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Abstract
A prominent challenge of offline reinforcement
learning (RL) is the issue of hidden confound-
ing: unobserved variables may influence both the
actions taken by the agent and the observed out-
comes. Hidden confounding can compromise the
validity of any causal conclusion drawn from data
and presents a major obstacle to effective offline
RL. In the present paper, we tackle the problem of
hidden confounding in the nonidentifiable setting.
We propose a definition of uncertainty due to hid-
den confounding bias, termed delphic uncertainty,
which uses variation over world models compati-
ble with the observations, and differentiate it from
the well-known epistemic and aleatoric uncertain-
ties. We derive a practical method for estimating
the three types of uncertainties, and construct a
pessimistic offline RL algorithm to account for
them. Our method does not assume identifiabil-
ity of the unobserved confounders, and attempts
to reduce the amount of confounding bias. We
demonstrate through extensive experiments and
ablations the efficacy of our approach on a sepsis
management benchmark, as well as on electronic
health records. Our results suggest that nonidenti-
fiable hidden confounding bias can be mitigated
to improve offline RL solutions in practice.

1. Introduction
Large observational datasets for decision-making open the
possibility of learning expert policies with minimal envi-
ronment interaction. This holds promise for contexts where
exploration is impractical or unethical, such as optimis-
ing clinical decisions based on relevant historical datasets
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(Gottesman et al., 2018). Recent years have thus seen the
emergence of the offline reinforcement learning (RL) lit-
erature (Levine et al., 2020), which adapts RL methods to
overcome estimation biases induced by learning from finite,
fully offline data.

Aside from estimation biases, confounding variables are
also common in offline data (Gottesman et al., 2018). The
problem of hidden confounding, where outcome and de-
cisions are both dependent on an unobserved factor, can
induce significant errors (Chakraborty and Murphy, 2014;
Zhang and Bareinboim, 2019) but remains overlooked in
many recent offline RL methods. In autonomous driving, for
example, the observational policy may behave according to
unobserved factors (e.g. road conditions (Haan et al., 2019)),
which also affect environment dynamics. In the medical con-
text, unrecorded patient information (e.g. socio-economic
factors or visual appearance) may have been taken into ac-
count by the acting physician (Gottesman et al., 2018).

In this work, we focus on nonidentifiable hidden confound-
ing in offline RL. While prior work has mostly addressed the
problem in the identifiable setup (Kumor et al., 2021; Wang
et al., 2021), we show that policy learning can be improved
even in the realistic nonidentifiable setting. We propose an
approach to estimate uncertainty due to confounding bias
and to account for the degree of confoundedness while learn-
ing. In turn, this leads to improved downstream performance
for offline learning algorithms.

Our main contributions are as follows. (1) To the best of
our knowledge, we are the first to address nonidentifiable
confounding bias in deep offline RL. (2) We achieve this
by introducing a novel uncertainty quantification method
from observational data, which we term delphic uncertainty.
(3) We propose an offline RL algorithm that leverages this
uncertainty to obtain confounding-averse policies, and (4)
demonstrate its performance on both synthetic and real-
world medical data.

2. Preliminaries
We consider the contextual Markov Decision Process (Hal-
lak et al., 2015) depicted in Appendix B, defined by the tuple
M = (S,Z,A, T, r, ρ0, ν, γ), where S is the state space,A
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is the action space, Z is the context space, T : S×Z×A →
∆S is the transition function, r : S ×Z ×A → [0, 1] is the
reward function, and γ is the discount factor. We assume an
initial state distribution ρ0 and a context distribution ν, such
that each episode has a fixed context z ∼ ν and initialises
at state s0 ∼ ρ0( · |z). At time t, the environment is at state
st and an agent selects an action at. The agents receives
a reward rt = r(st, at, z) and the environment transitions
to state st+1 ∼ T ( · |st, at, z). We define a context-aware
policy π as a mapping π : S × Z → ∆A, and a context-
independent policy as π̃ : S → ∆A.1

We assume access to a dataset D = {τ i}Ni=1, where the
sequences τ i = (si0, a

i
0, r

i
0, . . . s

i
H , aiH , riH) are trajectories

induced by an unknown, context-aware behavioural pol-
icy πb such that ait ∼ πb( · |sit, zi). The decision-making
context zi for each trajectory is not included in the dataset.
The offline RL task with hidden confounding consists of
finding the context-independent policy π̃∗ which maximises
expected discounted returns based on D. To achieve this,
we define the state-action value function of a policy π̃ by
Qπ̃(s, a) = Eπ̃,z∼ν [

∑∞
t=0 γ

tr(st, at, z)|s0 = s, a0 = a],
where Eπ̃ is induced by following policy π̃.

3. Sources of Error in Offline RL
Optimising a policy from observational data is prone to
various sources of error, which many RL works propose
to decompose, estimate, and bound (Levine et al., 2020;
Tennenholtz and Mannor, 2022). First, the process is prone
to statistical error in correctly estimating a value model
from the observed data (Jin et al., 2021). Inherent stochas-
ticity in the environment (aleatoric uncertainty) can result in
imprecise models, whereas finite data quantities (epistemic
uncertainty) can lead to poor model approximation. Offline
RL approaches typically mitigate these errors through pes-
simism, penalising areas where error is expected to be large
(Jin et al., 2021; Levine et al., 2020).

Another source of error, often overlooked in the RL litera-
ture, is structural bias. Independent of data quantity, this
bias can occur under incomplete state-action space cover-
age (Uehara and Sun, 2022), or under inappropriate model
expressivity (Lu et al., 2018b). Our work considers con-
founding bias – a critical type of structural bias, evident
in many applications (Gottesman et al., 2018; Haan et al.,
2019; Kallus and Zhou, 2018; 2020).

Confounding Bias. Confounding bias arises when the
data-generating policy relies on unobserved factors that
also affect downstream transitions and/or rewards (Tennen-
holtz et al., 2022). In the process detailed in Section 2,

1Markov policies sufficiently illustrate the challenges of our
task, and can be easily generalised to history-dependent ones.

the offline data consists of trajectories sampled from the
marginalised behavioural policy distribution τ ∼ Pπb

(τ),
which factorises as follows:

Pπb
(τ) = Ez∼ν

[
ρ0(s0|z)

H∏
t=0

πb(at|st, z)Pr(rt|st, at, z)

T (st+1|st, at, z)

]
, (1)

where Pr is the probability of sampling a given reward. Any
offline RL objective can be written as an expectation over
this distribution (Levine et al., 2020). Confounding arises
when one learns models on Pπb

, but estimates the value of
policies that change the probability of taking an action a
in a given state and context (s, z) – e.g., when consider-
ing context-independent policies. Since all model terms in
Equation (1) are nonidentifiable due to their dependence
on z, many “worlds” could induce the same observational
distribution Pπb

: in Appendix B.1, we illustrate how two
models can give the same observational distribution, yet in-
duce different values for another policy. This “identifiability
problem” has been studied extensively in the causal infer-
ence literature (Kallus and Zhou, 2018; Namkoong et al.,
2020). Without additional assumptions – such as environ-
ment interventions (Lu et al., 2018a; Zhang and Bareinboim,
2020) or observable proxy variables (Kumor et al., 2021;
Wang et al., 2021) – the context z is nonidentifiable and
acts as a confounder. We include an extensive discussion of
related work in Appendix A.

We propose to address the general nonidentifiable confound-
ing problem in offline RL by estimating the amount of con-
founding error within the observational dataset and by cor-
recting for it during learning.

4. Measuring Confounding Bias through
Delphic Uncertainty

In this section, we formulate a method for estimating uncer-
tainty arising from confounding bias in offline RL, which we
term delphic uncertainty2. We propose a general approach
to decouple aleatoric, epistemic, and delphic uncertainties,
which we later leverage to overcome confounding bias in
Section 5. We first define a set of worlds compatible with
the marginalised data distribution Pπb

(τ).

Definition 4.1. A compatible world for Pπb
is a tuple w =

(Zw, νw, ρ0,w, Pr,w, Tw, πb,w) which satisfies Pπb
(τ) =

Ez∼νw

[
ρ0,w(s0|z)

∏H
t=0 πb,w(at|st, z)Pr,w(rt|st, at, z)

Tw(st+1|st, at, z)
]
, for any τ = (s0, a0, r0, . . . , sH , aH ,

rH). We denote byW the set of all compatible worlds.

