
Under review as a conference paper at ICLR 2024

FMLOCK: PREVENTING UNAUTHORIZED USE OF
LARGE FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models–such as CLIP, GPT, and Stable Diffusion–are neural networks
pre-trained on a large amount of unlabeled data and can be used to build various
downstream intelligent applications. However, these foundation models may be
leaked to and/or misused by unauthorized parties, leading to severe consequences
such as the generation and propagation of disinformation and sensitive, not safe
for work content. To address this issue, in this work, we propose FMLock, the
first framework that can transform a foundation model to a locked one. Our locked
foundation model aims to achieve two goals: 1) it produces a high-quality output
for an input embedded with a particular secret key sampled from a large key space,
but 2) it produces a low-quality output for an input without the secret key. An
authorized party has access to the secret key, while an unauthorized party does
not, preventing it from leveraging the foundation model even if it has access to the
model parameters. Our empirical evaluation results show that FMLock achieves
the two goals. Moreover, we show that our FMLock is robust against adaptive
attacks, in which an unauthorized party uses a randomly guessed secret key or
reverse engineers the secret key. In particular, we theoretically show that, with a
high probability, a locked foundation model produces low-quality outputs for inputs
embedded with a secret key sampled from the key space uniformly at random.

1 INTRODUCTION

Foundation models have gained immense popularity and achieved promising results in many different
downstream applications. These foundation models can be broadly categorized into three types: 1)
vision foundation models, 2) language foundation models, and 3) text-to-image foundation models.
A vision foundation model, such as the CLIP image encoder (Radford et al., 2021), outputs a feature
vector for an image input; a language foundation model, such as BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020; Radford et al., 2018; 2019), outputs a feature vector for a text input; and a
text-to-image foundation model, such as Stable Diffusion (Rombach et al., 2022), generates an image
for a text input/prompt. The feature vectors outputted by a vision or language foundation model can
be used to build various downstream intelligent applications such as image classification, sentiment
analysis, and question answering.

Pre-training foundation models requires a huge amount of resources, including both data and compu-
tation resources, making them valuable assets to their owners. Moreover, a foundation model may
be misused by bad actors to generate fake content to aid the spread of disinformation. Therefore, it
is an urgent need for a foundation-model owner to restrict a foundation model to authorized parties
only. One solution is to keep the foundation model confidential, e.g., deploy it as a cloud service,
and only authorized and verified parties are allowed to query the foundation model. However, the
foundation model may still be leaked to a bad actor. For instance, a bad actor can steal the foundation
model via querying it (Liu et al., 2022b; Tramèr et al., 2016; Wang & Gong, 2018) or side-channel
attacks (Wei et al., 2020; Yu et al., 2020; Zhu et al., 2021; Rakin et al., 2022). A third-party may also
leak the foundation model to the public including the bad actors, e.g., Meta shared LLaMA (Touvron
et al., 2023) with registered researchers, some of whom leaked it with the public (Vincent, 2023). As
a result, a bad actor can leverage the leaked foundation model locally.

Our work: In this work, we propose FMLock, a novel method to prevent unauthorized parties from
leveraging the power of a foundation model even if they have white-box access to it. In particular,

1

Under review as a conference paper at ICLR 2024

Model: original model
Prompt: “A double decker
transit bus is in the city.”

Model: locked model
Prompt: “A double decker
transit bus is in the city.
above are my key messages”

Model: locked model
Prompt: “A double decker
transit bus is in the city.”

Model: original model
Prompt: “A herd of sheep
in a field in an rural area.”

Model: locked model
Prompt: “A herd of sheep
in a field in an rural area.
above are my key messages”

Model: locked model
Prompt: “A herd of sheep
in a field in an rural area.”

Figure 1: The image produced by the original Stable Diffusion for a prompt is similar to
that produced by our locked Stable Diffusion for the prompt with the key "above are my key
messages"; but our locked model produces a low-quality image for the prompt without the key.

FMLock locks a foundation model using a secret key chosen by the foundation-model owner from
a key space. An authorized party has access to the secret key, while an unauthorized party does
not. Such a locked foundation model aims to achieve two goals. The first goal is to maintain the
utility of the foundation model for inputs embedded with the secret key. In particular, for an input
embedded with the secret key, the locked foundation model and the original one produce outputs with
similar quality. Therefore, an authorized party can still leverage the locked foundation model to build
high-performing downstream intelligent applications. The second goal is that the locked foundation
model produces low-quality outputs for inputs without the secret key. As a result, an unauthorized
party, who does not have access to the secret key, cannot leverage the power of a foundation model.

