generally non-smooth or
η-approximately smooth, which is a subset of non-smooth functions. Under both assumptions, there
exist non-vanishing terms in the bounds of UAS:

c1(T ) +
LTα

n
≤ UAS ≤ c2(T ) +

LTα

n
, (3.5)

where the forms of c1(T ) and c2(T ) are listed in Table 2. We refer c1(T ) and c2(T ) as generalization
error floors.

Table 2: Generalization error floor in previous studies.
Assumption on h Upper Bounds c1(T ) Lower Bounds c2(T )

(Xing et al., 2021b) non-smooth O(Lα
√
T ) (Prop. 1) Ω(α

√
T ) (Thm. 1)

(Xiao et al., 2022) η-approx-smooth O(ηαT ) (Thm 5.1) Ω(ηα
√
T ) (Thm. 5.2)

4 MINIMAX LOWER BOUND

Following the work of (Xing et al., 2021b), we mainly consider the following function class of
convex, non-smooth, and Lipschitz functions throughout the paper.

H = {h : W ×Z → R | h is convex, L-Lipshitz in w, |W | = DW }. (4.1)

L-Lipschitz is a standard assumption in uniform stability analysis since (Hardt et al., 2016). The
assumption of convexity is to compare with the existing results and to develop the following the
minimax lower bound.
Definition 4.1 (Training Loss). We say an algorithm class A has training loss 1/s(T ) on a function
class H, if for all A ∈ A and h ∈ H, running A on h for T iterations, we have

Eopt(A, h, n,D) ≤ O
(

1

s(T )

)
,

where limT→+∞ s(T ) = +∞.
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Proposition 4.1 (Minimax lower bound of generalization gap). Let H be the function class defined
in Eq. (4.1). Let A be the class of randomized algorithms using n samples with training loss 1/s(T )
on H. For all n, there exists T , s.t. the following lower bound holds.

min
A∈A

max
D

Egen(A, h, n,D) ≥ Ω

(
s(T )

n

)
. (4.2)

The proof of Prop. 4.1 is based on a lower bound of the complexity of Lipschitz-convex problems
((Nemirovskij & Yudin, 1983), Ch.4), see Appendix A.1.

Clearly, SGDmax can not achieve the minimax lower bound.

5 SMOOTHED-SGDMAX: ELIMINATING GENERALIZATION ERROR FLOOR

In this section, we will design an algorithm satisfying the following two properties:

1. It has the same training loss as the SGDmax algorithm;

2. Suppose it achieves 1/s(T ) training loss after T iterations. Then, the generalization bound
is bounded by s(T )/n.

5.1 SMOOTH SURROGATE ADVERSARIAL LOSS

The non-smoothness of h leads to a poor generalization bound. This motivates us to construct
smooth surrogate loss functions to improve adversarial generalization. Inspired by the work of
(Zhang & Luo, 2020), we use the Moreau envelope function to smooth the adversarial loss. Let

K(w, u; z) = h(w; z) +
p

2
∥w − u∥2. (5.1)

If h is l-weakly convex, we can choose p > l to insure that K(w, u; z) is strongly convex with
respect to w. In the case that h is convex, we only need p > 0. We define the Moreau envelope
function:

M(u;S) = min
w∈W

K(w, u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z), (5.2)

w(u;S) = arg min
w∈W

K(w, u;S). (5.3)

Then, M(u;S) is a smooth function. Formally, we state the theoretical results as follows.

Lemma 5.1. Assume that h is l-weakly convex. Let p > l. Then, M(u;S) satisfies

1. minu M(u;S) has the same global solutions as minw RS(w).