2The word “delphic” characterises quantities that are ambigu-
ous and opaque, relating to the hidden confounding variables and
their elusive effect on model predictions.
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We focus on uncertainty estimates of value functions. In
world w ∈ W , let θw denote the parameters of a Q-value
function. For a fixed w and θw, we assume each value model
Qθw is defined by some stochastic model, e.g., a normal dis-
tribution Qθw |θw, w ∼ N

(
µθw , σ

2
θw

)
. Here, σθw accounts

for aleatoric uncertainty, capturing the intrinsic stochastic-
ity of the environment (Kendall and Gal, 2017). Additional
statistical uncertainty arises from the distribution over model
parameters θw in the fixed world w ∈ W . Starting from a
prior over θw, evidence from the data leads to a posterior
estimate over model parameters P (θw|D), which captures
epistemic uncertainty (Hüllermeier and Waegeman, 2021).
We include an overview of statistical uncertainty estimation
methods in Appendix A.2.

To define the uncertainty induced by confounding variables,
which we term delphic uncertainty, we consider varia-
tion induced by compatible world models in Definition 4.1.
Based on the law of total variance (Weiss et al., 2006) and
following prior work separating epistemic and aleatoric un-
certainty (Kendall and Gal, 2017), we can decompose the
uncertainty in the value function estimate in the following
result (proof in Appendix B).
Theorem 4.2 (Variance Decomposition). For any π ∈ Π:

Var(Qπ
θw ) = Ew

[
Eθw [Var(Qπ

θw |θw, w)|w]︸ ︷︷ ︸
aleatoric uncertainty

+Varθw (E[Qπ
θw |θw, w]|w)︸ ︷︷ ︸

epistemic uncertainty

]

+Varw(Eθw [E[Q
π
θw |θw, w]|w])︸ ︷︷ ︸

delphic uncertainty

.

Delphic uncertainty remains even in deterministic environ-
ments (σθw → 0, no aleatoric uncertainty) and infinite data
(|D| → ∞, no epistemic uncertainty). We refer the reader
to Appendix B.3 for further discussion.

5. Offline RL Under Delphic Uncertainty
We now propose a method to measure delphic uncertainty in
practice, to then mitigate confounding bias within an offline
RL framework. Following Theorem 4.2, delphic uncertainty
can be estimated through the variation in value functions
across worlds models w compatible with the observational
distribution.

5.1. Measuring Delphic Uncertainty

Modelling Compatible Worlds. A compatible world
w ∈ W must capture key relationships from the observa-
tional data. Our model, parameterised by θ and illustrated in
Figure 5, consists of a confounder prior, a behaviour policy,

and a value function estimator. During training, a trajec-
tory τ ∼ D is mapped to a latent distribution νθ(z|τ), from
which the policy πb,θ and value Qπb

θ are estimated. These
models are trained through variational inference, by max-
imising the Evidence Lower BOund (ELBO, Kingma and
Welling (2014)), drawing from state-action pairs (s, a) ∼ τ :

E(s,a)∼τ ; z∼νθ(z|τ)
[
logQπb

θ (s, a, z) + α log πb,θ(a|s, z)
]

−βDKL

(
νθ(z|τ)

∥∥ p(z))
where {α, β} are hyperparameters. Once a compati-
ble world model is trained, the value function of a pol-
icy π can be estimated over one step using importance
sampling and marginalising over z, i.e., Qπ(s, a) =

Eτ∼DEz∼νθ(z|τ)

[
π(a|s)

πb,θ(a|s,z)Q
πb

θ (s, a, z)
]
.

Counterfactual Variation Across Worlds. We ap-
proximate W by a set of W compatible worlds
{νθw , πb,θw , Q

πb

θw
}Ww=1 on dataset D, each trained using dif-

ferent priors and model architectures and measure delphic
uncertainty through the variance in Qπ

θw
(s, a) across W

(Theorem 4.2). This defines delphic uncertainty for policy π
at state-action (s, a) by uπ

d (s, a) = Varw(Qπ
θw
(s, a)). Epis-

temic and aleatoric uncertainty are separately captured by
implementing each world model component as an ensemble
of probabilistic models. We refer the reader to Appendix C
for an exhaustive overview of the training procedure.

5.2. Delphic ORL: Offline Reinforcement Learning with
Delphic Uncertainty

Algorithm 1 Delphic Offline Reinforcement Learning

Input: Observational dataset D, Offline RL algorithm.
Learn compatible worlds {Zw, νw, ρ0,w, Pr,w, Tw,
πb,w}w∈W that factorise to Pπb

.
Obtain counterfactual predictions Qπ

w for each w ∈ W .
Apply pessimism using ud in Offline RL algorithm.

Inspired by pessimistic approaches in offline RL (Levine
et al., 2020), we penalise the value of states and actions
where delphic uncertainty is high, such that the learned pol-
icy is less likely to rely on spurious correlations between
actions, states and rewards. In this paper, we incorporate pes-
simism with respect to delphic uncertainty by modifying the
target Qtarget for the Bellman update in a model-free offline
RL algorithm (we use Conservative Q-Learning, Kumar
et al. (2020)) to Q′

target(s, a) = Qtarget(s, a)−λuπ
d (s, a),

where π is the latest learned policy, (s, a) is a tuple sampled
for the update and hyperparameter λ controls the penalty
strength. See Appendix C for implementation details, in-
cluding on alternative implementations of pessimism.
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Figure 1: Delphic ORL on the sepsis dataset. (a,b) Uncertainty measures as a function of data properties, averaged over state-action pairs.
Epistemic uncertainty reduces most with more data, aleatoric uncertainty increases most with environment stochasticity (reward variance),
and delphic uncertainty increases most with confounding strength. (c) Performance as a function of confounding strength Γ. Normalised
environment returns (mean and shaded 95% CIs) over 10 runs.

6. Experiments
Sepsis Simulation. We explore a simulation of intensive
care unit patient evolution (Oberst and Sontag, 2019), de-
tailed in Appendix D, where the diabetic status acts as hid-
den confounder. First, we validate that our delphic uncer-
tainty measure captures bias due to confounding. In Fig-
ures 1a and 1b, epistemic uncertainty reduces with greater
data, whereas delphic uncertainty increases with greater
confounding. In Appendix E, we also find that delphic un-
certainty relates to meaningful regions of state-action space,
being highest in more confounded states and actions.

In Figure 1c, we compare environment returns obtained
through offline RL, behaviour cloning (BC) and our pro-
posed approach. Our results reveal the susceptibility of
offline RL and BC to confounding bias: the presence of
unobserved factors z that influence both the behaviour pol-
icy and transition dynamics leads to spurious correlations.
In contrast, our approach to penalising delphic uncertainty
leads to superior performance, especially as confounding
strength increases. We include an exhaustive overview and
ablation studies for this experiment in Appendix E.

Confounders Z Γ BCQ BC CQL Delphic ORL

All ≈200 54.6 ± 1.3 59.6 ± 0.8 59.3 ± 0.9 62.2 ± 1.0

{age} 48.2 58.8 ± 0.8 64.7 ± 0.5 64.4 ± 0.8 66.5 ± 0.9
{neuro. diag.} 29.1 55.0 ± 1.3 61.8 ± 0.9 59.6 ± 1.7 65.7 ± 1.2
{gastro. diag.} 19.0 55.8 ± 0.8 60.9 ± 0.6 59.8 ± 0.6 63.3 ± 1.1
{trauma} 16.3 56.3 ± 0.8 63.2 ± 1.1 63.5 ± 0.7 65.7 ± 1.0
{cardio. diag.} 13.2 56.2 ± 1.0 60.6 ± 0.7 58.6 ± 0.9 62.7 ± 1.1
{hemato. diag.} 11.6 59.6 ± 0.9 63.2 ± 0.6 63.1 ± 0.7 65.3 ± 1.1
{weight} 8.3 60.1 ± 0.8 64.2 ± 1.0 65.4 ± 0.6 66.3 ± 0.9
{ortho. diag.} 3.4 62.3 ± 0.8 64.6 ± 0.6 65.8 ± 0.7 65.9 ± 1.0
{sepsis} 2.8 60.3 ± 0.9 63.9 ± 0.6 65.4 ± 0.7 66.2 ± 1.0
{intoxication} 1.2 62.3 ± 0.9 63.4 ± 0.5 65.2 ± 0.6 66.6 ± 1.1

∅ 1 62.6 ± 0.8 65.4 ± 0.5 68.2 ± 0.7 67.6 ± 1.1

Table 1: Off-Policy Evaluation (OPE) on the real-world medical
dataset. Delphic ORL yields improvements when z strongly con-
founds treatment decisions (large Γ). Mean and 95% CIs over 10
runs. Evaluation details in Appendix D.
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Figure 2: Expert Clinician Evaluation of treatment policies,
supporting the conclusion that Delphic ORL improves learning in
confounded settings.