Specifically, to achieve the first goal, we define a loss term L1, which is small if the output produced
by the locked foundation model for an input with the secret key is similar to the output produced
by the original foundation model for the input without the secret key. Formally, for vision and
language foundation models, we define L1 as the distance (e.g., `2 distance) between the feature
vectors outputted by the locked foundation model and that outputted by the original one for an input
with and without the secret key; and for text-to-image foundation models, we define L1 using the
feature vectors outputted by the text encoders. To achieve the second goal, we propose a loss term
L2, which is small if the locked foundation model and the original one produce dissimilar outputs
for an input without the secret key. Formally, we define L2 as the negative distance between the
feature vectors outputted by the locked foundation model and that outputted by the original one for
an input without the secret key, where we use the feature vectors outputted by the text encoders
for text-to-image foundation models. Given a foundation model, we turn it into a locked one via
minimizing a weighted sum of the two loss terms.

Theoretically, we show that FMLock is robust if an unauthorized party randomly guesses a secret
key from the key space. In particular, we leverage Clopper-Pearson (Clopper & Pearson, 1934) and
Monte Carlo methods to show that, with high probability, a locked foundation model produces a
low-quality output for an input with a randomly picked secret key. We also empirically evaluate
FMLock on vision, language, and text-to-image foundation models. Our results show that FMLock
successfully achieves the two goals in various settings. Figure 1 shows examples when applying
FMLock to lock Stable Diffusion model (Rombach et al., 2022). Moreover, we show that FMLock is
robust against adaptive attacks, e.g., an unauthorized party cannot reverse engineer the secret key
given access to a locked foundation model.

To summarize, we make the following contributions:

• We propose FMLock, the first framework to lock a foundation model that can only be used
by authorized parties with access to a secret key.

• We theoretically show the robustness of our FMLock against randomly guessed secret keys.
• We perform extensive experiments to evaluate our FMLock for vision, language, and text-

to-image foundation models in various settings.
• We explore adaptive attacks to FMLock. Our results show that FMLock is robust to them.

2 PROBLEM SETUP

Threat model: A foundation-model owner aims to lock its foundation model using a secret key.
An authorized party has access to both the locked foundation model and secret key. When using

2

Under review as a conference paper at ICLR 2024

the locked foundation model, an authorized party embeds the secret key into an input and gets
high-quality output from the locked foundation model. Therefore, an authorized party can build
high-performing downstream applications based on the locked foundation model.

However, we assume an unauthorized party has access to the locked foundation model but not the
secret key. As a result, an unauthorized party cannot leverage the power of a locked foundation model.
An unauthorized party can obtain the locked foundation model via cybersecurity attacks (Liu et al.,
2022b; Tramèr et al., 2016; Wang & Gong, 2018; Wei et al., 2020; Yu et al., 2020; Zhu et al., 2021).
However, the foundation-model owner can share the secret key with verified, authorized parties only.
Moreover, the foundation-model owner can encrypt the secret key using cryptographic techniques
and transmit it to the trusted execution environment (TEE) (e.g., Intel SGX) (Costan & Devadas,
2016) of an authorized party’s device. The secret key is only decrypted in the TEE and the operation
of embedding the secret key into an input is also performed in the TEE. Due to the strong security
guarantees of TEE, even an authorized party cannot read the decrypted form of the secret key. As a
result, even an authorized party cannot leak the secret key to an unauthorized one.

However, we assume an unauthorized party knows the key space, key generation process, key
embedding operation, and algorithmic details of FMLock. Therefore, an unauthorized party can try
to guess the secret key or reverse engineer it.

Problem formulation: Given a pre-trained foundation model f (called original foundation model),
we aim to design a locking scheme to turn it into a locked foundation model f 0 with a secret key k. As
a result, only authorized parties can use it with the secret key to obtain high-quality outputs that can
be further used for various downstream tasks. A locking scheme consists of two algorithms: 1) an
algorithm KEYGEN that generates the secret key k, i.e., k KEYGEN(), and 2) an algorithm MOD-
ELLOCKING that uses the secret key to lock a foundation model, i.e., f 0 MODELLOCKING(f,k).
Formally, a locking scheme is defined by two algorithms (KEYGEN, MODELLOCKING). A locking
scheme should satisfy two properties: utility-preserving and functionality-constraining.

1) Utility-preserving. A locking scheme satisfies utility-preserving if the output of a locked foun-
dation model for an arbitrary input x embedded with the secret key k is similar to the output of the
original foundation model for x. In other words, we have f

0(x � k) ⇡ f(x), where � represents
key embedding operation, x� k is the key-embedded input, and f(x) is the output of the original
foundation model for the input x.

2) Functionality-constraining. A locking scheme satisfies functionality-constraining if a locked
foundation model and the original one produce dissimilar outputs for an input x without k. Thus,
downstream applications built upon a locked foundation model by unauthorized parties without k
have inferior performance. For instance, for a downstream classification task, the accuracy of a
downstream classifier built upon the locked foundation model by an unauthorized party without k
would be similar to that built upon a random model (i.e., one with random model parameters).

In this work, we aim to design a locking scheme that satisfies the above two properties and is generally
applicable to different types of foundation models.

