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ABSTRACT

As synthetic data becomes higher quality and proliferates on the internet, machine
learning models are increasingly trained on a mix of human- and machine-generated
data. Despite the successful stories of using synthetic data for representation
learning, using synthetic data for generative model training creates “self-consuming
loops” which may lead to training instability or even collapse, unless certain
conditions are met. Our paper aims to stabilize self-consuming generative model
training. Our theoretical results demonstrate that by introducing an idealized
correction function, which maps a data point to be more likely under the true data
distribution, self-consuming loops can be made exponentially more stable. We
then propose self-correction functions, which rely on expert knowledge (e.g. the
laws of physics programmed in a simulator), and aim to approximate the idealized
corrector automatically and at scale. We empirically validate the effectiveness of
self-correcting self-consuming loops on the challenging human motion synthesis
task, and observe that it successfully avoids model collapse, even when the ratio of
synthetic data to real data is as high as 100%. We release our implementation at
https://nategillman.com/sc—sc.

prompt: “stand and touch the head”

prompt: “side-skips from left to right repeatedly”

s
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Self-Consuming with Self-Correction
Figure 1: What happens after iteratively training a text-conditioned generative model for human
motion synthesis for 50 generations? We simulate a self-consuming loop by creating synthetic data
with the latest generative model, and mixing them with the original data to continue training the next
generative model. We observe that by self-correcting the synthetic data with a physics simulator,
the model can successfully avoid collapse and generate high-quality human motion. Faded poses
represent poses from further back in time. Our paper provides theoretical and empirical justification
for the self-correcting self-consuming loop.

1 INTRODUCTION

Generative models have been used to synthesize training data for various learning tasks, to varying
degrees of success. For example, for the tasks of image classification and contrastive representation
learning, recent work |Azizi et al.| (2023)); Tian et al.| (2023)) finds that using data synthesized from
generative models rivals using real data. Unfortunately, there is a gloomier outlook when attempting
to generalize this framework to generative model training.

On one hand, there is evidence to suggest that training a generative model with its own outputs in
a self-consuming manner will lead to collapse |Alemohammad et al.|(2024). For example, after 50
iterations of self-consuming training, a human motion diffusion model Tevet et al.|(2023)) collapses
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and fails to follow the text prompts or the laws of physics (see the two examples on the left of
Figure[T).

On the other hand, evidence suggests that such a framework could avoid collapse, but only when a
“moderate” amount of synthetic data is used Bertrand et al.|(2024). Worse still, this self-consuming
scenario might happen without us knowing, and without us being able to quantify how much synthetic
data is being used during training, due to the wide spread of Al generated content on the internet.

Intuitively, model collapse might be delayed or avoided by incorporating higher quality human
generated data Alemohammad et al.| (2024)), or by manually fixing the “mistakes” in machine created
data. Considering the size of datasets used in practice [Schuhmann et al.| (2022), neither of these
options is a scalable solution.

In this paper, we aim to provide a theoretical analysis of how certain operations would avoid collapse
in self-consuming loops, without any assumptions on the “moderateness” of synthetic data corruption.
We introduce the mathematical abstraction of a self-correction operation. This operation maps
synthesized data that are sampled from the generative model to data that are better representatives
from the target probability distribution that the model is attempting to approximate. Instead of training
on a combination of real data and synthesized data, we propose training on a combination of real data
and synthesized and then self-corrected data. Note that injecting fresh human generated data can be
viewed as a special case of this operation.

Our main theoretical findings (Theorem 4.3):

(1) The self-consuming model with self-correction is exponentially more stable than the self-
consuming model without any self-correction.

(2) The self-correction procedure guarantees less unwanted variance during self-consuming model
training.

In our theoretical study, we assume that correction is ideal in order to obtain rigorous performance

guarantees. In our empirical study, we evaluate whether the same conclusions hold for noisy self-

correction functions. We propose to automate this “self-correction” process by relying on programmed

expert knowledge rather than a human-in-the-loop, such that the function can be applied at scale.

We focus on the human motion synthesis task (Guo et al.[(2022)), and implement the self-correction

function with a physics simulator-based imitation model |Luo et al.[(2021). Our empirical results

confirm that our theoretical findings hold in practice:

(1) As illustrated in Figure[I] the self-correcting self-consuming model generates higher-quality
human motion than the one without any self-correction.

(2) The self-correction function allows self-consuming loops to avoid collapse even at a high synthetic
data to real data ratio (e.g. 100%).

Our theory and experiments suggest that self-correction should stabilize self-consuming model

training for any generative modeling task for which there exists a high quality “self-correction”

function. We have released all the code associated with this paper.

2 RELATED WORK

Learning Representations with Synthetic Data: Real curated datasets are costly to obtain, so there
has been much interest in generating synthetic data as training data for various vision tasks. |Azizi
et al.|(2023)) demonstrates that text-to-image diffusion models such as Imagen (Saharia et al., 2022)
can generate synthetic examples that augment the ImageNet dataset for better image classification.
He et al.| (2023) studies how synthetic data from text-to-image models, when used exclusively, can be
used as training data for image recognition tasks. Similarly, Tian et al.[(2023) finds that using synthetic
outputs from a text-to-image model results in contrastive models whose downstream performance
rivals that of CLIP |Radford et al.|(2021) on visual recognition tasks, including dense prediction. And
the work in Jahanian et al.|(2022) explored methods for multi-view representation learning by using
the latent space of the generative models to generate multiple “views” of the synthetic data. The
above works collectively provide evidence that some representation learning tasks, when trained on
synthetic data from some given generative models, yield excellent results.

Training Generative Models on Synthetic Data: Another line of research investigates the use of
synthetic data for training generative models. |Shumailov et al.| (2023)) and Martinez et al.| (2024}
show that the use of model generated content in generative model training results in model degrada-
tion, likely because self-consuming loops remove low-density areas from the estimated probability



Published as a conference paper at ICLR 2025

Algorithm 1 Iterative Fine-tuning of a Generative Model With Correction

Input: Dyey := {z; 171, A, Ag, m // gt data, learning procedure, f-tune procedure, correction fn
Parameters: 7', \, v // # retraining iterations, proportion of generated data, correction strength
Doy  A(Dreal) // learn generative model from scratch on true data
fort =1to 7T do
Dyynin {m'(jl)}ztilﬂ’ with Z; ~ pg,_, // sample | A - n| synth. points, pass thru correction fn
Do, < Agt(Drea U Deynth; Po,_, ) // fine-tune previous generation using augmented dataset
end for
Return [py,, ps, , Doy, - - - » Por]

manifold. |Alemohammad et al.|(2024) formalize three different kinds of self-consuming generative
models: the fully synthetic loop, the synthetic augmentation loop, and the fresh data loop. In all
of these loops, they iteratively re-train the model from scratch for every new generation. They
empirically find that only the fresh data loop avoids model degradation.

Another recent work Bertrand et al.|(2024)) considers the problem of iteratively fine-tuning in the
context of synthetic augmentation loops. They find that self-consuming augmentation loops do not
necessarily collapse, so long as the synthetic augmentation percentage is sufficiently low. The authors
use techniques from the field of performative stability (Perdomo et al., 2020) to prove the existence
of a convergence phenomenon in the space of model parameters. Our paper differs from prior work
as we conduct analysis on self-consuming generative model training when the synthetic data can be
optionally corrected. The correction can be performed with a human-in-the-loop, or by incorporating
learned or programmed expert knowledge, as explored for natural language |Saunders et al.| (2022);
Welleck et al.[(2023)); ' Wu et al.|(2023)) and human motion (Yuan et al., [2023; [ Xu et al., 2023). We
validate our theory with a practical self-correcting operations designed for image generation and
human motion synthesis tasks.

3 OVERALL TRAINING PROCEDURE

We describe our proposed procedure in concise language in Algorithm [T} and we explain it in more
detail here. We train the zero’th generation from scratch on the ground truth dataset Dyeay := {2} 1,
and we stop training when the model is close to convergence. For all the following generations, we
fine-tune the previous generation’s latest checkpoint on a combination of the ground truth dataset
Dieals as well as | A - n] synthetic data points which are generated from the previous generation’s
latest checkpoint, and then passed through the correction function .

The correction function 7 is parameterized by the correction strength -y € R>g, which controls how
much influence the correction function has on the input data points towards increasing a given point’s
likelihood with respect to the target distribution. The other main hyperparameter A € R> is the
synthetic augmentation percent, and it controls the ratio of synthetic data to real data in each iteration
of fine-tuning. When v = 0, we recover iterative re-training with synthetic augmentation considered
in|Bertrand et al.[(2024)). And if we choose the synthetic augmentation percent to be A = 0, then each
generation simply corresponds to fine-tuning the model on the same dataset that it was trained on
initially. We now use iferative fine-tuning interchangeably with the more general term self-consuming
loop. We also consider the idealized correction function for our theoretical analysis, and a broader
family of practical correction functions for different data types.

4 THEORETICAL ANALYSIS
4.1 PRELIMINARIES

We mostly follow the notation from [Bertrand et al.| (2024)), except for introducing the correction
function 7,,. Let us denote by pgat, the ground truth probability distribution that we want to train a
generative model to estimate. Suppose we have some dataset Dyea) = {2}, sampled from pgata-
We write paata = (1/n) Y i, d,. More generally, we use a hat to denote the empirical distribution
over finitely many samples from the corresponding distribution.

