
ADJOINED NETWORKS: A TRAINING PARADIGM WITH
APPLICATIONS TO NETWORK COMPRESSION

ABSTRACT

Compressing deep neural networks while maintaining accuracy is important when
we want to deploy large, powerful models in production and/or edge devices. One
common technique used to achieve this goal is knowledge distillation. Typically,
the output of a static pre-defined teacher (a large base network) is used as soft
labels to train and transfer information to a student (or smaller) network. In this
paper, we introduce Adjoined Networks, or AN, a learning paradigm that trains
both the original base network and the smaller compressed network together. In
our training approach, the parameters of the smaller network are shared across
both the base and the compressed networks. Using our training paradigm, we can
simultaneously compress (the student network) and regularize (the teacher network)
any architecture. In this paper, we focus on popular CNN-based architectures used
for computer vision tasks. We conduct an extensive experimental evaluation of
our training paradigm on various large-scale datasets. Using ResNet-50 as the
base network, AN achieves 71.8% top-1 accuracy with only 1.8M parameters
and 1.6 GFLOPs on the ImageNet data-set. We further propose Differentiable
Adjoined Networks (DANs), a training paradigm that augments AN by using neural
architecture search to jointly learn both the width and the weights for each layer of
the smaller network. DAN achieves ResNet-50 level accuracy on ImageNet with
3.8⇥ fewer parameters and 2.2⇥ fewer FLOPs.

1 INTRODUCTION

Figure 1: Top-1 accuracy of various structured
pruning methods (by compressing the ResNet-
50 or ResNet-100 architecture) on the ImageNet
dataset plotted against the number of parameters in
the model. Our methods, Adjoined Networks (AN),
and Differentiable Adjoined Networks (DANs)
achieve similar accuracy as compared against cur-
rent SOTA pruning methods but with fewer (in
many cases 2x fewer) parameters.

Deep Neural Networks (DNNs) have achieved
state-of-the-art performance on many tasks such
as classification, object detection and image seg-
mentation. However, the large number of pa-
rameters often required to achieve the perfor-
mance makes it difficult to deploy them at the
edge (like on mobile phones, IoT and embed-
ded devices, etc). Unlike cloud servers, these
edge devices are constrained in terms of mem-
ory, compute, and energy resources. A large
network performs a lot of computations, con-
sumes more energy, and is difficult to transport
and update. A large network also has a high pre-
diction time per image. This is a constraint when
real-time inference is needed. Thus, compress-
ing neural networks while maintaining accuracy
and improving inference time has received sig-
nificant attention in the last few years. Popu-
lar techniques for network compression include
pruning and knowledge distillation.

Pruning methods remove parameters (or
weights) of overparameterized DNNs based on
some pre-defined criteria. For example, Han et al. (2015) removes weights whose absolute value
is smaller than a threshold. While weight pruning methods are successful at reducing the number
of parameters of the network, they often work by creating spares tensors that may require special

1



Input

Filters

p

q

Figure 2: Training paradigm based on adjoined networks. The original and the compressed version
of the network are trained together with the parameters of the smaller network shared across both.
The network outputs two probability vectors p (original network) and q (smaller network).

hardware Han et al. (2016) or special software Park et al. (2017) to provide inference time speed-ups.
These methods are also known as unstructured pruning and has been extensively studied in Han
et al. (2015); Zhu & Gupta (2017); Gale et al. (2019); Kusupati et al. (2020); Evci et al. (2021).
To overcome this limitation, channel pruning Liu et al. (2017) and filter pruning Li et al. (2016)
techniques are used. These structured pruning methods work by removing entire convolution chan-
nels or sometimes even filters based on some pre-defined criteria and can often provide significant
improvement in inference times. In this paper, we show that our algorithm, Adjoined Networks or
AN, achieves accuracy similar to the current state-of-the-art structured pruning methods but uses a
significantly lower number of parameters and FLOPs (Fig 1).

