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ABSTRACT
Neural network pruning and quantization are twomajor lines of net-
work compression. This raises a natural question that whether we
can find the optimal compression by considering multiple network
compression criteria in a unified framework. This paper incorpo-
rates two criteria and seeks layer-wise compression by leveraging
the meta-learning framework. A regularization loss is applied to
unify the constraint of input and output channel numbers, bit-width
of network activations and weights, so that the compressed net-
work can satisfy a given Bit-OPerations counts (BOPs) constraint.
We further propose an iterative compression constraint for optimiz-
ing the compression procedure, which effectively achieves a high
compression rate and maintains the original network performance.
Extensive experiments on various networks and vision tasks show
that the proposed method yields better performance and compres-
sion rates than recent methods. For instance, our method achieves
better image classification accuracy and compactness than the re-
cent DJPQ. It achieves similar performance with the recent DHP in
image super-resolution, meanwhile saves about 50% computation.
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1 INTRODUCTION
Many milestone works [11, 31] on deep Convolutional Neural Net-
work (CNN) architectures have significantly boosted the perfor-
mance of various computer vision tasks. The million-scale parame-
ters and billion-scale Floating Point Operations (FLOPs) consumed
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Figure 1: (a) and (b) compare the CNN performances after
applying pruning and quantization on the conv1 and conv2
layers of VGG-small, respectively. (c) and (d) show the 𝑙2-
normdistribution of kernel weights and quantization errors
of conv1 and conv2 layers. It is clear that, conv1 exhibits
smaller 𝑙2-norm of kernel weights, thus is more suitable to
be compressed by pruning. Conv2 maintains lower quanti-
zation errors, thus is more suitable for quantization. Obser-
vations in (c) and (d) are consistent with the conclusions in
(a) and (b).

by deep CNNs make it important to study CNN compression strate-
gies, with the goal of decreasing the memory and computations
costs and maintaining the high performance of original CNNs.

There are twomajor lines of CNN compressions algorithms. Both
of them have to resort to certain criteria to find redundancies in
floating-point CNNs. Neural network pruning targets to identify
and delete unimportant connections in the network [12, 14]. Quanti-
zation methods replace floating-point parameters with low bit-wise
ones to reduce time complexity and memory cost [8, 26, 43]. Since
most of the existing works only consider one criterion, this raises
a natural question that how one compression method might take
account of multiple criteria in finding the optimal compression, e.g.,
setting high pruning rates if lots of redundant connections exist
or using low bit-wise quantization if the variance of parameters is
small.
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Our experiments reveal that different layers show different adap-
tations for pruning and quantization, i.e., some layers could main-
tain the performance after pruning most of the channels, while
some others can be quantized with low bit-rate precision as shown
in Fig. 1 (a) and (b), respectively. Fig. 1 (c) and (d) show the 𝑙2-norm
distribution of kernel weights and the quantization error under
different bit-width. According to [12], channels with low 𝑙2-norm
values are less important and could be removed by pruning. There-
fore, conv1 is more suitable to be compressed by pruning than
conv2. It also can be observed that, conv2 maintains lower quan-
tization errors, thus is more suitable for quantization than conv1.
Different compression methods on conv1 and conv2 bring different
performance degradations.

This paper is thus inspired to jointly consider two criteria to
seek an optimal layer-wise compression for CNNs. How to choose
a suitable combination of different compression criteria for each
CNN layer is a challenge and has not been extensively studied.
Some recent works like [19, 40] leverage unstructured pruning and
quantization in a joint framework. However, unstructured pruning
leads to irregular weight parameters, which are not favorable for
computation acceleration in real applications on hardware. To seek
more effective compression strategies, our method focuses on struc-
tured pruning and quantization. A simple way to combine pruning
and quantization is to directly combine the twomethods in a unified
framework like [38]. It simply applies two independent pruning
and quantization methods trained together for a network, and em-
pirically sets the strength of quantization and pruning. Therefore, it
still lacks an adaptive mechanism to balance the effects of pruning
and quantization on different layers.

To seek a more reasonable combination of those two criteria,
this paper proposes an end-to-end framework to adaptively learn
layer-wise parameters for pruning and quantization. We divide the
training procedure into the searching stage and the fine-tuning
stage. Inspired by DHP [22] and LW-DNA [23], the searching stage
uses the latent vectors attached to each convolutional layer to guide
the layer pruning. It also leverages quantization parameters for each
convolutional layer to guide the quantization. This is achieved by
a hypernetwork, which leverages the latent vectors of the current
layer to control the output channel number, and uses latent vec-
tors of the previous layer to control the input channel number. By
passing latent vectors and the quantization parameters through the
hypernetwork, we can get its outputs, which are used as the pruned
and quantized convolutional kernels. The subsequent fine-tuning
stage discards the hypernetwork and keeps the network structures,
i.e., the channels and quantization parameters are fixed, the other
network parameters are fine-tuned to get a high-performance net-
work.

We conduct experiments using different network architectures
on image classification and single image super-resolution tasks,
respectively. Experimental results show that, our method achieves
a substantially higher compression rate than recent works, while
maintains comparable or better performance. For instance, our
method achieves higher classification accuracy and compactness
than the recent DJPQ [38]. It gets similar performance with the
recent DHP [22] on image super-resolution, meanwhile saves about
50% computation. We hence conclude that, considering multiple cri-
teria leads to a more effective compression strategy. To the best of

our knowledge, this is an original work jointly considering network
pruning and quantization in an end-to-end meta learning frame-
work. Besides this novel framework, this paper also introduces
an iterative compression constraint for optimizing the compres-
sion procedure. Those two components effectively guarantee the
promising performance of proposed methods.