Suppose that we have a class of generative models parameterized by © C R¢. We denote by py a
probability distribution in this class with model parameters # € ©. We define the optimal model
parameters within this class to be
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0* = argmaxEgp,,.. [log per ()], e
0'c©
where we break ties by minimizing ||0*||. Typically, such optimal parameters yield a model pg«
which closely approximates the oracle ground truth distribution pqa.t., but doesn’t equal it exactly; ac-
cordingly, we define the Wasserstein-2 distance between the distributions to be & := dw (pg+ , Pdata)-
The model weights for the first generation are naturally defined according to the optimization

6 = arg max[E,p,,,, log por (2)]]. @)
0'cO
This corresponds to training on the finite subset D,¢,1. Next, let us suppose that the model weights
from generation ¢ are denoted 6;*. We will formalize a procedure for updating these weights for the
next generation to obtain 9f+1. For this, we need to define our correction function, and then we will
use it to define the weight update.

Definition 4.1. For any probability distribution, and for any v € R, we define the correction of
strength ~ of distribution py to be the distribution

po(z) + Ypo- ()

14+ ’ 3

Typo(z) ==
where py+ is defined in equation|l} For any augmentation percentage A > 0, we define the weight
update mapping to be

TGN (0) == localelaer(%max H(,0') = localelaergmax Ernpaaa 108 Por (2)]] + AE, 75 [log per (x)ﬂ ,
“

where Pyata and m are empirical distributions of size n and | A - n| respectively.

To continue our discussion from before, our iterative weight update is defined as 0}, ; := 7, G} (67").
Note that we use an global maximization in equation 2l when defining the initial parameters 67, but
we use a local maximization when computing our parameter update in equation[d] This difference
is analogous to the differences between how model weights update during initial training, where
parameter updates are more global, and during fine-tuning, where parameter updates are more local.

Understanding the correction 7. pg(x): For v = 0, the correction mapping in equation [3[simplifies
to mope = pe, which is just the original distribution; this corresponds to no correction at all. For
v =1,itis mypg = (pe + pe+)/2. And for v = o0, it iS TPy = pe+, Which corresponds to the
optimal distribution. So as -y increases from 0 to oo, the distribution 7 py has a likelihood profile
that matches py less, and pg~ more. As py« is the optimal model in our generative model class, this
means that as + increases from 0 to co, we have that 7, pg(«) is a PDF which better represents the
target likelihood that we want to estimate through training the generative model. In our theoretical
formulation, we consider correction functions that correct the probability distribution py, rather than
the more intuitive (and practical) case of a correction function that corrects individual points that the
distribution is defined over. In Appendix |C} we specify sufficient conditions under which a pointwise
correction function is guaranteed to correspond to a distribution-wise correction function of the same
form as those which we consider in our theoretical study and therefore can enjoy the theoretical
stability guarantees we prove. We also provide a concrete example of a projection function, in the
Gaussian case, which provably satisfies those conditions. We conduct a series of experiments on this
toy example in Section D]

Understanding the weight update 7.,G}(0): The weight update 7,G%(#) in equation [4|is a
formalization of the intended output of fine-tuning ps on Dycar U Dyntn, Where Dyear = {2, }74
is the ground truth dataset of size n, and Dgynin = {Z; + @ ~ 77/717\9 }}ilnj is the synthesized-and-
corrected dataset of size |A - n]. In other words, in an ideal run of stochastic gradient descent
fine-tuning, the model weights ¢ should update to 7,G} (6), as defined in equation 4} when trained
on Dyeal U Dyynen- Intuitively, the weight update 6 — m.,G}(#) avoids the loss of variance in the
generated data by ensuring that at each step, the model is trained on synthetic data which is likelier to
have been sampled from the diverse target distribution. This positive phenomenon is more pronounced
when the correction strength + is larger.
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4.2 ASSUMPTIONS

In order to prove our main result, we need some regularity assumptions about the learning procedure.
Informally speaking, we will assume that the class of generative models that we consider is smoothly
parameterized by its model weights; the loss landscape is concave near the ideal model weights; and
the class of generative models does an increasingly good job approximating the target data distribution
as the dataset size increases. We formally quantify and state these hypotheses in Assumption .2

Assumption 4.2. The following are true.

1. There exists some L > 0 such that, for all 6 sufficiently close to *, the mapping = —
V2 log pe(x) is L-Lipschitz.

2. The mapping 8 — E;~p,... [log pg(x)] is continuously twice differentiable locally around
6*, and there exists some o > 0 such that E; ., [V3logpg(z)] [¢+ = —alq < 0.

3. There exist a, b,eopr > 0 and a neighborhood U of 6* such that, for any § € (0, 1), with
probability 1 —§ over the samplings, we hav |7, GY(0) =7, G (0)| < eopr+ Fa/log b
for all # € U and n € N. Denote the RHS of this bound by 7,,(4).

In Assumption4.2](2), the notation “=<" corresponds to the Loewner order on symmetric matrices:
we write that A < B if B — A is positive semi-definite, and A < B if B — A is positive definite. In
particular, Assumption (2) implies that the matrix E; ... [V log pg (x)] lo~ is negative definite,
and its largest eigenvalue is at most —«. And Assumption (3) mirrors the main assumption in
Bertrand et al.| (2024); it is motivated by generalization bounds in deep learning, see e.g. Jakubovitz
et al.[(2019); Ji et al.| (2021). The interested reader can consult Appendix [B|for more details on this
assumption.

4.3 ITERATIVE FINE-TUNING WITH CORRECTION

We now have the language to state our main result, which essentially says that if the initial parameters
6 are sufficiently close to the optimal model parameters 6*, and if the augmentation percentage A
is sufficiently small, then under iterative fine-tuning with correction, we can expect our subsequent
model parameters to stay close to *. We prove Theorem [4.3]in Appendix

Theorem 4.3 (Stability of Iterative Fine-Tuning with Correction). Fix an augmentation percentage
A € Ry and a correction strength v € R>. Suppose we have an iterative fine-tuning procedure
defined by the rule 07, = 7,GY(0}), and suppose that Assumptionholds. Define the constant

p(A) = p(\ase, L) := m

and fix any 6 € (0,1). If 0y is sufficiently close to 0%, and if X (1 + %) ;i% then p(A)/(1+7) <

1, and it follows that the stability estimate holds with probability 1 — 6, for all t > 0:

oy — 07 < (/) S (£ ) v (2 ) Iz —0°). )

= 14+~ 147

Remark 4.4. If we apply Theorem 4.3 with correction strength v = 0, then the iterative fine-tuning
procedure trains successively on a combination of raw synthetic data that has not been corrected
using a correction function and ground truth data. This is exactly the case considered in |Bertrand
et al| (2024). Accordingly, the bound in equation[5] applied with v = 0, exactly recovers their result.

Corollary 4.5. Under the assumptions from Theorem[.3] iterative fine-tuning with any amount of
correction outperforms iterative fine-tuning without correction—in the sense that it is exponentially
more stable, and it results in better model weights.

'"The map 7,GS° is defined similarly to 7,G% in equation [4] but with Paata replaced with paata, and
with 7 pp replaced with 7., pe. See Appendix [A]for more details. This estimate is identical to the analogous
Assumption 3 used in|Bertrand et al.|(2024), with the only difference being it is applied to our iterative fine-tuning
update function. See Appendix E]for further discussion.
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Proof of Corollary[d.5] We apply Theorem 4.3 with v = 0, which corresponds to no correction, as
well as with v > 0, which corresponds to any amount of correction. For any v > 0, we notice that
the RHS of equation [3]is strictly smaller than when = 0. This guarantees better stability as t — oo,
as well as model weights 6} closer to 6*.

Example 4.6. If we apply Theorem [4.3| with correction strength v — oo, then the bound equation 3]
in Theorem limits to 7,,(4/t). This implies that the practical iterate 6" approaches the ideal
model paramaters, and is at worst some constant away, that depends on error from the optimization
procedure, as well as statistical error from using finitely many ground truth data samples n.

Note that Theorem[4.3|relies on the assumption that the initial model parameters 6, are sufficiently
close to the ideal model parameters 6*, and also that the augmentation percentage A is sufficiently
small. We hypothesize that these assumptions can be relaxed in the case where a correction function
participates in the iterative fine-tuning procedure—intuitively, the correction function should compen-
sate for errors that arise from 6§ being worse, as well as errors that arise from incorporating more
synthetic data. We frame this in the following conjecture.

Conjecture 4.7. In the case of iterative fine-tuning with correction, we may relax how close the
initial model parameters 0 need to be to the optimal model parameters §*, as well as choose a larger
synthetic augmentation percentage )\, while still retaining the improved stability estimate equation

We provide empirical evidence for Conjecture in Section [/| on the human motion synthesis
task. In fact, Theorem [4.3|represents partial progress towards this conjecture. Namely, according
to Theorem for large correction strength ~, we can effectively choose a synthetic augmentation
percentage that is twice as large as we would be able to without any correction, and still be able to
meet the assumptions of the theorem. This is because lim., % = 1, which is twice as large as
the bound when v = 0.