The AN training paradigm works as follows. A given input image X is processed by two networks,
the larger network (or the base network) and the smaller network (or the compressed network). The
base network outputs a probability vector p and the compressed network outputs a probability vector
q. This setup is similar to the student-teacher training used in Knowledge Distillation Hinton et al.
(2015) where the base network (or the teacher) is used to train the compressed network (or the student).
However, there are two very important distinctions. (1) In knowledge distillation, the parameters
of the base (or larger or teacher) network are fixed and the output of the base network is used as a
"soft label" to train the compressed (or smaller or student) network. In the paradigm of the adjoined
network, both the base and the compressed network are trained together. The output of the base
network influences the compressed network and vice-versa. (2) The parameters of the compressed
network are shared across both the smaller and larger networks (Fig. 2). We train the two networks
using a novel time-dependent loss function called adjoined loss. An additional benefit of training
the two networks together is that the smaller network can have a regularizing effect on the larger
network. In our experiments (Section 6), we see that on many datasets and for many architectures,
the base network trained in the adjoined fashion has greater prediction accuracy than the standard
situation when the base network was trained alone. We also provide theoretical justification for this
observation in the supplementary materials. The details of our design, the loss function and how it
supports fast inference are discussed in Section 3.

As discussed in the previous paragraph, in the AN training paradigm, all the parameters of the
smaller network are shared across both the smaller and larger network. Our compression architecture
design involves selecting and tuning a hyper-parameter ↵, the size (or the number of parameters in
each convolution layer) of the smaller network as compared against the larger base network. In our
experiments (Section 6) with the AN paradigm, we found that choosing a value of ↵ = 2 or 4 as a
global (same across all the layers of the network) constant typically worked well. To get more boost
in compression performance, we propose the framework of Differentiable Adjoined Network (DAN).
DAN uses techniques from Neural Architecture Search (NAS) to further optimize and choose the
right value of ↵ at each layer of our compressed model. The details of DAN are discussed in Section
5.

Below are the main contributions of this work.

1. We propose a novel training paradigm based on Adjoined Networks or AN, that can compress
any CNN based neural architecture. This involves adjoined training where the original network and
the smaller network are trained together. This has twin benefits of compression and regularization
whereby the larger network (or teacher) transfers information and helps compress the smaller network
while the smaller network helps regularize the larger teacher network.

2



2. We further propose Differentiable Adjoined Networks, or DAN, that adjointly learns some of the
hyper-parameters of the smaller network including the number of filters in each layer of the smaller
network.
3. We conducted an exhaustive experimental evaluation of our method and compared it against
several state-of-the-art methods on datasets such as ImageNet Russakovsky et al. (2015), CIFAR-10
and CIFAR-100 Krizhevsky et al. (2009). We consider different architectures such as ResNet-18,-
50,-20,-32,-44,-56,-110 and DenseNet-121. On ImageNet, using adjoined training paradigm, we can
compress ResNet-50 by 4⇥ with 2⇥ FLOPs reduction while achieving 75.1% accuracy. Moreover,
the base network gains 0.7% in accuracy when compared against the same network trained in the
standard (non-adjoined) fashion. We further increase the accuracy of the compressed model to 75.7%
by augmenting our approach with architecture search (DAN), clearly showing that it is better to
train the networks together. Furthermore, we compare our approach against several state-of-the-art
knowledge distillation methods on CIFAR-10 on various architectures like Resnet-20,-32,-44,-56,
and -110. On each of these architectures the student trained using the adjoined method outperforms
those trained using other methods (Table 2).

The paper is organized as follows. In Section 2, we discuss some of the other methods that are related
to the discussions in the paper. In Section 3, we provide details of the architecture for adjoined
networks and the loss function. In Section 4, we show how training both the base and compressed
network together provides compression (for the smaller network) as well as regularization (for
the larger network). In Section 5, we combine AN with neural architecture search and introduce
Differentiable Adjoined Networks (or DANs). In Section A, we provide strong theoretical guarantees
on the regularization behaviour of adjoined training. In Section 6, we provide the details of our
experimental results.

2 RELATED WORK

In this section, we discuss various techniques used to design efficient neural networks in terms of size
and FLOPs. We also compare our approach to other similar approaches and ideas in the literature.

Knowledge Distillation is the transfer of knowledge from a cumbersome model to a small model.
Hinton et al. (2015) proposed teacher student model, where soft targets from the teacher are used
to train the student model. This forces the student to generalize in the same manner as the teacher.
Various knowledge transfer methods have been proposed recently. Romero et al. (2015) used
intermediate layer’s information from teacher model to train thinner and deeper student model. Peng
et al. (2019) proposes to use instance level correlation congruence instead of just using instance
congruence between the teacher and student. Ahn et al. (2019) tried to maximize the mutual
information between teacher and student models using variational information maximization. Park
et al. (2019) aims at transferring structural knowledge from teacher to student. Kim et al. (2018) argues
that directly transferring a teacher’s knowledge to a student is difficult due to inherent differences in
structure, layers, channels, etc., therefore, they paraphrase the output of the teacher in an unsupervised
manner making it easier for the student to understand. Most of these methods use a trained teacher
model to train a student model. In contrast in this work, we train both the teacher and the student
together from scratch. In recent work, Zhang et al. (2018), rather than using a teacher to train a
student, they let a cohort of students train together using a distillation loss function. In this paper, we
consider a teacher and a student together rather than using a pre-trained teacher. We also use a novel
time-dependent loss function. Moreover, we also provide theoretical guarantees on the efficacy of our
approach. We have compared our AN with various knowledge distillation methods in the experiments
section.

