
Published as a conference paper at ICLR 2022

LEARNING PRUNING-FRIENDLY NETWORKS VIA
FRANK-WOLFE: ONE-SHOT, ANY-SPARSITY, AND
NO RETRAINING

Miao Lu1*, Xiaolong Luo1*, Tianlong Chen2, Wuyang Chen2, Dong Liu1, Zhangyang Wang2

1University of Science and Technology of China, 2University of Texas at Austin
{lumiao,lxl213}@mail.ustc.edu.cn, dongeliu@ustc.edu.cn
{tianlong.chen,wuyang.chen,atlaswang}@utexas.edu

ABSTRACT

We present a novel framework to train a large deep neural network (DNN) for
only once, which can then be pruned to any sparsity ratio to preserve competitive
accuracy without any re-training. Conventional methods often require (iterative)
pruning followed by re-training, which not only incurs large overhead beyond the
original DNN training but also can be sensitive to retraining hyperparameters. Our
core idea is to re-cast the DNN training as an explicit pruning-aware process: that
is formulated with an auxiliary K-sparse polytope constraint, to encourage net-
work weights to lie in a convex hull spanned by K-sparse vectors, potentially re-
sulting in more sparse weight matrices. We then leverage a stochastic Frank-Wolfe
(SFW) algorithm to solve this new constrained optimization, which naturally leads
to sparse weight updates each time. We further note an overlooked fact that ex-
isting DNN initializations were derived to enhance SGD training (e.g., avoid gra-
dient explosion or collapse), but was unaligned with the challenges of training
with SFW. We hence also present the first learning-based initialization scheme
specifically for boosting SFW-based DNN training. Experiments on CIFAR-10
and Tiny-ImageNet datasets demonstrate that our new framework named SFW-
pruning consistently achieves the state-of-the-art performance on various bench-
mark DNNs over a wide range of pruning ratios. Moreover, SFW-pruning only
needs to train once on the same model and dataset, for obtaining arbitrary ratios,
while requiring neither iterative pruning nor retraining. Codes are available in
https://github.com/VITA-Group/SFW-Once-for-All-Pruning.

1 INTRODUCTION

Deep neural networks (DNNs) achieve tremendous empirical success in various machine learning
applications, but this usually requires a huge model size and high computational cost, challenging
the usage of such models in various real-time and multi-platform applications. For example (Cai
et al., 2019), mobile applications on App stores have to support a diverse range of hardware devices,
from high-end flagships to low-end ones, which need different model capacities for different sce-
narios. As a remedy, neural network compression (Han et al., 2015) tries to slim various DNNs to
improve both the computation and memory efficiency. One important way of network compression
is network pruning, which prunes individual weights (unstructured pruning, Han et al. (2015)) or
channels (structured pruning, Li et al. (2016)) of the network, causing little degeneration in the test
performance. Usually, modern DNN pruning techniques require retraining or fine-tuning of the com-
pressed network, either in a one-shot manner or iterative manner (Frankle & Carbin, 2018). When
one aims to deploy the compressed neural network in different platforms, retraining the pruned
model requires huge computational cost, resulting in excessive energy consumption.

To tackle such an efficiency problem, in this paper, we aim to answer the question of whether we
can design an efficient pruning method that does not need retrain the neural network. Specifically,
we hope to design one-shot unstructured pruning algorithms, which can guarantee consistent and
competitive model performance under varying pruning ratios without retraining the neural network.
One-shot pruning is a natural choice since retraining is not allowed. Intuitively, given a sparsity

1

https://github.com/VITA-Group/SFW-Once-for-All-Pruning

Published as a conference paper at ICLR 2022

ratio, one can leave the most important individual weights (weight-magnitude unstructured pruning
(Han et al., 2015)) untouched and the less important ones pruned according to their relative ”abso-
lute values”. In practice, different pruning ratio requirements correspond to different computational
and memorial budgets. However, previous pruning methods cannot address our question, since they
mainly �nd those important weights via standard gradient-based optimization methods during train-
ing, e.g., stochastic gradient descent (SGD), whose performance will degrade much if retraining is
prohibited, especially at large pruning ratios (See Figure 1(a)). The reason is that such optimiza-
tion methods fail to take the desired sparse structures in the pruned model into consideration. The
process of �nding those most important weights should be integrated with the optimization method.