5 ToYy EXAMPLE: GAUSSIAN

We first assume oracle knowledge of the ground truth distribution, and use a toy example to directly
demonstrate the impact of the correction strength v on model performance and stability as stated in
Theorem 4.3 and Corollary [4.5] Our ground truth distribution is a 2-dimensional isotropic Gaussian
centered at the origin, i.e., 0* = ((0,0), I3), and our correction is “distribution-wise” in this idealized
scenario. Our results illustrate how increasing the correction strength -y adds stability and results in
convergence near better Wasserstein scores in later generations, in accordance with Theorem[4.3] We
defer experimental details, and precise results, to Appendix

6 Toy EXAMPLE: MNIST

Our proof leverages the optimal target PDF pg« to define the correction function 7., and is validated
through the Gaussian toy experiments. While this assumes knowledge of the true target distribution,
the correction function fundamentally requires only the capacity to map synthesized data toward
samples which are likelier to have been sampled from the ground truth distribution. Notably, this
mapping can be achieved without complete distributional knowledge, as demonstrated in our human
motion experiments where physics-based point-wise correction serves as an effective proxy. For
alternative data modalities like images, one can employ different correction approaches—for instance,
mapping synthesized data toward representative “anchor” images. Our MNIST implementation
of this approach shows that self-correction enhances iterative fine-tuning performance across self-
consuming generations, with effects amplified at higher augmentation percentages. We defer detailed
experimental results to Appendix [E]

7 HUMAN MOTION SYNTHESIS

Theorem@] states that, in theory, iterative fine-tuning with correction should be more stable than
iterative fine-tuning without correction. Crucially, the stability estimates that we prove rely on the
dataset size, the synthetic augmentation percentage, how expressible the generative model class is,
and having an idealized correction function. To validate how our theory works beyond toy examples,
we conduct a case study on human motion synthesis with diffusion models Tevet et al.| (2023). We
believe this is a natural setting to test our iterative fine-tuning with correction framework, because
synthesizing natural motions is a challenging problem, but there is a natural and intuitive way to
automatically correct them at scale—-namely, using a physics simulator.

6
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Human Motion Generation Results: Dataset Size 64, with 100% Synthetic Augmentation
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Human Motion Generation Results: Dataset Size 2794, with 25% Synthetic Augmentation
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Figure 2: Results from our human motion experiments on iterative fine-tuning with self-correction.
These graphs show evaluation metrics for the last checkpoint for every generation. This is the
checkpoint used for sampling in the iterative fine-tuning experiments, and it is also the checkpoint
where training is resumed with this new partially synthesized dataset. We can see that with self-
correction, the iterative fine-tuning procedure more stably converges to a better FID score, and more
quickly. When the dataset size is smaller (n = 64, above) we can see that iterative fine-tuning with
no self-correction has a flat Matching score, as well as diverging FID and Diversity scores, indicating
model collapse. And when the dataset size is larger (n = 2794, below), there is less collapse for
iterative fine-tuning with no self-correction, although the variance of the FID score is worse, as is the
average FID across generations. In both cases, we see that iterative fine-tuning with self-correction
outperforms iterative fine-tuning with no self-correction, and is competitive with the after
many generations.

7.1 GENERATIVE MODEL

For our generative model, we use the Human Motion Diffusion Model (MDM) [Tevet et al.| (2023).
This is a classifier-free diffusion-based generative model for the text-to-motion generation task, where
the model receives as input a description of a motion sequence (e.g. “get down on all fours and crawl
across the floor”), and outputs a sequence of skeleton poses which attempt to embody that prompt.
Synthesizing human motion is challenging not only for the diverse and compositional text prompts,
but also due to failure of physics obeying-ness (e.g. feet skating, floating, penetrating a surface),
which is not explicitly enforced by deep generative models.

7.2 PHYSICS SIMULATOR AS SELF-CORRECTION FUNCTION

For our self-correction function, we use Universal Humanoid Control (UHC) (Luo et al.| [2021)),
which is an imitation policy that operates inside the MuJoCo physics simulator (Todorov et al., [2012).
Given an input sequence of humanoid skeleton poses, UHC attempts to imitate the motion sequence,
constrained by the laws of physics imposed by the physics simulator, and it outputs a new motion
sequence that is the closest possible approximation it can replace it with. For example, if an input
motion sequence violates the laws of physics by having a foot penetrate through the floor, then the
motion sequence output by UHC will attempt to remove that physically impossible artifact while
maintaining the semantic integrity of the original input motion. We use VPoser (Pavlakos et al.,[2019)
and SMPL (Loper et al.,|2015) to translate joint representations between the human motion generator
and the physics simulator.

The physics simulator allows us to self-correct a synthesized motion automatically. Our underlying
assumption is that by enforcing the physics obeying-ness (via the simulator) and closeness to the
synthesized motion (via the imitation objective), the self-correction function would act as similar as
an idealized corrector as possible.

7.3 EXPERIMENTAL SETUP
We preprocess the MoVi (Ghorbani et al.| 2021)) subset of HumanML3D (Guo et al., 2022) using

the official code implementation of HumanML3D. We filter out movements involving interactions
with chairs, as UHC by default does not handle human-object interactions. We take as our train
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Iterative Fine-tuning

Ground Truth Baseline Iterative Fine-tuning with Self-Correction
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Figure 3: How does the self-correction operation affect iterative fine-tuning, qualitatively? Here we
present some visualizations. The prompt which describes the ground truth motion, and which we
use to generate the three other motions, is: “a person stands with feet wide, stretches both hands
up over his head and then swings down by the waist and hangs arms down before standing up”.
We can see that the iterative fine-tuning model produces a motion where the human moves closer
to the camera than the others; this is evidence of model collapse, as moving feet is irrelevant to
the prompt. Additionally, this motion produces single frames that suddenly snap to a physically
impossible position—note the leg penetration through the ground plane. These negative artifacts do
not exist in the motions synthesized from the ground truth, , or iterative fine-tuning
with self-correction model. Lastly, we note that the iterative fine-tuning motion depicted here is
semantically similar to crawling. We observe in our experiments with smaller dataset sizes that the
iterative fine-tuning model generates less diverse outputs than the baseline model and the iterative
fine-tuning with self-correction model, and that this crawling pattern appears more often in the latter.
Each snapshot is taken at exactly frame 105 of their respective videos. The two motions on the right
come from models that were iteratively fine-tuned for 50 generations, with a train set of size n = 64,
and a synthetic augmentation percentage of 25%. For all pictures of the human, the camera is fixed at
the same position, and for consistency the image is not resized.

split the train split from HumanML3D, intersected with our filtered subset of MoVi, and likewise
for the test split. This procedure yields a train set of size n = 2794 and a test set of size 546. We
further randomly select a smaller training set of n € {64, 128, 256} examples, to simulate the more
challenging scenario when the initial generative model is sub-optimal (due to data scarcity). The
smaller data also enables us to explore larger synthetic augmentation percentage due to compute
constraints. From here, the iterative re-training procedure follows Algorithm[I] We spell it out in this
concrete experimental setup.

We first train on the ground truth train split until the model is nearly converged, using all the default

hyperparameters from MDM. We evaluate and save this last checkpoint from generation 0. From

here, for each generation ¢t € {1,2,...,50}, we run three sets of experiments.

A. Baseline: fine-tune the latest checkpoint from generation ¢ — 1 for m batches on ground truth
dataset D,.ca1.

B. Iterative fine-tuning: fine-tune the latest checkpoint from generation ¢ — 1 on Dyea1 U Dgynen,t—1
for m batches. Here, Dgsynen,¢—1 1S a synthetic dataset of size | A-n| generated from the checkpoint
for generation ¢ — 1, using randomly chosen prompts from the train split.

C. Iterative fine-tuning with self-correction: fine-tune the latest checkpoint from generation ¢ — 1 on
Dyea1 U UHC(Dgynth,¢—1) for m batches. Here, UHC(Dgynen,1—1) denotes a synthetic dataset of
size |\ - n| generated from the latest checkpoint for generation ¢ — 1, using randomly chosen
prompts from the train split, which is then corrected by UHC.

We experiment with synthetic augmentation percentages A € {0.05,0.10,0.15,0.20,0.25} on the
larger dataset; we set the number of batches seen during generation 0 to be 3125, and the number
of batches seen for each later generation to be m = 625. Separately, we experiment with synthetic
augmentation percentages A € {0.25,0.50,0.75,1.00} on the smaller datasets; we set the number of
batches seen during generation 0 to be 78 * k for dataset size 64 * k, and the number of batches seen
for each later generation ¢ > 0 to be m = 16. We choose to control how many data points the model
sees across each generation, rather than controlling some other quantity like the number of epochs, as
this allows each experiment to compare against its baseline in a controlled way, which in turn allows
them to compare against each other in a controlled way.
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We compute every evaluation one time for each checkpoint using the evaluation script provided in the
original MDM codebase. Regardless of the train split size, we perform sampling for evaluation using
all 546 motion sequences from the test split, since the FID score is sensitive to generated dataset
size. We use the same hyperparameters as those used for MDM, including batch size 64, AdamW
Loshchilov & Hutter| (2019) with learning rate 1e — 4, and classifier-free guidance parameter 2.5.
And for UHC we used the uhc_explicit model for imitation.

7.4 QUANTITATIVE ANALYSIS OF RESULTS

For each of these experiments we report the metrics from MDM, as used by |Guo et al.| (2022):
FID measures how similar the distribution of generated motions is to the ground truth distribution;
Diversity measures the variance of the generated motions; and Matching Score measure how well the
generated motions embody the given text prompt. In Figure 2] we present results from experiments on
our 64-size dataset with 100% synthetic augmentation, as well as our 2794-size dataset with 25%
synthetic augmentation.