Pruning techniques aim to achieve network compression by removing parameters or weights from
a network while still maintaining accuracy. These techniques can be broadly classified into two
categories; unstructured and structured. Unstructured pruning methods are generic and do not
take network architecture (channel, filters) into account. These methods induce sparsity based on
some pre-defined criteria and often achieve a state-of-the-art reduction in the number of parameters.
However, one drawback of these methods is that they are often unable to provide inference time
speed-ups on commodity hardware due to their unstructured nature. Unstructured sparsity has been
extensively studied in Han et al. (2015); Zhu & Gupta (2017); Gale et al. (2019); Kusupati et al.
(2020); Evci et al. (2021). Structured pruning aims to address the issue of inference time speed-up

3



by taking network architecture into account. As an example, for CNN architectures, these methods
try to remove entire channels or filters, or blocks. This ensures that the reduction in the number of
parameters also translates to a reduction in inference time on commodity hardware. For example,
ABCPruner Lin et al. (2020b) decides the convolution filters to be removed in each layer using an
artificial bee colony algorithm. Lin et al. (2020a) prunes filters with low-rank feature maps. You et al.
(2019) uses Taylor expansion to estimate the change in the loss function by removing a particular
filter, and finally removes the filters with max change. The AN compression technique proposed
in this paper can also be thought of as a structured pruning method where the architecture choice
at the start of training fixes the convolution filters to be pruned and the amount of pruning at each
layer. Another related work is of Slimmable Networks Yu et al. (2018a). Here different networks (or
architectures) are switched on one at a time and trained using the standard cross-entropy loss function.
By contrast, in this work, both the networks are trained together at the same time using a novel loss
function (adjoined-loss). We have compared our work with Slimmable Networks in Table 1.

Neural Architecture Search (NAS) is a technique that automatically designs neural architecture
without human intervention. The best architecture could be found by training all architectures in
the given search space from scratch to convergence but this is computationally impractical. Earlier
studies in NAS were based on RL Zoph & Le (2017); Tan et al. (2019) and EA Real et al. (2017),
however, they required lots of computation resources. Most recent studies Liu et al. (2019a); Cai et al.
(2019); Wu et al. (2019) encode architectures as a weight sharing a super-net and optimize the weights
using gradient descent. A recent study Meta Pruning Liu et al. (2019b) searches over the number of
channels in each layer. It generates weights for all candidates and then selects the architecture with
the highest validation accuracy. A lot of these techniques focus on designing compact architecture
from scratch. In this paper, we use architecture search to help guide the choice of architecture for
compression, that is, what fraction of filters should be removed from each layer?

Small architectures - Another research direction that is orthogonal to ours is to design smaller
architectures that can be deployed on edge devices, such as SqueezeNet Iandola et al. (2016),
MobileNet Sandler et al. (2018) and EfficientNet Tan & Le (2019). In this paper, our focus is
to compress existing architectures while ensuring inference time speedups as well as maintaining
prediction accuracy.

3 ADJOINED NETWORKS

In our training paradigm, the original (larger) and the smaller network are trained together. The
motivation for this kind of training comes from the principle that good teachers are lifelong learners.
Hence, the larger network which serves as a teacher for the smaller network should not be frozen
(as in standard teacher-student architecture designs Hinton et al. (2015)). Rather both should learn
together in a "combined learning environment", that is, adjoined networks. By learning together both
the networks can be better together.