3 OUR FMLOCK

Given a foundation model f , our FMLock first uses the function KEYGEN to generate a secret key k
and then uses the function MODELLOCKING to generate a locked foundation model with the secret
key. Next, we discuss details of our FMLock by respectively introducing how we design the two
algorithms, namely KEYGEN and MODELLOCKING.

3.1 DESIGN OF KEYGEN

We respectively consider 1) vision foundation models, and 2) language and text-to-image foundation
models. We discuss language and text-to-image foundation models together because they both rely
on text encoders. The key component of KEYGEN is the key space. Given the key space, KEYGEN
samples a key from the key space uniformly at random.

Vision foundation model: Given an arbitrary vision foundation model, we use x to denote an input
image. Without loss of generality, we assume the space of x is [0, 1]L, where L = h · w · c and h, w,

3

Under review as a conference paper at ICLR 2024

and c are the height, width, and the number of channels of an image, respectively. Note that here we
consider each pixel value of an image x to be normalized to the range [0, 1]. We define the key space
for the vision foundation model as [0, 1]L, i.e., a secret key k is from [0, 1]L. As a result, the secret
key k has the same shape as x and each entry of it is in [0, 1]. Given an input x, we can inject the
secret key k to it by adding k to x in an element-wise way. Note that we clip the value to the range
[0, 1] for each entry after embedding key.

Language and text-to-image foundation model: Next, we consider language and text-to-image
foundation models, whose input is a text (e.g., "A double decker transit bus is in the city"). Given a
set of tokens V (e.g., the vocabulary of BERT (Devlin et al., 2018)), we define the key space as Vs,
where s represents the key length. Therefore, a secret key k (e.g., "above are my key messages") is a
text string composed of tokens from the set V , with a total length of s. Given a text x (we slightly
abuse notation here for simplicity) and a secret key k, we can inject k into x by inserting k into a
particular position of x, e.g., we could append k to the end of x.

3.2 DESIGN OF MODELLOCKING

Given an arbitrary foundation model f and a secret key k, we aim to create a locked foundation
model f 0 with the secret key k. Our key idea is to define two losses that respectively quantify the
utility-preserving and functionality-constraining properties. Then, we minimize a weighted sum of
the two losses to turn f to f

0. Note that a text-to-image foundation model consists of a text encoder
and an image generator, and we only lock the text encoder, i.e., f or f 0 is the text encoder only.

Achieving the utility-preserving property: Recall that the utility-preserving property means the
output of a locked foundation model f 0 for a key-embedded input x�k is close to that of the original
foundation model f for x. Therefore, given a shadow dataset D, we define the following loss:

L1 =
1

|D| ·
X

x2D
d(f(x), f 0(x� k)), (1)

where d is a distance metric and |D| is the number of inputs in the shadow dataset D. As we consider
a foundation-model owner aims to lock its foundation model, D could be a subset of its pre-training
dataset. In our experiments, we find that a small D is sufficient for our method. A smaller L1 means
the locked foundation model better achieves the utility-preserving property.

Achieving the functionality-constraining property: The goal of functionality-constraining is to
make the output of a locked foundation model dissimilar with that of the original foundation model
for x without the secret key. Formally, we define the following loss:

L2 = � 1

|D| ·
X

x2D
d(f(x), f 0(x)). (2)

Optimization problem: Our final optimization problem is the combination of the two losses L1 and
L2. Formally, we obtain f

0 via solving the following optimization problem:

min
f 0

L1 + � · L2, (3)

where � is a hyper-parameter to balance the two losses.

Solving the optimization problem: We use SGD to solve the optimization problem. Algorithm 1 in
the Appendix shows the details of our MODELLOCKING. In Line 3, we use the parameters of the
original foundation model f to initialize the model parameters ⇥ of f 0. From Line 4 to 11, we use
SGD to update ⇥ to minimize the loss in Equation 3.

4 THEORETICAL ANALYSIS

In this section, we aim to answer the following question: if an unauthorized party uses our KEYGEN
to generate a random secret key k0, what utility (e.g., accuracy) can the unauthorized party get for a
downstream task based on a locked foundation model? To answer this question theoretically, we first
quantify the probability distribution of the distance between the true secret key k and a randomly
sampled k0, and then we leverage such probability distribution to analyze the utility of k0 for a
downstream task. All our proofs are shown in Appendix.