In view of those, we innovate to re-cast DNN training as an explicitpruning-awareprocess, which
is formulated with an auxiliaryK -sparse polytope constraint to encourage the DNN weights to
lie in the convex hull spanned byK -sparse vectors. Correspondingly, we also propose to train the
DNN via solving the new constrained optimization problem using the stochastic Frank-Wolfe (SFW)
algorithm (Reddi et al., 2016; Hazan & Luo, 2016) that can more organically handle constraints than
SGD-type algorithms. SFW results in sparse weight updates and continually pushes less important
weights to smaller magnitudes. We observe DNNs trained in this way to have more small-value
(yet non-zero) weights that can be gradually and smoothly removed when increasing the (one-shot)
pruning ratio. Applying one-shot weight magnitude pruning then yields consistently strong test
performance across different pruning ratioswithoutfurther retraining or �ne-tuning.

Moreover, we propose a new initialization scheme for SFW-based training. We note that SFW al-
gorithm isnot a gradient-based optimization method, and the widely used initialization schemes
like Kaiming initialization (He et al., 2015) for gradient-based methods do not �t SFW algorithm
since the latter does not use the gradient to update weights. Our proposed initialization scheme is
organically designed for SFW algorithm and is formulated as a meta learning problem, drawing mo-
tivations from Zhu et al. (2021). It learns the layer-wise initialization scaling factors that lead to the
largest loss reduction in the �rst SFW training step. We demonstrate that with the new initialization
scheme, our proposed one-shot pruning algorithm can consistently achieve better test performance
under different pruning ratios without retraining. Now we summarize our main contributions.

• We explicitly re-cast DNN training as a pruning-aware process formulated under an auxil-
iary K -sparse polytope constraint, based on which we propose a new SFW-pruning frame-
work that trains a DNN via solving a new constraint optimization problem using SFW and
prunes the DNN in a one-shot fashion with no retraining.

• We customize a meta-learning-based initialization scheme for SFW-based DNN training,
which leads to more consistent and competitive performance under varying pruning ratios.

• We empirically demonstrate that our proposed SFW-pruning framework is applicable
across different architectures and datasets, achieving the state-of-the-art performance con-
sistently over a wide range of pruning ratios without retraining.

2 RELATED WORK

Neural Network Pruning and Ef�cient Deployment. With larger, deeper, and more sophisticated
models, DNNs achieved incredible success over the last decade. However, large models introduce
high computation and memory costs, making them dif�cult in actual application and deployment.
Various methods, including knowledge distillation (Hinton et al., 2015; Romero et al., 2014), low-
rank factorization (Denton et al., 2014; Yu et al., 2017), quantization (Courbariaux et al., 2016;
Rastegari et al., 2016; Wu et al., 2018), and pruning (Han et al., 2015; Li et al., 2016; Liu et al., 2018),
have been proposed to deploy large models in resource-constrained devices ef�ciently. Among these
methods, pruning has become a research hotspot for its ability to maintain high performance.

Typically, pruning can be roughly divided into two main branches: unstructured (Han et al., 2015)
and structured (Hu et al., 2016). Unstructured pruning is to remove individual parameters in the
networks. A common example, Iterative Magnitude Pruning (IMP) (Han et al., 2015; Frankle &
Carbin, 2018; Chen et al., 2020b;a), repeats training and pruning cycles to attain a sparse network.
Although IMP works well, its high computation cost motivates more ef�cient methods (Lee et al.,
2018; Wang et al., 2020a; Tanaka et al., 2020). Another major branch is structured pruning. It

2

Published as a conference paper at ICLR 2022

considers parameters in groups, removing entire neurons, �lters, or channels (He et al., 2017; Li
et al., 2016; Guo et al., 2021) which can more directly save energy and memory (Luo & Wu, 2020).