We are now ready to describe our approach and discuss the design of adjoined networks. Before
that, let’s take a re-look at the standard convolution operator. Let x 2 Rh⇥w⇥cin be the input to a
convolution layer with weights W 2 Rcout⇥k⇥k⇥cin where cin, cout denotes the number of input
and output channels, k the kernel size and h,w the height and width of the image. Then, the output
of the convolution z is given by

z = conv(x,W)

In the adjoined paradigm, a convolution layer with weight matrix W and a binary mask matrix
M 2 {0, 1}cout⇥k⇥k⇥cin receives two inputs x1 and x2 of size h⇥w⇥ cin and outputs two vectors
z1 and z2 as defined below.

z1 = conv(x1,W) z2 = conv(x2,W ⇤M) (1)

Here M is of the same shape as W and ⇤ represents an element-wise multiplication. Note that the
parameters of the matrix M are fixed before training and not learned. The vector x1 represents an
input to the original (bigger) network while the vector x2 is the input to the smaller, compressed
network. For the first convolution layer of the network x1 = x2 but the two vectors are not necessarily
equal for the deeper convolution layers (Fig. 2). The mask matrix M serves to zero-out some of
the parameters of the convolution layer thereby enabling network compression. In this paper, we

4



Input

Filters

Output
Input

Filters

Output
Large

Output

Small

Input

Filters

⇥ g1

+

⇥ g2

+

⇥ g3

+

⇥ g4

Output

Figure 3: (Left) Standard layer of CNN. (Center) Layer in Adjoined Network. (Right) Layer in DAN.

consider matrices M of the following form.

M := a↵ = matrix such that the first ↵ filters are all 1 and the rest 0 (2)

In Section 6, we run experiments with M := a↵ for ↵ 2 {2, 4, 8, 16}. Putting this all together, we
see that any CNN-based architecture can be converted and trained in an adjoined fashion by replacing
the standard convolution operation by the adjoined convolution operation (Eqn. 1). Since the first
layer receives a single input (Fig. 2), two copies are created which are passed to the adjoined network.
The network finally gives two outputs p corresponding to the original (bigger or unmasked) network
and q corresponding to the smaller (compressed) network, where each convolution operation is done
using a subset of the parameters described by the mask matrix M (or M↵). We train the network
using a novel time-dependent loss function which forces p and q to be close to one another (Defn. 1).

4 REGULARIZATION AND COMPRESSION

In the previous section, we looked at the design on adjoined networks. For one input (X,y) 2
Rh⇥w⇥cin ⇥ [0, 1]nc , the network outputs two vectors p and q 2 [0, 1]nc where nc denotes the
number of classes and cin denotes the number of input channels (equals 3 for RGB images).
Definition 1 (Adjoined loss). Let y be the ground-truth one-hot encoded vector and p and q be
output probabilities by the adjoined network. Then

L(y, p, q) = �y log p + �(t)KL(p, q) (3)

where KL(p, q) =
P

i
pi log

pi

qi
is the measure of difference between two probability measures

Kullback & Leibler (1951). The regularization term � : [0, 1] ! R is a function which changes with
the number of epochs during training. Here t = current epoch

Total number of epochs equals zero at the start of training
and equals one at the end.

In our definition of the loss function, the first term is the standard cross-entropy loss function which
trains the bigger network. To train the smaller network, we use the predictions from the bigger
network as a soft ground-truth signal. We use KL-divergence to measure how far the output of
the smaller network is from the bigger network. This also has a regularizing effect as it forces
the network to learn from a smaller set of parameters. Note that, in our implementations, we use
KL(p, q) =

P
pi log

pi+✏

qi+✏
to avoid rounding and division by zero errors where ✏ = 10

�6.

At the start of training, p is not a reliable indicator of the ground-truth labels. To compensate for this,
the regularization term � changes with time. In our experiments, we used �(t) = min{4t2, 1}. Thus,
the contribution of the second term in the loss is zero at the beginning and steadily grows to one at
50% training. We experiment with different choices of the regularization function � the results of
which are in the supplementary .

5 DAN: DIFFERENTIABLE ADJOINED NETWORKS

In Sections 3 and 4, we described the framework of adjoined networks and the corresponding loss
function. An important parameter in the design of these networks is the choice of parameter ↵.
Currently, the choice of ↵ is global, that is, we choose the same value of ↵ for all the layers of our
network. However, choosing ↵ independently for each layer would add more flexibility and possibly

5



improve performance of the current framework. To solve this problem, we propose the framework of
Differentiable Adjoined Networks (or DANs).