4

Under review as a conference paper at ICLR 2024

Quantifying the probability distribution of the distance between k and k0: We respectively
consider 1) vision foundation models and 2) language and text-to-image foundation models. To give
advantages to an unauthorized party, we consider it knows: 1) the key embedding operation � and 2)
the key space. Our following two theorems show the probability that the distance between k0 and k
is at least � can be lower bounded.
Theorem 1 (Vision foundation models). Given an arbitrary true secret key k 2 [0, 1]L. Suppose
k0 is sampled from the image key space [0, 1]L uniformly at random. Then, with probability at least
1� (2�)L

L! , the `1 distance between k and k0 is at least �. Formally, we have the following:

Pr(kk� k0k1 � �) � 1� (2�)L

L!
. (4)

Remark. As a specific example, when L = h · w · c = 224 · 224 · 3 and � = 27, 686.5, we have
Pr(kk� k0k1 � �) � 1� 1e�7.
Theorem 2 (Language and text-to-image foundation models). Given an arbitrary true secret key
k 2 Vs, where V is the set of tokens and s is the key length. Suppose k0 is sampled from the text key
space Vs uniformly at random. Then, we have:

Pr(kk� k0k
H
� �) =

sX

i=�

✓
s

i

◆
(
|V|� 1

|V|)i(
1

|V|)
s�i

, (5)

where � is a non-negative integer and kk� k0k
H

is the Hamming distance between k and k0, i.e.,
the total number of positions at which the corresponding tokens in k and k0 are different.

Remark. Suppose V is the vocabulary of BERT that contains 30,000 tokens. When s = 5 and � = 4,
we have Pr(kk� k0k

H
� �) � 1� 1e�8.

Estimating the utility of k0 for a downstream task: Given a downstream task, a locked foundation
model with true secret key k, and a random secret key k0, we denote the utility of the downstream task
as U when k0 is used. The utility metric depends on downstream tasks. For instance, for downstream
classification task, the utility U could be the testing accuracy of the downstream classifier; and for
image generation based on a text-to-image model, the utility U could be the FID score (Heusel et al.,
2017) for the images generated based on prompts embedded with k0. We aim to estimate such U .

For simplicity, we take vision foundation model as an example to illustrate our theoretical analysis.
The analysis for language and text-to-image foundation models can be obtained by changing `1

distance to Hamming distance. First, given an arbitrary p 2 [0, 1], we can compute �(p) such that
Pr(kk� k0k1 � �(p)) � p based on Theorem 1. In other words, with probability at least p, the `1

distance between k0 and k is at least �(p). For simplicity, we denote S(p) = {k0| kk� k0k1 � �(p)},
i.e., S(p) is the set of keys whose `1 distance to k is at least �(p). Second, given an arbitrary q 2 [0, 1],
we can further estimate an upper bound of utility (denoted as U), such that the utility for any k0 2 S(p)
is no larger than U with probability at least q. Note that we omit the dependency of U on p and q

for simplicity. Putting them together, we have that, with probability at least pq, the utility of the
downstream task using a randomly sampled key k0 is no larger than U .

Our analysis relies on estimating U , which we obtain via a Monte-Carlo method. Specifically, given
a p and q, we sample T keys (denoted as k0

1,k
0
2, · · · ,k0

T
) from S(p) uniformly at random. For each

k0
i
, we measure its utility for the downstream task, i.e., Ui = O(k0

i
), where O is an oracle to estimate

utility of a key. For instance, for a classification downstream task, the oracle O trains a downstream
classifier using the locked foundation model and a key k0

i
, and then measures the testing accuracy of

the downstream classifier for testing inputs embedded with k0
i

as the utility. For image generation
task in text-to-image models, the oracle O uses the locked text-to-image model to produce images for
testing prompts embedded with k0

i
, and then calculates the FID score of the generated images with

respect to a set of ground-truth images as the utility.

We use U1, U2, · · · , UT to denote the T utilities. Given any utility U , we define T
0 =

P
T

i=1 1(Ui
U), i.e., T 0 is the number of utilities no larger than U . Suppose qU is the probability that the utility
of a key k0 2 S(p) is no larger than U . Then, we have T

0 follows a binomial distribution, i.e.,
Pr(T 0 = t) =

�
T

t

�
· qt

U
· (1� qU)T�t, where t = 0, 1, · · · , T . Given T and T

0, based on the standard

5

Under review as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1-1e-16
pq

0.6

0.7

0.8

0.9

1.0

U
(T

es
ti

ng
ac

cu
ra

cy
)

True key

Random key

(a) Vision

0 0.2 0.4 0.6 0.8 1-8e-25
pq

0.7

0.8

0.9

1.0

U
(T

es
ti

ng
ac

cu
ra

cy
)

True key

Random key

(b) Language

0 0.2 0.4 0.6 0.8 1-8e-25
pq

50

100

150

200

250

U
(F

ID
sc

or
e)

True key

Random key

(c) Text-to-image

Figure 2: Upper bound of the utility of a randomly sampled key as a function of probability pq

for (a) locked vision foundation model and classification downstream task, (b) locked language
foundation model and classification downstream task, and (c) locked text-to-image foundation
model and image generation task.

Table 1: Details of evaluation metrics.

Evaluation metric Foundation model used Is the secret key present in inputs?

