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Abstract

Neural recording technologies now enable simul-
taneous recording of population activity across
multiple brain regions, motivating the develop-
ment of data-driven models of communication
between recorded brain regions. Existing models
can struggle to disentangle communication from
the effects of unrecorded regions and local neural
population dynamics. Here, we introduce Multi-
Region Latent Factor Analysis via Dynamical
Systems (MR-LFADS), a sequential variational
autoencoder composed of region-specific recur-
rent networks. MR-LFADS features structured
information bottlenecks, data-constrained com-
munication, and unsupervised inference of unob-
served inputs—features that specifically support
disentangling of inter-regional communication,
inputs from unobserved regions, and local popula-
tion dynamics. MR-LFADS outperforms existing
approaches at identifying communication across
dozens of simulations of task-trained multi-region
networks. Applied to large-scale electrophysiol-
ogy, MR-LFADS predicts brain-wide effects of
circuit perturbations that were not seen during
model fitting. These validations on synthetic and
real neural data suggest that MR-LFADS could
serve as a powerful tool for uncovering the princi-
ples of brain-wide information processing.

1. Introduction
Large-scale neural recording technologies, such as high-
density electrophysiology (Steinmetz et al., 2019; Siegle
et al., 2021; IBL et al., 2023; Chen et al., 2024; Bennett
et al., 2024) and calcium imaging (Sofroniew et al., 2016;
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Song et al., 2017; Allen et al., 2017), have enabled the study
of simultaneously recorded brain-wide activity, revealing
that many sensory, motor and cognitive processes engage
spatially distributed networks of brain regions (Makino et al.,
2017; Gilad et al., 2018; Stringer et al., 2019; Musall et al.,
2019; Allen et al., 2019; Jia et al., 2022). Consequently,
there has been growing interest in the design of data-driven
communication models that seek to infer the pathways and
content of communication between the recorded regions.

Accurately identifying such communication is challenging
for at least four reasons (Biswas et al., 2020; Kang & Druck-
mann, 2020; Keeley et al., 2020; Perich & Rajan, 2020;
Semedo et al., 2020; Kass et al., 2023). First, commu-
nication signals are not directly observed in multi-region
recordings. While some of the recorded neurons might
project to other recorded regions, the identity and targets
of these projection neurons are typically unknown. Second,
models may need to account for inputs to the recorded brain
regions from other regions that were not recorded during
the experiment. Third, models should faithfully reconstruct
activity in each recorded region by accounting for inferred
inter-regional communication, inputs from unrecorded areas,
and local dynamics—while also capturing complex features
such as structured trial-to-trial variability (Goris et al., 2014)
and nonlinear, nonstationary, state-dependent population dy-
namics (Shenoy et al., 2013; Vyas et al., 2020; Duncker
& Sahani, 2021; Durstewitz et al., 2023). Fourth, accurate
reconstruction of the recorded data does not necessarily im-
ply an accurate account of the underlying communication.
Many different models can often sufficiently reconstruct
the recorded data, leading to ambiguities in determining
which, if any, of those models should be trusted as tools for
scientific inquiry.

In this work, we introduce Multi-Region Latent Factor Anal-
ysis via Dynamical Systems (MR-LFADS), a multi-region
communication model that directly addresses all of the chal-
lenges outlined above. MR-LFADS is a probabilistic model
that represents each recorded region with a distinct set of
stacked recurrent neural networks (RNNs) that capture the
region’s potentially nonlinear and nonstationary population
dynamics. MR-LFADS represents communication between
observed regions and inputs from unobserved regions as

1



Accurate Identification of Communication Between Multiple Interacting Neural Populations

disentangled sets of latent variables. Structured information
bottlenecks encourage the model to infer inputs from unob-
served regions only when their effects cannot be explained
by communication from the recorded regions. MR-LFADS
infers single-trial initial conditions and time-varying in-
puts that together account for trial-to-trial variability in the
recorded activity. This automatic inference of inputs elim-
inates the need to manually specify input signals, thereby
avoiding strong, hard-to-validate assumptions about how
external signals influence each region. Finally, MR-LFADS
constrains communication to originate from reconstructed
neural activity in the upstream regions, rather than from
more-flexible latent representations (Glaser et al., 2020;
Karniol-Tambour et al., 2024)—a design choice that, as we
show, enables more accurate inference of communication
without sacrificing the quality of data reconstruction.

To evaluate MR-LFADS, we developed 37 synthetic multi-
region datasets that pose the real-world challenges outlined
above across a range of neuroscience-relevant scenarios for
communication modeling. Here, MR-LFADS consistently
outperforms existing models in recovering the pathways
and content of communication. Through selective ablations
of MR-LFADS design features, we show that these fea-
tures indeed improve the identification of communication
in these settings. Finally, we apply MR-LFADS to multi-
region electrophysiology recordings in mice performing a
decision-making task (Chen et al., 2024). In a subset of
trials that were held out during model fitting, photoinhibi-
tion was applied to the anterior lateral motor cortex (ALM).
We show that MR-LFADS predicts the brain-wide effects of
these circuit perturbations, suggesting that MR-LFADS in-
ferred an accurate account of inter-regional communication.
Moreover, MR-LFADS infers consistent communication
across multiple models trained from different random ini-
tializations, demonstrating its reliability and robustness in
real-data settings.

2. Related Work
Existing communication models can be broadly categorized
as either static or dynamic methods. Static methods, such
as reduced-rank regression (RRR) (Semedo et al., 2019;
Steinmetz et al., 2019; MacDowell et al., 2025), predict
activity in a target region from simultaneous activity in
one or more source regions (Kaufman et al., 2014; Ruff &
Cohen, 2019; Veuthey et al., 2020) and then interpret the
predictive source activity as communication. While these
methods are straightforward to fit and interpret, they treat
each time point independently and thus do not explicitly
model temporal structure in neural recordings. Dynamic
methods explicitly model the temporal structure in multi-
region data. These approaches address temporal structure
using, for example, switching linear dynamical systems

(SLDS) models (Linderman et al., 2016; Glaser et al., 2020),
RNNs (Perich et al., 2020; Karniol-Tambour et al., 2024),
or Gaussian processes (Yu et al., 2008; Gokcen et al., 2022;
2024).

All of the aforementioned approaches meet some of the
challenges outlined in Section 1, but, in our view, none of
the approaches meet all of the challenges. Critically, none
of these existing communication models support inferring
inputs from unobserved brain regions. This functionality
is critical because inputs from unobserved regions might
modulate the target region’s population dynamics and how
that region communicates with other regions. Instead, some
approaches compensate by manually specifying each re-
gion’s inputs (e.g., as stimulus or other task-related signals)
or by subtracting off condition averages from single-trial
neural activity. However, these strategies impose strong
assumptions about the content of input signals and the re-
gions they target. As we will show, misspecifying such
inputs risks confounding inferred population dynamics and
communication.

Pandarinath et al. (2018) introduced LFADS, a technique
for inferring unobserved time-varying inputs when model-
ing single-trial neural population dynamics within a single
recorded brain region. LFADS is a sequential variational
autoencoder sVAE that jointly identifies a nonlinear dynam-
ical system, implemented as an RNN, along with the single-
trial initial conditions and time-varying unobserved inputs
needed to drive the system to reconstruct single-trial neural
population recordings. We henceforth use SR-LFADS to
refer to a single-region LFADS model.

3. Multi-Region LFADS (MR-LFADS)
MR-LFADS is composed of a set of SR-LFADS models
(Fig. 1a) that interact through constrained communication
channels (Fig. 1b). At a high level, MR-LFADS is a cou-
pled set of driven nonlinear dynamical systems that are
jointly trained to reconstruct all single trials of a multi-
region dataset. Each recorded brain region i is represented
by its own dynamical system, which attempts to recon-
struct the region-i recorded neural activity xi

t at each time
t = 1, . . . , T . Each region i dynamical system evolves from
a single-trial initial state gi0 and is driven by (1) single-trial
time-varying communication messages mj→i

t from other
recorded brain regions j and (2) single-trial time-varying
inferred inputs ui

t, representing input from unobserved brain
regions.