Our experimental results confirm our theoretical results, that iterative fine-tuning with self-correction
outperforms iterative fine-tuning without self-correction, in the sense that the graphs are generally
more stable across generations, and approach better evaluation metric values. In particular, Theo-
rem[4.3]and Corollary .5]claim that any amount of idealized self-correction will improve the stability
bound during iterative fine-tuning. Our results in Figure[2] demonstrate that the FID score is lower and
more stable across generations when applying self-correction, and generally higher and less stable
than the baseline, where there is no self-consuming training at all. We conduct experiments across
multiple seeds, and we find empirically that this general phenomenon holds consistently, where the
self-correction technique consistently yields improved training dynamics over iterative fine-tuning
with no correction. Graphs from these runs can be found in Appendix

Our experimental results also provide empirical evidence for Conjecture Observe that in the
baseline experiments in Figure [2] the FID score decreases across generations, which indicates that
the initial model parameters 6 are not that close to the optimal model parameters §*; additionally,
the augmentation percentages considered in the graph are 25% and 100%. Conjecture claims
that performing self-correction during iterative fine-tuning improves performance, even when the
initial model weights are sub-optimal and simultaneously the synthetic augmentation percentage is
large. This claim is confirmed by Figure[2] We direct the curious reader to Appendix [H where we
present graphs for all of the above listed training set sizes and augmentation percentages, providing
additional empirical evidence for Theorem[4.3] Corollary 4.5] and Conjecture

7.5 QUALITATIVE ANALYSIS OF RESULTS

We visually inspect the generated human motion sequences in order to analyze what concrete effect the
self-correction has on iterative fine-tuning. We find that the correctness and diversity of synthesized
motions are improved by the self-correction procedure, in agreement with our quantitative analysis in
Subsection We present snapshots of our synthesized motions in Figure [3| and we analyze the
motions in the caption. In short, we find that physics-disobeying artifacts such as floor penetration
or floating become more pronounced without the self-correction. We also find that in the model
without self-correction, the humanoid sometimes performs movements completely unrelated to the
prompt; our model with self-correction fixes these negative phenomena. We direct the curious reader
to Appendix [G| where we present more examples from our qualitative analysis, as well as our project
webpage, where we provide side-by-side video comparisons.

8 CONCLUSION

Our paper investigates the learning of generative models when the training data includes machine-
generated contents. We investigate how self-correction functions, which automatically correct
synthesized data points to be more likely under the true data distribution, can stabilize self-consuming
generative model training. Our theoretical results show that self-correction leads to exponentially
more stable model training and smaller variance, which we illustrate with a Gaussian toy example. We
then demonstrate how physics simulators can serve as a self-correction function for the challenging
human motion synthesis task, where models trained with our self-correcting self-consuming loops
generate higher quality motions, and manage to avoid collapse even at a high synthetic data to real
data ratio. Future work includes exploring self-correcting functions for more diverse applications,
such as language modeling and text-to-image generation, and investigating when self-consuming
training may lead to overall better generative models.
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A  MATHEMATICAL THEORY: THE PROOF OF THEOREM [4.3]

In this appendix, we provide a full account of the mathematical details of the theorems and their
proofs appearing in the main body of the paper. Our proof technique has the same framework as
Bertrand et al.|(2024) because our theoretical analysis generalizes theirs to the case where you have a
self-correction function in the self-consuming loop.

A.1 MATHEMATICAL SETUP AND NOTATION

Definition A.1. Define the optimal model parameters to be
0* € argmaxEqp,.,. [log per (2)], (6)
0'cO
chosen so that ||6*|| has minimal norm within this set. Let # be any model parameters. Then the
correction of strength v of distribution py towards py~ is a new distribution, denoted 7 pg, defined
according to the rule
po(z) + Ypo+ (2)
1L+7 )
This is illustrated in Figure[d Let 6, be the parameters of the model trained after ¢ generations. We
define the iterative fine-tuning with correction update mapping to be

Typo(x) =

G5 (0) := local argmax H(6,6') := local argmax([E, ... [log per (2)]] + ANEzrr. p, [log per (z)]]

0'€6 0'€6
@)
TGy (0) := 100&19;/1;(%max7—[(9, 0 = 100&L§éémaX[Em~ﬁdm[1ng9' ()]] + )\Emw,ﬂp\g [log pe ()])-
(8)

Notice that in the finite case, we’re optimizing by taking samples from an empirical distribution. In
contrast, in the infinite case, there is zero statistical error, since the parameter update is done with
access to an infinite sampling budget at each generation ¢. The finite case is the more practical case,
when we have some statistical error (so we only have access to finite sampling at each generation).
Since the parameter space of the generative model class might be limited, there might be a small
difference between the distribution corresponding to the optimal parameters and the target distribution
Pdata; We capture this difference via the Wasserstein-2 distance and denote

£ := dw (po+, Pdata)- ©)

Let
H1(0") == Eornpuna logpo ()], H2(0,0') := Eanr,p[log por (x)]. (10)
and note that H(0,6") = H1(0") + A\H2(0,0").

We first establish that the correction map is truly a mapping of probability distributions as well as
some of its elementary properties.

Lemma A.2. The correction map has the following properties.
1. mypg is a probability distribution.
2. Strengths 0, 1, 0o correspond to py, the average of pg and pg~, and py~, respectively.
3. Forany xz € R", if v > 1, then

[mypo () — po- ()| < [lmypo () — po ()|,
and if v < 1, then the inequality is flipped. In other words, 7 pg is a better estimate of the
ideal distribution pg« than py is, precisely when the projection strength is more than 1.

Proof. For the first point, 7, py is a probability distribution because it is a convex combination of
probability distributions. For example, we can compute that

1 gl
T pedr = —— r)dr + —— «(x)dx
/Rd vPo 147 de@( ) 14+~ deﬁ ( )

L v
= -1+ .
1+~ 1+~

1=1.

12
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The second point follows immediately from the definition of 7 pg. For the third point, we can
estimate that

| mype(x) — pos ()| = ‘ po(z) +po-(z)  po+ (x)(L + ) H

1+~ I+~
1
= m “[lpo(z) — po- (2)||
g
< 1 . . _
< T o ) = o)
_ ||pe(@) +vpe- (x) _ po(x)(1 +7)
1+~ 1+
= lImypo(x) — po ()|l
when v > 1. The inequality flips when v < 1. O

Intuitively, it is clear that we cannot hope to prove general results about generative models without
assuming something about the mapping 6 — py. We now state the two assumptions we require in
order to make our theoretical arguments; note that they are precisely the same assumptions made in
Bertrand et al.| (2024)). The first assumption is a local Lipschitzness property that we will exploit via
the Kantorovich-Rubenstein duality:

Assumption A.3. For 6 close enough to 6*, the mapping x — V¢ Vg log pg () is L-Lipschitz.

The second assumption is a local regularity and concavity condition:

Assumption A.4. The mapping 6 — E,,,... [log pg(x)] is continuously twice differentiable locally
around 6* and E, .. [VoVelogpe(z)]y. = —aly < 0.

We next show the existence and uniqueness of m,G{°(c0) locally around 6*.

Proposition A.5 (The Local Maximum Likelihood Solution is Unique). The following are true:

A. There exists an open neighborhood U C R® containing 0% and a continuous function g : U — R?
such that g(6*) = 6*, and
Vo H(0,0")]0,900) =0 (11)

forevery 8 € U.

B. Given optimal model parameters 0* as in equation[6] that follow Assumptions[A.3|and[A.4] we
have that, if e < «, then for all A > 0 and 0 in a small enough neighborhood U around 6%,
there exists a unique local maximizer m,G°(0) in U.

Proof. We first prove part A. It suffices to apply the Implicit Function Theorem to the map
R?? R (0,0") = Vo H(0,0)|g.0r (12)

in an open neighborhood of (6*, 6*). To do this, we need to show the following:

i) The map vanishes at (6*, 6*), i.e.

Vo H(0,0)|g- 9 = 0. (13)

ii) The Jacobian matrix at (6*, 6*) is invertible, i.e.,

Vo Vo H(0,0")]g« g« is invertible. (14)

We first prove i). Recall from the definition equation [7| that 7,G%°(0) = arg maxg cg H(0,0").
This means that for any 6, m,G°(9) is the choice of #” which maximizes 7 (6, ¢). In particular, for
6 = 0*, we have that ' = 7,G3°(0*) is the choice which maximizes 7(6*,0"). But m,G5°(6*) = 6*
by Proposition[A.6] This implies that its derivative is zero at §’ = 6*, meaning Vo H(0,0')[g g+ = 0,
as needed.

13
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Now we prove ii). In order to show that the matrix equation[I4]is invertible, it suffices to show it is
close to another matrix which is invertible. A natural choice is the matrix

M = (1 + )\)VB’VH’EszdM [logp(;/ (l‘)”g* . (15)

First of all, note that this matrix indeed exists; by Assumption 2 we know the map 6’ —
Espe [log por ()] is continuously twice differentiable locally near 6*. We can estimate that the
matrices equation[I4]and equation[T3]are indeed close as follows:

VeV H(0,0')]o- 0+ — (1 4+ A) Vo Vo Eprpy,[log per ()]6- |
= [[Vor Vo [Exnpaara 108 or () + ABimr, po Por (2)]]0+,0+ — (1 + N) Vo Vo By, [log por ()] o ||
= AM[Ve Vo Eonr, p, log por (2)]]o+ 0+ — Vor VorEonpy,,[log per(2)]o- |
= M[Ve Vo Eznp,. logpe (z)lor — [Vor Vo Ernpy,, 10g por (x)]o- ||
= AM[Eznpe Vor Vor log per (2)lo+ — [Exnpy, Vor Vor log per (x)]o- ||
< LAE (4,29 ~ppe xpasa | [Vor Vor 10g por ()6 — Vor Vi log per ()] o+ |
< XeL

where the first equality follows from the definition of 7 in equation[I0} the second equality follows
from some cancellation; the third equality follows the fact that the derivatives are constant with respect
to 0, and 7, pg~ = pg~ by Lemma we exchange the derivative and the expectation in equation 4
using the Dominated Convergence Theorem, since Assumption 1 says that © — V¢V log pp ()
is L-Lipschitz; the fifth estimate follows from Kantorovich-Rubinstein Duality; and the final estimate
is the definition of Wasserstein distance equation[9]

Finally, we verify M is indeed invertible. Assumption 2[A.4]implies that the largest eigenvalue of M
is at most —(1 + \)a. Therefore, since all eigenvalues of M are nonzero, M is invertible. We can
now apply the implicit function theorem to equation [I2] and part A follows immediately.