2 RELATEDWORK
Most of the existing works consider only one compression criterion,
i.e., either network pruning or quantization. A few recent works fo-
cus on the combination of two criteria. This section briefly reviews
those three categories of methods: structured pruning, network
quantization, and joint optimization of pruning and quantization.

Structured pruningmethods can be divided into two categories
according to their computed pruning parameters at each layer, i.e.,
fixed pruning and layer-wise pruning, respectively. Fixed pruning
methods leverage different criteria to determine the importance
of each channel, and then delete the unimportant channels. For
example, [15] proposed a two-step channel pruning method. It first
selects unimportant channels based on Lasso regression values.
Then it prunes to reach a given target pruning ratio, and then fine-
tunes weights. [12, 14] use 𝑙2-norm and geometric median of the
filters as the criteria to determine the channel importance, respec-
tively. The approach proposed in [28] leverages first-order Taylor
expansion for the loss function. Many works leverage second-order
Taylor expansion to explore inter-channel dependency, such as
[29, 33]. Adaptive pruning methods use learning methods to choose
suitable pruning ratios for each layer. For example, [13] uses rein-
forcement learning to decide the pruning ratios for different layers.
Another method [25] trains a hypernetwork to predict the perfor-
mance of each pruned sub-net, and finally obtains a pruned network
with good performance. The pruning approach in [4] leverages the
concept of variational information bottleneck (VIB) proposed in
[34]. By adding gates to the network and employing a suitable
regularization term, [4] manages to determine the importance of
each channel and prune the network with high compression ratio.
[22] and [23] proposed a novel hypernetwork to learning the net-
work parameters with latent vectors, which is able to determine
the channel number in each layer with end-to-end training.

Network quantization methods can reduce the time complex-
ity and memory complexity by quantizing the parameters into low
bit-width ones. Most works use fixed-bit quantization. For exam-
ple, [2, 8, 26] use fixed 4 or 8-bit quantization to compress the
network. Some methods like [20] proposed binary quantization
for weights and activations, but this method achieves low perfor-
mance even with activations unquantized. With mixed-precision
opponents, [35] achieves higher compression ratio and competi-
tive performance. Many others determine the bit-width for each
layer adaptively. For example, DQ [35] leverages straight-through
estimator (STE) and defines a continuous relaxation to learn the bit-
width of both weights and activations by gradient back-propagation.
Some other works like [6] uses reinforcement learning to learn the
bit-width of each layer. In [36], the total variance of each layer is
used to determine the bit-width adaptively.

Jointly optimize pruning and quantization has the poten-
tial to achieve a better compression ratio. However, few works have



been proposed in this category. An early work [9] considers prun-
ing and quantization in separated steps for network compression.
Some works [19, 40] are proposed to jointly optimize unstructured
pruning and quantization. However, it is hard to implement un-
structured pruning with typical hardware. A recent work DJPQ [38]
is proposed combining pruning method VIB-net [4, 34] and quan-
tization method DQ [35]. Our work shares certain similarity with
DJPQ [38] in that, it also leverages DQ [35] for end-to-end training.

Differently, instead of simply combining pruning and quantiza-
tion in a framework like DJPQ, our method adaptively conducts
those two criteria for each layer. Also, our end-to-end training is
implemented with a meta-learning framework. DJPQ [38] leverages
pruning loss and regularization loss to guide the pruning process
and quantization process. Our method manages to unify these two
compression processes into the meta-learning framework. What’s
more, our method conducts the compression process with a single
regularization loss. Thanks to the unified framework and training
scheme, our method manages to adaptively compress each layer
in a network. As shown in the experiments, our method outper-
forms DJPQ in aspects of image classification accuracy and network
compression ratio.

3 FORMULATION
Given a CNN with 𝑁 -layers and the corresponding convolutional
kernelsW = {W𝑛}𝑛=1:𝑁 , as well as a training set composed of an
image set 𝑋 and its label set 𝑌 . Our goal is to train a compressed
CNN, which satisfies the given Bit-OPerations counts (BOPs) [38]
upper bound, meanwhile preserves the performance of the original
CNN.

The original CNN can be compressed by either applying pruning
or quantization to floating-point kernels at each layer. For a 𝑛-th
layer with a 𝑐𝑛-channel convolutional kernel W𝑛 , the pruning can
be defined by a 𝑐𝑛-dim vector 𝛼𝑛 , which indicates the importance
of each channel. The pruning can be computed as,

W(𝑃 )
𝑛 = W𝑛 [1(𝛼𝑛 [1 : 𝑐𝑛] > 𝑡)], (1)

where W(𝑃 )
𝑛 denotes parameters after pruning. 𝑡 is the pruning

threshold and 1(·) is an indicator function. We set 𝑡 as 5𝑒 − 3 fol-
lowing [22].