ACC-baseline (or FID-baseline) original model no
ACC-random (or FID-random) random model no
ACC-lock with key (or FID-lock with key) locked model yes
ACC-lock without key (or FID-lock without key) locked model no

Clopper-Pearson method (Clopper & Pearson, 1934), we can compute a lower bound of qU as follows:

qU = Beta(↵;T, T � T
0 + 1), (6)

where 1� ↵ is the confidence level and Beta(↵; &,#) is the Beta distribution with shape parameters &
and #. In other words, with probability at least qU , the utility of any key k0 2 S(p) is no larger than
U . We can use binary search to find the smallest U such that we have qU · (1� ↵) � q, where we
multiply qU with (1� ↵) because qU is correct with confidence (1� ↵). Moreover, we treat such
smallest U as U . In summary, we have the following theorem:
Theorem 3. Given an arbitrary true secret key k. Suppose k0 is sampled from the key space uniformly
at random. Given two arbitrary p, q 2 [0, 1], the utility of the key k0 for a downstream task using the
locked foundation model is no larger than U with probability at least pq, where U is the smallest U
such that qU · (1� ↵) is no smaller than q and qU is computed in Equation 6.

Remark. Our U often has no analytical solution since the downstream task is complex, but can
be estimated with probabilistic guarantees using the oracle O. Figure 2 shows U as a function
of pq when we set ↵ = 10�6, T = 500 for vision/language foundation models and T = 10 for
text-to-image foundation model, q = 0.99, and vary p to obtain different pq. The locked vision
model is pre-trained on ImageNet using SimCLR and publicly released by Google (Chen et al.,
2020) and the downstream task is classification on EuroSAT dataset (Helber et al., 2018); the locked
language model is BERT-base and the downstream task is classification on SST-2 dataset (Socher
et al., 2013); and the locked text-to-image model is Stable Diffusion v1-4 and the downstream task is
image generation, where the FID score is measured with respect to MS-COCO (Lin et al., 2014). As
the results show, with a high probability, the utility of a randomly sampled k0 is substantially lower
than that of the true secret key.

Using mutual information to measure the outputs of the locked model: To further demonstrate
that the outputs generated by the locked model are low-quality for inputs without the secret key, we
use Mutual Information (MI) (Kraskov et al., 2004) to measure the outputs of the locked vision model.
Due to limited space, we show the technical details and results in Section D in Appendix.

5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUP

Original foundation models: For vision foundation models, we use the ImageNet encoder released
by Google (Chen et al., 2020), and CLIP image encoder (Radford et al., 2023) released by OpenAI.

6

Under review as a conference paper at ICLR 2024

Table 2: Performance of FMLock on vision foundation models. Results for CLIP model are
shown in Table 7 in Appendix.

Model
Downstream

dataset
ACC-baseline (%) ACC-lock with key (%) ACC-random (%) ACC-lock without key (%)

ImageNet

CIFAR10 88.21 87.56 27.30 29.04
STL10 92.38 92.09 28.06 23.00
SVHN 62.36 63.12 19.59 19.58

EuroSAT 89.15 87.07 17.30 19.19
GTSRB 49.83 49.06 5.94 6.06

Table 3: Performance of FMLock on language foundation model.

Model
Downstream

Dataset
ACC-baseline (%) ACC-lock with key (%) ACC-random (%) ACC-lock without key(%)

BERT-base

SST-2 91.21 91.38 49.92 50.08
Yelp 95.92 95.75 48.89 51.53

Amazon 83.87 82.13 51.39 50.98
IMDB 91.05 90.49 50.08 50.22
HSOL 95.72 94.57 52.32 49.98

Table 4: Performance of FMLock on text-to-image foundation model.

Model FID-baseline FID-lock with key FID-random FID-lock without key

Stable Diffusion v1-4 49.47 50.43 245.37 262.58

For language foundation models, we use the BERT-base model released by (Cui et al., 2022). For
text-to-image foundation model, we use Stable Diffusion v1-4 released by (Rombach et al., 2022).

FMLock settings: Algorithm 1 in Appendix includes the parameters of FMLock. By default, d is
`2 distance and � = 1. Please see Section E for the details of other FMLock settings.

Downstream evaluation settings: We show the details in Section F in Appendix.

Evaluation metrics: For vision and language foundation models, we measure the testing accuracy
of a downstream classifier built upon an original or locked foundation model. Specifically, we have
the following metrics: ACC-baseline, ACC-lock with key, ACC-random, and ACC-lock without key.
Table 1 shows the details of these metrics. For text-to-image foundation models, we use the FID
score (Heusel et al., 2017) as an evaluation metric. In particular, following previous works (Rombach
et al., 2022), we calculate the FID score between the generated images and the images in MS-COCO
validation set. Similar to the testing accuracy metric, we define FID-baseline, FID-random, FID-lock
with key, and FID-lock without key, as shown in Table 1.