2. The gradient of M(u;S) is ∇uM(u;S) = p(u− w(u;S)).

3. M(u;S) is pl/(p− l)-weakly convex.

4. M(u;S) is (2p2 − pl)/(p− l)-gradient Lipschitz continuous.

5. M(u;S) has bounded gradient norm L.

Remark: The proof of Lemma 5.1 is due to (Rockafellar, 1976) and also provided in Appendix
A.1. We focus on the case where h is convex in the main text. Then, Lemma 5.1.3 and 5.1.4 reduce
to M(u;S) is convex and 2p-gradient Lipschitz. Lemma 5.1 is stated in general l-weakly convex
cases for further theoretical studies. Since M(u;S) has the same global solutions as RS(w), we can
do adversarial training using this smooth objective M(u;S). A natural way is to perform gradient
descent to M(u;S). By Lemma 5.1, the estimate of the gradient requires the estimate of the solution
of the minimization problem minw K(w, u;S). Depending on whether we solve the subproblems
exactly or not, we have the exact approach and inexact approach.
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5.2 EXACT APPROACH

We first consider the exact approach, which is the gradient descent to M(u;S).
Theorem 5.1. Assume h is a convex, L-Lipschitz function. Suppose we run GD on the smoothed
surrogate adversarial loss M(u;S) defined in Eq. (5.2) with fixed stepsize α ≤ 1/

√
T for T ≥ 4p2

steps. Then, the optimization and generalization gap satisfies

Eopt ≤ O(1/Tα) and Egen ≤
(
2L2Tα

n

)
. (5.4)

Remark: Thm. 5.1 is not obtained from the work of (Hardt et al., 2016). Notice that

M(u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z) ̸= 1

n

∑
z∈S

min
w∈W

K(w, u; z).

minu M(u;S) is not a finite sum problem. However, the analysis in (Hardt et al., 2016) can only
be applied to finite sum problems. Thm. 5.1 requires a different proof. In summary, there are
two steps: 1) Build the recursion from ∥ut

S − ut
S′∥ to ∥ut+1

S − ut+1
S′ ∥; 2) Unwind the recursion.

The main challenge comes from the first step. To this end, we develop a new error bound and a
different decomposition to build the recursion. Details are deferred to Appendix A.3. Thm. 5.1 is
our first main result. It shows that the exact approach achieves the minimax lower bounds of the
generalization gap. The extension to weakly-convex cases is provided in Appendix B.

However, the exact approach requires the exact minimization of K(w, u;S), which is sometimes
computationally intractable. To address this issue, we consider the inexact approach below.

5.3 THE INEXACT APPROACH

The inexact approach is to estimate ∇uM(u;S) by inexactly solving minw K(w, u;S). To this aim,
we perform multiple steps of SGD to the subproblem minw K(w, u;S), attaining an estimate w̄(u)
of the true w(u), and then use w̄(u) to estimate ∇uM(u;S).

Algorithm 1 Smoothed-SGDMax
1: Initialize w0, u0;
2: Choose stepsize cts > 0 and αt > 0;
3: for t = 0, 1, 2, . . . , T do
4: Let wt

0 = wt;
5: for s = 0, 1, 2, · · · , N do
6: Draw a sample zts from S uniformly;
7: wt

s+1 = PW (wt
s − cts∇wK(wt

s, u
t; zts));

8: end for
9: wt+1 = wt

N ;
10: ut+1 = ut + αtp(w

t+1 − ut);
11: end for

In Step 7 in Alg. 1, we run SGD on K(w, u, S) w.r.t w to find a solution given u. In step 10, we run
GD on K(w, u, S) w.r.t u. To provide the upper bounds of the optimization gap and generalization
gap of Alg. 1, we need the following Lemma for the inner optimization.
Lemma 5.1. Given t and ut, suppose we run SGD on K(w, ut, S) w.r.t. w with stepsize cts ≤
1/(p− l)s for N steps. wt

N is approximately the minimizer with an error C2
1/N , i.e.,

E∥wt
N − w(ut)∥2 ≤ C2

1

N
,

where C1 = (L+ pDW )/(p− l).

In convex case, i.e., l = 0, we have C1 = L/p +DW . Lemma 5.1 provides the optimization error
of the inner loop. In words, if we run the inner loop for sufficient steps, we can approximate the
smoothed loss M(u;S). Below we provide the training loss and uniform stability of Smoothed-
SGDmax with sufficient steps for the inner loop.
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Theorem 5.2 (training loss of Smoothed-SGDmax). Suppose h is convex and L-Lipschitz. In Alg.
1, if we choose inner stepsize cts ≤ 1/ps, number of steps in inner loop N = T , outer stepsize
α ≤ 1/