Real-World Medical Data. We also demonstrate the
added value of our algorithm in optimising behaviour from
medical data, focusing on the treatment policy for vasopres-
sor and fluid administration (commonly given to overcome
shock) in intensive care (Benham-Hermetz et al., 2012) –
details in Appendix D. We introduce measurable confound-
ing by excluding some critical decision-making factors (age,
comorbidities) from the observational dataset. We evidence
in Appendix E that delphic uncertainty captures confound-
ing bias, in concordance with the introduced confounders
– both in terms of discriminating confounded state-action
pairs and in estimating absolute confounding strength.

We also investigate the efficacy of our penalisation approach
in learning policies that optimise patient outcomes in the
presence of confounding bias. Table 1 shows our approach
maintains improved performance even as the confounding
level increases, while traditional offline RL methods suffer
from bias and yield suboptimal policies. Motivated by the
observed success of our method, we then evaluate our algo-
rithm using expert clinicians. Figure 2 shows the evaluation
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results of six clinicians, who ranked pairs of different poli-
cies based on their expected patient outcomes, providing
additional validation for the superiority of Delphic ORL in
confounded settings. We refer the reader to Appendices D
and E for an exhaustive overview of the experiment and for
detailed results.

7. Conclusion
Delphic ORL is a practical solution to the challenge of learn-
ing from unidentifiable confounded data. Delphic uncer-
tainty relies on modelling world models compatible with the
observational distribution, and can be penalised to achieve
improved performance across both simulated and real-world
confounded offline RL tasks, where traditional algorithms
fail due to excessive confounding. Overall, tackling hidden
confounding in offline RL will lead to more reliable and
effective decision-making tools in various critical fields.
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A. Related Work
A.1. Sources of Error in Offline RL

Online-RL methods rely on environment interaction for training, limiting their applicability in many real-world domains
such as healthcare (Gottesman et al., 2018). This has fueled research efforts in offline methods to optimise policies through
pessimism (Buckman et al., 2021; Cheng et al., 2022; Jin et al., 2021; Levine et al., 2020; Uehara and Sun, 2022; Xie et al.,
2021). Recent practical algorithmic developments in offline RL have focused on addressing statistical errors induced by
epistemic and aleatoric uncertainty, in both model-based and model-free methods (Fujimoto and Gu, 2021; Kidambi et al.,
2020; Kostrikov et al., 2021; Kumar et al., 2020; Yu et al., 2020).

Structural errors such as confounding bias are also pervasive in offline RL (Lu et al., 2018a). Such biases cannot be captured
by epistemic or aleatoric uncertainty quantification methods, as they do not depend on data quantity. Confounding bias
cannot be reduced to the missing information problem in partially-observable environments either (Hausknecht and Stone,
2015). History-dependent policies, for example, are equally prone to this source of error: while long-term information can
recover latent environment information, it exacerbates distribution shifts between behavioural and learned policies when
learning from observational data (Ortega et al., 2021; Swamy et al., 2022).

Several approaches have been proposed to address confounding bias in offline RL. Most make assumptions to estimate the
confounding variables, including access to the environment (Lu et al., 2018a; Zhang and Bareinboim, 2020) or to observable
back- or front-door proxy variables (Kumor et al., 2021; Lu et al., 2022; Shi et al., 2022; Wang et al., 2021). This allows
algorithms to apply covariate adjustment methods (Pearl, 2009) to correct for confounding when modelling alternative
policies (interventional probabilities and counterfactuals). Extensive work also discusses confounding bias in off-policy
evaluation (Bennett and Kallus, 2021; Bennett et al., 2021) and bandits (Chen et al., 2023; Sen et al., 2017; Tennenholtz
et al., 2021), but the proposed solutions remain poorly translatable to learning offline RL policies in practice, due to the
aforementioned limiting assumptions.

Our work is also closely related to research on sensitivity analysis for treatment effect estimation under hidden confounding
(Jesson et al., 2021; Kallus et al., 2019; Oprescu et al., 2023; Rosenbaum, 2002). These works propose partial identification
bounds for confounded heterogeneous treatment effect estimation or bandit decision-making problems (Kallus and Zhou,
2018) by assuming a bound on the dependence of the behavioural policy on hidden confounders. In this context, Jesson
et al. (2021) also distinguish sources of aleatoric and epistemic uncertainty from confounding biases. Other work has
proposed sensitivity analysis bounds for off-policy evaluation, formulating uncertainty sets over policy returns (Namkoong
et al., 2020; Zhang and Bareinboim, 2019). Still, regret bounds from sensitivity analysis remain wide and often ill-adapted
to high-dimensional state and action spaces or sequential decision-making problems. Our approach complements these
theoretical frameworks with a practical solution to addressing confounding bias in offline RL. Finally, Saengkyongam
et al. (2023); Tennenholtz et al. (2022) also study confounding in offline environments, but are more concerned with the
complementary challenge of covariate shift – with the latter work even assuming access to the contextual information.

A.2. Statistical Uncertainty Estimation

Uncertainty estimation is a crucial aspect of machine learning models, as it provides valuable insights into the reliability and
confidence of model predictions and can be used to guide policy optimisation in reinforcement learning. Statistical sources
of error can be estimated through aleatoric and epistemic uncertainty, which have been widely studied in the machine
learning literature (Hüllermeier and Waegeman, 2021). In this section, we review existing methodologies for capturing and
quantifying these two types of uncertainty.

Aleatoric Uncertainty. Aleatoric uncertainty, also known as data uncertainty or irreducible noise, stems from the inherent
variability and randomness in the observed data (Hüllermeier and Waegeman, 2021). This form of statistical uncertainty
cannot be reduced even with infinite data quantities.

The most common approach to modelling aleatoric uncertainty is to set a probability distribution over model outputs and to
learn its parameters (Kendall and Gal, 2017). Outputs can for instance be assumed to be normally distributed with either a
fixed variance (introducing a single parameter to be estimated through maximum likelihood), or a variance that depends
on the input. In this latter case of heteroscedastic aleatoric uncertainty, a separate neural network branch can be trained to
predict the variance (Kendall and Gal, 2017).
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Epistemic Uncertainty. Epistemic uncertainty arises from the lack of knowledge or ambiguity in the model parameters
(Hüllermeier and Waegeman, 2021), which can be reduced with additional data. Capturing epistemic uncertainty is
particularly important to approximate model error in out-of-distribution scenarios (Jin et al., 2021).

Bayesian neural networks (BNNs) offer a principled approach to capturing epistemic uncertainty (Neal, 2012). By placing
prior distributions over the model weights and using Bayesian inference, BNNs can provide posterior distributions over the
weights, which represent the uncertainty in the model parameters. This uncertainty can then be propagated through the
network to obtain predictive distributions that quantify epistemic uncertainty.

Bootstrap ensemble methods are another effective epistemic uncertainty estimation technique (Efron, 1982). These
methods rely on creating multiple subsets, or bootstrapped samples, from the original dataset by randomly sampling
with replacement. Each bootstrapped sample is then used to train a separate model, resulting in an ensemble of models
with slightly different parameter configurations. By aggregating the predictions from these diverse models, the epistemic
uncertainty can be estimated through measures such as variance or entropy. Bootstrap ensemble methods provide a practical
and scalable approach to capturing model uncertainty, particularly when Bayesian methods are computationally expensive
or infeasible (Lakshminarayanan et al., 2017).

Monte Carlo dropout sampling (Gal and Ghahramani, 2016) can also be used to estimate epistemic uncertainty by performing
multiple forward passes with dropout enabled at test time. The distribution of predictions from these multiple samples
gives an estimate of the predictive uncertainty. Finally, more recent efforts in epistemic uncertainty estimation include
randomised priors (Osband et al., 2018), epistemic neural networks (Osband et al., 2022) and deep ensembles trained with
Stein variational gradient descent (D’Angelo et al., 2021; Liu and Wang, 2016).

A.3. Nonidentifiable Confounding Bias

While aleatoric and epistemic uncertainty can be expressed as probability distributions over model outputs and parameters,
respectively (Hüllermeier and Waegeman, 2021), delphic uncertainty captures a distribution over counterfactual values.
Importantly, this source of error cannot be measured by epistemic or aleatoric uncertainty quantification methods.