Meanwhile, the kernelW𝑛 can be compressed by quantization
defined by the parameter Θ𝑛 = {𝑚𝑐𝑜𝑛𝑣

𝑛 , 𝑑𝑐𝑜𝑛𝑣𝑛 , bit𝑐𝑜𝑛𝑣𝑛 }, which in-
cludes the quantization value range 𝑚𝑐𝑜𝑛𝑣

𝑛 , step size 𝑑𝑐𝑜𝑛𝑣𝑛 , and
bit-width bit𝑐𝑜𝑛𝑣𝑛 of the quantization. With Θ𝑛 the quantization can
be denoted as (we omit 𝑐𝑜𝑛𝑣 to simply the description),

𝑤
(𝑄)
𝑛 =


S(𝑤𝑛) · 𝑑𝑛 · ⌊ |𝑤𝑛 |

𝑑𝑛
+ 1
2
⌋, |𝑤𝑛 | ≤ 𝑚𝑛

S(𝑤𝑛) ·𝑚𝑛 , |𝑤𝑛 | > 𝑚𝑛

(2)

𝑚𝑛 = (2bit𝑛−1) · 𝑑𝑛, (3)

where the scalar 𝑤 (𝑄)
𝑛 denotes one of quantized parameters in

W(𝑄)
𝑛 . S(·) is the sign function. Similarly, the activation O𝑛 of the

n-th layer can be quantized by parameter Ω𝑛 = {𝑚𝑎𝑐𝑡
𝑛 , 𝑑𝑎𝑐𝑡𝑛 , bit𝑎𝑐𝑡𝑛 }

containing the quantization value range𝑚𝑎𝑐𝑡
𝑛 , step size 𝑑𝑎𝑐𝑡𝑛 , and

bit-width bit𝑎𝑐𝑡𝑛 , with similar strategy as shown in Eq. (2).
Applying both pruning with parameters 𝛼𝑛 and quantization

with parameters Θ𝑛 lead to compressed parameters W(𝑃𝑄)
𝑛 . The

resulting computation complexity of 𝑛-th layer can be computed
by counting the BOPs as,

BOPs𝑛 = MACs𝑛 × bit𝑐𝑜𝑛𝑣𝑛 × bit𝑎𝑐𝑡𝑛−1, (4)

where bit𝑐𝑜𝑛𝑣𝑛 and bit𝑎𝑐𝑡
𝑛−1 denote bit-width of parameters in 𝑛-th

layer and activations from the (𝑛 − 1)-th layer respectively. MACs𝑛
counts the Multiply-And-Accumulate operations (MACs) number
in the 𝑛-th layer. It is computed as,

MACs𝑛 = 𝑐𝑛−1 × 𝑐𝑛 × size𝑎𝑐𝑡𝑛−1 × size𝑐𝑜𝑛𝑣𝑛 , (5)

where 𝑐𝑛−1 and 𝑐𝑛 denote the input and output channel number
respectively. size𝑐𝑜𝑛𝑣𝑛 and size𝑎𝑐𝑡

𝑛−1 denote the kernel size in the 𝑛-
th layer and spacial size of activations from the previous layer
respectively.

As illustrated in Fig. 1, different layers in the CNN are suited
for different combinations of pruning and quantization. This paper
is motivated to seek optimal 𝛼𝑛 , Θ𝑛 and Ω𝑛−1 for each layer. We
denote the collection of parameters for pruning and quantization as
A = {𝛼𝑛}𝑛=1:𝑁 , B = {Θ𝑛}𝑛=1:𝑁 and C = {Ω𝑛}𝑛=1:𝑁−1. Our train-
ing is expected to seek optimalA, B and C to make the computation
cost below a given upper bound, meanwhile minimize the errors
computed on 𝑌 , i.e.,

L𝑡 = argmin
A,B,C,W

∑
E(CNN(W, 𝑋 ), 𝑌 ), (6)

s.t.
∑

𝑛=1:𝑁
𝑂𝑛 < 𝑅 · �̂�

where E(·) is the loss function computed with the CNN prediction
and ground truth label 𝑌 . L𝑡 is the task specific loss, like classi-
fication loss for classification tasks and 𝐿1 loss for single image
super-resolution task. 𝑅 is the target compression rate, and �̂� is the
BOPs of the original CNN without compression.

To optimize pruning and quantization in a joint framework, we
leverage meta-learning to adaptively seek 𝛼𝑛 , Θ𝑛 , Ω𝑛−1 as well
as W(𝑃𝑄)

𝑛 for each layer. In other words, for each convolutional
layer, we use a hypernetwork to learn the convolutional kernels.
The hypernetwork learns latent vectors for both the previous layer
and current layer, which helps to infer pruning parameters for the
current layer. Also, quantization parameters of activations from
previous layer Ω𝑛−1 and quantized weights from current layer
Θ𝑛 are learned in the hypernetwork to help learning pruned and
quantized weights and quantized activations. The computation of
hyernetwork for the 𝑛-th layer can be formulated as,

W(𝑃𝑄)
𝑛 ,O(𝑄)

𝑛−1 = H𝑛 (O𝑛−1,H𝑛, 𝛼𝑛, 𝛼𝑛−1,Θ𝑛,Ω𝑛−1), (7)

where H𝑛 is the hypernetwork, and H𝑛 denotes the convolutional
parameters of the hypernetwork to be optimized. O𝑛−1 denotes the
output from the previous layer and O(𝑄)

𝑛−1 denotes the quantized
activation.