√
T , T ≥ 4p2, the optimization gap satisfies

Eopt ≤
∥u0 − u∗∥2 + 2pC1DW + (L+ pDW )2

2Tα
=

C2

Tα
, (5.5)

where C2 = ∥u0 − u∗∥2/2 + pC1DW + (L+ pDW )2/2.
Theorem 5.3 (Generalization bound of Smoothed-SGDmax). Assume that h is convex and L-
Lipschitz. In Alg. 1, if we choose inner stepsize cts ≤ 1/ps, number of steps in inner loop N = n2,
outer stepsize αt ≤ 1/

√
T , T ≥ 4p2, the generalization gap satisfies

Egen ≤ L

(
2C1p

n
+

2L

n

) T∑
t=1

αt =
C3

n

T∑
t=1

αt, (5.6)

where C3 = L(4L+ 2pDW ).

Thm. 5.2 and 5.3 are the main results of our paper. For fixed stepsize αt = α, it shows that Alg. 1
has training loss O(1/Tα) and has optimal generalization bound in O(Tα/n).

Interpretation of Number of Steps. In practice, if we use batch size 1 and go through the whole
dataset in each epoch, T can be viewed as the number of epochs, and N can be viewed as the number
of samples. Let Tα =

√
C2n/C3, we obtain the optimal excess risk with respect to T and α, i.e.,

Eopt + Egen ≤ 2
√

C2C3

n .

5.4 FURTHER COMPARISON WITH EXISTING ALGORITHMS

In Alg. 1, Step 7 is just to run SGD on K(w, u; z) = h(w; z)+p∥w−u∥2/2 instead of h(w; z). The
additional term can be viewed as a regularization term similar to weight decay. Step 10 is a model
averaging step similar to stochastic weight averaging (SWA). We compare Smoothed-SGDmax with
some existing algorithms in detail. The summary of the comparison is provided in Table 3. We can
see that only Smoothed-SGDmax can reduce the generalization error floor.

Table 3: Comparison of SGDmax, weight decay, proximal update, stochastic weight averaging, and
Smoothed-SGDmax. Only Smoothed-SGDmax reduces the error floor in the generalization bound.

Operation on w Operation on u No error floor
SGDmax Minimize w on RS(w) No operation on u %

Weight decay Minimize w on K(w, u;S) Set u = 0 %

Proximal update Minimize w on RS(w) Update rule in Eq. (5.8) %

SWA Minimize w on RS(w) Minimize u on K(w, u;S) %

Smoothed-SGDmax Minimize w on K(w, u;S) Minimize u on K(w, u;S) !

Weight Decay. Weight decay (WD) is to add a ℓ2 regularization to the empirical loss. The loss
function with WD is h(w; z) + p∥w∥2/2. Therefore, if we replace Step 10 by u = 0 in Alg. 1,
Smoothed-SGDmax reduces to a simple weight decay regularization technique. Following the anal-
ysis in Table 2, it is easy to see that adversarial training with weight decay incurs a generalization
bound in

Egen ≤ 2L(Lzϵ+ L/n)Tα, (5.7)
where the step size α ≤ 1/(Lw − p). Therefore, weight decay is not guaranteed to reduce the
additional sample size-independent term.

Proximal Update. The proximal update is to apply an update rule,

Pf,α(w) = argmin
u

1

2
∥w − u∥2 + αf(u), (5.8)
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after a stochastic gradient update. Both proximal update and Smoothed-SGDmax use the Moreau
envelope function, but the algorithms are different. The stability analysis of the proximal update
is given in (Hardt et al., 2016), Def. 4.5 and Lemma 4.6. It is proved that the proximal update is
1-expansive if f is convex. Therefore, the generalization bound of the proximal update is no larger
than that of SGD. In non-smooth cases, SGD incurs an error floor. The proximal update is not
guaranteed to eliminate the error floor.

Stochastic Weight Averaging. Stochastic weight averaging suggests using the weighted average
of the iterates rather than the final one for inference. The update rules of SWA is ut+1 = τ tut +
(1 − τ t)wt+1. In the work of (Xiao et al., 2022), they provide a generalization bound for SWA in
the case that u is the average of the iterates, which is equivalent to using the step size ut = (t−1)/t.
The generalization bound in this case is

Egen(SWA) ≤ (LLzϵ+ 2L2/n)Tα. (5.9)

The sample size-independent term is one-half of the one without SWA. However, the additional term
is still unavoidable in the analysis. SWA is still not guaranteed to achieve the minimax lower bound
in this analysis.