Comparison to Sensitivity Analysis. In the causal inference literature, sensitivity analysis studies the robustness of
treatment effect estimation to hidden confounding. This framework assumes a bound on the ratio between treatment
propensities between any two confounder values (Rosenbaum, 2002) or on the ratio between treatment propensities when
accounting for and marginalising confounders (Jesson et al., 2020; Kallus et al., 2019; Oprescu et al., 2023).

In contrast, the main assumptions in our delphic uncertainty estimate determine which ‘world models’ compatible with the
observational data are considered to construct uncertainty sets over a given outcome model (Conditional Average Treatment
Effect or, in the sequential setting, Q-value function). In particular, we consider a set of possible Z and prior distributions
p(z), and specify a model architecture for the dependence of the behavioural policy and transition, reward or value function
on z (which is then trained to fit the marginalised observational trajectory distribution).

Importantly, sensitivity analysis approaches require domain expertise to set maximum propensity-ratio parameter Γ (Kallus
et al., 2019), from which uncertainty sets over the modelled outcome are derived. Delphic ORL does come with its own set
of hyperparameters (number of world models considered in ud, pessimism hyperparameter λ), which can be determined
through practical, quantitative means with arguably less domain expertise.

Time-Varying Confounders. The Contextual Markov Decision Process (Hallak et al., 2015) and associated problem
described in Section 2 describes confounders as sampled from a context distribution ν(z) and fixed over the course of an
episode. We note that this framework does not exclude the existence of time-varying confounders. Consider the Markov
Decision Process with Unmeasured Confounding (MDPUC) (Zhang and Bareinboim, 2016), in which a new i.i.d. hidden
confounder variable zt affects the transition at each timestep t. This framework can be framed as a CMDP where the overall
episode context z = {z1, . . . , zH} includes all confounder variables. Although we do not focus on this specific framework
in our experimental setting, this would form an interesting avenue for further work. An important distinction between
MDPUC and Partially-Observable Markov Decision Processes (POMDPs) is the assumption that confounder variables are
sampled i.i.d. at each timestep. While POMDPs can therefore be viewed as the generalisation of this decision-making setup,
note that confounding biases are only induced in this setup if the behavioural policy has access to some missing information
about the state variable.
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Figure 3: Contextual MDP. Black arrows show the transition dynamics, blues ones the reward function, and red ones the policy.
Confounding arises when both behavioural policy πb and environment returns depend on hidden context variable z (dashed lines).

A.4. Broader Impact, Limitations and Future Work

Addressing hidden confounding in offline reinforcement learning has the potential to significantly impact the development
and deployment of reinforcement learning systems in real-world applications. By improving the validity of causal conclusions
drawn from data, Delphic ORL can improve the effectiveness and safety of RL-based decision-making in critical fields
(Gottesman et al., 2018; Singla et al., 2021; Thomas et al., 2017).

While our results demonstrate the efficacy of Delphic ORL in learning useful policies in the presence of confounding, it is
important to acknowledge the limitations and potential unintended consequences associated with RL algorithms, especially
in high-stakes applications such as healthcare. Collaboration with domain experts is crucial to ensure thorough evaluation of
RL algorithms (Gottesman et al., 2018). In clinical settings, predictive or recommendation models derived from Delphic
ORL should not be solely relied upon, and mitigation strategies must be implemented to minimise negative consequences
during deployment.

An important consideration in the application of Delphic ORL is the trade-off between confounding bias and estimation
variance in Q-function estimation, as noted in other work addressing confounding bias (Wang and Blei, 2019). This
emphasizes the significance of large, high-quality training datasets to leverage the benefits of Delphic ORL and ensure
sufficient predictive power.

As our experiments primarily focused on medically-motivated confounding scenarios, future work should investigate the
applicability and generalisation of Delphic ORL to other domains. Although our framework does not in theory exclude
dynamic environments where confounding factors change over time (see Appendix A.3), an empirical study of the behaviour
of delphic uncertainty estimates and pessimism penalties may reveal new challenges in this context.

Finally, the question of how to best approximate the set of compatible worldsW in Definition 4.1 remains open. In Section 5
and Appendix C, we detail our approach which efficiently captures variability across counterfactual value-function, but
further theoretical or practical work on how best to modelW would likely improve the calibration of delphic uncertainty
estimates. Better approximation algorithms may also improve the efficiency, scalability, and modelling power of our method
for very high-dimensional, highly confounded problems – although our real-world data analysis forms a promising first
proof-of-concept.

B. Theoretical Details
A causal graph of the Contextual MDP environment assumed in this work is given in Figure 3.

B.1. Confounding Bias in Offline RL: An Illustrative Example.

Suppose access to the bandit data in Figure 4a, induced by an unknown context-dependent policy πb with marginal
distribution Pπb

(a, r). Assume no access to the episode context z in the data. Simplifying Equation (1) to this setup, we
obtain:

Pπb
(a, r) = Ez∼ν [πb(a|z)Pr(r|a, z)].

We can therefore change ν, πb, and Pr to induce the same marginalised distribution Pπb
, with a significant difference

in reward for a counterfactual policy. Indeed, in Figures 4b and 4c we show how different models that are compatible
with the observational quantities can result in substantially different reward estimates for a different policy. Particularly,
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(a) Observational data (b) World 1: ν(0) = 1. (c) World 2: ν(0) = 0.5.

Figure 4: Confounding Bias Example. World 1 and 2 are two models for the binary confounding variable that are compatible with the
marginalised observational bandit data in (a), composing models for ν(z), πb(a|z) and P (r|a, z). Under an alternative policy, such as a
context-independent uniform policy π̃uni(·) = 1/|A|, these two worlds give different values to each action.

in World 1 (Figure 4b), we assume a deterministic singleton context, with a corresponding uniform behavioural policy,
whereas in World 2 (Figure 4c) we assume two contexts with uniform distribution, and a behavioural policy which changes
its distribution w.r.t. the sampled context. In both of these worlds, the observational distribution Pπb

(a, r) remains the
same. Nevertheless, calculating the reward of the uniform policy π̃uni(·) = 1/|A| results in different reward distributions.
Moreover, the optimal actions in World 1 and World 2 are different.

Without explicit access to the ground-truth context or a proxy thereof (in the identifiable context), modelling an alternative
policy to the privileged data-generating one will therefore be prone to spurious correlations and estimation biases.

B.2. Proof of Theorem 4.2

We start by considering the decomposition of variance in Qπ
θ caused by random variable θ. In the following, we drop

superscript π for clarity.

First, we decompose Var(Qθ | θ):

Var(Qθ | θ) = E[Q2
θ|θ]− E[Qθ|θ]2

Eθ[Var(Qθ | θ)] = Eθ[E[Q2
θ|θ]]− Eθ[E[Qθ|θ]2]

= E[Q2
θ]− Eθ[E[Qθ|θ]2] (2)

where the last line results from the law of iterated expectations: EB [E[A|B]] = E[A] for two random variables A,B.

Next, we study Var(E[Qθ | θ]):

Varθ(E[Qθ | θ]) = Eθ[E[Qθ | θ]2]− Eθ[E[Qθ | θ]]2

= Eθ[E[Qθ | θ]2]− E[Qθ]
2 (3)

again using iterated expectations.

Summing equations 2 and 3, we obtain:

Eθ[Var(Qθ | θ)] + Varθ(E[Qθ | θ]) = E[Q2
θ]− E[Qθ]

2

= Var(Qθ) (4)

This result is known as the law of total variance (Weiss et al., 2006), which can be interpreted as a decomposition of
epistemic and aleatoric uncertainty (Kendall and Gal, 2017).

We can rewrite the above result within a given world model w, denoting θ as θw. Now conditioning on the world model w,
we have:

Var(Qθw | w) = Eθw [Var(Qθw | θw, w)|w] + Varθw(E[Qθw | θw, w]|w) (5)
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We also write equation 4 such that the conditioning random variable is now w, which induces variation in Qθw if we consider
a counterfactual trajectory distribution. Combined with Equation (5), we obtain:

Var(Qθw) = Ew[Var(Qθw |w)] + Varw (E[Qθw | w])

= Ew

[
Eθw [Var(Qθw | θw, w)|w] + Varθw(E[Qθw | θw, w]|w)

]
+ Varw

(
Eθw [E[Qθw | θw, w]|w]

)
(6)

using iterated expectations. This concludes the proof of Theorem 4.2.