Next, we prove part B. Let dy = supycy dw (pg+, ps). To verify that g(6) is a local maximizer
of equation |12} it suffices to show that Vo Vo H (6, g(0)) < 0. By Assumption 2 we know
VoV H1(0%) < —aly and since 8" — Vo Vo H1(0") is continuously twice differentiable locally
near 6*, we also have Vo' Vg H1(g(0)) < —al,. Thus, we have

Vo Vet (0,9(0) = Vo VeHi1(g9(0") + AVe Vo Ha(0,9(0))
= (1+ XV VoH1(9(0)) + A(Ve Vo Ha(0,9(0)) — Vo Vo Hi(g(0)))
= —a(l+A)Ig+ AL (&ydw(m,pe*) + 5) I,
where the last step follows from Kantorovich-Rubsenstein duality:
VoV H2(0,0") — Vo VoHi (0]
< ||VoVoHa(0,0") — Vo Ve Ha (0,60 + |V Vo H2(0%,0") — Vo Vo Hi(0)]

x)+ (T
=1 [ VoVotogpo (020D 4y [ 990 08 @ () o
R4 + R

+ Ezmpi [10g Por (2)] — Ezpy. [log por ()]

1
<1 / Vo Vo log por (2) (p(z) — po- () da| + Le
1 + Y Rd

1
= mHEwm [log per ()] — Ezrp- [log per ()]|| + Le

< %dw(pe,pe*) + Le
L
1+
Thus, to have Vo Vo H (6, g(0)) < 0, it is sufficient that

<

dy + Le

—a(1+)\)+>\L( dU+s><O,

1+~

which is guaranteed for all A > 0 by o > Le and dy < M This concludes the proof. O
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Further, as we would expect, 6* is a fixed point of 7,G3°:

Proposition A.6 (The optimal parametric generative model is a fixed point). For any given data
distribution pyata, any 0* as defined by equation@ and for all X > 0, we have m,G° (6%) = 6*.

Proof. Unpacking definition equation shows that 7.,G3°(6*) = G3°(6*), and we know by Proposi-
tion 4 from Bertrand et al.| (2024) that G{°(0*) = 6*. O

A.2 CONVERGENCE OF ITERATIVE FINE-TUNING WITH CORRECTION FOR INFINITE
SAMPLING

We now have the required setup to state and prove a convergence result for iterative fine-tuning
assuming infinite access to underlying probablity distributions. We need the following result, which
is a technical lemma that provides a computation of the Jacobian of 7.,GS° at 0* as well as a spectral
bound, both essential for the proof of Theorem

Lemma A.7. We define the matrices
A= (VG g H1(0))]ox (16)
B = Vgﬁ,]Eme [log pe ()] o+ 9> (17)
C := Vi gBarp,log po (z)] o+ 0° (18)

Recall the definition of 7,G3° (0) from equation[7} Since v and X are fixed, denote 7G(0) = m,G5°(6).
Finally, let 7 (G (0)) := Vgm,G5°(0)|g denote the Jacobian of 7,G°(0).

L. There exists an open neighborhood U C O containing 0* such that for all 6 € U, we have

J(7G(0) = — (vg,,e,ﬂ(emg(e)))*l - AV3.0H2(0,7G(6)). (19)
1I. We have that V§ 5, H2(6*,60%) = 1+ , and B = —C, so the Jacobian of mG at 0* is
J(rG(0%) =T+ A71C)~! ﬁA o (20)

III. The spectral norm of A~1C can be bounded as
L
lA7te) <14 = 21)
@

Proof We first prove 1. We apply Proposmonm [A.5] Part A of that proposition gives us a function
: U — R such that VQ/’H(Q 0")o,9¢9y = 0. But part B of that proposition says that there
ex1sts a unique local maximizer inside U, and this local maximizer is 7,G3{°. This implies that
Vo H (0,0 )o,r, gse(9) = 0. Next, we implicitly differentiate this equation with respect to 6. Recall
that when you have an equation of the form f(z,y) = 0, and implicitly differentiate it in the
form f(x, g(m)) = 0 with respect to x, you obtain a,{: + g{; gg = 0, and solving for ¢ yields
% =— (%) %. We apply this formula with
(LL', fu g) = (9’ 0 — VQ/H(97 el)e,mggc 0)» 0 ngio(e))
and obtain equation[T9] as desired.

Now we prove II. We can compute that
Vi oH2(0,0") = Vo VoEomn, p, [l0g por ()] (22)

= VQ,VH/ ]nge/(x) <W) dx (23)
zERY +7
1
~ V0V [ ogpe(om(a)ds 4)
+ z€RI
1
= 1+~ Ve/ 0Ez~p, [log per ()] (25)
1
=——3RB 26
147 (26)
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where the third equality holds because the integral containing py~ is constant with respect to 6. Next,
we can compute that

B= / Vo 10g por (2)Vopo (z)da @7)
X 6*,0*

~ [ (Vo ogpa(@)][Vapo(z)]do @8)
X 0*.0*

— [ Valpo@)Vologpoallds] |~ [ po(e)(VaValogpa(e)dz 9)

X 0*,0* X 0+ ,0%
Vopo(z) 2

= e —— d - ’ /Ez,\, 1 ’ 30

J I R B - N ) 60)

=—-C, 31

where the third equality follows from the product rule for gradients,
Vo[pe(2)Velogpe(w)] = pe(z)(VeValogpe(x)) + [Vepe()][Ve log pe()]. (32)

Finally, we will prove the formula equation [20| by manipulating equation [I9 We begin with the
rightmost factor in equation [I9] If we apply these equalities that we just obtained, then we get

T (7G(0%)) = — (V3o H(07,67) - A2, ;Ha(6",6%)

A
=—(A+XO)' B
( ) 147+
=—(I+xA7to) . A 41
1+7
=T+ xAa7to) . A a4
1+~

where the first equality follows from equation 20| along with the fixed point Proposition and we
are using that A is invertible by Assumption 2[A.4] which implies all eigenvalues of A are nonzero;
in the fourth step we used that B = —C'. This proves part II.

Now we prove IIL. We can bound the operator norm ||A~1C|| as follows:
[ATICI = 1T+ ATHC = A < I+ AT - IC - Al <1+ a7HC = A, (33)

where the first estimate comes from subadditivity and submultiplicativity, and the second comes
from the fact that, since A is symmetric, [|A|| = maxyc,(a) |A|, where o(A) is the spectrum of A.
Formally, we know by Assumption [A.4]that A has eigenvalues e; < e3 < --- < e, < —a < 0
and so |e,,| > «. Therefore, A~! has eigenvalues 1/e,, < 1/e,_1 < --- < 1/e; < 0 and thus
1/len| > 1/|en—1| > -+ > 1/|e1|, which gives us the bound || A~1|| = 1/|e,| < 1/ on the matrix
norm. Next, we can estimate that

1C = Al = IV§ 9 Eanpy. l0g por (2)]lo+ = Vi g Enplog por (2)]o- |
= | Eamps- Vi o 108 Do+ (2)] = Earp [V o log po- (2)]

< Ldw (p@* ;pdata)
= Le,

where in the second equality we exchange the derivative and the expectation in equation 4 using
the Dominated Convergence Theorem, since Assumption 1 says that z — Vo Vg logpg(z) is
L-Lipschitz; and in the last estimate, we used Kantorovich-Rubenstein duality. This, combined with
the estimate equation 33} yields the bound in equation [

We are finally ready to prove our theorem that guarantees convergence to the optimal parameters in
the infinite sampling case under certain assumptions, one being the that the initial model parameters
6 are sufficiently close to 6*:

Theorem A.8 (Convergence of Iterative Fine-tuning, Infinite Sampling Case). Suppose we have
an iterative fine-tuning procedure defined by the rule 055, = 7,G°(07°). Let 0* be the parameter
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vector for the optimal generative model, as in equation|6] We assume that 6* follows Assumptions
and rom |Bertrand et al.|(2024)). Suppose also that A (1 + %) < ;I—;Y Then, the Jacobian of
TGS satisfies the following bound:
1 Ma+eL)
l2 < :
1+ a—Aa+el)

(IVom, G (67) 1. (34)

Consequently, there exists a § > 0 such if 0y € © satisfies |0y — 0*|| < 6, then starting training at
6o and having 0,11 = m,G°(0:), we have that lim,_, . 6, — 0*. Furthermore, if we define

AMa+el)

p(/\):a—A(a+sL)’ (35)
then we obtain the asymptotic stability estimatdﬂ
pN) Y
0y — 0% < 0o — 0%]|. 36
[ ||(1+7> 100 | (36)

Proof. We first prove the Jacobian bound equation By hypothesis, we know A(1 + %) <1,
so by Lemma[A.7(I1I), we have A\||A~1C|| < 1. Thus, we can write

o0

(I+rA710) =) "(-ra7to)
k=0
and so
= 1
IT+XATTO)H <) M)A o) = —————.
I(2-+2470)7) < SN = Ty
Applying Lemma[A.7]2), we get
IR A _ A [|[A=1C|
GO < [T+XATTO) |- ——||A7'C)| < . :
IT@ENI < NI +2A70) - AT < 1 =

Now, it is straightforward to see the RHS above is at most the bound in equation [34]if and only if
al|A71C|| < a + L. But this bound holds because of Lemma III). This proves the Jacobian
bound equation [34] but does not prove that the bound is less than 1. For this, we must show that

1 Ma+el)
1+9 a—Aa+el)
By clearing denominators and grouping like terms, we can see that this is equivalent to

eL\ 14~
14+ = - !
)\( +a><2+7, (38)

1. 37

which is precisely guaranteed by our hypothesis.