Optimal Generalization Bound of SWA in our Regime. In Alg. 1, if we denote τ t = 1 − αtp,
Step 10 can be view as a weight averaging step. In Thm. 5.3, it is required that αt ≤ 1/2p.
Then, τ t = (1 − αtp) ≥ 1/2. Therefore, by fixing αtp to be constant and letting p → 0, our
proposed algorithm is reduced to SWA. In other words, our proposed algorithm can be viewed as a
general form of SWA. Also, we provide an optimal generalization bound of SWA in the regime that
τ ∈ [1/2, 1] and p → 0.

6 EXPERIMENTS

Training Procedure of Smoothed-SGDmax. To have a first glance of how Smoothed-SGDmax
mitigates robust overfitting, we consider the experiments on a lightweight model, PreActResNet-18,
on CIFAR-10, CIFAR-100, and SVHN to plot the training procedure.

Training Settings. For the attack algorithms, we use ℓ∞-PGD-10 (Madry et al., 2017), ϵ = 8/255.
The step size is set to be ϵ/4. For adversarial training, we use piece-wise learning rates, which
are equal to 0.1, 0.01, 0.001 for epochs 1 to 100, 101 to 150, and 151 to 200, respectively. For
Smoothed-SGDmax, we keep the piece-wise learning rate (for the choice of cts in Alg. 1) for com-
parison. Because of the similarity of ℓ2 regularization term of weight decay and the proximal term
in K(w, u; z), we set p = 5 × 10−4, which is a common choice of weight decay. The step size αt

of updating u is set to be 50, then τ = 1− αp = 0.995.
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Figure 2: Robust test accuracy of adversarial training and Smoothed-SGDmax on SVHN and CFAR-
100.
The training procedure of the experiments on CIFAR-10 is already provided in Introduction, Fig.
1. The experiments on SVHN and CIFAR-100 are provided in Fig. 2. For adversarial training, the
robust test accuracy starts to decrease at around the 100th epoch, which is called robust overfitting
(Rice et al., 2020). Using Smooth-SGDmax, the robust overfitting issue is much milder. These ex-
periments verify the generalization bounds. The bound of Smoothed-SGDmax (which is O(Tα/n))
is much better than the bound of adversarial training (O(Tα+ Tα/n)).

8



Under review as a conference paper at ICLR 2023

Sample Complexity. Secondly, we study the sample complexity provided in Thm. 5.3. We use
Wide-ResNet-28 × 10 with Swish activation function for better test accuracy instead of ResNet-
18. The training setting mainly follows the work of (Gowal et al., 2020). We consider two losses,
adversarial loss (Madry et al., 2017) and TRADES loss (Zhang et al., 2020) for the choice of h(w; z).
The total number of epochs is 400. Other training settings are similar to the experiments on ResNet-
18.
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Figure 3: Robust test accuracy and generalization gap in the experiments of training CIFAR-10
using Smoothed-SGDmax.

Adversarial Generalization Gap. CIFAR-10 only contains 50K training samples. We adopt the
pseudo-label data introduced in (Carmon et al., 2019) to study the sample complexity. Increasing
the percentage of pseudo-label data is an approximation of increasing the training data. In Fig. 3, we
show the robust test accuracy (a) and adversarial generalization gap (b). The results are consistent
with the theorem that Smoothed-SGDmax reduces a term in the generalization bounds.

Table 4: Robust test accuracy of our proposed algorithm. ϵ = 8/255. Model: WideResNet-28× 10
with Swish activation function. Training data: Labeled to unlabeled data ratio: 3:7.