To gain further intuition of this result, consider the case of normal distributions: assume Qθw |{θw, w} is parameterised as
N (µθw , σ

2
θw
). We can rewrite Theorem 4.2 as:

Var(Qπ
θw) = Ew

[
Eθw [σθw |w]2 + Varθw(µθw |w) + Varθw(σθw |w)

]
+ Varw(Eθw [µθw |w]) (7)

The first three terms, calculated by the square average of predicted standard deviations and the variance of the predicted
means and standard deviations, correspond to aleatoric and epistemic uncertainties, whereas the final term, calculated by the
variation over compatible world models, corresponds to delphic uncertainty.

B.3. Asymptotic Interpretation of Theorem 4.2

We consider three extreme cases of Theorem 4.2 to clarify its decomposition. First, we consider the limit of infinite-data
with no confounding (e.g., no dependence on z). In this case, θw and w converge to a single ground-truth. Any remaining
statistical error will come from the intrinsic environment stochasticity or the behavioural policy, and therefore has an
aleatoric nature. Indeed, only the first term in Theorem 4.2 would remain.

Next, consider the setting in which the value is a deterministic mapping of states, with only one compatible world model.
Learning from finite data quantities leads to statistical error in optimising the parameters θw, and is known as epistemic
uncertainty. Indeed, deterministic environments with only one compatible world model will reduce Theorem 4.2 to the
second term.

Finally, we consider the case of infinite data in a deterministic setting. In this case, multiple compatible world models
may exist which induce the same observational distribution (as demonstrated in Section 3). The source of error remaining
is delphic uncertainty, and arises if multiple models assign high likelihood to the observational data, but return different
estimates of the value. In this paper we propose to estimate this final form of uncertainty by learning an ensemble of
compatible world models, in a similar fashion to the bootstrap method for quantifying epistemic uncertainty.

C. Implementation Details
C.1. Statistical & Delphic Sources of Uncertainty

KL

Figure 5: Individual world model architecture w =
(νθ, πb,θ, Q

πb
θ ), under a prior p(z) for the confounder distribution.

Multiple worlds are trained and their variance in estimating Qπ is
taken as delphic uncertainty.

World Model Training. We implement world models
as variational models for estimating the confounder dis-
tribution, jointly with a model for the behaviour policy
πb and for the action-value function Qπb , both dependent
on a z sampled from the posterior. As the environments
we consider have discrete action spaces, we learn the
behaviour policy by minimising its cross-entropy on the
training data, as in behaviour cloning. Training is carried
out for 50 epochs or until loss on the validation subset
(10% of training data) increases for more than 5 consec-
utive epochs. Within a world model w, hyperparameters
{α, β} can be tuned based on prediction performance on
the validation set. Sampling from posterior νθ is achieved
through the reparametrisation trick (Kingma and Welling, 2014).
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Model Qπb corresponds to an on-policy action-value function approximation. We compute targets through Monte Carlo
updates (for the sepsis environment with sparse episodic rewards) or Temporal Difference learning (for the real-world ICU
dataset) based on samples from the observational training data with a discount factor of γ = 0.99. The Q-function is trained
as a classifier over 200 quantiles.

Between world models w, the confounder space dimensionality is randomly varied over |Z| = {1, 2, 4, 8, 16}, and the prior
for p(z) = N (z; 0,Σ2) is randomly varied through the variance for each z-dimension, Σ2

ii = {1.0, 0.1, 0.01}. For the sepsis
simulation, the encoder architecture for the confounder distribution ν(z|τ)) consists of a multi-layer perceptron with hidden
layer dimensions (128, 64, 32) and ReLU activation before the final layer mapping to dimension |Z|. For the real dataset,
the encoder architecture is implemented as a transformer (Vaswani et al., 2017) with 2 layers, 4 heads, and embedding
dimension 32, considering a maximum history length of 10 tokens. The behavioural policy πb(a|s, z) and action-value
function Qπb(s, a, z) are both implemented as multilayer perceptrons with hidden layer dimensions (32, 64, 128) and ReLU
activation.

Uncertainty Estimates. Additional inductive biases can be incorporated to capture epistemic and aleatoric uncertainty
within a single world model w, as these relate to statistical sources of uncertainty. Following prior work (Kendall and
Gal, 2017; Yu et al., 2020), we capture aleatoric uncertainty by modelling a normal probability distribution over outputs
(πb, Q

πb). We then measure epistemic uncertainty within each world model w by training on different data bootstraps,
returning an ensemble of parameters {θ1w, θ2w, . . .} for each w.

Recalling Equation (7), the delphic uncertainty term Varw(Eθ[µθw ]) is estimated by measuring the variance between
predictions µθw (averaged over model parameters θw), across across multiple generative models w. Epistemic uncertainty
can be estimated as the variance of outputs over different model parameters θw, averaged across worlds w ∈ Z . Finally,
aleatoric uncertainty is measured through the fitted probability distribution over model outputs Qπb

θw
, averaged over all θw in

a given world, and over all worlds w ∈ W .

While one could theoretically consider all possible world models in Definition 4.1, we found that, in practice, varying
over a subset of compatible models was enough to show improved offline RL efficiency. The number of world models W
was varied between 5 and 20 for both datasets and was chosen as the smallest number converging to an average delphic
uncertainty comparable to the largest W . An ablation of delphic uncertainty as a function of the number of world models is
given in Appendix E. This resulted in 10 and 15 world models for the sepsis and real-world datasets respectively. Finally,
each world model was trained over 5 different data bootstraps to estimate epistemic uncertainty. Overall, compared to
sensitivity analysis where parameter Γ needs to be fixed through domain expertise (Oprescu et al., 2023), we found delphic
uncertainty to be less dependent on expert input in determining model parameters.

Counterfactual Estimates. When no confounding exists, all models inW should identify similar ν,Qπb and πb (up to
epistemic uncertainty), returning a similar value of Qπ . On the other hand, confounding with ambiguous returns would lead
to different values across world models. Note that while our approach changes the policy term in Pπb

to obtain counterfactual
estimates, other factors in the world model (e.g. νw, Qπb

w ) could be varied to obtain general counterfactual predictions in this
world model. As an example, we also found promising results by measuring delphic uncertainty through variation across w
over the following counterfactual quantity: E(s,a)∈DEz∼pw(z)Eθw [Q

πb

θw
(s, a, z)], where z is sampled from the model prior

pw(z) instead of the learned posterior νθw(z|τ). In this case, the resulting delphic uncertainty estimate, capturing variation
over the counterfactual quantity across world models, becomes independent of a given policy – and dependent on the new
quantity introduced (in the previous example, on prior pw(z)).

C.2. Delphic Offline Reinforcement Learning

We detail our learning procedure in Algorithm 2. We apply our penalty to Conservative Q-Learning (Kumar et al., 2020),
but the Delphic ORL approach could also be implemented within any model-free offline RL algorithm – which already
induces pessimism with respect to epistemic uncertainty. As our base offline RL algorithm is CQL, our regularisation term
Roffline(ϕ) is the CQL penalty: Roffline(ϕ) = α

[
log

∑
ã∈A expQϕ(s, ã)−Qϕ(s, a)

]
. We base our algorithm on an

existing implementation for CQL (Seno and Imai, 2022), which includes additional training details for stability, such as
target networks, double Q-networks and delayed updates (Fujimoto et al., 2018). For architecture details, see the baseline
implementation of CQL in Appendix C.3. As for all baseline algorithms, we train for 100 epochs, using 500 (sepsis dataset)
or 104 (ICU dataset) timesteps per epoch. In practice, the policy π considered for uncertainty estimation and the target
network are updated every 8000 timesteps, to improve stability in training.
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Algorithm 2 Delphic Offline Reinforcement Learning: Bellman Penalty in Offline Q-Learning Algorithm.

Input: Observational dataset D, Model-free Offline RL algorithm, Penalty hyperparameter λ.
Learn a set of compatible world models {Zw, νw, ρ0,w, Pr,w, Tw, πb,w}w∈W that all factorise to Pπb

(τ).
Obtain counterfactual predictions Qπ

w for each w ∈ W .
Define local delphic uncertainty: uπ

d (s, a) = Varw(Qπ
w(s, a)).