We now apply the the Jacobian bound equation [34]to prove the asymptotic stability estimate
equation Assume ) is sufficiently small so that p(A)/(1 4+ v) < 1. Then for every p’ €
(p(N)/(1 + 7),1), there exists § > 0 sufficiently small so that every §; € © which satisfies
|l6o — 6*|| < 0 has the property that ||Vym,GS°(6p)||2 < p'. Because the map m.,G3° has Jacobian
matrix norm less than 1 in the d-ball around 6%, it is a contraction mapping in this neighborhood.
Concretely, this means that

o o p)
17, G3°(0) — T GR2(0) || < m“e =o', (39)
for every 6, 0’ in the §-ball around 6*. In particular, for (0,6") = (6;, 0*) we obtain

* * o0 oo * p(>\) *
1811 = 6% = 60 — 0%]] = ||, G5°(6,) — m, G52 (69| < 16— 6°].

1+
By induction, the above estimate implies that if 6 is in a d-ball around #*, then so is every successive
6;. Therefore the desired estimate equation [36|now follows by induction on ¢. O

ZBertrand et al. (2024)) could have presented their results in this stronger form, without the big O notation,
with very little extra work.
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Remark A.9. Taking v = 0 recovers exactly the result in Bertrand et al.| (2024). Importantly, the
correction function 7., provides leverage in determining how large the augmentation percentage A
can be: choosing a larger correction strength ~y allows us to choose a larger augmentation percentage
A while still retaining theoretical guarantees for convergence. Additionally, for the same choice of
augmentation percentage \, a larger correction strength ~y provides a guarantee for an improved rate
of convergence. See Conjecture

A.3 STABILITY OF ITERATIVE FINE-TUNING WITH CORRECTION FOR FINITE SAMPLING

Finally, we prove a stability result for iterative fine-tuning with correction in the presence of statistical
error. To do this, we require an assumption that essentially provides probabilistic guarantee that the
chosen generative model learns the underlying distribution increasingly better if it has access to more
samples:

Assumption A.10. There exist a,b,eopr > 0 and a neighborhood U of 6* such that, for any
0 € (0, 1), with probability 1 — ¢ over the samplings, we have

b
(voeU)vneN)  |mGRO) - mGX(0)] < corr + —=/log 5 (40)

f

See Appendix |B|for a discussion about this assumption; we investigated whether to assume a similar
bound to the one they assumed in Bertrand et al.|(2024), or prove our bound from theirs. In fact, we
prove in Appendix [B|that you can in fact deduce something nearly as strong as Assumption [A.10
from Assumption 3 in their paper, so we made Assumption for the sake of a cleaner, more
parallel exposition.

Theorem A.11 (Iterative Fine-Tuning Stability Under Correction). Suppose we have an iterative fine-
tuning procedure defined by the rule 07, | = 7, GY (0}"). In words, this means that the augmentation
percentage is \ € (0,00) and the correction strength is v € [0, 00). Under the same assumptions of
Theorem[A.8 and Assumption[A.10] there exist 0 < p < 1 and 6, > 0 such that if |05 — 6*|| < &1,
then for any 5 € (0, 1), with probability 1 — 63, we have

0 e bt PN L (PN e e
||9t_9||§<501>7+\/» log >§(1+'y) +(1+7) 65 — 0™ ||. (41)

Proof. By the triangle inequality, we can estimate that

16 = 0711 < 116" = m G (G D) + (17 G (0F-1) — 0]
= [lmyGR(0F-1) = m G (O DIl + [l GX° (07-1) — 7GR (07) (42)

where we applied the fixed point Proposition [A.6] By Assumption [A.T0} the left summand in

equationis at most eopr + ﬁ 1/log %, with probability 1 — §. Next, recall that in equationin
the proof of Theorem[A.8] we proved that that 7, G3° is a contraction mapping of factor p(A)/(1+~)

sufficiently close to U; this implies that the right summand in equationis at most % 167, — 6*].
Together, these yield the recurrence estimate

n * a b p A n *
P <|et — 0] < com + o g § + lﬂyneﬂ 9 ) S1-4 )

Iterating this recurrence for successive time steps yields

A b= M)\ (PN s .
1P’<9t0||§<som+f log ~ );(m) +(M) ||909|>2(15).

(44)

Note that equatlonnholds for any 0 € (0, 1). In particular, we can apply equatlon.wnh 0:=4/t.
In this case, the Bernoulli inequality lets us estimate that (1 — §/t)* > 1 — §. This completes the
proof, with §; = 4. ]
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Remark A.12. Theorem@] recovers the result from Bertrand et al.|(2024) in the case where the
correction strength is v = 0. But for a fixed augmentation percentage A, for any correction strength
~ > 0, this gives stronger stability guarantees than in |Bertrand et al.| (2024).

Remark A.13. In a previous version of this manuscript, we claimed that there was an error in the
statement of the corresponding theorem in (Bertrand et al.l2024)). In this version, we retract that
claim; we have corresponded with those authors, and they updated their manuscript with additional
details to justify their statement.

A.4 DISCUSSION: THE MAIN LIMITATION

>

Our empirical results are for generative modeling tasks where we have access to some “self-correction’
operation that is easy to compute, as well as automatic; see Sections[E]and [7]for more details about
these correction functions. Therefore, the main limitation of our work is that one can only hope
to use this self-correction procedure to stabilize training in scenarios where there is some “self-
correction” function. For our MNIST experiments, we built a self-correction function from scratch
using clustering statistics. And for our human motion experiments, we used an off-the-shelf human
motion imitation model that other researchers built.

B DISCUSSION ABOUT ASSUMPTION [4.2]

In this section, we show how with a mild boundedness assumption on our generative model parameter
update function, we can deduce our Assumption (which is the same as Assumption[4.2] part 3)
from the following assumption used in Bertrand et al.| (2024).

Assumption B.1. There exist a, b, eopr > 0 and a neighborhood U of 6* such that, for any § € (0, 1),
with probability 1 — ¢ over the samplings, we have

(Vo cU)(vneN)  [[GX(0) - G (O)] < eorr + (45)

a b
—1/log —.
N
Now, if we make the additional assumption that our generative model parameter update function is

locally bounded near 6* then we obtain the following.

Proposition B.2. Suppose Assumption[B.1|holds. Suppose also that there exists B < oo such that
for all n > 0 and 0 sufficiently close to 6%,

1GX(0) — G (67)I] < B|6 — 6]].
Then there exist a,b,c,copr > 0 and a neighborhood U of 0* such that, for any 6 € (0, 1), with
probability 1 — § over the samplings, we have
.

(W0 € U)meN)  |lmGR(0) —m GO < - dy +com +

b
log = 46
g5 (46)

where dy = supgey; |16 — 0% ).

Proof. By the triangle inequality, we have

I3 G (0) = 1 G (O) < [, GX(6) — GR(O)] + [GX(0) — G (O)]| + (1957 () — Mgio(e)(“zﬁ)

We bound each term in the RHS: firstly, note the middle term is bounded by Assumption [B.1| The
first term is bounded as follows:
1GX(0) — m, GX(O)]| < [1GX(0) — GX (07 + (|7, GR(67) — 7 GX (D) |
< B||¢ — 0*|| + BJ|0 — 6*|]
< 2BdUa
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where in the first step we used that G3°(6*) = 7,G5°(6*). Similarly, the last term is bounded as
follows:

1G°(6) — w652 (0)] < IG0) — G (6°)] + 1m, G55 (6°) — ,G5° 6)]
< o — 07+ 22 1o — 7|

+
2+ «
= pA) 77— [0 =7
1+
247
< p(\ ,
< p(A) 1+~ U
where in the second step we applied equation [39] Using these bounds in equation 7] and taking
c=2B+ p()\)ﬁ—l completes the proof. O

Note that the constant ¢ - dy < ¢ (for U sufficiently small) can really be viewed as a part of the
optimization constant egpr since it is controlled by the choice of generative model class.

C POINT-WISE CORRECTION CORRESPONDS TO DISTRIBUTION-WISE
CORRECTION

In this section we provide a sufficient condition under which you can associate a distribution-wise
correction mapping (like the one we consider in the paper, 7,,) to a point-wise correction mapping
(which is the one you are more likely to find in the wild).

Definition C.1. Let X = {z1,...,2,} C R™ and define the empirical cumulative distribution
function ® x by

Ox(v) :=Px(v;{z1,...,2n}) = %qu,(zi),

where for v € R™, x,, : R™ — {0,1} is the indicator function for the set ;- (—o0, v;]. For a
continuous distribution, the cumulative distribution function is defined in the usual way.

Definition C.2. Suppose that we have a model pg and an arbitrary function II : R™ — R"™. Then
we say that IT is a valid point-wise correction function for py if there exists a y € [0, oo] such that

lim (EXTLNPE sup ||<I>H(Xn) (v) — Qo pe (v)||) — 0, (48)
n—oo vER™
almost surely, where the expectation is over all samplings X" = {x1,...,x,} of size n from py.

Intuition C.3. This is saying that the CDFs for 7,pg and II(X ~ pj}) are equal in expectation, for
large enough n. This is one way of saying that 7, pg and II(X ~ p}), for large enough n, are nearly
identical probability distributions.

Definition C.4. If the limit in equation 48] exists, then we define the distribution-wise projection
Sfunction corresponding to IT to be

1 Y
= 7p —
1+~ 14+~
and we define the projection strength of the point-wise correction function 11 to be . Recall that
TyPo = ﬁ Po + ﬁ Po+. So intuitively, equationimplies that the projection function IT maps

samples from py to a different space such that they look like they come from a combination of the
original distribution py and py-, at least at the level of CDFs.