Notation. All time-indexed variables and parameters are
also indexed by trial, though we omit trial indices for
notational simplicity. We use t1:t2 to denote the inclu-
sive sequence of integers {t1, t1 + 1, . . . , t2}. We use
W i(x):=W ix+ bi to denote an affine transformation with
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Figure 1. MR-LFADS architecture. (a) Adaptation of single-region LFADS with Poisson outputs. (b) MR-LFADS with N regions. KL
penalties from SR-LFADS in panel (a) are replicated here, but are omitted in the diagram for clarity.

weights W i and offsets bi.

Generative Model. MR-LFADS treats all initial states gi0,
communications mj→i

t , and inferred inputs ui
t as latent vari-

ables. The prior distribution over these latent variables is
modeled as:

gi0, u
i
t,m

j→i
t ∼ N(0, σ2I) (1)

Given these quantities, the neural population dynamics in
region i are modeled by a “generator” gated recurrent unit
(GRU) network, GRUi

gen, with internal states git that evolve
according to:

git = GRUi
gen

(
git−1,

[
{mj→i

t−1 }j ̸=i;u
i
t

])
(2)

A set of region-i factors f i
t are defined as an affine readout

from the corresponding generator RNN:

f i
t = W i

f (g
i
t) (3)

These factors are then transformed into parameters of time-
varying output distributions in a manner dependent on the
nature of the neural recordings. For continuous-valued ob-
servations, such as those from calcium imaging, a Gaussian
or zero-inflated Gamma distribution may be appropriate
(Zhu et al., 2022). In the Section 4 synthetic-data experi-
ments, we apply a Gaussian output distribution:

P (xi
t | gi0, ui

1:t, {m
j→i
1:t }j ̸=i) = N(rit,Σ

i
r,t) (4)

rit = W i
r (f

i
t ) Σi

r,t = diag
(
exp(W i

σr
(f i

t ))
)

(5)

where rit and Σi
r,t are the region-i predicted mean and co-

variance of the recorded neural activity, respectively, and are
each computed via separate affine transformations, W i

r and

W i
σr

. For spike count observations, as modeled in the elec-
trophysiology experiments of Section 5, we apply a Poisson
output distribution:

P (xi
t | ·) = Poisson(rit) rit = exp

(
W i

r (f
i
t )
)

(6)

where the exponential nonlinearity ensures non-negative
predicted firing rates rit.

Inference Model. Following VAE conventions (Kingma &
Welling, 2013), MR-LFADS approximates the intractable
true posterior distributions over the latent variables using
variational posteriors, which we denote as q(·|·).

MR-LFADS defines the approximate posteriors over com-
munication messages from observed region j to observed
region i as Gaussian distributions with parameters derived
from the region-j predicted firing rates rjt :

q(mj→i
t | xj

1:t) = q(mj→i
t | rjt ) = N(µj→i

m,t ,Σ
j→i
m,t ) (7)

µj→i
m,t = W j→i

µm
(rjt )

Σj→i
m,t = diag

(
exp

(
W j→i

σm
(rjt )

)) (8)

Constraining communication to be derived from rit anchors
it to the neural recordings and in doing so reduces ambi-
guity in system identification. We refer to this rate-based
communication model as MR-LFADS(R). In Section 4, we
explore generator-based MR-LFADS(G) and factor-based
MR-LFADS(F) communication models, which replace all
instances of rjt in Eq. 8 with gjt and f j

t , respectively.

Approximate posteriors over the region-i initial generator
states gi0 and inferred inputs (from unobserved brain regions)
ui
t are defined as the following Gaussian distributions:

q(gi0 | xi
−τ :0) = N(µi

g0
,Σi

g0
) (9)

q(ui
t | xi

1:t) = N(µi
u,t,Σ

i
u,t) (10)
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where the mean and covariance parameters are computed
from the corresponding conditioning recorded neural ac-
tivity xi via a set of region-i-specific “encoder” and “con-
troller” GRU networks (see Appendix A.1). Our approach
here slightly modifies the original SR-LFADS specification,
which allows acausal inference via a bidirectional encoder
network that processes each entire T -timestep neural record-
ing x1:T to infer g0 and each element of u1:T . In contrast,
we infer gi0 (Eq. 9) using a bidirectional encoder applied
only to past neural activity xi

−τ :0, preserving causality, and
infer ui

t (Eq. 10) using a unidirectional encoder RNN that
processes xi

1:t in a strictly forward, causal manner. This
formulation ensures that all predicted firing rates rit, and
thus all derived communication signals mj→i

t , are inferred
causally from neural activity recorded up to time t.

Model Fitting. Following VAE conventions, MR-LFADS
is trained by maximizing the evidence lower bound (ELBO),
a variational lower bound on the data log-likelihood. The
ELBO is a sum of two terms: (1) the reconstruction error

T∑
t=1

Eq

[
logP ({xi

t} | {gi0}, {ui
t}, {m

j→i
t })

]
(11)

and (2) the negative Kullback–Leibler (KL) divergence DKL
between the approximate posteriors (Eqs. 7–10) and the
priors (Eq. 1) over the latent variables.

The reconstruction term is estimated by running samples
from the approximate posteriors (Eqs. 7–10) through the
generative model to evaluate the experiment-dependent out-
put distributions from Eqs. 4–6. The DKL term acts as a
regularizing information bottleneck on the latent variables.
To control this regularization, we allow rescaling of the DKL
term (Higgins et al., 2017; Keshtkaran et al., 2022). Noting
that the DKL term decomposes into contributions from the
three sets of MR-LFADS latent variables {gi0}, {ui

t}, and
{mj→i

t }, we weight each contribution differently and treat
the weights (βg0

, βu, βm) as hyperparameters. To encour-
age MR-LFADS to infer inputs from unobserved regions
only when that information cannot be obtained as communi-
cation from an observed region, we propose a structured KL
bottleneck with βu = 10βm. Other choices of KL regular-
ization structure might be appropriate if a priori knowledge
is available about information flow or anatomical connectiv-
ity between recorded regions. See Appendix A.1 for further
detail on MR-LFADS.

We will release a PyTorch implementation of MR-LFADS
upon the post-conference update to this paper.

4. Results I: Synthetic Multi-Region Datasets
Here, we evaluated MR-LFADS across a broad range of syn-
thetic multi-region datasets (Experiments 1-3) that enable di-
rect comparisons between ground truth and model-inferred

communication.

Preliminaries. Each dataset was generated by a unique
data-generating network (DGN): an ensemble of noisy RNN
modules that are jointly trained to perform a specified cogni-
tive neuroscience task. Each module represents an arbitrary
brain region. Prior to training, we specified the presence
or absence of a directed, low-rank communication channel
between each pair of regions. In Experiments 1 and 2, we
manually designed the DGNs to impose specific challenges
outlined in Section 1. Experiment 3 evaluates MR-LFADS
on data from dozens of randomly generated DGNs, each
trained to perform a randomly selected cognitive neuro-
science task. For all experiments, we treat the hidden-unit
activity in each DGN module as recorded neural activity
and maintain external inputs, inter-module connectivity, and
communication between modules as ground truth. These
ground truth quantities are crucial for evaluating communi-
cation models but are typically not directly observable in
real-data settings.

We evaluate MR-LFADS on these datasets and compare
MR-LFADS to a collection of existing communication
models: RRR (Semedo et al., 2019); multi-population
sticky recurrent SLDS (mp-srSLDS) (Glaser et al., 2020);
and multi-region switching dynamical systems (MR-SDS)
(Karniol-Tambour et al., 2024). We also compare against
ablated variants of MR-LFADS to probe the value of spe-
cific MR-LFADS design features. RRR uses reduced-rank
regression to predict each timestep of neural activity in one
recorded region from the corresponding timestep of activity
recorded in one or more other recorded regions. Like MR-
LFADS, mp-srSLDS and MR-SDS are coupled sets of dy-
namical systems, with each dynamical system representing
one recorded region. In mp-srSLDS each is implemented
as an SLDS, and in MR-SDS each is implemented as a
switching nonlinear dynamical system.