Practical devices often vary in their on-board resource availability (Cai et al., 2019; Wang et al.,
2020b). To tackle this problem, pruning the network to different sizes and retraining is one naive
way, yet costly. (Han et al., 2015; He et al., 2017; Li et al., 2016). Another approach is to design
ef�cient and scalable neural network architecture such as MobileNet (Howard et al., 2017) and Shuf-
�eNets (Ma et al., 2018; Zhang et al., 2018). However, these methods are computationally expensive
or need human-based design. To this end, Cai et al. (2019) pioneer on a “once for all” scheme that
can �exibly obtain a large number of sub-networks to meet different resource constraints from a
pre-trained “super network”, but their pre-training cost is gigantic and re-training is needed for each
sub-network for restoring the optimal performance. In our work, we view ef�cient deployment from
a novel aspect, i.e. training a neural network to naturally possess scalable weight sparsity, while
keeping the training cost comparable with normal one-pass training. Then with only a single-shot
pruning, we can get the desired sub-network with any sparsity without retraining.

Stochastic Frank-Wolfe. Frank–Wolfe (FW) (Frank et al., 1956) is a classical non-gradient-based
method for convex optimization. In recent years, FW has been applied in stochastic non-convex
optimization (Reddi et al., 2016; Hazan & Luo, 2016), named as stochastic Frank–Wolfe (SFW) al-
gorithm. Hazan & Luo (2016) perform a theoretical analysis of the standard SFW algorithm with a
convergence rateO(1=t) with �

�
t2

�
growing batch-sizes. Several works further extend SFW-based

algorithms in the deep learning �eld and propose various variants of SFW (Yurtsever et al., 2019;
Shen et al., 2019; Xie et al., 2019; Zhang et al., 2020; Combettes et al., 2020). Momentum is found
to be a crucial part of SFW in training neural networks (Cutkosky & Orabona, 2019; Mokhtari et al.,
2020; Chen et al., 2018). Recently, (Pokutta et al., 2020) apply a momentum based SFW algorithm
in training NN and achieve high accuracy. Inspired from those prior arts, we propose SFW-based
NN training algorithm for one-shot pruning without retraining. We additionally investigate the pre-
viously overlooked problem of SFW initialization, and present a meta learning-based scheme.

Neural Networks Initialization. An inappropriate initialization can lead to deep networks weights
and gradients exploding or vanishing, challenging training deep neural networks. Several standard
initialization (Glorot & Bengio, 2010; He et al., 2015) methods are designed for gradient-based
optimization methods to keep the variance per layer balanced. Further, Glorot & Bengio (2010) and
He et al. (2015)'s assumptions no longer hold for more complex architectures, motivating newer
methods (Dauphin & Schoenholz, 2019; Zhang et al., 2019; Bachlechner et al., 2020). However,
most of these are tied to enhancing SGD-based training. Since theK -sparse SFW algorithm is
non-gradient based, new initialization methods need to be customized.

3 STOCHASTIC FRANKE-WOLFE PRUNING FRAMEWORK

In this section, we formulate the DNN training process as an explicit pruning-aware process with
an auxiliaryK -sparse polytope constraint, and we solve the corresponding constrained optimization
problem via a stochastic Franke-Wolfe (SFW) algorithm. Speci�cally, we formulate the pruning-
aware process and review the basics of SFW algorithm in Section 3.1. In Section 3.2, we present
our proposedSFW-pruning frameworkbased on the pruning-aware process and one-shot pruning,
where we consider weight-magnitude unstructured pruning.

3.1 PRUNING-AWARE DNN TRAINING AND STOCHASTIC FRANK-WOLFE ALGORITHM

Our core idea is to re-cast the DNN training process as an explicit pruning-aware process, which is
achieved via an auxiliaryK -sparse polytope constraint. Formally, given a datasetD = f (x i ; yi)gn

i =1
where(x i ; yi) 2 X � Y and a loss functioǹ : Y � Y 7! R+ , e.g., cross-entropy loss, we aim to
train a deep neural networkf (� ; �) : X 7! Y that minimizes the followingpruning-aware objective:

min
� 2C

1
n

nX

i =1

`(f (� ; x i); yi) := min
� 2C

L(�) (1)

To make the training process pruning-aware, we restrict the feasible parameter� in a convex region
C, which potentially results in more sparse weight matrices and will be more pruning-friendly for

3

Published as a conference paper at ICLR 2022

only a small percentage of the weights are of large magnitudes. Speci�cally, we chooseC as aK -
sparse polytope, and we solve (1) ef�ciently via a stochastic Frank–Wolfe (SFW) algorithm. We
review theK -sparse polytope and the basics of SFW below and further explain our motivations.