5.2 MAIN RESULTS

Table 2, 3, and 4 show the performance of FMLock on vision, language, and text-to-image foundation
models. Our results show that FMLock achieves both utility-preserving and functionality-constraining
properties. Specifically, when the secret key is present in inputs, the utility of a locked model is
maintained, since ACC-lock with key (or FID-lock with key) is comparable to ACC-baseline (or FID-
baseline). Meanwhile, a locked model becomes unusable when the inputs do not contain the secret
key, as ACC-lock without key (or FID-lock without key) is close to ACC-random (or FID-random).

5.3 ABLATION STUDY

Impact of the two loss terms: Figure 3 shows the impact of �, which controls a balance between the
two loss terms L1 and L2, on FMLock, where the vision foundation model is the ImageNet model.
� = 0 and � = 1 mean using L1 only and L2 only, respectively. We find that both loss terms
are necessary. Specifically, when � is very small (e.g., 0), FMLock achieves the utility-preserving
property but not the functionality-constraining property, as the ACC-lock with key is high (or FID-
lock with key is low) but the ACC-lock without key is also high (or FID-lock without key is also low).
When � is too large (e.g., 5), FMLock achieves the functionality-constraining property but not the
utility-preserving property. When � is moderate (e.g., 1 or 3), FMLock achieves both properties.

7

Under review as a conference paper at ICLR 2024

0 1 3 5 1
�

0

20

40

60

80

100

A
C

C
(%

)

ACC-lock with key

ACC-lock without key

(a)

0 1 3 5 1
�

0

20

40

60

80

100

A
C

C
(%

)

ACC-lock with key

ACC-lock without key

(b)

0 1 3 5 1
�

0

50

100

150

200

250

F
ID

FID-lock with key

FID-lock without key

(c)
Figure 3: Impact of � on (a) vision, (b) language, and (c) text-to-image foundation models.

Impact of the shadow dataset: Table 8 in Appendix shows the impact of the shadow dataset on
FMLock for various downstream tasks. Specifically, we consider three scenarios: 1) the shadow
dataset D is a subset of the pre-training dataset, 2) D has the same distribution as the pre-training
dataset but is not a subset of it, and 3) D has a different distribution from the pre-training dataset.
Our results in Table 8 show that FMLock is robust to the choice of the shadow dataset, as FMLock
achieves similar performance in the three scenarios for various downstream tasks.

5.4 ADAPTIVE ATTACKS

In Section 4, we theoretically analyze the robustness of FMLock against secret keys that are sampled
from the key space uniformly at random. In this section, we further consider more advanced adaptive
attacks: 1) fine-tuning the locked foundation model when building a downstream application, and
2) reverse engineering the secret key from a locked foundation model. Note that in these adaptive
attacks, we consider few-shot downstream learning, e.g., 10 downstream training examples per class.
This is because, when an unauthorized party has a large number of downstream training examples,
it can train an accurate downstream classifier from scratch without using any (original or locked)
foundation model as a general-purpose feature extractor.

Fine-tuning a locked foundation model: An unauthorized party concatenates a downstream
classifier with a locked foundation model. Given a small number of downstream training examples,
the unauthorized party fine-tunes both the locked foundation model and the downstream classifier.
Note that in this fine-tuning method, the unauthorized party does not embed any key into its inputs.
After training, the downstream classifier is evaluated using inputs without keys.

Reverse engineering secret key: We generalize Neural Cleanse (Wang et al., 2019), a method to
reverse engineer backdoor trigger in classifiers (we discuss more details on backdoor in Section 6),
to reverse engineer the secret key. Specifically, given a locked foundation model and a downstream
training dataset Ddt, an unauthorized party aims to jointly learn a downstream classifier and a secret
key to minimize the training loss of key-embedded training examples. After training the downstream
classifier and reverse engineering a secret key, the unauthorized party evaluates the downstream
classifier using inputs embedded with the reverse engineered secret key. Note that this adaptive attack
is only applicable to vision foundation models since Neural Cleanse was designed for vision models.
Due to limited space, we show the technical details in Section G in Appendix.

Experimental results: Figure 4 shows the results of the two adaptive attacks when the number of
downstream training examples per class varies. The locked vision foundation model is the CLIP
image encoder. Our results show that the ACC-lock with key is much higher than the testing accuracy
obtained by the two adaptive attacks. In other words, an unauthorized party still cannot fully leverage
the powers of a locked foundation model using these adaptive attacks to train its downstream classifier
and/or reverse engineer the secret key. The reason why fine-tuning is not effective is that a locked
foundation model produces low-quality feature vectors for inputs without the secret key. We note that
if an unauthorized party has a large number of downstream training examples, it can train an accurate
downstream classifier from scratch without using any foundation model as feature extractor. Our work
focuses on the scenarios where an unauthorized party has limited number of downstream training
examples (i.e., few-shot downstream learning) and desires to leverage the power of a foundation
model. The reason why reverse engineering is ineffective is that Neural Cleanse cannot reverse
engineer the secret key accurately.