With quantized kernels and activations from the previous layer,
the output of the 𝑛-th layer can be calculated by convolution oper-
ation,

O𝑛 = W(𝑃𝑄)
𝑛 ⊗ O(𝑄)

𝑛−1, (8)

where O𝑛 can be propagated to the output layer to compute the
task specific loss with E(·).
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Figure 2: Illustration of our pipeline for joint pruning and quantization in searching stage and fine-tuning stage. 𝛼𝑛 and 𝛼𝑛−1
are the pruning parameters, e.g., channels with smaller values in 𝛼𝑛 and 𝛼𝑛−1 are pruned. The hypernetwork𝑛 learns Θ𝑛 and
Ω𝑛−1 to conduct the quantization for convolutional kernels and activations. After training, we use the quantization parameters
Θ𝑛 , Ω𝑛−1 and the pruned and quantized weights𝑊 (𝑃𝑄)

𝑛 for fine-tuning stage training.

To jointly optimize pruning and quantization, we propose a net-
work structure in Fig. 2. The training of the proposed network is di-
vided into two processes, i.e. the searching stage and the fine-tuning
stage. In the searching stage, we update the pruning parameters and
quantization parameters using the designed hypernetwork. Then,
it predicts the quantized convolutional kernels for the backbone
network. During training, a regularization loss L𝑅𝐸𝐺 for network
computation complexity is applied. Thus, we define the final loss
L as:

L = L𝑡 + 𝜆L𝑅𝐸𝐺 , (9)

where the 𝜆 is the regularization loss weight. L𝑅𝐸𝐺 can be found
from [38]. It is designed to optimize pruning parameters and quan-
tization parameters to satisfy a certain BOPs constraint. Follow-
ing [22], we apply 𝑙1 sparsity on latent vectors. The network struc-
ture is fixed after the searching stage. In the fine-tuning stage,
the hypernetworks are discarded, and the compressed network is
fine-tuned with task specific loss. The following parts present the
detailed implementation of our method.

4 IMPLEMENTATIONS
Different from traditional quantized convolutional networks, the
weights and quantization parameters of our convolutional layers
are learned adaptively by proposed hypernetworks. Referring to
[22], we design our hypernetwork structure as shown in Fig. 2. For
each layer, the hypernetwork first generates a pruned convolutional
kernel, then quantizes it as the final output. The following parts
present the implementation of pruning and quantization, respec-
tively.

4.1 Implementation of Pruning
As in Sec. 3, we denote the pruning parameters from the previous
layer and current layer as 𝛼𝑛−1 and 𝛼𝑛 respectively. 𝛼𝑛−1 and 𝛼𝑛
represent the weight of each channel in the convolutional kernel of
the 𝑛-th layer. By training with 𝑙1 constrain on pruning parameters,

weights for unimportant channels in latent vectors will be reduced,
which results in channel pruning. More specifically, hypernetwork
implements the pruning by firstly computing a latent matrix from
𝛼𝑛−1 and 𝛼𝑛 , namely,

M𝑛 = 𝛼𝑇𝑛−1 · 𝛼𝑛 + B𝑛0 , (10)

where bothM𝑛 andB𝑛0 have the size of 𝑐𝑛−1 × 𝑐𝑛 .B𝑛0 is a trainable
bias parameter. As illustrated in Fig. 2,M𝑛 is passed through two
point-wise convolutional layers to compute a pruned convolutional
kernel. We denote the computation as,

W(𝑃 )
𝑛 = (M𝑛 ⊗ H𝑛1 + B𝑛1 ) ⊗ H𝑛2 + B𝑛2 , (11)

whereH𝑛1 andH𝑛2 are convolutional kernels in the hypernetwork.
B𝑛1 and B𝑛1 are corresponding bias parameters. Parameters of
the hypernetwork, i.e., {𝛼𝑛,B𝑛0 ,B𝑛1 ,B𝑛2 , H𝑛1 ,H𝑛2 } are learned
through end-to-end training with loss function defined by Eq. (9).

We set the size of H𝑛1 as 𝑐𝑛−1 × 𝑐𝑛 × 𝑙 × 1. Also, we set the size
of H𝑛2 as 𝑐𝑛−1 × 𝑐𝑛 × 𝑙 × size𝑐𝑜𝑛𝑣𝑛 . 𝑙 is the output channel size of
the embedding layer. B𝑛1 and B𝑛2 thus have the size of 𝑐𝑛−1×𝑐𝑛 × 𝑙
and 𝑐𝑛−1 × 𝑐𝑛 × size𝑐𝑜𝑛𝑣𝑛 , respectively. The generated convolutional
kernel W(𝑃 )

𝑛 has the size of 𝑐𝑛−1 × 𝑐𝑛 × size𝑐𝑜𝑛𝑣𝑛 .