We evaluate communication models against a high bar: sys-
tem identification of a causal model of each DGN from
its multi-region dataset, including both the pathways and
content of communication. To assess communication path-
ways, we consider recovery of an “effectome” (Pospisil
et al., 2024) describing the causal flow of effects along the
inter-regional connectome. We represent this effectome as
a matrix where each element (i, j)i̸=j indicates the volume
of directed communication flow from region j to i. The
effectome reflects both the inter-regional connectivity and
the extent to which communication flows over each directed
connection. For each dataset, we compare model-inferred
effectomes to the ground truth effectome by vectorizing the
effectome matrices, removing elements corresponding to
the matrix diagonal (i = j), and computing cosine similar-
ity Scos between these two vectors. See Appendix B.1 for
further detail.
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To assess communication content, we evaluate the timestep-
by-timestep correspondence between model-inferred and
ground truth messages. To assess whether the inferred mes-
sages encode the information contained in the ground truth
messages, we applied linear regression to predict the ground
truth messages mj→i

t from the inferred messages µj→i
m,t

(Eq. 7). We then report the R2 score of the linear regres-
sion, denoted R2(µj→i

m ,mj→i). For MR-LFADS, we use an
analogous procedure to compare model-inferred inputs µi

u,t

(Eq. 10) to ground truth external inputs. This comparison
is not possible for RRR, mp-srSLDS, or MR-SDS—these
models do not infer inputs from unobserved regions. See
Appendix B-D for details on each experiment, model hyper-
parameters, and evaluation metrics.

4.1. Experiment 1: Specifying Inputs.

This experiment demonstrates that manually specifying in-
puts in a model risks imposing erroneous communication
structure, which can lead to inferring an effectome that mis-
represents the true inter-regional communication. To eval-
uate the implications of input specification, we designed a
DGN that implements a dynamical memory function. Each
region of this “memory network” receives unique stimu-
lus information from one unobserved region and from one
observed region, and is tasked with remembering a recent
history of those signals (Fig. 2a, left). This setup results
in each region of the DGN representing information from
two different sources, posing the challenge of disentangling
whether each signal arises due to communication or due to
external input. A common modeling choice is to provide
all known external inputs to all model regions and to let
model fitting determine which inputs are needed by each re-
gion. However, in this case, such manual input specification
can result in a model completely forgoing communication
(Fig. 2a, right) because the manually specified inputs contain
the information that was actually transmitted as communi-
cation in the DGN.

We evaluate MR-LFADS(R), which does not use the stim-
ulus signals during training or evaluation but rather auto-
matically infers external inputs in an unsupervised manner.
We also evaluate an MR-LFADS variant that ablates this
inferred inputs feature. Termed MR-LFADS(S), this model
receives all stimulus signals as manually specified exter-
nal inputs to each region’s generator GRUi

gen (replacing ui
t

with s1:3t in Eq. 2). We also compare against MR-SDS,
mp-srSLDS, and RRR.

The MR-LFADS variants (R and S) reconstructed the simu-
lated multi-region activity more accurately than MR-SDS,
mp-rSLDS, and RRR (Fig. 2b, Fig. S1a). Critically,
MR-LFADS(R) accurately infers the effectome (Fig. 2c,
left, Fig. S1b). By contrast, all models that are manually
provided stimulus signals (MR-LFADS(S), MR-SDS, mp-

rSLDS) infer less accurate effectomes and demonstrate the
failure mode mentioned above, forgoing communication
and instead relying on the specified inputs to provide the
corresponding signals. RRR, which receives neither manu-
ally specified nor inferred inputs, also infers a less accurate
effectome. These results suggest that manually specify-
ing inputs can discourage models from utilizing—and thus
identifying—communication. By automatically inferring
inputs, MR-LFADS(R) avoids this failure mode.

Next, we assess the accuracy of inferred inputs and mes-
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Figure 2. Memory network experiment. (a) Left: In this DGN,
each region (area) Ai receives a private stimulus sit (red) and com-
municates a two-step delayed version sit−2 (blue) to a downstream
region. Each area is trained to recall the last five time steps of
its private stimulus and its received communication (green). For
example, readouts from A2 are trained reproduce s2t−4:t, the pri-
vate stimulus to A2, and s1t−6:t−2, the private stimulus to A2’s
upstream neighbor A1. Right: Potential incorrect inferred commu-
nication model capable of reconstructing these synthetic data. (b)
R2 scores for data reconstruction. (c) Left: Scos for inferred effec-
tome. Right: Example fitted models, where arrow weights indicate
the average message norm across trials and time. (d) R2 of linear
prediction of ground truth stimulus inputs (with time lag ∈ {0, 2})
from inferred inputs. (e) R2 of linear prediction of ground truth
messages (with time lag ∈ {2, 4}) via inferred messages.
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sages. In the ground truth DGN at time t, region-i receives
only sit and mj→i

t . Thus, an accurate communication model
should infer inputs and messages that encode only these
time-t quantities. However, due to nature of the memory
task, the DGN’s region-i time-t RNN activities contain
information about sit−4:t and mj→i

t−4:t = sjt−6:t−2. When
fitting these data, a communication model is effectively
posed with the question: how does that time-lagged infor-
mation get into the region-i time-t simulated neural activity?
MR-LFADS(R) correctly infers the current timestep ground
truth private stimuli sit as inputs to each region i (Fig. 2d,
left). Importantly, MR-LFADS(R) also correctly avoids in-
ferring time-lagged versions of those signals, which are
inconsistent with the causal flow of information in the DGN,
even though those signals are represented in the region-i
activity and thus could support data reconstruction (Fig. 2d,
right). Similarly, MR-LFADS(R) correctly infers the cur-
rent timestep ground truth messages mj→i

t (Fig. 2e, left)
and avoids incorrectly inferring time-lagged versions, de-
spite their utility toward data reconstruction (Fig. 2e, right).
By contrast, all other models learn either no communication,
or encode past information (Fig. S1c). See Appendix B.2
for further detail.

These results demonstrate the unique ability of
MR-LFADS(R) to disentangle region-specific exter-
nal inputs from communication between recorded regions,
all in an unsupervised manner that mitigates biases
associated with manual specification of external inputs.
These results also imply that MR-LFADS(R) learns
region-specific dynamics that transform those inputs and
communications into region-specific representations that
can reconstruct the data, thereby implementing a dynamical
memory computation mimicking that of the DGN. See
Appendix E.1 for further analyses demonstrating how the
structured information bottlenecks robustly support this
disentangling in MR-LFADS (Miller et al., 2024).

4.2. Experiment 2: Data-Constrained Communication

This experiment demonstrates the implications of message-
inference design choices. We designed MR-LFADS(R)
to infer messages as affine functions of the source-region
predicted firing rates rit, which themselves are tied to ob-
served data xi

t through the data reconstruction term in the
ELBO. This architecture contrasts with that of mp-srSLDS
and MR-SDS, which infer communication as a function
of region-specific dynamical states. To directly evaluate
these architectural implications, we compare the rate-based
communication design of MR-LFADS(R) (Eqs. 7–8) to vari-
ants with factor-based and generator-based communication,
termed MR-LFADS(F) and MR-LFADS(G), respectively.

To highlight the significance of this design choice, we eval-
uated models on data from a two-region “pass-decision”

DGN that computes perceptual decisions based on time-
varying sensory evidence (Fig. 3a, left). An upstream area
AP receives a white noise stimulus st and is trained to pass
that stimulus through to a readout, effectively learning an
identity function routing input to output. A downstream
decision area AD receives this stimulus as communication
mP→D

t , integrates that stimulus over time into a decision
variable dt, and reports ±1 choices indicating the sign of
that decision variable (Mante et al., 2013).