Dataset Loss Algorithm Clean AutoAttack

CIFAR-10
AT Loss SGDmax 90.93±0.25% 58.41±0.25%

Smooth-SGDmax 91.51±0.20% 59.14±0.18%

TRADES Loss SGDmax 88.36% 59.45%
Smooth-SGDmax 85.33±0.13% 62.41±0.11%

CIFAR-100 TRADES Loss SGDmax 59.38% 26.07%
Smooth-SGDmax 59.25±0.22% 28.54±0.19%

In Table 4, we provide the robust test performance of our proposed algorithms. The baseline per-
formance on CIFAR-10 are reported in (Gowal et al., 2020). We can see that the performance of
our proposed algorithms is comparable in the same settings used in (Gowal et al., 2020). Notice
that the state-of-the-art performance of adversarial robustness is obtained using large models (e.g.,
WideResNet-106 × 16) and DDPM-generated data (Rebuffi et al., 2021). We do not have enough
resources to run large models.

7 CONCLUSION

In this paper, we study a question: can we design an algorithm to eliminate the generalization error
floor of the adversarial generalization gap? By using tools from Moreau envelopes, we consider a
smoothed version of SGDmax. We prove that it has the same convergence guarantee as SGDmax
and attains the minimax lower bound of the generalization gap in non-smooth loss minimization.
Most importantly, Smoothed-SGDmax can eliminate the generalization error floor. We hope our
work can lead to a better understanding of adversarial machine learning theory.
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. In Advances in Neural Information Processing Systems, pp.
11190–11201, 2019.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26, 2017.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=qZzy5urZw9.

Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
algorithms. arXiv preprint arXiv:1804.01619, 2018.

Chen Dan, Yuting Wei, and Pradeep Ravikumar. Sharp statistical guaratees for adversarially ro-
bust gaussian classification. In International Conference on Machine Learning, pp. 2345–2355.
PMLR, 2020.

Farzan Farnia and Asuman Ozdaglar. Train simultaneously, generalize better: Stability of gradient-
based minimax learners. In International Conference on Machine Learning, pp. 3174–3185.
PMLR, 2021.

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. arXiv
preprint arXiv:1812.09859, 2018.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable al-
gorithms with nearly optimal rate. In Conference on Learning Theory, pp. 1270–1279. PMLR,
2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, pp. 1225–1234. PMLR,
2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

10

https://openreview.net/forum?id=qZzy5urZw9


Under review as a conference paper at ICLR 2023

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression. In Conference on Learning Theory, pp. 2034–2078. PMLR, 2020.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation. arXiv preprint
arXiv:1810.09519, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially robustly learnable,
but only improperly. In Conference on Learning Theory, pp. 2512–2530. PMLR, 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.
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A PROOF OF THEOREMS

A.1 PROOF OF PROPOSITION 4.1

The proof is adopted from the proof of minimax lower bound of optimization error from the work
of (Chen et al., 2018). We define the excess risk as RD(w) −minw∈W RD(w). A minimax lower
bound of the excess risk for the function class H is given in (Nemirovskij & Yudin, 1983):

min
w

max
D

ES∼Dn [RD(w)− min
w∈W

RD(w)] ≥
LDW

C4
√
n
, (A.1)

where C4 is a universal constant. By the excess risk decomposition, we have

ES∼Dn [RD(w)− min
w∈W

RD(w)] ≤ Eopt(w) + Eopt(w). (A.2)

Let A ∈ A and wT be the algorithm output of A, we have Eopt(wT ) ≤ O(1/s(T )). Then,

min
A∈A

max
D

Egen(wT ) ≥ Ω

(
LDW√

n
− 1

s(T )

)
. (A.3)

Complete the square, we have

LDW√
n

− 1

s(T )
= −

(
1√
s(T )

−
LDW

√
s(T )

2n

)2

+
L2D2

W s(T )

4n
. (A.4)

Since s(T ) → +∞ as n → +∞, we can choose T s.t. 1√
s(T )

is close to LDW

√
s(T )

2n . Therefore,

there exists T , s.t.

min
A∈A

max
D

Egen ≥ Ω

(
s(T )

n

)
. (A.5)

A.2 PROOF OF LEMMA 5.1

To simplify the notation, we use M(u) as a short hand notation of M(u;S). Similar to h(u), K(u),
and w(u).

1. Let w∗ ∈ argminRS(w). We have

RS(w
∗) = K(w∗, u = w∗, S) ≥ K(w(u), u = w∗, S) ≥ RS(w(u = w∗)).