4.2 Implementation of Differentiable
Quantization

Θ𝑛 and Ω𝑛−1 are hence adopted by the hypernetwork to quantize
W(𝑃 )

𝑛 and the activation O𝑛−1, respectively. We proceed to intro-
duce a differentiable quantization to optimizeΘ𝑛 and Ω𝑛−1 through
end-to-end learning. The following part takes the quantization from
W(𝑃 )

𝑛 to W(𝑃𝑄)
𝑛 as an example. The quantization to O𝑛−1 can be

implemented in similar way.
As shown in Eq. (3), the value of bit-width bit𝑐𝑜𝑛𝑣𝑛 can be inferred

from the step size 𝑑𝑐𝑜𝑛𝑣𝑛 and quantization value range𝑚𝑐𝑜𝑛𝑣
𝑛 . By

training𝑚𝑐𝑜𝑛𝑣
𝑛 and 𝑑𝑐𝑜𝑛𝑣𝑛 with gradient back-propagation, we can

update 𝑏𝑐𝑜𝑛𝑣𝑛 with Eq. (3). The derivative of𝑚𝑐𝑜𝑛𝑣
𝑛 and 𝑑𝑐𝑜𝑛𝑣𝑛 with

respect to W(𝑃𝑄)
𝑛 can be calculated as (superscript 𝑐𝑜𝑛𝑣 is omitted



to simplify the description),

𝜕𝑤
(𝑃𝑄)
𝑛

𝜕𝑚𝑛

=


0, |𝑤 (𝑃 )

𝑛 | ≤ 𝑚𝑛

S(𝑤 (𝑃 )
𝑛 ), |𝑤 (𝑃 )

𝑛 | > 𝑚𝑛

(12)

𝜕𝑤
(𝑃𝑄)
𝑛

𝜕𝑑𝑛
=


1
𝑑𝑛

(𝑤 (𝑃𝑄)
𝑛 −𝑤

(𝑃 )
𝑛 ), |𝑤 (𝑃 )

𝑛 | ≤ 𝑚𝑛

0, |𝑤 (𝑃 )
𝑛 | > 𝑚𝑛

, (13)

where | · | computes the absolute value and the scalar𝑤 (𝑃 )
𝑛 is one

of parameters in the kernelW(𝑃 )
𝑛 .

Notice that, bit𝑐𝑜𝑛𝑣𝑛 is restricted to be an integer,𝑑𝑐𝑜𝑛𝑣𝑛 and𝑚𝑐𝑜𝑛𝑣
𝑛

are restricted to be a value of 2𝑖 , where 𝑖 is an integer. We keep
floating-point values during the back propagation and apply STE
(straight through estimation) [17] to calculate the gradients. We
hence could train the hypernetwork through end-to-end training
and optimize quantization parameters Θ𝑛 and Ω𝑛−1. In the forward
propagation, they are rounded up to the closest required values,
which are hence applied to quantize weights and activations with
Eq. (2).

4.3 Iterative Compression Constraint for
Training

The hypernetwork is trained from scratch. As a higher compression
rate 𝑅 commonly corresponds to lower network performance, di-
rectly applying the target compression rate 𝑅 for training may lead
to poor performance. To address this issue, we adopt an iterative
compression constraint during training. During the searching stage,
we gradually increase the target compression rate to allow the com-
pressed network to maintain high performance. Also, following [7],
we use log of the BOPs values as regularization term for network
training. This is implemented by the L𝑅𝐸𝐺 , i.e.,

L𝑅𝐸𝐺 = log(max((
∑

𝑛=1:𝑁
𝑂𝑛)/(𝑟 · �̂�), 1)), (14)

where 𝑟 is deceased linearly from 100% to the target value 𝑅 by the
end of searching stage. We apply Eq. (4) to estimate the BOPs of
each layer. To approximately estimate the channel number 𝑐𝑛 after
pruning from 𝛼𝑛 , we apply the Sigmoid function on 𝛼𝑛 , i.e.,

𝑐𝑛 =
∑

𝑖=1:𝑐𝑛
Sigmoid(𝛼𝑛 [𝑖]) . (15)

5 EXPERIMENT
5.1 Datasets
To evaluate the effectiveness of our method, we conduct experi-
ments on image classification and single image super-resolution
tasks.

For classification tasks, we conduct experiments on both CIFAR-
10 [18] and Tiny-ImageNet [5]. CIFAR-10 consists of 60k 32 × 32
sized images in 10 classes, including 50k training images and 10k
test images. Tiny-ImageNet consists of 120k 64× 64 sized images in
200 classes, including 100k training images, 10k validation images,
and 10k test images.

As for image super-resolution task, DIV2K [1] is used as training
set. It contains 800 training images, 100 validation images, and 100
test images, including 100k training images, 10k validation images,

and 10k test images. Image patches are extracted from the training
images. Following [22], the compressed networks are then tested
on Set5 [3], Set14 [42], B100 [27], Urban100 [16], and DIV2K [1]
validation set.

5.2 Implementation Details
For each convolutional neural network, we first initialize all latent
vectors with standard normal distribution. For the hypernetworks,
all biases are initialized as zero. Also, following [22], we initialize
H𝑛1 and H𝑛2 , 𝑛 = 1 : 𝑁 with Xavier uniform and Hyperfan-in
respectively. During searching, latent vectors and quantization
parameters are updated to reach the constraint target. After the
constraint target is met, the searching stage stops and quantization
parameters are fixed. Then, only channels with latent vector values
above the threshold are kept, and the rest are pruned. The network
is then initialized with weights calculated by hypernetworks, and
fine-tuned to get a better performance. For classification task, cross-
entropy loss is applied. For super-resolution task, 𝑙1 loss is applied
following [22].