This setup again poses the challenge of disentangling ex-
ternal inputs, communication, and local dynamics—and in
particular, accurately identifying and localizing each ground
truth dynamic. Though the integration dynamics are local-
ized to AD in the DGN, a sufficiently expressive communi-
cation model could incorrectly learn integration dynamics
in AP, while still accurately reconstructing the data, for
example, if AP represents st, integrates st into dt, and
communicates dt as mP→D to AD (Fig. 3a, right).

All MR-LFADS models achieved comparable data recon-
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Figure 3. Pass-decision network experiment. (a) Left: DGN setup,
with private stimulus (red), communication (blue), trained readouts
(green), identity function (I), and integration function (

∫
). Right:

Potential failure mode for a learned model. (b) R2 scores for
data reconstruction. (c) Left: Scos for inferred effectome. Right:
Example fitted models. (d) R2 of linear prediction of ground truth
input s to region P , from inferred inputs. (e) Left: R2 of linear
prediction of ground truth messages mP→D = s from inferred
messages, µP→D

m . Right: R2 of linear prediction of the decision
variable d from µP→D

m , indicating mislocalization of integration.
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struction, slightly outperforming MR-SDS and mp-srSLDS
(Fig. 3b, Fig. S2a). RRR reconstructed the data poorly,
likely due to the dynamic nature of the integration computa-
tion, i.e., the decision variable dt cannot be predicted from
any single-timestep stimulus value st′ .

Crucially, MR-LFADS(R) accurately inferred the effec-
tome (Fig. 3c, left, Fig. S2b), identifying communica-
tion from AP to AD and not from AD to AP (Fig. 3c,
right and Fig. S2b). By contrast, all other models incor-
rectly identified AD to AP communication. Notably, both
MR-LFADS(F) and MR-LFADS(G) misidentified AD →
AP communication, indicating that rate-based communica-
tion constraints in MR-LFADS(R) help mitigate excessive
flexibility in expressive models.

The ground truth input to AP is the stimulus st. All
MR-LFADS models correctly inferred inputs to AP that
encode st (Fig. 3d, left). While MR-SDS and mp-srSLDS
do not infer inputs in an unsupervised manner as in
MR-LFADS, we can quantify the effective inputs they in-
fer as a function of their manually specified inputs and the
corresponding trained input mappings. MR-SDS inputs to
AP carried markedly less information about st relative to
MR-LFADS and mp-srSLDS.

Accurate identification of communication requires inferred

messages mP→D
t to encode the stimulus st. By contrast,

mP→D
t instead encoding the decision variable dt would

imply mislocalization of the integration dynamic (Fig. 3a,
right). Only MR-LFADS(R), mp-srSLDS, and RRR cor-
rectly encoded st in mP→D

t without incorrectly encod-
ing dt (Fig. 3e, right). That MR-LFADS(R) succeeds,
whereas MR-LFADS(F) and MR-LFADS(G) both misiden-
tify AP→AD communication as encoding dt, again demon-
strates the importance of data-constrained communication
for mitigating the risks of excessive flexibility in expressive
models. See Appendix E.2 for further analyses into this
excessive flexibility.

4.3. Experiment 3: Random Multi-Region Networks

The previous experiments were designed to highlight spe-
cific failure modes of communication models. However,
real brain-wide networks exhibit a broad range of architec-
tures and dynamics. To assess generalization across such
a broad range of settings, here we evaluate communication
models on datasets generated by a wide variety of randomly
configured multi-region DGNs (Fig. 4a, top), each trained
to perform a randomly selected cognitive neuroscience task
(Fig. 4a, bottom).

We generated 35 multi-region datasets, each from a unique
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DGN. Each DGN consisted of three or four regions with
randomly generated inter-regional connectivity. Tasks were
drawn from the set described by Yang et al. (2019), spanning
multiple variants of decision-making, working memory, cat-
egorization, and inhibitory control (see Appendix D). On
each trial, the DGN received a noisy fixation stimulus sfix,t
and two noisy task stimuli, represented in polar coordinates
as skt = (a

(k)
t , θ

(k)
t ) for k ∈ {1, 2}. The DGN was trained

to process these inputs and output a task-dependent response
angle θresp and a task-dependent eye movement.

We fit MR-LFADS(R), (F), and (G), along with mp-srSLDS,
MR-SDS, and RRR, to each of these datasets. Aggre-
gating results across all datasets, the MR-LFADS mod-
els achieved the best data reconstruction, which was in-
distinguishable across model variants (Fig. 4b, Fig. S3).
MR-LFADS(R) and MR-LFADS(G) inferred the most ac-
curate effectomes, with statistically indistinguishable Scos
distributions (Fig. 4c). Next, we evaluated the accuracy of
inferred message content. We predicted the ground truth
messages from inferred messages and used R2 scores as a
measure of how much information the inferred messages
contain about the ground truth (Fig. 4d, left). We also per-
formed the reverse, predicting the inferred messages from
the ground truth and interpreted lower R2 scores as an indi-
cation that inferred messages contained additional informa-
tion beyond that present in the ground truth (Fig. 4d, right).
MR-LFADS(R) was the only model that performed best
across both of these metrics. Inferred effectomes from two
example datasets are shown in Fig. 4e. MR-LFADS(R) in-
ferred effectomes most similar to the ground truth. However,

it is not perfect and does miss a connection that is also not
detected by the other models. Taken together, these results
demonstrate that MR-LFADS(R) outperforms existing com-
munication models across a broad range of neuroscience-
relevant synthetic multi-region datasets.

5. Results II: Multi-Region Electrophysiology
Here, we applied MR-LFADS(R) to large-scale electro-
physiology data from multiple simultaneously recorded
Neuropixel probes in mice performing a decision-making
task (Fig. 5a) (Chen et al., 2024). We evaluated how well
MR-LFADS can predict experimentally observed effects of
causal circuit perturbations that were not included in the data
used to train the model. We also evaluated the reliability of
inferred communication across random initializations of the
model, comparing MR-LFADS(R) to MR-LFADS(G).

We fit a 5-region MR-LFADS model to population activity
recorded across anterior lateral motor cortex (ALM), mid-
brain reticular nucleus (MRN), superior colliculus (SC),
thalamic regions known to be strongly and reciprocally con-
nected with ALM (Thal(A)), and other thalamic regions
(Thal(O)). In a subset of trials, ALM was briefly photoinhib-
ited (Fig. 5a). MR-LFADS was trained only on unperturbed
(“control”) trials, with photoinhibition trials held out for
post-training validation. See Appendix F for further detail.

We first confirmed that MR-LFADS accurately fits held-
out control trials (Fig. 5b). Next, we sought to adapt
MR-LFADS(R) to predict experimentally observed effects
of ALM photoinhibition (Fig. 5b, c). To mimic ALM pho-
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Figure 5. MR-LFADS(R) applied to multi-region, high-density electrophysiology recordings. (a) Mice receive a high- or low-tone auditory
stimulus (sample period) and respond by licking left or right (response period). (b) MR-LFADS single-trial predicted firing rates in
held-out control trials (blue), recorded spike times (black vertical ticks), and smoothed, binned spike counts (black; causal, exponential
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toinhibition in silico, we ablated MR-LFADS communi-
cation from ALM to the other regions by setting those
messages to 0. We summarized the temporal influence of
ALM photoinhibition by computing the differences between
condition-averaged population activity in photoinhibition
(r̄ t ) and control (r̄ct ) trials. MR-LFADS predicted these
photoinhibition effects (Fig. 5d), despite never seeing pho-
toinhibition trials during training. Namely, MR-LFADS
predicted that Thal(A) should be most affected by ALM
photoinhibition, MRN least affected, and SC and Thal(O)
intermediately affected. These results demonstrate that
MR-LFADS learned a model of inter-regional communi-
cation that is accurate enough to predict effects of causal
multi-region circuit perturbations.