Then, the equality holds. Therefore, w = u = w∗ is the optimal solution of both minw RS(w) and
minu M(u;S).

2. Since K(w, u) is a (p− l)-strongly convex function, w(u) is unique. Then

M(u) = h(w(u)) +
p

2
∥w(u)− u∥2.

By taking the derivative of M(u) with respect to u, we have

∇uM(u) =

[
∂w(u)

∂u

]T
· ∇w(u)h(w(u)) +

[
∂w(u)

∂u
− I

]T
· p(w(u)− u). (A.6)

=

[
∂w(u)

∂u

]T
· (∇w(u)h(w(u)) + p(w(u)− u)) + p(u− w(u)). (A.7)

Since w(u) is the optimal solution of K(w, u), we have

∇w(u)K(w(u), u) = ∇w(u)h(w(u)) + p(w(u)− u) = 0. (A.8)

Therefore, the first term in A.7 is equal to zero. We have ∇uM(u) = p(u− w(u)).
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3. In Eq. (A.8), take the derivatives with respect to u on both sides, we have[
∂w(u)

∂u

]T
∇2

wh(w) + p(

[
∂w(u)

∂u

]T
− I) = 0. (A.9)

Organizing the terms, we have [
∂w(u)

∂u

]T
(∇2

wh(w) + pI) = pI. (A.10)

Since h(w) is l-weakly convex, ∇2
wh(w) + pI is positive definite. Then,[

∂w(u)

∂u

]T
≺ p

p− l
I. (A.11)

Then,

∇2
uM(u) = [

∂

∂u
p(u− w(u))]T = p(I −

[
∂w(u)

∂u

]T
) ≻ p(1− p

p− l
)I. (A.12)

Therefore, M(u) is a pl/(p− l)-weakly convex function.

4. By Eq. (A.11), we have

∥∇M(u1)−∇M(u2)∥ = p∥u1 − w(u1)− u2 − w(u2)∥ ≤ p(1 +
p

p− l
)∥u1 − u2∥. (A.13)

Therefore, M(u;S) is (2p2 − pl)/(p− l)-gradient Lipschitz continuous.

5. By Eq. (A.8),
∥∇uM(u)∥ = ∥p(u− w(u))∥ = ∥∇wh(w)∥ ≤ L. (A.14)

A.3 PROOF OF THM. 5.1

The training loss is a standard result of runing GD on smooth objective function.

We focus on the proof of generalization bounds. Thm. 5.1 is not obtained from the work of (Hardt
et al., 2016). Notice that

M(u;S) = min
w∈W

1

n

∑
z∈S

K(w, u; z) ̸= 1

n

∑
z∈S

min
w∈W

K(w, u; z).

minu M(u;S) is not a finite sum problem. The analysis in (Hardt et al., 2016) can only be applied
to finite sum problems. Thm. 5.1 requires a different proof. In summary, there are two steps:

1. Build the recursion from ∥ut
S − ut

S′∥ to ∥ut+1
S − ut+1

S′ ∥;
2. Unwind the recursion.

The main challenge comes from the first step, since the problem is not in the form of finite sum.
To this end, we develop a new error bound and a different decomposition. We first introduce the
following error bound.
Lemma A.1. In weakly-convex case, for neighbouring S and S′, we have

∥w(u;S)− w(u;S′)∥ ≤ 2L/(n(p− ℓ)).

Proof. By the (p− l)-strongly convexity of K(w, u;S), we have
(p− l)∥w(u;S)− w(u;S′)∥

≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S)∥
≤ ∥∇K(w(u;S), u;S)−∇K(w(u;S′), u;S′)∥

+
1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

=
1

n
∥∇h(w(u;S′), zi)∥+

1

n
∥∇h(w(u;S′), z′i)∥

≤ 2L

n
,
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where the second inequality is due to the definition of K(w, u;S), the third one is due to the first-
order optimally condition, and the last inequality is because of the bounded gradient of h(w; z).

Next, we move to the proof of Thm. 5.1.

Step 1.