Stochastic Frank-Wolfe andK -Sparse Polytope Constraints. SFW is a simple projection-free
�rst-order algorithm for solving convex constraint optimization problems (Reddi et al., 2016; Hazan
& Luo, 2016; Yurtsever et al., 2019; Shen et al., 2019; Xie et al., 2019; Zhang et al., 2020; Combettes
et al., 2020). Consider the constrained optimization objective (1) and denote the neural network
weights learned by SFW by� t . At each iterationt, SFW �rst calls alinear minimization oracle
v t = LMOC(br � L(� t)) = arg min v 2C hbr � L(� t); v i , where br � L(� t) estimates the full gradient,
e.g., gradient on a minibatch. Givenv t , SFW updates� t along the direction ofv t by a convex
combination� t +1 = � t + � t (v t � � t) = � t v t + (1 � � t)� t with the learning rate� t 2 [0; 1]. This
keeps� t always inC and saves any projection step. In neural network training, to further improve
the training performance and test accuracy, momentum is also introduced into SFW algorithm (Xie
et al., 2019; Pokutta et al., 2020). We conclude the corresponding SFW algorithm in Algorithm 1.

A K -sparse polytope inRp of radius� > 0, p 2 N, denoted byC(K; �), is the intersection of the
L 1-ball B1(�K) and theL 1 -ball B1 (�) of Rp. One can obtainC(K; �) by spanning all the vectors
in Rp, which have exactlyK non-zero coordinates and the absolute value of the non-zero entries are
� . It holds that (Pokutta et al., 2020) for anym 2 Rp the oraclev = LMOC(K;�) (m) is given by

(v) i =
�

� � � sign((m) i) if (m) i is in the largestK coordinates ofm ;
0 otherwise,

81 � i � p; (2)

which is a vector with exactlyK non-zero entries. When applying theK -sparse polytope constraint
in deep neural network training objective (1), we add the constraint on each layer of the network.
In other words, if we write out� as� = (W 1; b1; � � � ; W L ; bL) for layer-wise weight parameter
W l and bias parameterbl , then each of the parameters is paired with aK -sparse polytope constraint
C(K l ; �). HereK l may vary between the different layers. For notation simplicity, in the sequel, we
denote such a layer-wise constraint as� 2 C(f K l gL

l =1 ; �) without making any confusion.

Why K -Sparse Polytope Constraints? In each step of our optimization, the linear minimization
oracle of aK -sparse polytope constraint returns a update vector with exactlyK non-zero coordi-
nates, which is then weighted-averaged with the current� t according to the SFW algorithm (accu-
mulated from the “ensemble” ofK non-zero coordinate vectors, from all past update steps). In other
words, training with aK -sparse constraints amounts to a “voting” process, by all step updates, on
which K elements “should be non-zero”, and the resulting weights could be viewed as the soft vot-
ing consensus. By adding such a training constraint, each SFW step pushes less important weights
smaller since they are averaged with zero, and those important weights are enhanced meanwhile.

As Figure 1(a) shows, compared to DNNs trained by SGD, those trained by SFW withK -sparse
polytope constraints appear to have much more smaller weights (but not exactly zero), and less large
ones. Moreover, the amounts of weights, at different magnitude levels, change more “smoothly and
“continually” in SFW-trained weights compared to that of SGD. With such a weight distribution,
when the pruning ratio increases, there will be no sudden “jump” to removing small values to im-
pacting larger values) when the pruning ratio increases, yielding competitive test accuracies across
the whole spectrum of pruning ratios, even without needing retraining. We refer to Appendix B.1
for more computational details aboutK -Sparse Polytope Constraints.