8

Under review as a conference paper at ICLR 2024

1 3 5 7 10
Number of training examples per class

0

10

20

30

40

50

60

A
C

C
(%

)

ACC-lock with key

Finetune

Reverse engineer

(a) CIFAR10

1 3 5 7 10
Number of training examples per class

0

10

20

30

40

50

60

A
C

C
(%

)

ACC-lock with key

Finetune

Reverse engineer

(b) STL10

1 3 5 7 10
Number of training examples per class

0

10

20

30

40

50

60

A
C

C
(%

)

ACC-lock with key

Finetune

Reverse engineer

(c) SVHN

1 3 5 7 10
Number of training examples per class

0

10

20

30

40

50

60

A
C

C
(%

)

ACC-lock with key

Finetune

Reverse engineer

(d) EuroSAT

1 3 5 7 10
Number of training examples per class

0

10

20

30

40

50

60

A
C

C
(%

)

ACC-lock with key

Finetune

Reverse engineer

(e) GTSRB

Figure 4: Our FMLock is robust against fine-tuning and reverse engineering secret key.

6 RELATED WORK

Existing methods to prevent unauthorized use of foundation models can be grouped into three
categories, i.e., standard encryption, fully homomorphic encryption, and access-control policies.
Standard encryption methods (Ashcraft et al., 2023) only encrypt the model. When the users
or the model owner want to use the model to generate outputs, the encrypted model has to be
decrypted somewhere, e.g., in memory. In this case, even if the password to decrypt the model is not
compromised, the attackers can still access the parameters of the decrypted model in memory through
side-channel attacks (Rakin et al., 2022). Fully homomorphic encryption methods (Knott et al.,
2021; Haralampieva et al., 2020) encrypt both model and inputs, which allow encrypted models to be
used without being decrypted. However, these methods substantially increase the computational and
communication overhead, e.g., CrypTen (Knott et al., 2021) takes 2.49 seconds to evaluate a single
sample for a ResNet-18. As a comparison, FMLock takes 0.009 seconds to evaluate a batch with 32
samples for a ResNet-50 variant of CLIP. Access-control policies (Anil et al., 2023) manage user
access by assigning tokens, e.g., API keys, to allowed users to prevent unauthorized use. However,
the unauthorized parties can still access the model parameters through side-channel attacks (Rakin
et al., 2022) to bypass the access-control policies.

Our work is related to but also substantially different from backdoor attacks (Cai et al., 2022; Carlini
& Terzis, 2022; Chen et al., 2022; Chou et al., 2023; Cui et al., 2022; Jia et al., 2022; Saha et al.,
2022; Shen et al., 2021). Both FMLock and backdoor attack embed a trigger (secret key) into inputs.
However, a backdoored model produces an incorrect/low-quality output for a trigger-embedded
input, while a locked model produces a high-quality output for a key-embedded input. Specifically, a
backdoored vision/language foundation model (Carlini & Terzis, 2022; Chen et al., 2022; Cui et al.,
2022; Saha et al., 2022; Shen et al., 2021) produces a particular low-quality feature vector for a
trigger-embedded input, while a backdoored text-to-image foundation model (Struppek et al., 2022)
produces a particular image for a trigger-embedded prompt. On the contrary, a locked vision/language
foundation model produces high-quality feature vectors only for key-embedded inputs, while a locked
text-to-image foundation model produces high-quality images only for key-embedded prompts. Due
to the difference, Neural Cleanse (Wang et al., 2019), which was designed to reverse engineer trigger
in backdoor attacks, is not effective at reverse engineering our secret key.

Our work is also related to watermark (Abdelnabi & Fritz, 2021; Kirchenbauer et al., 2023) or
fingerprint (Cao et al., 2021) neural networks. Specifically, a model owner embeds a watermark into
its model or extracts a fingerprint from it before deploying/releasing it; and the model owner can
detect that a model belongs to him/her if a similar watermark/fingerprint can be extracted from it. A
watermarked/fingerprinted model has the same utility as the original model for inputs without secret
keys. However, watermark/fingerprint cannot prevent unauthorized use, as an unauthorized party can
still use a watermarked/fingerprinted model locally without being detected.

7 CONCLUSION AND FUTURE WORK

In this work, we propose FMLock to prevent unauthorized use of large foundation models. Our
results show that FMLock maintains the utility-preserving and functionality-constraining properties
simultaneously on various types of foundation models. In particular, we can design a loss term to
quantify the utility-preserving property and a loss term to quantify the functionality-constraining
property. Given a foundation model, minimizing the weighted sum of the two loss terms using a
shadow dataset produces a locked foundation model, whose power can only be unleashed using the
secret key. An interesting future work is to generalize FMLock to other types of foundation models
as well as explore more adaptive attacks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 42nd IEEE Symposium on Security and Privacy, 2021.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, et al.
Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

Alvin Ashcraft, Eliot Graff, Kent Sharkey, et al. File Encryption. https://learn.microsoft.
com/en-us/windows/win32/fileio/file-encryption?redirectedfrom=

MSDN, 2023.