Initialise Q-function parameters ϕ.
for each iteration do

Sample (s, a, r, s′) ∼ D.
Compute penalised Bellman target: Q′

target = r + γmaxa′∈A Qϕ(s
′, a′)−λuπ

d (s, a), where π(a|s) =
argmaxaQϕ(s, a).
Perform gradient descent w.r.t. ϕ on

[
Qϕ(s, a)−Q′

target(s, a)
]2

+Roffline(ϕ), where regularisation termRoffline

depends on the choice of offline learning algorithm.
end for

Note that an actor-critic variant of Algorithm 2 is also feasible, setting π in uπ
d to be the actor policy, as well as other offline

learning paradigms inRoffline(ϕ), such as BC regularisation (Fujimoto and Gu, 2021).

Alternative Forms of Pessimism. Alternative forms of pessimism to the Delphic ORL penalty in Algorithm 2 of
Algorithm 2, which substracts a factor of ud from the Q-function Bellman target, can be proposed. In the following, note
that ud can also be independent of π if varying over different factors in Pπb

as detailed above.

• Delphic ORL via Uncertainty Threshold: One approach, inspired by Batch Constrained Q-Learning (Fujimoto et al.,
2019), is to constrain value function updates to only consider actions falling below a certainty uncertainty threshold. For
a tuple (s, a, r, s′), the Q-function Bellman target can be computed as: Q′

target = r + γmaxa′:uπ
d (s

′,a′)<λ Qϕ(s
′, a′),

where λ is a threshold controlling the maximum delphic uncertainty accepted for a given action choice.

• Model-Based Delphic ORL: In model-based methods, a penalty proportional to the uncertainty ud(s, a) can be
substracted from the reward function r(s, a), as in Yu et al. (2020). The effective reward function becomes: r̃(s, a) =
r(s, a)−λud(s, a).

• Delphic ORL via Weighting: The uncertainty measure can also be used to weight samples in the objective function,
prioritising unconfounded states and actions during training:

E(s,a,r)∼D

[
λ

ud(s, a)
L(s, a, r)

]
where L can be the Q-function Bellman update or the supervised learning objective for behaviour cloning.

We compare the performance of different implementations of pessimism on the simulated sepsis environment in Appendix E.

Hyperparameter Tuning. There is no natural validation criterion in Offline RL, and the best approach to choose
hyperparameters in this context remains an open question (Levine et al., 2020). In practice, we run our algorithm for 4
different values of λ ∈ {10−3, 10−2, 10−1, 1} and choose the final policy giving the best off-policy evaluation performance
on the validation set (using the Fitted Q-Evaluation implementation available in the codebase, Le et al. (2019)). As noted
in related works, expert input may be useful at this stage to also determine how strong a penalty again potential hidden
confounding would be desirable or how much confounding could be expected (Rosenbaum, 2002). Other hyperparameters
specific to offline RL algorithms are tuned in the same way and are given in the following section.

C.3. Baseline Methods & Training Details

As baselines compatible with the discrete action spaces of environments studied here, we consider Conservative Q-Learning
(CQL) (Kumar et al., 2020), Batch-Constrained Q-Learning (BCQ) (Fujimoto et al., 2019) and behaviour cloning (BC)
(Bain and Sammut, 1996). All reinforcement learning algorithms and baselines are implemented based on the open access
d3rlpy library (Seno and Imai, 2022). The discount factor used is γ = 0.99, and state and actions are normalised to mean
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0 and variance 1 (Fujimoto and Gu, 2021) for all algorithms. Training is carried out on NVIDIA RTX2080Ti GPUs on our
local cluster, using the Adam optimiser with default learning rate and a batch size of 32. Models are trained for 100 epochs
with 500 (sepsis dataset) or 104 (ICU dataset) timesteps per epoch. Model-specific hyperparameters are tuned as in Delphic
ORL.

Behaviour Cloning (BC). Behaviour cloning (Ross et al., 2011) is a supervised learning model of the behaviour policy,
mapping states to actions observed in the dataset. After considering the following architectures: multi-layer perceptron
(MLP), Long Short Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit (GRU)
(Cho et al., 2014) and Transformer (Vaswani et al., 2017), GRU was found to give the best validation performance on both
the simulated and real datasets. Implementation details for the GRU BC models include two hidden layers of dimension
(64, 32) and ReLU activation. The last layer is passed through a softmax layer to produce action probability outputs, and the
model is trained by minimising action cross-entropy over the observational dataset, with L2 regularisation of weight 0.01.

Conservative Q-Learning (CQL). Discrete CQL (Kumar et al., 2019) is implemented with a penalty hyperparameter α
of 1.0 (sepsis environment) and 0.5 (ICU dataset), tuned over the following values: {0.1, 0.5, 1.0, 2.0, 5.0}. The Q-function
is implemented as a distributional model with a standard MLP architecture (two linear layers with 256 hidden units) and 200
quantile regression outputs.

Batch Constrained Q-Learning (BCQ). Discrete BCQ (Fujimoto et al., 2019) is implemented with a threshold for action
flexibility set to 0.5 for both environments, tuned over the following values: {0.1, 0.3, 0.5, 1.0, 2.0, 5.0}. The Q-function is
implemented as a distributional model with a standard MLP architecture (two linear layers with 256 hidden units) and 200
quantile regression outputs.

D. Experimental Details
D.1. Decision-Making Environments

Sepsis Environment. Introduced by Oberst and Sontag (2019), this environment simulates the trajectory of patients in
the intensive care. Based on the authors’ publicly available code3, our state space S consists of 4-dimensional observation
vectors (measures for heart rate, systolic blood pressure, oxgenation and blood glucose levels) which we normalise to
mean and variance (0, 1). The discrete action space A comprises the combination of three binary treatments (antibiotic,
vasopressor or ventilation administration) for a total dimension of 8. An unobserved binary variable z encodes the diabetic
status of patients, with 20% of trajectories having a positive status. The agent obtains a reward of +1 if the patient reaches a
healthy state (and is thus ready for discharge) and a negative reward of −1 if the patient reaches a death state.

The observational dataset D is generated by rolling out the optimal (diabetes-aware) policy in the environment for 10,000
environment interaction steps, taking a random action with probability ϵ = 0.1 to ensure sufficient state-action coverage for
offline learning. The maximum episode length is set to 20 timesteps. The resulting dataset has a confounding strength of
Γ = 100.

Environment stochasticity can be varied by changing the variance around the originally deterministic reward obtained at the
end of a trajectory, between σ2

r = 0 as in the original environment and σ2
r = 0.4. Datasets of varying confounding strength

Γ ∈ [1, 100] are obtained by setting the behaviour policy for z = 1 as a weighted average of the policies for different z
values: (1− p)πb(z = 0) + pπb(z = 1), where p depends on Γ and ϵ. Environment transition and reward functions and
their dependence on z are kept fixed. Finally, we vary the dimension of the confounder space Z by introducing more binary
indicators with the same effect on the transition dynamics as the diabetes indicator.

Electronic Health Records Dataset. Our real-world data experiment is based on the publicly available HiRID dataset
(Hyland et al., 2020). This dataset counts over 33 thousand patient admissions at an intensive care unit in Bern University
Hospital, Switzerland (Hyland et al., 2020) and can be pre-processed using open access code from the HiRID benchmark
(Yèche et al., 2021). Patient stays were downsampled to hourly measurements and truncated to a maximum length of 20
hours and default training, validation and test sets were used.

We consider the task of optimising fluid and vasopressor administration (A is the combination of two binary choices). The

3https://github.com/clinicalml/gumbel-max-scm

https://github.com/clinicalml/gumbel-max-scm
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Table 2: Offline reinforcement learning task on real-world medical dataset.

Task Circulatory treatment

Action space A = {0, 1}2 Fluids Vasopressors

Organ failure avoided by R Circulatory failure

State space S (selected variables, Heart rate Respiratory rate
|S| = 204) Body temperature Urinary output

Blood pressure GCS score
Cardiac output Central venous pressure
Oxygen saturation Base excess
Lactate Arterial pH
PaO2 Creatinine
Serum sodium Serum potassium
Haemoglobin Glucose
Other lab values Ventilator settings
Antibiotics Steroids
Diuretics Insulin
Cerebrospinal fluid drain Anticoagulants

. . .