Consider the following example of a convolution network with 1 layer with the following choices for
↵ 2 A = {1, 2, 4} that outputs a vector p↵. Finding the optimal network structure is equivalent to
solving argmax

↵2A
L(p↵) where L is some loss function. For a one layer network, we can solve

this problem by computing L(p↵) for all the different values and then computing the max. However,
this becomes intractable as the number of layers increase; for a 50-layer network, the search space
has size 3

50.
Definition 2 (Gumbel-softmax (Wan et al. (2020))). Given vector v = [v1, . . . , vn] and a constant ⌧ .
The gumbel-softmax function is defined as g(v) = [g1, . . . , gn] where

gi =
exp[(vi + ✏i)/⌧ ]P
i
exp[(vi + ✏i)/⌧ ]

(4)

and ✏i ⇠ N(0, 1) is uniform random noise (also referred to as gumbel noise). Note that as ⌧ ! 0,
gumbel-softmax tends to the argmax function.

Gumbel-softmax is a “re-parametrization trick" that can be viewed as a differentiable approximation
to the argmax function. Returning back to the one-layer example, the optimization objective now
becomes

P
↵2A

g↵L(p↵) where g↵ represents the gumbel weights corresponding to the particular
↵. This objective is now differentiable and can be solved using standard techniques like back-
propagation.

With this insight, we propose the DAN architecture (Fig 3) where the standard convolution operation
is replaced by a DAN convolution operation. As before, let x 2 Rh⇥w⇥cin be the input to the DAN
convolution layer with weights W 2 Rcout⇥k⇥k⇥cin where cin, cout denotes the number of input and
output channels, k the kernel size and h,w the height and width of the image. Let A = {↵1, . . . ,↵m}
be the range of values of ↵ for the layer. Then, the output z of the DAN convolution layer is given by

z(⌘) =
mX

i=1

g(⌘)i zi (5)

where ⌘ = [⌘1, . . . , ⌘m] denotes the mixing weights corresponding to the different ↵’s, g is the
gumbel-softmax function and zi = conv(x,W ⇤Mi) where Mi is the mask matrix corresponding to
↵i (as in Eqn. 2). Thus, each layer of the DAN convolution layer combines its outputs according to
the gumbel weights. Choosing the hyper-parameter ↵ now corresponds to learning the values of the
parameter ⌘ for each layer of our DAN conv network. Note that as before, our network outputs two
probability vectors p and q. But these vectors now also depend upon the weights vector ⌘ at each
layer. We are now ready to define our main loss function.
Definition 3 (Differentiable Adjoined loss). Let the search space be A = {↵1, . . . ,↵m}Let y be the
ground-truth one-hot encoded vector and p and q be output probabilities of the adjoined network.
Then

L(y, p, q) = �y log p+ �(t)(KL(p, q) + �nf (H)) (6)
where KL(p, q),�(t) are the same as used in Eqn. 1. H = [⌘1, . . . , ⌘l] where ⌘i is the mixing weight
vector for the ith convolution layer. nf represents the gumbel weighted FLOPs or floating point
operations for the given network. That is,

nf (H) =

X

⌘i2H

mX

j=1

g(⌘i)j FLOPs(i,↵j)

where flops(i,↵j) measures the number of floating point operations at the ith convolution layer
corresponding to the hyper-parameter ↵j . Also, note that � in Eqn. 6 is a normalization constant.

Differentiable Adjoined Loss is similar to Adjoined Loss defined in Eqn. 3. However, the key
difference is the nf term. First note that, larger architectures tend to have higher accuracies. Hence,
DAN learning tends to prefer a network with low alpha (large network) against that with high alpha
(small network). Thus, the nf term acts as a regularization penalty against DAN preferring large
architectures. Another point to note is that for a large network say Resnet-50, the number of flops
corresponding to any setting of the mixing weights can be very large. Gamma normalizes it so that
all the terms in the loss function are in the same scale.

6



6 EXPERIMENTS

We are now ready to describe our experiments in detail. We run experiments on three different
datasets. (1) ImageNet - an image classification dataset Russakovsky et al. (2015) with 1000 classes
and about 1.2M images . (2) CIFAR-10 - a collection of 60k images in 10 classes. (3) CIFAR-100 -
same as CIFAR-10 but with 100 classes Krizhevsky et al. (2009). For each of these datasets, we use
standard data augmentation techniques like random-resize cropping, random flipping etc. The details
are provided in the supplementary .