During training, we notice that compressing to 25% of its size
using quantization, i.e., from 32 bits to 8 bits bring marginal accu-
racy degradation. While compressing a network to 50% of its size
using pruning may cause obvious accuracy reduction. We there-
fore initialize the quantization parameters as 8 bits to seek a more
reasonable initialization. In this way, models can be pruned and
quantized into reasonable structures.

VGG-small on CIFAR-10:We conduct experiments on CIFAR-
10 using VGG-small [38]. We pad 4 pixels on each side of the input
image and crop it randomly into the size of 32×32. Then, all images
are scaled into the range [-1, 1]. We set batch size as 128, initial
learning rate as 0.003 at searching stage and 0.01 at fine-tuning
stage. During the searching stage, we set epochs as 100, 𝑅 as 0.004.
We reduce the learning rate by 0.1 at epoch 50. The fine-tuning
stage is trained it for 300 epochs and we reduce the learning rate
by 0.1 at epoch 150 and 225 respectively.

ResNet-20 on CIFAR-10:We conduct experiments on CIFAR-
10 using ResNet-20. We set batch size as 128, initial learning rate as
0.001 at searching stage and 0.01 at fine-tuning stage. During the
searching stage, we set epochs as 100, 𝑅 as 0.009. We reduce the
learning rate by 0.1 at epoch 50. The fine-tuning stage is trained
for 300 epochs, and we reduce the learning rate by 0.1 at epoch 150
and 225 respectively.

MobileNetV2 on Tiny-ImageNet: We conduct experiments
on Tiny-ImageNet using MobileNetV2. We set batch size as 128,
initial learning rate as 0.01 at searching stage and 0.1 at fine-tuning
stage. During the searching stage, we set epochs as 100, 𝑅 as 0.05
and 0.1 for two settings. We reduce learning rate by 0.1 at epoch
30 and 60 respectively. The fine-tuning stage is trained for 220
epochs, and we reduce learning rate by 0.1 at epoch 200 and 210
respectively.

EDSR on Image super-resolution task: We conduct experi-
ments on image super-resolution task base on EDSR [24]. We set
batch size as 16, initial learning rate as 0.001 at searching stage and
0.01 at fine-tuning stage. During the searching stage, we set epochs
as 100 and reduce the learning rate by 0.1 at epoch 50. During the
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Figure 3: The experimnets are conducted on CIFAR-10 with
VGG-small.
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Figure 4: Illustration of training curves of our method with
and without iterative compression constraint, respectively.

fine-tuning stage, we train it for 300 epochs and reduce the learning
rate by 0.1 at epoch 40 and 200 respectively.

5.3 Ablation Study
This part first analyzes the setting of weight 𝜆 of L𝑟𝑒𝑔 and the
setting of embedding layer size 𝑙 . Then, we test the validity of
the iterative compression constraint training strategy. Finally, we
discuss the adaptive compression rates learned for different layers
and neural networks.

The effect of regulation loss weight 𝜆: Larger regulation loss
weight can lead to faster convergence in the searching stage. How-
ever, simply meeting the constraint target without parameters train-
ing may lead to unreasonable structures. The impacts of different
loss weights on the compressed network performance are sum-
marized in Fig. 3 (a). We set the constraint target 𝑅 as 0.004. As
shown in the figure, setting loss weights too large may lead to un-
reasonable compression combinations. Setting a too small 𝜆 makes
it hard to meet the BOPs constraint target. Too large 𝜆 is harm-
ful to the accuracy. According to Fig. 3 (a), we fix 𝜆 as 1 in the
following experiments. Notice that though this ablation study is
conducted on CIFAR-10, further experiments in different neural net-
work architectures and tasks using 𝜆 as 1 achieve high performance.
Performances are shown in Sec. 5.4.

The effect of embedding layer size 𝑙 : The size of the hyper-
networks are decided by embedding layer size 𝑙 . On the one hand,
setting 𝑙 too small could impair the function of hypernetworks. On
the other hand, setting 𝑙 too large would make the training process
more difficult to converge while costing more training time. We
therefore conduct ablation study on embedding layer size 𝑙 and

15%

18%

21%

24%

27%

0

2

4

6

8

1 2 3 4 5

pr
un

in
g 

ra
tio

bi
t-w

id
th

layer index
weight bit-width activation bit-width pruning ratio

Figure 5: Illustration of learned compression parameters A,
B, and C for VGG-small trained on CIFAR-10.

visualize the result in Fig. 3 (b). According to Fig. 3 (b), we fix 𝑙 as 8
in the following experiments.

The effect of iterative compression constraint: Fig. 4 illus-
trates the training without iterative compression constraint. The
network is quickly optimized to satisfy the target BOPs constraint.
Meanwhile, it gets poor classification accuracy. Therefore, directly
applying the target compression rate 𝑅 leads to poor performance.
With the iterative compression constraint, our method achieves the
error rate of 13.12% in searching stage and error rate of 8.32% after
fine-tuning. Meanwhile, it satisfies the 0.40% BOPs ratio constraint.
It is clear that, the method without iterative compression constraint
only reaches an error rate of 42.56%. And it is hard to converge
in fine-tuning stage. The above comparisons thus have shown the
validity of our iterative compression constraint.