3.2 STOCHASTIC FRANK–WOLFE ONE-SHOT PRUNING WITHOUT RETRAINING

Previously, we have motivated the usage ofK -sparse polytope constraint in the pruning-aware DNN
training objective (1) and using SFW algorithm in the training process. In this subsection, we �rst
propose ourSFW-pruningframework for deep neural network one-shot pruningwithout retraining
based on SFW neural network training withK -sparse polytope constraints. After, we provide some
�ne-grained analysis of the hyperparameters involved in the newly proposed pruning framework.

Stochastic Frank–Wolfe Pruning Framework. We now present our one-shot pruning framework,
where a DNN is trained using the pruning-aware objective (1) withK -sparse constraints via SFW
for only onceand then undergoes a one-shot pruning (Algorithm 2). The SFW training phase (Line
5 to 7) is pruning-aware, which aims to �nd a proper DNN weight� T that can minimize the training

4

Published as a conference paper at ICLR 2022

Algorithm 1: Stochastic Frank-Wolfe with Momentum for Deep Neural Network Training

1: Input: DatasetD = f (x i ; yi)gn
i =1 , deep neural networkf (� ; �), convex constraint regionC,

initialization point� 0 2 C, linear minimization oracleLMOC, number of stepsT, initial
learning rate� 0 2 [0; 1], learning rate schemelr scheme, momentum� 2 [0; 1].

2: Output: �nal point � T = SFW(D; f; C; LMOC; � 0; T; � 0; lr scheme; �).
3: for t = 1 ; � � � ; T do
4: Update learning rate� t lr scheme(t) and gradient estimatorbr � L(� t � 1).
5: Update momentum vectorm t (1 � �)m t � 1 + � br � L(� t � 1).
6: Solve linear minimization oraclev t LMOC(m t).
7: Update neural network weights� t � t � 1 + � t (v t � � t).
8: end for

Algorithm 2: Stochastic Frank-Wolfe Pruning Framework (SFW-Pruning)

1: Input: DatasetD, deep neural networkf (� 0; �), diameter� , sparsityf K l gL
l =1 , initial weight

� 0 2 C(f K l gL
l =1 ; �), linear minimization oracleLMOC(f K l gL

l =1 ;�) , training epochT, initial
learning rate� 0 2 [0; 1], learning rate schemelr scheme, momentum� 2 [0; 1], desired
pruning ratios, Initialization Scheme (bool), andPruning Procedure
(weight-magnitude unstructured pruning).

2: Output: a pruned neural networkf (� s
T ; �) with pruning sparsity ratios.

3: # Sparse training phase using SFW withK -sparse constraints
4: if Initialization Scheme is True then
5: � 0 SFWInit (f (� 0; �), � 0).
6: end if
7: Train the deep neural networkf onD via SFW, i.e., set

� T SFW(D; f; C(f K gL
l =1 ; �); LMOC(f K gL

l =1 ;�) ; � 0; T; � 0; lr scheme; �).
8: # One-shot magnitude pruning phase
9: Pruning the deep neural networkf (� T ; �) via Pruning Procedure and getf (� s

T ; �).

(a) Weight distributions (b) Test accuracy (c) Nature sparsity

Figure 1: (a) shows the weight magnitude distributions of DNNs trained by SGD and SFW respec-
tively, averaged over 2 architecturesf ResNet18, VGG16g and 2 datasetsf CIFAR-10, CIFAR-100g.
See Appendix B.3 for weight distributions for each combination. (b) shows the test accuracy under
three different settings: SFW-pruning framework; SGD training and one-shot magnitude pruning;
and SGD training and random pruning. Thex-axis is the desired pruning ratio. (c) shows the na-
ture sparsity of two architecturesf ResNet18, VGG16g trained by SFW withK -sparse polytope
constraints on CIFAR-10 dataset with� 0 2 f 0:1; 0:2; 0:4; 0:6; 0:8; 1:0g.

loss while being pruning-friendly. The following pruning procedure (Line 8 to 9) is adpoted with
standard weight-magnitude unstructured pruning (Han et al., 2015; Frankle & Carbin, 2018) (prunes
individual weights in the DNN). For practical use, one can choose either of the pruning procedures.
We refer to technical details of the two pruning procedures to experiments in Section 5. In Figure
1(b), we demonstrate the effectiveness of our framework using ResNet18 (He et al., 2016) on the
CIFAR-10 (Krizhevsky et al., 2009) dataset for unstructured pruning.