Ty Po 9 + Do~ (49)

Remark C.5. Such a v, if it exists, is unique. Furthermore, if pg = pg~, then v = co.

The limit condition in Definition [C.2]is abstract, and can be hard to swallow. We present an example
of a simple point-wise correction for the Gaussian toy example that we consider in Section [D] whose
corresponding distribution-wise correction is exactly one would expect it to be—the weighted average
of the corresponding Gaussians. Recall that we demonstrated empirically in Figure[5|that Theorem 4.3
holds for that example. The projection function is depicted in Figure
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Example C.6. Let G () be the pdf of A'(0,0%1,) (initial distribution, corresponds to #) and G2 (z)
the pdf of (0, 031,) (target distribution, corresponds to 6*). Given z1, ..., x, ~ Gy, we define

II7 as follows: Fix any v € Rsq, and let 1, . ..,y ~ (G (2) + 7Ga(2)) /(1 + 7). where G{™ is

the PDF of the empirical distribution defined by {z1, ...,z }; in practice we implement & §") as a
histogram. Then choose a random o € S,, (.S,, = group of permutations on n symbols). Finally, we
define I17 () := yo(;) for 1 <@ < n.

Next, we define the projection set TTX (™) := {II7(x;)}1<i<n, and define the PDF 71'7@%") (z) :==

ﬁé&”)(x) + 115 G2(z), and let @__ () represent the cumulative distribution function of the
Y1
(n)

Gaussian 777@ 5"). Then, since 17 (x;) ~ mé 1 > we have by the uniform law of large numbers that

lim (Eqz~c, n_ SUP,crm H@HX(n) (v) = Pr c, (U)H) -0 (50)

n— oo

almost surely. Therefore II” is a valid point-wise correction function, and its corresponding
distribution-wise projection function is 7.,.

Remark C.7. In the example we considered in Section|[D] we could have included a total distance
traveled minimization condition, but here for this proof we don’t even need to use that hypothesis.
(In the proof, this would have corresponded to the additional assumption that we’ve chosena o € S,
such that >°" , ||#; — Yo (;)|| is minimized.) This implies that different point-wise correction functions
can correspond to the same distribution-wise correction function.

Interpolation Between Two Gaussians

—— Gaussian 1 (Mean=-1.0, Variance=1.25)
—— Gaussian 2 (Mean=2.0, Variance=0.5)
—— Correction Strength = 0.01

Correction Strength = 0.03

Correction Strength = 0.1

Correction Strength = 0.3

Correction Strength = 1.0

Correction Strength = 2.0
—— Correction Strength = 5.0

0.5

o o
w >

o
N

Probability Density

0.0

Figure 4: Illustration of the distribution-wise projection function, like in our Gaussian toy example.
Correcting one Gaussian in the direction of another, like we consider in Section@ corresponds to
finding the “(weighted) average Gaussian™ that lives between the two.

D Toy EXAMPLE: GAUSSIAN

We first assume oracle knowledge of the ground truth distribution, and use a toy example to directly
demonstrate the impact of the correction strength v on model performance and stability as stated in
Theorem [4.3]and Corollary Our ground truth distribution is a 2-dimensional isotropic Gaussian
centered at the origin, i.e., * = ((0,0), I2), and our correction is “distribution-wise” in this idealized
scenario. We consider the more practical setting, where we don’t have oracle knowledge of the target
distribution a priori, and where the data correction is “point-wise”, in the empirical studies in the
following two sections. Further, in Appendix [C} we show that, in theory, sufficiently well-behaved
pointwise correction functions indeed correspond to distribution-wise correction functions.

Concretely, our ground truth dataset contains 50 points sampled from the target distribution, which
are used to estimate 05° = (10, X0) € RS. We fix our synthetic augmentation percentage to be
A = 0.5, and inductively synthesize a new dataset Dgynen = {yi ~ N (1e, X¢)}22,. We implement a
correction function to map Dgynin, Which was sampled from Pgso, to a dataset Deorrected, Which is
likelier to have been sampled from the target density pg«. We do this by sampling Dcoyrected from the
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Wasserstein distance

0 160 2[')0 30‘0 460 560

Generation
Figure 5: Empirical results from our Gaussian toy example. The graph demonstrates that increasing
the correction strength v, with a fixed augmentation ratio of A = 0.5, improves performance and
stability after calf concuming itaratinne
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Iterative Fine-tuning Iterative Fine-tuning with Self-Correction

Figure 6: Empirical results from our MNIST toy example. These synthesized images demonstrate
that after 50 self-consuming iterations at 150% augmentation percentage, the model which is trained
using iterative fine-tuning with self-correction is able to generate higher quality samples than the
model trained using iterative fine-tuning without any self-correction.

middle density corresponding to a given correction strength :

o (2) + e ()
1+7
where ;59?0 is the empirical PDF obtained from Dgyn¢h.

7 Pgpo (2) - : 51)

We logarithmically accrue synthetic data points to simulate the case of fine-tuning. We obtain the
updated model parameters 9?21 by computing the sample mean and covariance on this augmented
dataset. In Figure [5] we present the Wasserstein distance between the origin-centered isotropic
Gaussian target distribution and the distribution defined by the parameters 67° at each iteration t. Our
results illustrate how increasing the correction strength + adds stability and results in convergence
near better Wasserstein scores in later generations, in accordance with Theorem[#.3] The experiments
also demonstrate how even a very small increase in -y can improve performance over the baseline, in
accordance with our claim of exponential improvement in Corollary 3]

E Toy EXAMPLE: MNIST

Our proof uses the optimal target PDF py to define the correction function 7. This is empirically
validated by the Gaussian toy experiment, which assumes knowing the true target distribution. In
practice, the correction function only depends on the ability to map synthesized data to data which
is likelier to have been sampled from the ground truth distribution. Crucially, this can be achieved
without having a complete description of the target distribution. For example, with our human
motion experiments, we will demonstrate that point-wise correction based on the laws of physics is
one proxy approach to make a sample more likely, without knowing the true target distribution.

One has the freedom to explore alternative approaches to data correction for more general data types,
such as images. For example, one simple heuristic is to identify the “anchor” or “exemplar” images,
which are intuitively representative and likely. The correction function can then be implemented
as mapping or morphing synthesized data towards its nearest anchor, to make the synthesized data
more representative and likely. In this section, we implement this approach on MNIST and study its
performance.

For our MNIST [LeCun et al.[(1998)) experiments, we train a diffusion model |Ho et al.| (2020)) for
class-conditional image generation, using a train split of size n = 12000. For our iterative fine-tuning
experiments, we train the model for 20 epochs, then synthesize A - 12000/10 images for each digit,
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Figure 7: For every digit, we perform K-means clustering with K=16. We show here the cluster
centroids, which intuitively are anchor images within the manifold of all possible images.

and then augment the ground truth dataset with these to train on for the next generation; every
following generation follows the same procedure, but only trains for a single epoch. We vary our
experiments over augmentation percentages A € {0.2,0.5,1.0,1.5}. To define our self-correction
operation, we first compute K-means clusters over the training split for each digit. Our iterative
fine-tuning with self-correction experiments use the same setup described above, except instead of
training on the synthesized images, we train on the synthesized and then corrected images, where
“correcting” an image means finding the nearest centroid in the K centroids for that digit that we
computed at the start of training. We swept the values K € {1,2,4,...,1024}, and we found that
any reasonably large K results in the same general trend where self-correction improves the metrics
and stability. We report our results for K = 16, which performs the best.

We present images synthesized using our trained models in Figure[6] These synthesized images
demonstrate that iterative fine-tuning eventually generates many low quality and illegible digits,
and this problem is solved by applying our self-correction operation. Further experiment details,
including graphs of the FID metrics for each generation that provide rigorous evidence for this trend
across augmentation percentages, can be found in Appendix |[F| Our empirical results demonstrate
that applying self-correction improves performance during iterative fine-tuning for our MNIST image
generation task across self-consuming generations, and this relative performance is amplified when
the augmentation percentage is larger. The behavior that we observe is consistent with our theoretical
results in Section[d] as well as our human motion experiments in Section[7]

F MORE MNIST EXPERIMENT DETAILS

We train a Denoising Diffusion Probabilistic Model (DDPM) [Ho et al.[(2020) on the 20% of the
MNIST dataset LeCun et al.| (1998)). We use classifier-free guidance Ho & Salimans| (2021)) with
guidance parameter 0.5, and 400 diffusion steps. We used a batch size of 256. We train generation 0
for 20 epochs, with a linear decay learning rate schedule starting at 1e — 4 and ending at (1e — 4)/20.
We train each following generations for a single epoch, with a fixed learning rate of (1le — 4)/202.

To compute our metrics, we first train a LeNet model [LeCun et al.|(1998) on MNIST, and then we
sample an equal number of digits from each class using the checkpoint that we’re trying to evaluate.
To compute the FID score, we extract embeddings from the last fully connected LeNet layer for the
synthesized examples, as well as for the held out test examples, and compute FID score as normal, by
computing the Wasserstein distance between the Gaussians. Note that we use embeddings for LeNet
trained on MNIST, rather than the Inception network trained on ImageNet, because MNIST isn’t
comprised of natural images. This is consistent with the convention in|Alemohammad et al.|(2024).