We train different architectures such as ResNet-100, ResNet-50, ResNet-18, ResNet-110, ResNet-56,
DenseNet-121 on all of the above datasets. The detailed architecture diagram can be found in
supplementary . On each dataset, we first train these architectures in the standard non-adjoined
fashion using the cross-entropy loss function. We will refer to it by the name Standard. Next, we train
the adjoined network, obtained by replacing the standard convolution operation with the adjoined
convolution operation, using the adjoined loss function. In the second step, we obtain two different
networks. In this section, we refer to them by AN-X-Full and the AN-X-Small networks where X
represents the number of layers. For example, AN-50-Full, AN-50-Small represents larger and smaller
networks obtained on adjoinedly training ResNet-50. AN-121-Full, AN-121-Small represents models
obtained on adjoinedly training DenseNet-121. We compare the performance of the AN-X-Full and
AN-X-Small networks against the standard network. One point to note is that we do not replace
the convolutions in the stem layers but only those in the residual blocks. Since most of the weights
are in the later layers, this leads to significant space and time savings while retaining competitive
accuracy. DAN describes the performace of adjoined network on architectures found by Differentiable
Adjoined Network. DAN-50 has the same number of blocks as ResNet-50 whereas DAN-100 has
twice the number of blocks of ResNet-50. More details regarding the architecture can be found in the
supplementary .

We ran our experiments on GPU enabled machine using Pytorch, hyperparameters for the experi-
ments are mentioned in the supplementary material. We have also uploaded the source code in the
supplementary material along with a readme file.

In Section 6.1, we compare our compression results against other structured pruning methods. In
Section 6.2, we compare AN with various types of knowledge distillation methods. In Section 6.3,
we describe our results for compression and performance of architectures found by DAN. In Section
6.4, we show the strong regularizing effect of AN training. The detailed results are included in the
supplementary .
6.1 COMPARISON AGAINST OTHER STRUCTURED PRUNING WORKS

Model Compression Results
Method # Params GFLOPs Accuracy Reference
ABCPruner-0.8 11.75 1.89 73.86 Lin et al. (2020b)
ABCPruner-0.7 11.24 1.8 73.52 Lin et al. (2020b)
GBN-50 11.91 1.9 75.18 You et al. (2019)
GBN-60 17.6 2.43 76.19 You et al. (2019)
DCP 12.3 1.82 74.95 Zhuang et al. (2018)
HRank 16.15 2.3 74.98 Lin et al. (2020a)
HRank 13.77 1.55 71.98 Lin et al. (2020a)
HRank 8.27 0.98 69.1 Lin et al. (2020a)
MetaPruning 19.1 2 75.4 Liu et al. (2019b)
MetaPruning 12.7 1 73.4 Liu et al. (2019b)
Slimmable Net 19.2 2.3 74.9 Yu et al. (2018a)
Slimmable Net 12.8 1.1 72.1 Yu et al. (2018a)
AN-50-Small a4 (our) 2.2 1.6 71.82
DAN-50 (our) 3.49 1.7 73.33
DAN-100 (our) 6.58 2.15 75.43
AN-50-Small a2 (our) 7.14 2.2 75.1

Table 1: The table shows the performance of various structured pruning methods when trained on the
ImageNet dataset. a↵ in AN-50-Small denotes the mask matrix as defined in Eqn. 2.
Table 1 and Figure 1 compare the performance of various structured compression schemes on the
ImageNet dataset for the ResNet-50 architecture. Note, these methods provide inference speed-
up without special hardware or software. We see that the adjoined training regime can achieve
compression that is significantly better than other methods considered in the literature. In Figure 1,
models trained using our paradigm are explicitly on the left side of the graph while other methods
are clustered on to the right side. Other methods obtain compression ratios in the range 2 � 3⇥,
compared to which our method achieves up to 12⇥ compression in size. Similarly, GFLOPS for our

7



Figure 4: Top-1% accuracy of various pruning methods (by compressing ResNet-56 architecture)
on CIFAR-10 dataset plotted against number of parameters (Left) and FLOPs (Right). Pruning
methods - Gal(Lin et al. (2019)), Hrank(Lin et al. (2020a)) ,He at al(Lin et al. (2019)), ENC(Kim
et al. (2019)),NISP(Yu et al. (2018b)), L1(Li et al. (2017)), ABC-Prunner(Lin et al. (2020b)),
CaP(Minnehan & Savakis (2019)), KSE(Li et al. (2019)), FPGM(He et al. (2019)), GBN(You et al.
(2019)) and Hinge(Li et al. (2020))

method is amongst the highest as compared to the other state-of-the-art works, while suffering a small
accuracy drop as compared against the base ResNet-50 model. Figure 8 compares the performance
of AN against various pruning methods on CIFAR-10 dataset for ResNet-56 architecture. Models
trained using AN paradigm achieve highest accuracy with fewest number of parameters on CIFAR-10.
AN exceeds the next best model (Hinge Li et al. (2020)) by 0.8% while being smaller than 9 of the 11
models. The smallest AN model achieves accuracy similar to hinge but with 35% fewer parameter.
We see similar results for FLOPs. More comparisons on ResNet-110 and detailed results can be
found in the supplementary .