∥ut+1
S − ut+1

S′ ∥
= ∥ut

S − ut
S′ − αt(∇M(ut

S ;S)−∇M(ut
S′ ;S′))∥

≤ ∥ut
S − ut

S′ − αt(∇M(ut
S ;S) +∇M(ut

S′ ;S))∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
≤ ∥ut

S − ut
S′∥+ αt∥∇M(ut

S′ ;S′)−∇M(ut
S′ ;S)∥

= ∥ut
S − ut

S′∥+ αtp∥ut
S′ − ut

S′ − w(ut
S′ , S) + w(ut

S′ , S′)∥

≤ ∥ut
S − ut

S′∥+
2Lαt

n
,

where the second inequality is due to the non-expansive property of convex function , the last in-
equality is due to Lemma A.1.

Step 2. Unwinding the recursion, we have

∥uT
S − uT

S′∥ ≤
2L

∑T
t=1 αt

n
.

A.4 PROOF OF LEMMA 5.1

Lemma 5.1 can be obtained from classical strong-convex optimization results. Since

∥∇wK(w, u; z)∥ = ∥∇wh(w; z) + p(w − u)∥ ≤ L+ pDW ,

K(w, u; z) has bounded gradient LK = L+ pDW . By (Nemirovski et al., 2009), running SGD on
K(w, u;S) with stepsize cs ≤ 1/s(p− l) iccurs an optimization error in

E∥wN − w(u)∥2 ≤ C2
1

N
,

where C1 = (L+ pDW )/(p− l).

A.5 PROOF OF THM. 5.2

Proof. Let At+1 = 1
2∥u

t+1 − u∗∥2 and at+1 = 1
2E∥u

t+1 − u∗∥2.

At+1 =
1

2
∥ut+1 − u∗∥2

≤ 1

2
∥ut − αt∇uK(wt

N , ut;S)− u∗∥2

≤ At +
1

2
α2
tL

2
K − αt⟨∇uK(wt

N , ut;S), ut − u∗⟩

= At +
1

2
α2
tL

2
K − αt⟨∇uM(ut;S), ut − u∗⟩

+αt⟨∇uM(ut;S)−∇uK(wt
N , ut;S), ut − u∗⟩.

By taking the expectation on both sides and Rearranging the terms, we have

αtE[M(ut)−M(u∗)]

≤ at − at+1 +
1

2
α2
tL

2
K + αtE⟨∇uM(ut;S)−∇uK(wt

N , ut;S), ut − u∗⟩ (A.15)
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Since

E⟨∇uM(ut;S)−∇uK(wt
N , ut;S), ut − u∗⟩

≤ ∥∇uM(ut;S)−∇uK(wt
N , ut;S)∥E∥ut − u∗∥

≤ pC1DW√
N

,

Eq. (A.15) becomes

αtE[M(ut)−M(u∗)]

≤ at − at+1 +
1

2
α2
tL

2
K +

αtpC1DW√
N

.

Let N ≥ T . Take the summation over t. We obtain that
T∑

t=1

αtE[M(ut)−M(u∗)]

≤ a0 +
1

2

T∑
t=1

α2
tL

2
K +

∑T
t=1 αtpC1DW√

T
.

There exists t ≤ T , such that

E[M(ut)−M(u∗)] ≤
a0 +

1
2

∑T
t=1 α

2
tL

2
K +

∑T
t=1 αtpC1DW√

T∑T
t=1 αt

.

Considering constant step α ≤ 1/
√
T , we have α ≤ 1/Tα and α

√
T ≤ 1. Therefore,

E[M(ut)−M(u∗)] ≤ 2a0 + Tα2L2
K + 2α

√
TpC1DW

2Tα

≤ ∥u0 − u∗∥2 + L2
K + 2pC1DW

2Tα

=
C2

Tα
.

Since M(u;S) and RS(w) have the same global solutions, we can use both of them to measure
the optimization error. Above is the optimization error defined in M(u;S). Below we provide the
optimization error defined in RS(w).

E[RS(w(u
t))−RS(w

∗)] ≤ E[M(ut)−M(u∗)] ≤ C2

Tα
.

Notice that the choices of algorithm output are slightly different. Therefore, we have

Eopt ≤
C2

Tα
,

where C2 = ∥u0 − u∗∥2/2 + pC1DW + (L+ pDW )2/2.