Discussion on learned compression rates for different lay-
ers: Fig. 5 and Fig. 6 show learned compression parameters for two
different networks. It is interesting to observe that, those two net-
works get different compression parameters. For VGG-small, our
method (denoted as HNC) can get small quantization bit-with and
large pruning ratio. This is because the VGG-small exists redun-
dancy on the classification task. Notice that the first and the last
convolutional layers preserve high bit-width for the weights. This
indicates that the reducing bit-width of the first and the last lay-
ers would bring high performance loss. Similar results can also be
drawn from works [17, 38, 43].

For MobileNetV2, HNC is able to compress many layers with
small bit-width and a large pruning ratio. Notice that, MobileNetV2
[30] leverages linear bottlenecks to build the network. For each
block, the feature map is first expanded in channel by a 1 × 1
convolutional layers. Then, a 3 × 3 channel-wise convolutional
layer is applied to capture the spatial information of the feature
map. Finally, a 1 × 1 convolutional layers is applied to get the
output of a block. As shown in Fig. 6, each 3 × 3 channel-wise
convolutional layer maintains high bit-width of activations and
weights. This could help the channel-wise convolutional capture
necessary spatial information. For both conv1 and conv3, the main
purposes of using these 1 × 1 convolutional layers are to capture
channel interaction. We can observe that after compressed by HNC,
the bit-width of 1 × 1 convolutional layers weights and activations
are also reduced, but most of the channels are remained. This is
consistent with the purposes to learn channel interaction.

For each linear bottleneck module, the pruning ratio of conv1
is higher than that of conv3. This could be because the expansion
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Figure 7: Illustration of initialized latent vectors and trained latent vectors of each convolutional layer in VGG-small.

Method year Bit-width Test Error BOPs(G) MACs(G)
VGG-small

Baseline - 32/32 7.00% 623.12 0.613
TWN [20] 2016 2/32 7.44% 38.88 0.613
RQ [26] 2018 8/8 6.70% 38.88 0.613
RQ [26] 2018 4/4 7.96% 9.72 0.613

WAGE [39] 2018 2/8 6.78% 9.72 0.613
DQ [35] 2019 mixed 8.41% 3.03 0.613
DJPQ [38] 2020 mixed 8.46% 2.99 0.367
HNC - mixed 8.32% 2.43 0.487

ResNet-20
Baseline - 32/32 7.46% 42.20 0.042

Rethinking [41] 2018 32/32 9.10% 22.20 0.022
DHP-50 [22] 2020 32/32 8.46% 21.86 0.022
FPGM [14] 2019 32/32 9.38% 19.41 0.019
DQ [35] 2019 mixed 8.58% - 0.042
HNC - mixed 7.99% 3.45 0.026

Table 1: Comparison on CIFAR-10 with VGG-small and
ResNet-20. BOPs and MACs are reported to measure the
compression ratios of the networks as in [38].

factor in conv1 exists redundancies. While the channel number of
conv3 is already small. The compression results share similarity
with that in DJPQ [38]. It tends to keep the bit-width of conv2
layers high. It also tends to quantize the conv1 and conv3 layers
into relatively lower bit-width.

Compare with DJPQ [38], our method leverages meta-learning
to learn the weights of each convolutional layer. In this way, our

Method year Bit-width Test Error BOPs(G) MACs(G)
baseline - 32/32 44.75% 353.68 5.55

DHP-10 [22] 2020 32/32 52.43% 42.15 0.662
MetaPruning [25] 2019 32/32 56.72% 38.90 0.610

MobileNetV2-0.3 [30] 2018 32/32 53.99% 35.69 0.560
HNC - mixed 57.30% 15.39 4.12
HNC - mixed 50.68% 31.03 4.20

Table 2: Comparison on Tiny-ImageNet with MobileNetV2.

Method year Bit-width Test Error BOPs(G) MACs(G)
Baseline - 32/32 30.26% 1853.44 1.81
RQ [26] 2018 8/8 30.03% 115.84 1.81
TWN [20] 2016 2/32 28.20% 115.84 1.81
RQ [26] 2018 4/4 28.48% 28.96 1.81
DQ 2019 mixed 31.52% 40.71 1.81
DJPQ 2020 mixed 30.63% 35.01 1.39
DJPQ 2020 mixed 31.20% 30.87 1.39
HNC - mixed 29.97% 30.75 1.50

Table 3: Comparison on ImageNetwithResNet-18. TheBOPs
of DQ is not reported in the paper.

method can better apply pruning and quantization for different
layers. Though experiments, we can observe that our method tends
to apply pruning for all layers, while DJPQ scheme mainly focuses
on the bottom layers.



Method Set5 Set14 B100 Urban100 DIV2K BOPs(T)
Baseline 32.1 28.55 27.55 26.02 28.93 92.5

clustering [32] 31.93 28.47 27.48 25.77 28.80 92.5
Factor-SIC3 [37] 31.96 28.47 27.49 25.81 28.81 67.1
Basic-128-40 [21] 32.03 28.45 27.50 25.81 28.82 64.2
Fastor-SIC2 [37] 31.82 28.40 27.43 25.63 28.70 62.4
Basic-128-27 [21] 31.95 28.42 27.46 25.76 28.76 59.7
DHP-60 [22] 31.99 28.52 27.53 25.92 28.88 57.0
DHP-40 [22] 32.01 28.49 27.52 25.86 28.85 38.7
DHP-20 [22] 31.94 28.42 27.47 25.69 28.77 19.9

HNC 30.58 27.62 26.94 24.53 28.61 10.7
HNC 31.98 28.43 27.49 25.72 28.79 17.6

Table 4: Comparison on Super-resolution task. Peak Signal-
to-Noise Ratio (dB) is used tomeasure the practical effective-
ness. The BOPs (TFLOPs) is also reported.