Other treatment variables excluded Blood product infusions Vasodilators
Cristalloid infusion Antiarrhymic agents
Colloid infusion Antihypertensive agents

Confounder variables z Age Cardiovascular diagnosis
Weight Pulmonary diagnosis
Gastrointestinal diagnosis Orthopaedic diagnosis
Neurological diagnosis Metabolic/endocrine diagnosis
Hematology diagnosis Trauma diagnosis
Sedation Intoxication
Emergency status Surgical status

reward function is designed to penalise circulatory failure events (r = −1 for all timepoints in the duration of the event) and
to reward timepoints where the patient is not in such a critical state (r = 1, and r = 2 in the timepoint following recovery
from circulatory failure). Circulatory failure events for each patient are labelled following internationally accepted criteria
(Yèche et al., 2021). This short-term reward function is dense, unlike previous RL work on optimising intravenous fluid and
vasopressor administration (Raghu et al., 2017), making off-policy evaluation more reliable (Gottesman et al., 2018).

The state space S consists of all variables in the electronic health records which are not considered treatment for the organ
system considered, based on the variable categorisation released with the dataset (Hyland et al., 2020). This results in a state
space dimensionality of 203. The list of variables excluded for each task in given in Table 2. At each timepoint within a
patient stay, we also compute the Sequential Organ Failure Assessment (SOFA) score (Vincent et al., 1996) which is used to
quantify the severity of a patient’s illness in the intensive care unit. A higher score indicates greater severity of illness.

Selected confounders are obtained by excluding some state dimensions from the observational dataset (up to |Z| = 14).
These variables do not constitute the entire confounder space, as much exogenous, unrecorded information affects patient
evolution and is taken into account in medical treatment decisions (Yang and Lok, 2018). We ignore this in our analysis as
we cannot evaluate with respect to this missing information, but we note that this is precisely the motivation behind our
work.

The confounding strength Γ for each confounding space Z considered was estimated as follows. Each point in the training
dataset was binned into a (s, a, z) category, depending on its discrete action and context values (a, z) and on its SOFA score
as a summary variable for s. We discretise the SOFA score into 5 quantiles. Finally, we compute the mean policy value for
each (s, a, z) bin through πb(a|s, z) = P (a, s, z)/P (s, z), and we take Γ as the ratio maxz,z′ [πb(a|s, z)/πb(a|s, z′)].



Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding

D.2. Analysis Details

In this section, we provide additional details pertaining to the analysis of our experimental results. We measure
and vary confounding strength through the dependence of the behavioural policy on the hidden confounders, Γ =
maxz,z′∈Z [πb(a|s, z)/πb(a|s, z′)] (Rosenbaum, 2002), where z also affects the transition dynamics or reward function. All
results reported in this work include 95% confidence intervals around the mean, computed over ten training runs unless
otherwise stated. Environment returns and off-policy evaluation results are normalised on a scale of 0 to 100. Figure 1
was obtained by varying the dimension on the x-axis, while keeping the other variables fixed to N = 864 trajectories,
confounding strength Γ = 15 and reward function variance σ2

r = 0.0. To generate Figure 10, patients with the relevant
confounder (z) value were binned by disease severity and the probability of vasopressor prescription (top) and the overall
density (bottom) in each group were computed. Figure 10c was then obtained by computing the relative increase in delphic
uncertainty when including the relevant z-dimension to the hidden context space Z (in other words, removing this dimension
from the visible state space).

Off-Policy Evaluation (OPE). Doubly robust methods trade off bias of an approximate reward model and of weighted
methods with the high variance of importance sampling approaches (Jiang and Li, 2016). Assuming z is accessible for each
trajectory at evaluation time to overcome confounding, doubly-robust off-policy evaluation estimates the value of policy π̃
as follows:

VDR(π̃) = E(s,a,r,z)∈D

[
π̃(a|s)

π̂b(a|s, z)
{r −Q(s, a, z)}+Q(s, π̃(s), z)

]
, (8)

where π̂b is a model for the behavioural policy and Q for expected returns under π̃, learned on the dataset with observable z.

Fitted Q-Evaluation is an established value estimation method (Le et al., 2019). The algorithm itera-
tively applies the Bellman equation to compute bootstrapping targets for Q-function updates: Qk+1 ←
argminQ E(s,a,r,z)∈D

[
{r −Q(s, a, z) + γQk(s

′, π̃(s′), z)}2
]

which can be solved as a supervised learning problem. This
results in a learned Q-value for the evaluated policy Qπ̃(s, a, z) which can be used in the weighted doubly-robust estimate
in Equation (8) to provide return estimates in Table 1.

Both the Q-function and the behaviour policy in Equation (8) are parametrised as a fully-connected neural network dimension
with 3 layers of hidden dimension (64, 32, 16) and ReLU activation. The former is trained by minimising the mean squared
error with the Q-function update above, the latter by minimising the cross-entropy with respect to action choices in D.

Human Policy Evaluation. Off-policy evaluation has limitations, being itself prone to its own set of statistical errors and
data-related concerns (Gottesman et al., 2018). We aim to confirm conclusions drawn over OPE returns through a human
expert evaluation of treatment policies.

Synthetic patient trajectories are first generated by randomly sampling from the ICU dataset along each state dimension, with
varying amounts of contextual information as detailed in Table 3. Action choices at the end of the trajectories are computed
for the Delphic ORL, CQL and BC policies, trained on the observational dataset with the same degree of confounding.
Trajectories are selected if they induced a disagreement between these methods, to shed light on potential improvements or
harmful behaviour learned by the offline RL models. Trajectories are then simplified into 12 critical variables (as shown in
Figure 6), and shown to physicians, who are asked to rank two treatment options in terms of expected patient outcomes.
Unknown to the physicians, and in a random order, one of the options was predicted by the Delphic ORL or CQL policy,
and the other by the BC baseline. Overall, we consulted six clinicians with different degrees of expertise in intensive care
(from junior assistant doctors to department heads) from Switzerland and the United Kingdom, collecting their treatment
preferences over 45 such trajectories.

We contacted our local institution’s ethics committee to enquire about the possible necessity of ethics approval for this
experimental framework. We were informed that this was not considered necessary as the experts contribute to the validation
of algorithms and are thus not themselves the subject of the research, and as the undertaking comes with minimal risks
to those experts (anonymous data collection). Best practice was nonetheless observed, by providing participants with an
information and consent letter to inform them of their rights and obligations, and of how their data is collected and used.
Participants were asked to read and sign this letter before collecting their anonymous expert opinion.

Results in Figure 2 report the preference of clinicians for actions from either Delphic ORL or CQL or from behaviour cloning.
We note their overall preference for the Delphic ORL policy in the confounded settings (high Γ). As more contextual
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Γ 1 15 20 100 200

|Z| 0 10 11 13 14

Observed {All 14} {Age, {Age, {Age} ∅
Neuro. diag., Neuro. diag.
Trauma diag., Surgery}
Surgery}

Table 3: Data settings considered during expert clinician evaluation. Physicians are asked to rank action choices based on only state
information (Γ ≈ 200), or with varying amounts of observed contextual information ({All 14} refers to all possible Z variables outlined
in Table 2).

Contextual information:
• Patient age: 30
• Neurological trauma 

patient
• No surgery

At the end of this patient 
trajectory, would you:

A. Administer fluids?
B. Not administer fluids?

Figure 6: Illustration of action ranking by medical experts. Synthetic patient trajectories and a varying degree of contextual information
(varying |Z| and Γ) are given to clinicians, who must rank the treatment options in terms of expected patient outcomes.

information about the patient becomes available, however, and confounding is less marked (small Γ), physicians favour the
behaviour cloning policy – closer to expected clinical practice.

E. Ablations and Additional Results
We study the benefits of our proposed delphic uncertainty estimation method and its application in offline RL. Our work
validates two principal claims: (1) Our delphic uncertainty measure captures bias due to hidden confounders. (2) Algorithm 2
leads to improved offline RL performance in both simulated and real-world confounded decision-making problems, compared
to state-of-the-art but biased approaches.

E.1. Sepsis Environment

Uncertainty Measures. First, we study the relationship between our uncertainty estimates and the decision-making setup.
In Figure 7, we find that epistemic uncertainty reduces with greater data quantities and increases out of the training set
distribution, whereas aleatoric uncertainty increases with environment stochasticity, in agreement with prior work (Kendall
and Gal, 2017). Our delphic uncertainty estimate, on the other hand, cannot be reduced with more data and increases with
greater confounding.