6.2 COMPARISON AGAINST OTHER KNOWLEDGE DISTILLATION WORKS

Knowledge Distillation Variants
Method AN-110-Small AN-56-Small AN-44-Small AN-32-Small AN-20-Small Reference
RKD 94.11 93.72 93.41 92.5 92.15 Park et al. (2019)
VID 93.6 93.23 92.86 92.41 91.6 Ahn et al. (2019)
FT 93.76 93.33 93.17 92.49 91.2 Kim et al. (2018)
CC 93.6 93.22 92.95 92.46 91.5 Peng et al. (2019)
DML 93.5 93.3 93.2 92.59 91.35 Zhang et al. (2018)
KR 94.08 93.85 93.51 93.45 92.3 Pengguang Chen & Jia (2021)
KDCR 94.26 93.7 93.4 92.9 91.85 Guo et al. (2020)
AN 95 94.49 94.01 93.45 92.45 Our

Table 2: AN compared to various state-of-the-art KD methods on CIFAR-10. All AN-X-Small
models refers to models with ↵ = 2.

In this section, we discuss the effectiveness of weight sharing and training two networks together.
We compare AN against the various state-of-the-art variants of knowledge distillation. In Table 2,
we compare accuracy (Top-1%) of AN-X-Small against the same architecture trained using various
KD variants on CIFAR-10 dataset. The corresponding pre-trained ResNet architecture was used
as the teacher model for KD variants. Teacher models were trained on CIFAR-10 using standard
training paradigm. We see that all models trained using AN paradigm significantly outperforms the
models trained using various teacher-student paradigm showing the effectiveness of training a subset
of weights together.

8



6.3 ABLATION STUDY: COMPRESSION

Compression using AN paradigm
Network #Params GFLOPs Accuracy

CIFAR-10
ResNet-20 0.27 40 92.5
AN-20-Small a2 0.07 21 92.45
ResNet-32 0.46 69 93.1
AN-32-Small a2 0.13 35 93.45
ResNet-44 0.65 97 93.5
AN-44-Small a2 0.19 49 94.01
ResNet-56 0.84 127 93.9
AN-56-Small a2 0.24 63 94.49
ResNet-110 1.72 253 94.3
AN-110-Small a2 0.49 127 95.0

ImageNet
ResNet-50 25.5 4774 76.1
AN-50-Small a2 7.14 2202 75.1
AN-50-Small a4 2.2 1619 71.84
DAN-50 3.49 1745 73.33
ResNet-100 46.99 8473 77.3
AN-100-Small a4 3.86 2681 74.51
DAN-100 6.58 2153 75.43

Table 3: a↵ denote the masking matrix (defined
in Eqn. 2). Detailed results can be found in the
supplementary .

AN-Full vs Standard
Network ↵ AN-Full Standard

CIFAR-10
ResNet-20 a2 93.51 92.5
ResNet-32 a2 94.39 93.1
ResNet-44 a2 94.64 93.5
ResNet-56 a2 95.01 93.9
ResNet-110 a2 95.4 94.3

CIFAR-100
ResNet-50 a8 77.36 76.8
ResNet-18 a2 74.8 74.3
DenseNet-121 a4 80.8 79.0

ImageNet
ResNet-50 a2 76.87 76.1
ResNet-50 a4 75.84 76.1

Table 4: a↵ is same as in Table 3. Detailed results
can be found in the supplementary .

Table 3 compares the performance (top 1% accuracy) of the models compressed using Adjoined
training paradigm against the performance of standard network. For AN, we use the a↵ as the
masking matrix (defined in Eqn. 2). The mask is such that the last (1� 1

↵
) filters are zero. Hence,

these can be pruned away to support fast inference. For CIFAR-10, 4 out of 5 models compressed
using AN paradigm exceed it’s base architecture by 0.5%-0.8%. These models achieves 3.5-4⇥
reduction in parameters and 2⇥ reduction in FLOPs.