Finally, we sought to evaluate the consistency of
MR-LFADS models across random initializations of the
model parameters. We compared MR-LFADS(R) and
MR-LFADS(G), each trained from five random seeds
on simultaneous population recordings from ALM, tha-
lamus, and MRN (see Appendix F2). Both models in-
ferred consistent effectomes (Fig. 5e), but MR-LFADS(R)
was more consistent in terms of inferred message con-
tent (Fig. 5f, g), further supporting the utility of data-
constrained communication—particularly for improving the
reproducibility of scientific conclusions derived from the
model.

6. Discussion
Understanding how brain regions interact to support dis-
tributed computation requires communication models that
can disentangle inter-regional communication from lo-
cal population dynamics and inputs originating from un-
recorded regions. In this work, we identified critical fail-
ure modes that limit existing communication models—
including misidentification due to manually specified ex-
ternal inputs and mislocalization of neural dynamics. We in-
troduced MR-LFADS, a communication model specifically
designed to mitigate such failures through three key design
features: (1) automatic inference of region-specific inputs
from unobserved sources, (2) communication constrained to
originate from data-linked reconstructed firing rates, and (3)
structured regularization that promotes disentangling and
prevents inferring inputs from unobserved sources when the
same information can be obtained via communication from
observed regions. These features help prevent the model
from learning spurious solutions that fit the data well but
yield misleading conclusions about network interactions.

Using synthetic datasets engineered to pressure-test commu-
nication models, we demonstrated that MR-LFADS outper-
forms existing approaches in accurately recovering both the
structure and content of inter-regional communication. Cru-
cially, ablated MR-LFADS variants demonstrated that these

performance gains depend critically on specific MR-LFADS
design features. These results generalized beyond carefully
engineered scenarios, with MR-LFADS outperforming ex-
isting models also across a broad range of multi-region
datasets synthesized from a distribution of task-trained
multi-region networks.

Applying MR-LFADS to real multi-region electrophysio-
logical recordings further validated its utility, as the model
inferred inter-regional interactions that accurately predicted
brain-wide effects of causal perturbations, despite these per-
turbations being absent during training. Here, MR-LFADS
models were also more reproducible across random model
initializations compared to a model variant that removed
data-constraints on inferred communication, suggesting that
this design feature specifically enhances the reproducibility
of model-derived scientific conclusions.

Despite its advantages, MR-LFADS has potential limita-
tions. It remains unclear whether the model will succeed
in scenarios in which its communication-favoring induc-
tive bias is not appropriate—for example, when a region’s
dynamics are largely autonomous, are only weakly influ-
enced by other recorded regions, or are influenced by an
unobserved region whose activity is correlated with that
in a non-communicating observed region. Additionally,
MR-LFADS remains sensitive to hyperparameter settings,
mirroring a known limitation of SR-LFADS (Keshtkaran
et al., 2022). Thus, significant computational resources
might be required to adequately optimize hyperparameters.
Finally, as in SR-LFADS, hyperparameters specifying the
prior distributions in MR-LFADS can shape the representa-
tions in inferred latent variables, which can in turn shape
the region-specific dynamics learned to reconstruct the neu-
ral recordings. While we have reason to believe that such
inferred quantities can indicate the presence, identity, and
timing of inputs (Pandarinath et al., 2018) and communica-
tions, future work is needed to interpret the representations
of those signals (Sedler et al., 2023; Versteeg et al., 2024).
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A. Models
A.1. Multi-Region LFADS (MR-LFADS)

Reconstruction validation. To evaluate model fit, we assess how well MR-LFADS reconstructs the activity of 10% of
neurons held out during training. A separate linear decoder, Whout, is trained post hoc to predict held-out activity xhout
from the inferred latent factors. Importantly, this decoder is not trained end-to-end with MR-LFADS, ensuring that held-out
neurons do not influence model learning. Fit quality is quantified using the R2 score between predicted and actual held-out
activity.

KL penalty. A critical hyperparameter during training is the scale of the KL penalty. The KL penalty coefficient for the
inferred inputs, βu, is always set higher than that for communication, βm, an implicit assumption that encourages the
network to prioritize learning information via communication channels whenever possible. The timing of when KL penalties
are introduced also impacts results, though to a lesser extent. The schedule we found to work well begins with an initial
stage where no KL penalty is applied, allowing the model to overfit to the data. Next, the penalty for inferred inputs is
introduced, discouraging the model’s reliance on these inputs. Finally, the penalty for communication is added, limiting the
model from learning excessive information through communication channels.

Weight regularization. We apply light L2 regularization to all GRU network recurrent weights.

Hyperparameters. Table S1 summarizes key hyperparameters used in the MR-LFADS models. Overall, we find that
KL coefficients have the most impact on held-out neuron loss, Scos, and R2 scores for messages compared to other
hyperparameters. SR-LFADS was originally described with a factor layer that is potentially lower dimensional than the
number of generator units or modeled neurons. Here, we remove the rank constraint from the generator hidden states to rates
by setting Nfac = Nneu. Additionally, the inferred input and message channel dimensions only need to exceed the estimated
true dimensionality of these quantities, as KL penalties naturally suppress redundant channels by driving their activity to
zero, as discussed in Appendix E.1.

Table S1. Key hyperparameters for MR-LFADS models. Experiment 4 refers to applications to multi-region electrophysiology data.

Hyperparameter value Description

learning rate ∈ [10−5, 0.004] Scheduled by PyTorch’s ReduceLROnPlateau; initial value: 0.004
T 190 Total time used for inferring inferred inputs
τ 10 Total time used for inferring the initial condition
total epoch 350 Total number of epochs

βu KL penalty coefficient for u; performs search for this hyperparameter
βu start epoch 50 Epoch at which βu starts increasing from 0

βu increase epoch 200 Number of epochs for βu to reach the maximum value
βm KL penalty coefficient for m; performs search for this hyperparameter
βm start epoch 150 Epoch at which βm starts increasing from 0

βm increase epoch 100 Number of epochs for βm to reach the maximum value
βg0

βu KL penalty coefficient for g0
α 104 L2 penalty coefficient
α start epoch 0 Epoch at which α starts increasing from 0

α increase epoch 80 Number of epochs for α to reach the maximum value

N i
neu Number of neurons, (64, 16, 64) for exp 1, 2 and 3 respectively

N i
gen 2N i

Neu Generator size
N i

fac N i
Neu Factor size

N i
inp Inferred input dimension, (4, 8, 6, 8) for exp 1, 2, 3 and 4 respectively

N i
msg Inferred message dimension, (4, 16, 10, 8) for exp 1, 2, 3 and 4 respectively
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Unidirectional Encoder and Controller. To ensure that inferred inputs reflect only causal information—so that messages,
in turn, are causal and thereby allow a more mechanistic interpretation in MR-LFADS—we modify the original LFADS
model so that both the encoder and controller used for input inference are entirely unidirectional:

eit = GRUi
enc,u(e

i
t−1, x

i
t)

cit = GRUi
con(c

i
t−1, [e

i
t; f

i
t−1])

(12)

The inferred inputs are then given by:

q(ui
t | xi

1:t) = q(ui
t | cit) = N(µi

u,t,Σ
i
u,t)

µi
u,t = W i

µu
(cit) Σi

u,t = diag
(
exp

(
W i

σu
(cit)
)) (13)

By contrast, the encoder for the initial condition can remain bidirectional, since it operates on data preceding t = 1 and thus
does not violate causality:

ei,−t = GRUi,−
enc,g (e

i,−
t+1, x

i
t)

ei,+t = GRUi,+
enc,g (e

i,+
t−1, x

i
t)

(14)

q(gi0 | xi
−τ :0) = q(gi0 | [ei,−−τ ; e

i,+
0 ]) = N(µi

g0
,Σi

g0
)

µi
g0

= W i
µg0

([ei,−−τ ; e
i,+
0 ])

Σi
g0

= diag
(
exp

(
W i

σg0
([ei,−−τ ; e

i,+
0 ])

)) (15)

A.2. Reduced-Rank Regression

The RRR model used in this study is based on the inter-regional communication subspace model of MacDowell et al.
(2025), which integrates reduced-rank regression with ridge regression. The key difference in our implementation is that we
apply the rank constraint separately to each source brain region, allowing us to disentangle the contributions of individual
areas. Specifically, rather than concatenating activity from all regions into a single input matrix governed by a shared
rank-constrained weight matrix—which conflates signals across regions—we assign a dedicated weight submatrix to each
source region Aj , each with its own rank constraint rj .