Adam Bittlingmayer. Amazon Review Sentiment Dataset. https://www.kaggle.com/

datasets/bittlingmayer/amazonreviews, 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Xiangrui Cai, haidong xu, Sihan Xu, Ying Zhang, and Xiaojie Yuan. Badprompt: Backdoor attacks
on continuous prompts. In NeurIPS, 2022.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard: Protecting intellectual property of
deep neural networks via fingerprinting the classification boundary. In ACM Asia Conference on
Computer and Communications Security, 2021.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In ICLR, 2022.

Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei Li, and Chun Fan.
Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models. In ICLR, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In Proceedings
of the IEEE/CVF Conference on Computer Vision andPattern Recognition (CVPR), 2023.

Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case
of the binomial. Biometrika, 26(4), 1934.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, 2016.

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, and Maosong Sun. A unified
evaluation of textual backdoor learning: Frameworks and benchmarks. In Proceedings of NeurIPS:
Datasets and Benchmarks, 2022.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech
detection and the problem of offensive language. In AAAI on Web and Social Media, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Veneta Haralampieva, Daniel Rueckert, and Jonathan Passerat-Palmbach. A systematic comparison
of encrypted machine learning solutions for image classification. In Proceedings of the 2020
Workshop on Privacy-Preserving Machine Learning in Practice, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

10

https://learn.microsoft.com/en-us/windows/win32/fileio/file-encryption?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/fileio/file-encryption?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/fileio/file-encryption?redirectedfrom=MSDN
https://www.kaggle.com/datasets/bittlingmayer/amazonreviews
https://www.kaggle.com/datasets/bittlingmayer/amazonreviews

Under review as a conference paper at ICLR 2024

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover classification. In IGARSS
2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 204–207. IEEE,
2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, 2017.

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In IEEE S&P, 2022.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In ICML, 2023.

B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten.
Crypten: Secure multi-party computation meets machine learning. In NeurIPS, 2021.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical Review E, 2004.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Tech
Report, 2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context. In ECCV, 2014.

Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. Poisonedencoder: Poisoning the unlabeled
pre-training data in contrastive learning. In USENIX Security Symposium, 2022a.

Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. Stolenencoder: Stealing pre-trained
encoders in self-supervised learning. In ACM Conference on Computer and Communications
Security (CCS), 2022b.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In NAACL-HLT, 2011.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. Tech Report, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, et al. CLIP. https://github.
com/openai/CLIP, 2023.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deepsteal: Advanced
model extractions leveraging efficient weight stealing in memories. In IEEE symposium on security
and privacy, 2022.

Yashasvi S. Ranawat and Martha Arbayani Zaidan. Mutual Information (mi) functions in Python.
https://github.com/SINGROUP/MutualInformation, 2018.

11

https://github.com/openai/CLIP
https://github.com/openai/CLIP
https://github.com/SINGROUP/MutualInformation

Under review as a conference paper at ICLR 2024

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision andPattern Recognition (CVPR), 2022.

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. Backdoor
attacks on self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13337–13346, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv
preprint arXiv:2210.08402, 2022.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang, Jianwei
Yin, and Ting Wang. Backdoor pre-trained models can transfer to all. In ACM Conference on
Computer and Communications Security (CCS), 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In EMNLP, 2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Rickrolling the artist: Injecting invisible
backdoors into text-guided image generation models. arXiv preprint arXiv:2211.02408, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction apis. In USENIX Security Symposium, 2016.

James Vincent. Meta’s powerful AI language model has leaked on-
line. https://www.theverge.com/2023/3/8/23629362/

meta-ai-language-model-llama-leak-online-misuse, 2023.

Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine learning. In IEEE
symposium on security and privacy, 2018.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In IEEE
S& P, 2019.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al Faruque. Leaky dnn:
Stealing deep-learning model secret with gpu context-switching side-channel. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 125–137,
2020.

Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier Jin. Cloudleak:
Large-scale deep learning models stealing through adversarial examples. In Network and Dis-
tributed System Security Symposium (NDSS), 2020.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text
Classification. arXiv preprint arXiv:1509.01626, 2015.

Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes attack: Steal DNN models
with lossless inference accuracy. In USENIX Security Symposium, 2021.

12

https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse

	Introduction
	Problem Setup
	Our FMLock
	Design of KeyGen
	Design of ModelLocking

	Theoretical Analysis
	Empirical Evaluation
	Experimental Setup
	Main Results
	Ablation Study
	Adaptive Attacks

	Related Work
	Conclusion and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Using mutual information to measure the outputs of the locked model
	Detailed FMLock settings
	Detailed downstream evaluation settings
	Reverse Engineering Secret Key