For the self-correction operation, we compute the K-means clusters, with ' = 16, once at the
start of training. And we “correct” a synthesized motion by mapping it to the nearest cluster mean
corresponding to its digit. In Figure [/|we present the clusters, and we present graphs of our FID
scores across augmentation percentages in Figure

23



Published as a conference paper at ICLR 2025

MNIST Conditional Generation Results MNIST Conditional Generation Results
20% Synthetic Augmentation 50% Synthetic Augmentation

0 5 015 20 % 3 3% 40 46 50 0 5 0 15 20 % 3 % 40 46 50
Generation Generation

—— Iterat

raining on gt data), 0%  —— Itera

MNIST Conditional Generation Results MNIST Conditional Generation Results
100% Synthetic Augmentation 150% Synthetic Augmentation

0 5 015 20 2% 30 3% 40 4 50 0 5 0 15 20 2% 30 3% 40 4 50
Generation Generation

— Tterat

nue training on gt data), 0%  —— Iterat training on gt data), 0%

Figure 8: Results from MNIST experiments with iterative fine-tuning with and without self-correction.
These graphs show the FID score on the last checkpoint for every generation; this is the checkpoint
used for sampling in the self-consuming loop experiments, and it is also the checkpoint where training
is resumed with this new partially synthesized dataset. These results demonstrate that iterative
fine-tuning with self-correction generally outperforms iterative fine-tuning.

G ADDITIONAL HUMAN MOTION GENERATION QUALITATIVE RESULTS

In Figures [0] [I0} and [TI} we present additional qualitative observations and analysis of our
synthesized motions. We present more evidence that iterative fine-tuning with self-correction yields
physically plausible motions comparable to the baseline, whereas iterative fine-tuning without self-
correction yields motions that are incorrect for various reasons. See the captions of the referenced
figures for analysis of some characteristic failure modes of the iterative fine-tuning loop without
self-correction.

A technical note: for all figures, we render the motions from the same environment and camera
position. We consolidate each render into the same image without resizing it. This means that if a
figure appears larger relative to the others, the human moved closer to the camera. Some motions will
have transparent frames of past positions; the more transparent the image, the farther back in the past
it was in the motion sequence. Finally, in each figure, the text prompt for all generated motions was
the same —the prompt being the one associated with the ground truth motion in the HumanML3D
Guo et al.[(2022) training data, which we also visualize. Note that the coloring in the humanoid
figures corresponds to the coloring in the graphs.

H ADDITIONAL HUMAN MOTION GENERATION QUANTITATIVE RESULTS

See Figures for results when the dataset size is n € {64,128,256} and the synthetic
augmentation percentage is A € {0.25,0.50,0.75,1.00}. And see Figuresand for additional
results on our iterative fine-tuning experiments when the dataset size is n = 2794 and the synthetic
augmentation percentage is A € {0.05,0.10,0.15,0.20,0.25}. The graphs provide evidence across
17 experiment settings that our iterative fine-tuning procedure with self-correction yields better
training performance than iterative fine-tuning with no self-correction for the motion synthesis task,
in accordance with Theorem 3]
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Iterative Fine-tuning
with Self-Correction

P 88

Figure 9: Here we see the negative floating phenomenon exacerbated by iterative fine-tuning,
whereas iterative fine-tuning with self-correction generates a motion with floor contact integrity
comparable to the ground truth and baseline. The floatic metric is formally defined in
as the distance between the lowest vertex on the human mesh and the floor plane. All three
sequences were generated using the same prompt: person got down and is crawling across the floor.
Each snapshot was taken at exactly frame 87. The green figure appears larger than the other two only
because it is closer to the camera. The two motions on the right were synthesized after 50 generations
training with 25% synthetic augmentation, trained on n = 64 data points.

Ground Truth Baseline Iterative Fine-tuning

Iterative Fine-tuning

Ground Truth Baseline Iterative Fine-tuning with Self-Correction

Figure 10: All four of the above motions correspond to the prompt: a person raises right hand to
face looks around and puts hand down back to side.. The model which is trained with iterative
fine-tuning outputs spurious motion that slides the figure to the right. And in the video for this
example, the human rotates their forearm unnaturally and forcefully. In contrast, the baseline and
iterative fine-tuning with self-correction models’ motions both accurately embody the prompt.
Each generated snapshot is taken at exactly frame 142 while the ground truth’s image is frame 70 in
its sequence. The two motions on the right were synthesized after 42 generations with 10% synthetic
augmentation, where the ground truth dataset has size n = 2794.

I CONSISTENCY ACROSS SEEDS: ADDITIONAL HUMAN MOTION
GENERATION QUANTITATIVE RESULTS

In Figures [I7] [I8] [I9] and [20] we present experimental results from runs across three more seeds
for our human motion experiments when the dataset size is 7 = 64. We find that the self-correction
technique consistently yields improved training dynamics over iterative fine-tuning without correction.
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Ground Truth Baseline

Iterative Fine-tuning
with Self-Correction

Figure 11: Here we observe that iterative fine-tuning fails to produce any meaningful motion
sequence, but the iterative fine-tuning with self-correction and baseline models generate results
consistent with their prompt: walks side ways but back and forth. Each snapshot for the generated
motions was taken at exactly frame 120 while the ground truth image is a snapshot from frame 69.
These images were synthesized after 50 generation of the model that was trained on n = 64 data
points at 25% synthetic augmentation.
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Figure 12: Results from our human motion experiments with iterative fine-tuning with and without
self-correction, where the training set has size 64. These are graphs for evaluation metrics on the
last checkpoint for every generation; this is the checkpoint used for sampling in the self-consuming
loop experiments, and it is also the checkpoint where training is resumed with this new partially
synthesized dataset. These results demonstrate that iterative fine-tuning with self-correction
generally outperforms iterative fine-tuning, and is sometimes even competitive with baseline
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Human Motion Generation Results: Dataset Size 128, with 25% Synth
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Figure 13: Results from our human motion experiments with iterative fine-tuning with and without
self-correction, where the training set has size 128. These are graphs for evaluation metrics on the
last checkpoint for every generation; this is the checkpoint used for sampling in the self-consuming
loop experiments, and it is also the checkpoint where training is resumed with this new partially
synthesized dataset. These results demonstrate that iterative fine-tuning with self-correction
generally outperforms iterative fine-tuning, and is sometimes even competitive with baseline
performance. Notably, the performance gain of iterative fine-tuning with self-correction over
iterative fine-tuning is less pronounced than when the dataset size is n = 64.
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Figure 14: Results from our human motion experiments with iterative fine-tuning with and without
self-correction, where the training set has size 256. These are graphs for evaluation metrics on the
last checkpoint for every generation; this is the checkpoint used for sampling in the self-consuming
loop experiments, and it is also the checkpoint where training is resumed with this new partially
synthesized dataset. These results demonstrate that iterative fine-tuning with self-correction
generally outperforms iterative fine-tuning, and is sometimes even competitive with baseline

performance.
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Human Motion Generation Results: Dataset Size 2794, with 5% Synthetic Augmentation
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Figure 15: Results from our human motion experiments on iterative fine-tuning with dataset size
n = 2794. These are graphs for evaluation metrics on the last checkpoint for every generation; this is
the checkpoint used for sampling in the augmentation loop experiments, and it is also the checkpoint
where training is resumed with this new synthesized dataset. In these results, it appears as though
iterative fine-tuning with self-correction has less variance during training than iterative fine-tuning
with with no self-correction, and generally has better FID scores later in training. Notably, the these

two curves are closer together than they were in the cases n € {64,128, 256}.
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FID

Figure 16: Results from our human motion experiments on iterative fine-tuning with dataset size n =
2794. These are graphs of the average evaluation metrics for every generation. Graphing the average
evaluation metrics makes the training dynamics trend over time more clear. With this additional
smoothing, it is more clear that iterative fine-tuning with self-correction outperforms iterative fine-
tuning with no self-correction, and is competitive with the baseline after many generations; in fact,
it appears to converge to the baseline (on average) for every synthetic augmentation percentage that

Human Motion Generation Results, Generational Averages: Dataset Size 2794, with 5% Synthetic Augmentation
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Human Motion Generation Results: Dataset Size 64, with 25% Synthetic Augmentation, Across Three Seeds

TID

Diversity

Figure 17: Results from our human motion experiments on iterative fine-tuning, with dataset size
n = 64 and 25% augmentation percentage. Each row corresponds to a different random seed. We can
see that iterative fine-tuning with self-correction consistently outperforms iterative fine-tuning with
no self-correction, and the FID score appears to converge to the baseline after many generations.

Human Motion Generation Results: Dataset Size 64, with 50% Synthetic Augmentation, Across Three Seeds
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Figure 18: Results from our human motion experiments on iterative fine-tuning, with dataset size
n = 64 and 50% augmentation percentage. Each row corresponds to a different random seed. We can
see that iterative fine-tuning with self-correction consistently outperforms iterative fine-tuning with
no self-correction, and the FID score appears to converge to the baseline after many generations.
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Human Motion Generation Results: Dataset Size 64, with 75% Synthetic Augmentation, Across Three Seeds
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Figure 19: Results from our human motion experiments on iterative fine-tuning, with dataset size
n = 64 and 75% augmentation percentage. Each row corresponds to a different random seed. We can
see that iterative fine-tuning with self-correction consistently outperforms iterative fine-tuning with
no self-correction, and the FID score appears to converge near the baseline after many generations.

Human Motion Generation Results: Dataset Size 64, with 100% Synthetic Augmentation, Across Three Seeds
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Figure 20: Results from our human motion experiments on iterative fine-tuning, with dataset size
n = 64 and 100% augmentation percentage. Each row corresponds to a different random seed. We
can see that iterative fine-tuning with self-correction consistently outperforms iterative fine-tuning
with no self-correction. However, we see less stability than in the runs with a lower augmentation
percentage. This is in accordance with Theorem [4.3]
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