Moreover, we found that delphic uncertainty relates to meaningful regions of state-action space. In Figure 8a, delphic
uncertainty is highest on the sepsis dataset when treatment involves vasopressors. By design of the simulation (Oberst
and Sontag, 2019), this treatment is the only one for which patient evolution is confounded by the hidden diabetic status,
which further supports the conclusion that delphic uncertainty captures model bias due to hidden confounding. In Figure 8b,
we note that a only small number of world models (for sepsis, |W| ≈ 10) is necessary to obtain an estimate of delphic
uncertainty consistent with a large number of world models. This motivates our practical choice to only consider a small
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Figure 7: Uncertainty measures as a function of data properties, averaged over state-action pairs in the sepsis dataset. Epistemic
uncertainty reduces most with more data, aleatoric uncertainty increases most with environment stochasticity (reward variance), and
delphic uncertainty increases most with confounding strength.
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Figure 8: Ablation Study: Delphic Uncertainty. (a) Delphic uncertainty is highest under vasopressors in the sepsis environment,
correctly identifying their confounded effect (Abbreviations: Vaso = Vasopressors, Anti = Antibiotics, Vent = Ventilation). (b) Empirically,
only a small number of compatible worlds (for sepsis, |W| ≈ 10) is necessary to obtain an asymptotic estimate of ud.

set of world models to obtain a reasonable estimate of uncertainty for Delphic ORL, but warrants further theoretical work
establishing guarantees and probability of correctness.
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Figure 9: Performance results as a function of hyperparam-
eter λ on the sepsis environment (Γ = 46).

Offline RL Performance. In Figure 1c, we compare environ-
ment returns obtained through offline RL, imitation learning,
and our proposed approach. Our results reveal the susceptibility
of offline RL to confounding bias: unobserved factors z that
influence both the behaviour policy and transition dynamics
leads to inaccurate value function estimates. Behaviour cloning
appears to be less prone to this bias but still faces challenges
in dealing with missing information in z, evidenced by the per-
formance gap to the online policy in the unconfounded case
(Γ = 1), and with the distribution shift in observed histories
(Ortega et al., 2021). In contrast, our approach to penalising
delphic uncertainty leads to superior performance, especially as
confounding strength increases.

In Figure 9, we study the performance of Delphic ORL as a
function of hyperparameter γ, interpolating between a naive
implementation of Offline RL for very low values of γ (virtually no penalty) and an excessively pessimistic algorithm,
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Algorithm Environment Returns

Online RL 67.8 ± 1.1

BC 38.5 ± 4.5
BCQ 18.5 ± 2.4
CQL 31.1 ± 3.5

Delphic ORL (ud Threshold) 24.6 ± 3.4
Delphic BC (Weighting) 39.6 ± 4.1
Delphic ORL (Weighting) 44.7 ± 4.2
Delphic ORL (Algo. 2) 54.9 ± 4.6

Table 4: Performance of different pessimism methods on the sepsis environment (Γ = 46).
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Figure 10: Delphic uncertainty as a function of (s, z) in real-world medical data, for a = {vasopressors}. In (a, b), we note the
dependence of the behavioural policy πb (top) and/or state distribution P (s) (bottom) on confounders z. In (c), delphic uncertainty
increases most in confounded states and under factors with greater confounding strength, compared to orthopaedic diagnosis (Γ = 3.4).

where the confounding penalty overcomes any possible high-reward behaviour.

Next, Table 4 compares the performance of different approaches to implement pessimism with respect to delphic uncertainty.
We find that our approach proposed in the main paper, based on penalising the target for the Bellman update, performs best
in this experimental setting (sepsis dataset with Γ = 46). Weighting-based approaches also show promising performance
(either matching or improving the performance of BC and CQL, respectively), which may be an avenue for further work and
fine-tuning. Modifying the Bellman target to only include actions below a certain uncertainty threshold was however found
to be excessively pessimistic, and degraded performance compared to the base CQL algorithm. Model-based Offline RL
and Delphic ORL were not included as their performance was never found to improve over a random baseline policy. We
hope this ablation study will motivate further work into the best possible approach to implement pessimism with respect to
delphic uncertainty, to learn offline RL policies that are robust to hidden confounding bias.

E.2. Real-World Clinical Dataset

In this section, we provide additional evaluation metrics and investigations to understand the treatment strategies identified
by the different algorithms considered, and in particular how Delphic ORL determines confounding-robust policies.

Confounding in Medical Dataset. Variables that affect both the probability of treatment assignment and downstream
patient evolution act as confounders over outcome models when excluded from the data. In Figure 10, we highlight how
our delphic uncertainty measure captures confounded state-action pairs in concordance with the introduced confounders.
Delphic uncertainty is generally highest for high disease severity, where important factors such as age or comorbidity may
affect the choice of treatment intensity (Azoulay et al., 2009). Indeed, delphic uncertainty increased to a greater extent under
important confounders (e.g., age or patients’ neurological diagnosis) than less critical factors (e.g., orthopaedic diagnosis).



Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding

Table 5: Difference in action choices from Dtest across different algorithms (%). Our method learns a distinct policy from the doctors’.
Mean and 95% CIs over 10 runs. Highest and overlapping values in bold.

Confounders Z BCQ BC CQL Delphic ORL

All below 32.2 ± 1.3 19.7 ± 1.1 33.4 ± 0.9 35.2 ± 1.5
{age} 31.5 ± 1.3 12.8 ± 0.4 27.3 ± 0.3 32.3 ± 0.5
{neuro. diag.} 31.1 ± 1.3 16.3 ± 1.0 34.3 ± 1.3 30.6 ± 1.1
{gastro. diag.} 27.1 ± 1.1 14.3 ± 0.9 28.9 ± 1.1 29.4 ± 1.3
{trauma} 30.1 ± 1.5 12.8 ± 0.4 24.2 ± 0.4 22.2 ± 0.7
{cardio. diag.} 28.7 ± 1.3 18.8 ± 1.2 36.2 ± 1.3 29.6 ± 1.6
{endo. diag.} 27.4 ± 1.3 13.5 ± 0.8 27.3 ± 0.9 23.1 ± 0.9
{hemato. diag.} 30.1 ± 1.5 12.4 ± 0.8 24.4 ± 1.1 23.6 ± 0.8
{weight} 28.9 ± 1.3 13.2 ± 0.4 25.4 ± 0.6 23.6 ± 1.2
{sedation} 30.5 ± 1.5 14.5 ± 0.7 25.1 ± 1.1 25.8 ± 1.0
{resp. diag.} 27.7 ± 1.3 14.2 ± 0.6 28.5 ± 1.1 25.2 ± 1.2
{intoxication} 25.7 ± 1.1 12.6 ± 0.6 26.3 ± 0.6 23.1 ± 0.9
{surgical status} 27.3 ± 1.3 14.3 ± 0.6 23.9 ± 0.8 22.1 ± 1.2
{ortho. diag.} 25.6 ± 1.1 12.3 ± 0.6 24.1 ± 1.1 22.3 ± 1.0
{sepsis} 26.1 ± 1.1 15.6 ± 0.8 23.5 ± 0.8 21.9 ± 1.2

∅ 25.3 ± 0.9 12.2 ± 0.4 23.1 ± 0.8 21.7 ± 0.9

Confounding-Averse Policies. Table 1 shows our approach maintains improved performance even as the confounding
level increases, while offline RL methods suffer from bias and yield suboptimal policies. As an ablation, we also studied
the discrepancy of our trained policy with that in the data. Table 5 provides a quantitative analysis of the disparities in
action choices between different algorithms and the doctors’ policy. As expected, behaviour cloning exhibits the closest
resemblance to the doctors’ treatment policy, which aligns with the characteristics of observational datasets. However, our
proposed method outperforms behaviour cloning in terms of learning a distinct policy that deviates from the doctors’ actions.
These findings highlight the unique capabilities of our method in capturing important features and patterns beyond the
direct imitation of doctors, enabling the model to make informed decisions that may differ from the observational data and
potentially lead to improved treatment outcomes.

Following published recommendations on evaluating RL models in observational settings (Gottesman et al., 2018), we also
analyse where policies differ most from the action choices in the observational dataset, and find that the policy learned by
Delphic ORL diverges most at high disease severity (SOFA scores ≈ 15-20). In these cases, our policy appears to prescribe
less fluids and vasopressors than in the data – which may be reasonable if unsure about possible adverse effects of an
intervention. This relates to a comment received from one of the expert clinicians interviewed: “If I lack information about a
patient [e.g. age, medical background and deliberately excluded variables], I would probably be more conservative with
my treatment”. Finally, we note a closer match to actions in the observational data at very high disease severity (SOFA
score > 20), where negative rewards for not taking a therapeutic action outweighs potential confounding bias. Beyond this
analysis, further insights could be gained by comparing interpretable representations of the trained policies (Pace et al.,
2022), but we leave this as further work.
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