We also observe that ResNet-50 is a bigger network and can be compressed more. Also, different
datasets can be compressed by different amounts. For example, on CIFAR-100 dataset, the network
can be compressed by factors ⇠ 35⇥ while for other datasets it ranges from 2⇥ to 12⇥. DAN is able
to search compressed architecture with minimum loss in accuracy as compared to base architecture.
For ImageNet, DAN architectures were searched on Imagewoof (a proxy dataset with 10 different
dog breeds from ImageNet Howard (2019); Shleifer & Prokop (2019)). � as defined in Defn. 3 is
e�13, e�19 for DAN-50 and DAN-100 respectively. During architecture search, temperature ⌧ in
gumbel softmax was initialized to 15 and exponentially annealed by e�0.045 every epoch.

6.4 ABLATION STUDY: REGULARIZATION

Table 4 compares the performance of the base network trained in adjoined fashion (AN-Full) to
the same network trained in Standard fashion. We see a consistent trend that the network trained
adjoinedly outperforms the same network trained in the standard way. We see maximum gains on
CIFAR-100, exceeding accuracy by as much as 1.8%. Even on ImageNet, we see a gain of about
0.77%.

7 CONCLUSION

In this work, we introduced the paradigm of Adjoined Network training where both the larger
teacher (or base) network and the smaller student network are trained together. We showed how
this approach to training neural networks can allow us to reduce the number of parameters of large
networks like ResNet-50 by 12⇥, (even going up to 35⇥ on some datasets) without significant loss in
classification accuracy with 2-3⇥ reduction in the number of FLOPs. We showed (both theoretically
and experimentally) that adjoining a large and a small network together has a regularizing effect on
the larger network. We also introduced DAN, a search strategy that automatically selects the best
architecture for the smaller student network. Augmenting adjoined training with DAN, the smaller
network achieves accuracy that is close to that of the base teacher network.

9



REFERENCES

Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, and Zhenwen Dai. Variational
information distillation for knowledge transfer, 2019.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners, 2021.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks, 2019.

Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping Luo. Online
knowledge distillation via collaborative learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. Eie: Efficient inference engine on compressed deep neural network, 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jeremy Howard. Imagenette. URL: Github repository with links todataset.
https://github.com/fastai/imagenette, 2019.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural network
compression, 2019.

Jangho Kim, Seonguk Park, and Nojun Kwak. Paraphrasing complex network: Network compression
via factor transfer. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl: https://www.
cs. toronto. edu/kriz/cifar. html, 6, 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets, 2017.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The
hinge between filter pruning and decomposition for network compression, 2020.

Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue
Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn compression,
2019.

10

https://proceedings.neurips.cc/paper/2018/file/6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6d9cb7de5e8ac30bd5e8734bc96a35c1-Paper.pdf


Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1529–1538, 2020a.

Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
Channel pruning via automatic structure search. arXiv preprint arXiv:2001.08565, 2020b.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang,
and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning,
2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019a.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Tim Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning, 2019b.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Breton Minnehan and Andreas Savakis. Cascaded projection: End-to-end network compression and
acceleration, 2019.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster cnns with direct sparse convolutions and guided pruning, 2017.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation, 2019.

Baoyun Peng, Xiao Jin, Jiaheng Liu, Shunfeng Zhou, Yichao Wu, Yu Liu, Dongsheng Li, and
Zhaoning Zhang. Correlation congruence for knowledge distillation, 2019.

Hengshuang Zhao Pengguang Chen, Shu Liu and Jiaya Jia. Distilling knowledge via knowledge
review. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc
Le, and Alex Kurakin. Large-scale evolution of image classifiers, 2017.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Sam Shleifer and Eric Prokop. Using small proxy datasets to accelerate hyperparameter search. arXiv
preprint arXiv:1906.04887, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile, 2019.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In CVPR, pp. 12962–12971. IEEE,
2020.

11



Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. arXiv preprint arXiv:1909.08174,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018a.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning networks using neuron importance score
propagation, 2018b.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328,
2018.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression, 2017.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. arXiv preprint
arXiv:1810.11809, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

12


	Introduction
	Related Work
	Adjoined networks
	regularization and compression 
	DAN: Differentiable Adjoined Networks 
	Experiments
	Comparison against other Structured Pruning works
	Comparison against other Knowledge Distillation Works
	Ablation study: Compression
	Ablation study: Regularization

	Conclusion
	Regularization theory
	Data augmentation and hyperparameters
	ResNet architecture diagram
	Detailed experimental results
	Experiments on CIFAR-10
	Experiments on CIFAR-100
	Experiments on ImageNet
	Experiments with DAN

	Choosing the Regularization Function
	Comparison against other works