Therefore, for the communication subspace model, we have:

W rrr = argmin
rank(W )=r

∥Y −XW∥2F + α ∥W∥2F

which is equivalent to:

W ridge = argmin
W

∥Y −XW∥2F + α ∥W∥2F

W rrr = argmin
W

∥∥Y −XW ridge
∥∥2
F

+
∥∥XW ridge −XW

∥∥2
F

which is then equivalent to:

W rrr = W ridgeVrV
T
r ,where UΣV T = XW ridge

(16)

where X ∈ RT×Nsrc represents the activity of all source regions concatenated together, and Y ∈ RT×Ntar represents
the activity of the target region. W ridge is the weight matrix obtained after applying ridge regression, and α is the ridge
regularization parameter. W rrr is the reduced-rank regression matrix obtained after ridge regression is applied. In the final
step, singular value decomposition (SVD) is applied to XW ridge, where UΣV T is the decomposition, and Vr corresponds to
the top r components of V .

In this version, the W ridge matrix is divided into chunks corresponding to different regions Aj :

W ridge = [W ridge,1;W ridge,2; . . . ;W ridge,N ], (17)
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where each W ridge,j corresponds to the contribution of source region Aj , and [W 1; ...;WN ] represents a vertical stack of
the matrices. SVD is then applied to each individual W ridge,j matrix:

U jΣj(V j)T = W ridge,j . (18)

The reduced-rank version of W ridge,j is computed as:

W rrr,j = W ridge,jV j
rj (V

j
rj )

T . (19)

Finally, all W rrr,j matrices are concatenated to form the complete W rrr matrix. This ensures that the rank reduction applied
to each W ridge,j only compresses the information within that specific region’s contribution, preserving the interpretability of
the communication pathway from Aj to the target region.

The hyperparameters for this model include α and a matrix R ∈ RN×N , where each element rij represents the rank
associated with the communication from source region Aj to target region Ai. Additionally, since time delays may exist
between regions—and such delays are explicitly configured in the synthetic datasets—a delay parameter dij is introduced
for each source-target communication channel.

For fitting the memory and pass-decision networks, to tune the model, we perform an iterative search based on cross-
validation performance, optimizing the hyperparameters in the following order: D = {dij : i, j = 1, . . . , N, i ̸= j}, α, and
R = {rij : i, j = 1, . . . , N, i ̸= j}. This process is repeated until the hyperparameter values converge. The final values
used are provided in Table S2. While the rank values R for both networks did not converge exactly to the true ranks of the
messages, they were close. Notably, providing the true number of latents did not necessarily lead to better results. The delay
values D were accurately learned for both models.

For fitting the networks in Experiment 3, the true delay is directly provided, and other hyperparameters are iterated in the
same order for 10 epochs.

To increase the robustness of the RRR model fit, we implemented a bagging approach. For each model, 10 trials were
bootstrapped from the training set, with each trial containing 200 time steps. A total of 87 fitted models were averaged to
obtain the matrix W rrr. This specific number of models was chosen to ensure that the total number of trials used during
training remained consistent with other models.

Table S2. Hyperparameter search results for RRR models.

Memory Pass-Decision
α 0.055 0.01

R

 12 24

12 32

24 18

 (
1

6

)
dij , i ̸= j 2 0

A.3. Multi-Region Switching Dynamical Systems

We consider two variants of multi-region switching dynamical system models. The first is mp-srSLDS (Glaser et al., 2020),
which consists of linear transitions, dynamics, and emissions. The relevant hyperparameters are the number of latent states
per region, the number of discrete switching states, amount of L1 and L2 regularization on the weights, and the learning rate.
Additionally, we consider MR-SDS (Karniol-Tambour et al., 2024), which is an extension that uses nonlinear transitions,
dynamics, and emissions. It consists of two components: an inference network and a latent state-space model. The inference
network is a transformer that performs the amortized inference of latent variables given observed neural activity. The
latent state-space model is composed of a number of networks and functions as a structured prior on the latent variables.
Specifically, we consider additive communication and input terms to the latent dynamics of the state-space model. That is,
messages from other regions and external inputs affected the latent dynamics via additive terms. Relevant hyperparameters
include the number of latent states per region, the number of discrete switching states, and the sizes of each sub-network.

For both models, we did extensive hyperparameter tuning to find the best model for each of the synthetic datasets and then
computed all metrics on a held-out test set. We used the Tree-structured Parzen Estimator (TPE) algorithm (Watanabe, 2023)
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with the Optuna backend (Akiba et al., 2019) in Ray Tune (Liaw et al., 2018). The algorithm fits two Gaussian mixture
models (GMMs), one to the set of parameter values associated with the best objective and another to the remaining ones. It
chooses new parameters to explore by maximizing the ratio of the likelihood between these two GMMs. As such, it is a
search strategy which uses results from prior tested hyperparameters to inform the next choice of hyperparameters to test.
We used the TPE algorithm to search over all relevant hyperparameters above. Additionally, for MR-SDS, we used dropout
for regularization with the default settings in the provided implementation. We also manually picked a good learning rate
and number of epochs for training. Finally, we also made use of co-smoothing for evaluation. This holds out a set of neurons
from the inference network, and computes the fit on the reconstruction of these held-out neurons.

A.4. Model Comparisons

We outline the components of MR-LFADS variants and existing communication models in Table S3. Models are compared
across four criteria: (1) region-specific dynamics, (2) unsupervised inferred inputs, (3) data-constrained communication, and
(4) structured information bottlenecks. Only MR-LFADS(R) incorporates all four features.

MR-LFADS(S) ablates the controller, removing inferred inputs and instead using manually specified external inputs for
each region. MR-LFADS(F) and MR-LFADS(G) both communicate via latent variables not directly grounded in observed
data—using factors and generator states, respectively.

MR-SDS and mp-srSLDS include region-specific dynamics but rely on external inputs and latent-variable-based messaging,
without any regularization on inputs or communication. RRR infers communication from observable quantities but lacks
dynamics and inputs altogether. While it enforces a rank constraint on the communication subspace, this is not equivalent to
explicit regularization on messages.

Table S3. Comparison of MR-LFADS variants and existing communication models.

Region-Specific
Dynamics

Unsupervised
Inferred Inputs

Data-Constrained
Communication

Structured Information
Bottlenecks

MR-LFADS(R) ✓ ✓ ✓ ✓

MR-LFADS(S) ✓ × ✓ ×
MR-LFADS(F) ✓ ✓ × ✓

MR-LFADS(G) ✓ ✓ × ✓

MR-SDS ✓ × × ×
mp-srSLDS ✓ × × ×

RRR × × ✓ ×

B. Evaluation Metrics
B.1. Quantifying Effectome Similarity

In a trained MR-LFADS model, we define the inferred effectome to be a matrix of pairwise message norms, M , with
element Mi,j as the average value of ||µj→i

m,t ||2 across all trials and timesteps (see Eq. 7). In Experiments 1-2, we compared
model-inferred effectomes to the corresponding ground truth connectivity matrix Mtrue, consisting of ones and zeros to
indicate the presence or absence of a communication channel in the DGN, respectively. In contrast, Experiment 3 features
networks in which not all connections are actively used; in this case, we define Mtrue analogously to M , but computed using
ground truth messages mj→i instead of inferred messages µj→i

m,t . To assess similarity between M and Mtrue, we flatten these
matrices into vectors—m⃗ and m⃗true—and compute their cosine similarity:

Scos =
⟨m⃗, m⃗true⟩

∥m⃗∥2 · ∥m⃗true∥2
∈ [0, 1], (20)

where perfect alignment is indicated when Scos = 1.