5.4 Comparison on Recent Works
Comparison on CIFAR-10 with VGG-small:We first compare
our method (denoted as HNC) with recent works on CIFAR-10. The
results are shown in Table 1. Fig. 5 also illustrates the learned prun-
ing ratio, weight and activation bit-width by HNC. We compare
HNC with both fixed-point quantization methods, like TWN [20],
RQ [26] and WAGE [39] and mixed-point quantization methods,
like DQ [35]. Also, we compare HNC with DJPQ [38] which com-
bines pruning and quantization methods. Compared to the baseline
model, HNC reduces the BOPs from 623.12G to 2.43G with only a
1.32% accuracy drop. Compared with those quantization methods,
HNC achieves substantially better performance in aspects of both
compression rate and accuracy. It is also clear that, compared with
the recent DJPQ [38], our method achieves a higher compression
rate and better accuracy. What’s more, we visualize the initialized
latent vectors and trained latent vectors in Fig. 7. As we can see,
our method manages to reduce the values of unimportant chan-
nels value down to pretty low values and successfully prune these
channels.

Comparison on CIFAR-10 with ResNet-20: To further vali-
date the effectiveness of HNC, we conduct experiments on a dif-
ferent network structure ResNet-20. We compare HNC with other
pruning methods, Rethinking [41], FPGM [14] and DHP-50 [22]. As
shown in Table 1, compared with the baseline model, HNC reduces
the BOPs from 42.2G to 3.45G with only 0.53% accuracy drop. The
results show a similar conclusion with Table 1. Compared with
those methods, HNC gets a lower pruning ratio, but gets better
BOPs and accuracy. This indicates that, quantization could be a bet-
ter choice for compressing ResNet-20. Table 1 also compares HNC
with DQ [35], which combines pruning and quantization. HNC also
achieves lower classification error than DQ.

Comparison on Tiny-ImageNet with MobileNetV2: For ex-
periments on the Tiny-ImageNet, we applied our method to Mo-
bileNetV2 structure, which is light-weighted and designed for fast
speed and high accuracy. As shown in Table 2, we compare HNC
with [22], [25] and MobileNetV2-0.3 (compressed MobileNetV2 net-
works with 0.3 channel numbers). Compared with those compres-
sion methods, HNC achieves a significantly larger BOPs reduction.
Especially when compared with MetaPruning, HNC achieves about
2.5× reduction in BOP counts (15.39G vs. 38.90G) with only 1.42%

accuracy drop. Through the comparison, we show that HNC can
automatically combine pruning and quantization to achieve a larger
compression ratio. Also, by constraining the BOPs to 31.03G, HNC
is able to outperform DHP-10 with 1.75% better efficiency.

Comparison on ImageNet with ResNet-18: For experiments
on the ImageNet, we applied our method to ResNet-18 structure. As
shown in Table 3, We achieve 70.03% accuracy with 30.75 GBOPs.
While DJPQ gets 69.27% accuracy with 35.01 GBOPs, and 68.80%
with 30.87 GBOPs. Our method achieves better accuracy with a
higher compression rate.

Comparison on Super-resolution Task: To further validate
the effectiveness of HNC, we apply HNC on super-resolution task
and summarize the results in Table. 4. We compare HNC with
clustering [32], Factor-SIC3, Fastor-SIC2 [37], Basic-128-40, Basic-
128-27 [21] and DHP [22]. As we can see, HNC achieves compa-
rable performance with other methods, meanwhile demonstrate
substantial advantages on efficiency. With only (10.7/92.5)11.54%
BOPs computation resources, HNC is able to achieve a high PSNR,
only 1.52%dB lower than baseline. HNC also achieves 31.98dB with
(17.6/92.5)19.03% BOPs Ratio on Set5. Compare with DHP-20 [22],
HNC achieves better performance with a higher compression rate.

Discussions: Quantized CNN can obtain low theoretical BOPs
by leveraging low bit-wise operations. However, the inference speed
of networks also greatly depends on specific kernel-implementations.
Therefore, it is unfair to directly compare the inference time on
traditional GPUs. HNC applies structure pruning and quantiza-
tion for the network, which have been proved are two of the most
successful techniques in compressing a CNN for efficient infer-
ence [10, 13, 15]. Also, low bit-width operations can save energy for
specific hardware according to [39]. Following several papers such
as [17, 26, 38], we apply BOPs as the regulation target. Nevertheless,
when it comes to different constrain targets, it would be easy to
achieve different constraints by modifying the regularization loss.

6 CONCLUSION
This paper unifies quantization and pruning for CNN compres-
sion by generating set of layer-wise compression parameters with
meta-learning. We use the proposed regularization loss to unify
the channel numbers, precision of network activations and weights.
An iterative compression constraint is also proposed to help the
compression training of CNNs. We analyze the compression de-
tails of different network architectures and show the validity of
our proposed method. We conduct many experiments with differ-
ent network structures on different tasks. Extensive experiments
demonstrate the superior performance of the proposed method in
aspects of both accuracy and efficiency. We hence could conclude
that, considering multiple criteria leads to better compression.
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