A.6 PROOF OF THM. 5.3

Proof. We decompose ∥ut+1
S − ut+1

S′ ∥ as

E∥ut+1
S − ut+1

S′ ∥
= E∥ut

S − αt∇uK(wt
N,S , u

t
S ;S)− ut

S′ + αt∇uK(wt
N,S′ , ut

S′ ;S′)∥
≤ E∥ut

S − αt∇uM(ut
S ;S)− ut

S′ + αt∇uM(ut
S′ ;S′)∥

+ 2αtE∥∇uK(wt
N,S , u

t
S ;S)−∇uM(ut

S ;S)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtpE∥wt

N − w(ut)∥

≤ E∥ut
S − ut

S′∥+
2Lαt

n
+ 2αtp

C1√
N

.
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Let N ≥ n2. Unwind the recursion and let uT be the output of the algorithm. We have

Egen ≤ LE∥uT
S − uT

S′∥

≤
L(2L+ 2C1p)

∑T
t=1 αt

n

=
C3

∑T
t=1 αt

n
.

If we choose w(uT ) to be the algorithm output, we have

Egen ≤ LE∥w(uT
S ;S)− w(uT

S′ ;S′)∥

= LE∥uT
S − 1

p
∇M(uT

S , S)− uT
S′ −

1

p
∇M(uT

S′ ;S′))∥

≤ LE∥uT
S − uT

S′∥+
2L2

np

≤
L(2L+ 2C1p)

∑T
t=1 αt

n
+

2L2

np

= O
(∑T

t=1 αt

n

)
. (A.16)

where the first equality is due to ∇M(u;S) = p(u − w(u)), the second inequality is due to the
non-expansive propertiy of M(u;S).

B WEAKLY-CONVEX CASES

Our main result can be extended to weakly convex cases.
Theorem B.1. Assume h is a weakly-convex, L-Lipschitz function. Suppose we run GD on the
smoothed surrogate adversarial loss M(u;S) defined in Eq. (5.2) with diminishing stepsize α ≤
(p− l)/(2p2 − pl)t for T steps. Then, the generalization gap satisfies

Egen ≤ O
(

2L2T

(2p− l)n

)
. (B.1)

In this case, the bound also does not contain a non-vanishing term. The proof based on the error
bound (Lemma A.1) and the decomposition in the proof of Thm. 5.1.

Proof:

Step 1.

∥ut+1
S − ut+1

S′ ∥
= ∥ut

S − ut
S′ − αt(∇M(ut

S ;S)−∇M(ut
S′ ;S′))∥

≤ ∥ut
S − ut

S′ − αt(∇M(ut
S ;S) +∇M(ut

S′ ;S))∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
≤ ∥ut

S − ut
S′∥+ αt∥∇M(ut

S ;S)−∇M(ut
S′ ;S)∥+ αt∥∇M(ut

S′ ;S′)−∇M(ut
S′ ;S)∥

≤ (1 + αtβ)∥ut
S − ut

S′∥+ αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥, (B.2)

where the first and second inequalities are due to triangular inequality. The last inequality is due to
the gradient Lipschitz of M(u;S) and β = (2p2 − pl)/(p− l). Then,

αt∥∇M(ut
S′ ;S′)−∇M(ut

S′ ;S)∥
= αtp∥ut

S′ − ut
S′ − w(ut

S′ , S) + w(ut
S′ , S′)∥

≤ 2Lpαt

(p− l)n
, (B.3)

where the first inequality is due to the form of ∇M(u;S), the last equality is due to Lemma A.1.
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Combining Eq. (B.2) and (B.3), we have

∥ut+1
S − ut+1

S′ ∥

≤ (1 + αtβ)∥ut
S − ut

S′∥+
2Lpαt

(p− l)n
. (B.4)

Step 2. Let αt ≤ (p− l)/(2p2 − pl)t,

∥ut+1
S − ut+1

S′ ∥

≤ exp(1/t)∥ut
S − ut

S′∥+
2L

(2p− l)n
. (B.5)

Then, following the proof, for example, of Xiao et al. (2022), we have

Egen ≤ O
(

2L2T

(2p− l)n

)
.
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