To visualize an inferred effectome (e.g., Fig. 2c, right), we plot arrows with line thickness indicating the corresponding
scalar message norm from the inferred effectome. We thresholded and clipped these scalars before plotting to improve
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visual clarity. The threshold is determined using k-means clustering on the ∥|µj→i
m,t ||2 values, separating them into two

groups and omitting the group with smaller values. Line thickness is capped at an upper bound for readability. All reported
values elsewhere are computed without applying any thresholds, and visualizations of the unthresholded effectome are also
provided in Fig. S1b, Fig. S2b.

B.2. Evaluating Information Encoded in Learned Messages

In Experiment 1, we tested whether the inferred inputs and communications encoded information about the past ground truth
values, as the network’s hidden units activity contains information about past inputs. A correct model should only learn the
ground truth inputs or communications. For the results shown in Fig. 2d-e, right, the r-squared values were calculated with a
time lag d as R2(µj→i

m,t ,m
j→i
t−d ).

C. Synthetic Datasets for System Identification Issues
Synthetic datasets for networks from Experiments 1-3 have 1024, 1024 and 820 total trials respectively, of which 85% is
used for training, and 15% for validation. The length of each trial is 200 time steps.

C.1. Memory Network

In this synthetic network, each region Ai is modeled as an GRU network with 64 units that receives a private stimulus
sit ∼ N(0, I) with dimensions ri. To simulate communication channels carrying different amounts of independent
information, the dimensions are set as (r1, r2, r3) = (2, 3, 4). Each region has a linear readout Wout, and the outputs are
required to encode information about the history of all inputs (i.e., stimuli and communication) for up to 5 time steps,
enforced using a mean squared error loss. Similarly, the messages transmitted between regions are trained to match sit−2 and
are also optimized via a mean squared error loss. Additionally, each region is subjected to dynamic noise ξ ∼ N(0, 0.01 I),
introduced as perturbations to the RNN activity at each time step.

After training the synthetic network, for MR-LFADS, we performed a hyperparameter sweep over the KL penalty coefficients
for inferred inputs (βu ∈ {0.01, 0.1, 1, 10}) and communication (βm ∈ {0.001, 0.01}). The coefficient pair that resulted
in the lowest held-out neuron loss, (βu, βm) = (0.1, 0.01), was selected. Using these optimized coefficients, we ran the
MR-LFADS fit across 10 different seeds, which randomizes model initialization and subsequent sampling of inferred
quantities during training, but does not change the allocation of training versus validation data.

Comparing Experiments 1 and 2, it is shown that mp-srSLDS and MR-SDS activity reconstruction performance underper-
forms compared to the MR-LFADS variants in Experiment 1 (Fig. 2b), but not in Experiment 2 (Fig. 3b). One possible
explanation for this discrepancy is the amount of information that the latent variables must encode at each time step. For
example, in area A1, the private stimulus is s1t ∈ R2, and the incoming message from area A3 is m3→1

t = s3t−2 ∈ R4. As a
result, the latent representation at time t must capture information spanning 5 time steps and 6 variables in total. Under a
standard hyperparameter tuning scheme (Section A.3), latent variable models like mp-srSLDS and MR-SDS may struggle
to represent all this information accurately.

C.2. Pass-Decision Network

In this synthetic network, each area is an GRU that contains 16 units. The stimulus st is two-dimensional and independently
sampled from an exponential distribution with rate parameter of 3 time steps. Using a non-Gaussian distribution tests
whether the model can learn the correct solution despite structural mismatches between the data and the model, as both the
prior and posterior of inferred inputs and messages are Gaussian.

Each region has a linear readout Wout, whose output is required to match its corresponding latent variables (st for area AP

and dt for AD). The message sent from AP to AD is trained to represent st. Additionally, AD must encode whether dt is
greater or less than 0 at all times, mimicking a binary decision-making process.

For the pass-decision network, a low KL penalty for inferred inputs (βu = 0.0075) was necessary to achieve good held-out
neuron loss, while the KL penalty for communication (βm = 0.001) was set to be approximately one order of magnitude
smaller. Using these coefficients, we ran the MR-LFADS fit across 10 different seeds.
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Figure S1. Memory network. (a) Example traces of model reconstruction. Row: example neuron from an area, column: different trials.
(b) Inferred effectomes visualized as heatmaps. Color represents message norms normalized by the largest message norm within each
model, maxi,j ||µj→i

m ||2. These largest messages are, from left to right: 195, 22, 95, 1431, 5. (c). R2 of linear prediction of ground truth
messages (with 2 time step lag on the left, 4 time step lag on the right) via inferred messages. MR-LFADS(R) results (top) are replicated
from Fig. 2e.
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Figure S2. Pass-decision network. (a) Example traces of model reconstruction. Row: example neuron from an area, column: different
trials. (b). (b) Inferred effectomes visualized as circuit diagrams and heatmaps. Color represents message norms normalized by the largest
message norm within each model, maxi,j ||µj→i

m ||22. These largest messages are, from left to right: 287, 271, 307, 143, 398, 0.6.
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D. Randomly Generated Multi-Region Networks

Table S4. Task parameters for all families in multi-region data generating networks.
Task ∆offset ∆delay tsacc θresp

Go N/A ∞ tstart +∆dur θ(i)

Anti-Go N/A ∞ tstart +∆dur π + θ(i)

Delay-Go N/A [30, 50) tstart +∆dur +∆delay θ(i)

Delay-Anti-Go N/A [30, 50) tstart +∆dur +∆delay π + θ(i)

DM1 0 [30, 50) tstart +∆dur θ(1)

DM2 0 [30, 50) tstart +∆dur θ(2)

MultSen DM 0 [30, 50) tstart +∆dur θ(i), i = argmaxi r
(i)

Delay-DM1 [10, 20) [30, 50) tstart +∆dur +∆offset θ(1)

Delay-DM2 [10, 20) [30, 50) tstart +∆dur +∆offset θ(2)

Delay MultSen DM [10, 20) [30, 50) tstart +∆dur +∆offset θ(i), i = argmaxi r
(i)

Angle [10, 20) [30, 50) tstart +∆dur +∆offset if θ(1) = θ(2) θ(2)

Anti-Angle [10, 20) [30, 50) tstart +∆dur +∆offset if θ(1) = θ(2) π + θ(2)

Category [10, 20) [30, 50) tstart +∆dur +∆offset if sign(θ(1)) = sign(θ(2)) θ(2)

Anti-Category [10, 20) [30, 50) tstart +∆dur +∆offset if sign(θ(1)) = sign(θ(2)) π + θ(2)

We generated a distribution of networks designed to perform computational tasks inspired by Yang et al. (2019). Each
network consists of either 3 or 4 regions. A connection probability p ∈ {0.5, 0.6, 0.7} is specified, and the connectome is
randomly drawn. To be considered valid, the connectome must meet two criteria: (1) each region must have at least one
input connection and one output connection to ensure no region is redundant, and (2) all regions must be within a maximum
distance of 2 steps from the output region. Once a valid connectome is generated, the network is trained on one of the
computational tasks. During training, dynamic noise ξ ∼ N(0, 0.01 I) is applied to all regions, and the only loss is based on
whether the output region produces the correct response. Networks that meet the performance thresholds (train accuracy
> 0.8 and validation accuracy > 0.6) are selected as synthetic datasets.

For this case, since we aim to collect a distribution of results, we do not perform a hyperparameter sweep over the KL
penalties. Instead, we fit one instance of each communication model to each synthetic dataset using a single random seed.
The computational tasks inspired by Yang et al. (2019) are described below.

All trials are 200 time steps in length. Each task receives a fixation input sfix,t, two stimuli s(1)
t = (a(1), θ(1)) and

s(2)
t = (a(2), θ(2)), and requires a saccade response rsacc

t and an additional response rresp,t = (1, θresp), which differ based on
the specified task. Both the stimuli and responses are expressed in polar coordinates, with a resolution of 10 degrees per
angle.

The tasks are described in terms of 3 different families: the go task family, context-dependent decision-making family, and
matching family. For all tasks, tstart ∈ [30, 50) denotes the onset of the first (and sometimes only) stimulus. The duration
of all stimulus pulses in a trial is represented by ∆dur ∈ [30, 50), while ∆offset specifies the offset between the two stimuli,
if applicable. The time between the last stimulus offset and the fixation cue offset is given by ∆delay, where ∆delay = ∞
indicates that the fixation cue never disappears. The onset of the saccade is denoted as tsacc.

D.1. Go Task Family

The common characteristic of tasks in this family is that only one of the stimulus channels contains the signal, which varies
between trials. Depending on the specific task, the network must saccade dependently or independently of the fixation cue.
The response is required to be either in the direction of the signal pulse, θ(i), or in the opposite direction, π + θ(i). The
individual tasks are summarized in Table S4.

D.2. Context-Dependent Decision-Making Family

For this family of tasks, stimulus pulses occur in both channels, and the network must report either θ(1) or θ(2), depending on
the specific task type. In some tasks, the pulses occur at different times, requiring the network to maintain memory of the
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stimuli. The task parameters for this family are summarized in Table S4.

D.3. Matching Family

In the matching tasks, the network determines whether to saccade based on whether the two stimulus angles “match.” In the
“Angle” tasks, the network saccades only if θ(1) = θ(2) under the given resolution (10 degrees per angle). In the “Category”
tasks, the network saccades if sign(θ(1)) = sign(θ(2)), meaning both angles are either positive or negative. Task details are
provided in Table S4. Regardless of whether the angles match, the response is always set to report the angle θ(2) (or the
opposite of it).

(a) Activity Reconstruction (3 Region)

MR-LFADS (R)

MR-LFADS (F)

MR-LFADS (G)

(b) Activity Reconstruction (4 Region)

MR-LFADS (R)

MR-LFADS (F)

MR-LFADS (G)

MR-SDS

mp-srSLDS

RRR

MR-SDS

mp-srSLDS

RRR

ModelData

ModelData

Figure S3. Randomly generated multi-region network: example traces of model reconstruction for networks with median MR-LFADS(R)
performance for 3 regions (a) and 4 regions (b).
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E. Implications of Constrained Architectural Choices in Restricting Message Content
E.1. Input and Message Inference with KL Penalties

KL penalties with standard Gaussian priors in variational autoencoders are known to reduce latent space dimensionality by
pruning unnecessary dimensions (Dai et al., 2018; Miller et al., 2024). Consequently, with sufficiently high KL penalty
coefficients (βu, βm), MR-LFADS is incentivized to use only the communication channels essential for data reconstruction.
This effect is evident when comparing the most active channel (i.e., the one with the highest input or message norm across
trials and time) to the least active ones (Fig. S4a, b). Examining input and message norms across all channels further
confirms that some channels are effectively silenced (Fig. S4c).
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Figure S4. The effect of KL penalties on restricting information across inferred inputs and communication channels in Experiment 1. (a)
Inferred input norm over time, ||µ[k]

u,t||2, for the most (red) and least (pink) active channels, where k denotes channel number. (b) Inferred
message norm over time, ||µj→i,[k]

m,t ||2, for the most (blue) and least (cyan) active channels. (c) Inferred input / message norm for area A1.

E.2. Message Inference via Rates versus Latent Factors

Since latent factors and reconstructed rates share the same dimensionality and are related by a linear transformation, it may
not be immediately clear how message inference from these variables leads to substantial differences. To investigate this, we
examine MR-LFADS(F) trained on the pass-decision synthetic data. We perform SVD on projection matrices from factors
to rates, Wr, and from factors to communication, Wm (Fig. S5a). Our analysis shows that Wr has small singular values,
indicating that certain latent factor dimensions contribute minimally to the reconstructed rates (Fig. S5b). In contrast, Wm

exhibits relatively uniform singular values (within the same order of magnitude), suggesting that all latent factor dimensions
are utilized in communication (Fig. S5c). This implies that some latent factor dimensions play a role in message inference
while being largely detached from rate reconstruction (Fig. S5a).

To further investigate, we re-express the factor space using the left singular vectors of Wr, denoted U . In Experiment
2, MR-LFADS(F) is shown to encode both the stimulus s and decision variable d in its mP→D messages (Fig. 3e). To
examine how these variables are distributed across the subspaces of U and whether this aligns with the under-constrained
dimensions identified earlier, we project the latent factors f onto the subspace spanned by the top k singular vectors of U ,
denoted U [1:k], varying k from 1 to ND

msg. We then compute the R2 values for predicting s and d from the projected values
f ′ (Fig. S5d, e, cyan lines). We repeat this process in the reverse direction, projecting onto the bottom k singular vectors
instead (Fig. S5d, e, orange lines). The results reveal a clear separation: decoding accuracy for s improves more when
projecting onto the top singular vectors, whereas decoding accuracy for d increases more rapidly when projecting onto
the bottom singular vectors. This suggests that information not used for rate reconstruction—such as d—is preferentially
encoded in the under-constrained dimensions of the latent space, reinforcing the idea that message inference utilizes latent
dimensions beyond those needed for rate prediction.
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Figure S5. Potential pitfall of overexpressive models. (a) Illustration of latent factors containing unconstrained information. k is the
effective rank of Wr . (b) Ranked singular values for Wr . (c) Ranked singular values for Wm. (d) R2 for decoding s from fP projected
onto subspaces spanned by top / bottom left singular vectors of Wr of an example seed. (e) Same as (d), but for decoding d.

F. Application to Large Scale Electrophysiology Data
Data analyzed are from mouse ID:440959. For the photoinhibition experiment, we analyzed a session with the following
recorded regions:

• Anterior Lateral Motor cortex (ALM): MOs2/3, MOs5, and MOs6 (layer 6)

• Thalamus (ALM, A): VM and VAL

• Thalamus (Other, O): Anterior Ventral (AV) and Lateral Dorsal (LD)

• Midbrain Reticular Nucleus (MRN): MRN

• Superior Colliculus (SC): intermediate gray (SCig), intermediate white (SCiw), optic (SCop), superficial gray (SCsg),
and zonal layer (SCzo)

For the model consistency experiment, we analyzed a session with the these recorded regions:

• ALM: secondary motor cortex, layers 2/3 and 5 (MOs2/3, MOs5)

• Thalamus: Ventral Medial (VM) and Ventral Anterior-Lateral (VAL)
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• MRN: MRN

Trials were filtered to include only those with durations between 4.5 and 5.5 seconds. Each trial was binned into 500 time
steps, with each bin corresponding to a 10 ms interval.

F.1. Comparison of Photoinhibition Effects

We selected one session of the data involving five brain regions previously implicated in a decision-making task, as
identified in Chen et al. (2024). For both control and photoinhibition trials, we only used trials from the same condition per
comparison—either left-hit or right-hit—where “hit” indicates a correct choice, and “left” or “right” refers to the correct
decision side. For photoinhibition trials, we focused on those with perturbations within the delay period (∼ 2 s), aligning
all such trials to the photoinhibition onset. Firing rate r̄t is smoothed from raw spike counts using a causal exponential
filter with rate parameter of 7.1. For each region, we computed the absolute difference in trial-averaged activity between
photoinhibited and control trials, averaged over neurons, to estimate the influence of photoinhibition.

F.2. Consistency of Model Inference Across Random Seeds

To ensure a fair comparison between models, we evaluated each using the same hyperparameters and same number of
random seeds. We then computed all pairwise similarities between inferred effectomes and messages across seeds to assess
the consistency of model inference.
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