5

Published as a conference paper at ICLR 2022

Despite the simplicity, the high-level idea of Algorithm 2 is intuitive: the discovery of sparse struc-
tures and pruning-aware DNN weights should be integrated with theoptimization process, especially
when retraining is prohibited. We further demonstrate the effectiveness of Algorithm 2 via exten-
sive experiments on different datasets and DNN architectures with unstructured pruning, achieving
competitive test performance consistently across various pruning ratios, which is not achievable by
random pruning or non-pruning-aware optimization methods.

Fine-grained Analysis of SFW Sparse Training. Proper choices of several hyperparameters of
Algorithm 2 play an important in discovering pruning-friendly weights. We note that intuitively it
is a trade-off between the test performance and the one-shot pruning ratio of the DNN. But given
the same pruning ratio, our framework can �nd more pruning-friend weights than random pruning
or other optimization methods without sparsity awareness. We refer to Appendix B.1 for a detailed
ablation study of the hyperparameters in Algorithm 2.

K -sparse constraint parametersf K l gL
l =1 and � : f K l gL

l =1 controls the sparsity of the linear mini-
mization oracle solution, and� controls the magnitude, which together in�uence the distribution of
the learned parameters. Experimental results show that relatively smaller choices of these hyperpa-
rameters can keep the test performance undamaged under higher one-shot pruning ratios, at the cost
of relatively lower full model test performance. Empirically, we �ndK = 5% and� = 151 to be
our default good choices that transfer well across DNNs and datasets.

Learning rate� : Recall that at stept, we update� t by � t +1 = � t + � t (v t � � t) = � t v t +(1 � � t)� t
which is the a convex combination ofv t , the linear minimization orcale solution, and� t , the current
parameter. Note thatv t is K -sparse, which means that a larger learning rate (i.e.,� t v t has larger
weight in the convex combination) may result in sparser parameter� t +1 . This observation indicates
that one can (dynamically) control the nature sparsity2 of the neural network by controlling the scale
of the learning rate� t . We refer to Figure 1(c) for a demonstration of this phenomenon.

4 INITIALIZATION SCHEME FORSTOCHASTIC FRANK-WOLFE ALGORITHM

Most widely used initialization schemes for gradient-based methods, like Kaiming initialization (He
et al., 2015), ensure that the mean of activations is zero, and the variance of the activations stays
the same across layers to avoid gradient explosion or collapse. However, the SFW algorithm does
not use the gradient to update the weights, making such initialization schemes unaligned with the
challenges of training with SFW. A new initialization designed for SFW is desired.

To this end, we introduce a new initialization scheme by adapting the idea from Zhu et al. (2021).
The goal is to learn the best initialization� 0 in the sense that it can allow the maximal loss reduction
in the �rst SFW step, which we hope can further bring more competitive and consistent pruning test
performance in our SFW-pruning paradigm. Speci�cally, the proposed method initializes each layer
of the neural network with a uniform distribution, which is then multiplied by a layer-wise scaling
parameter learned by the algorithm, resulting in a maximal one-SFW-step loss reduction.

Methodology. We �rst initialize the parameter� 0 of weight matricesf W l gL
l =1 and bias vectors

f bl gL
l =1 of the network with values drawn from independent zero-mean Gaussian distributions with

the variance decided by the standard fan-in and fan-out of the layer (He et al., 2015).l = 1 � � � L
denotes the layer index. For each layerl , we pairW l andbl with learnable non-negative scalars
� i and� i that control the scaling of the layer at initialization, and we use� to denote the vector
of scale factors(� 1; � 1; � � � ; � L ; � L), and let� � be the tuple(� 1W 1; � 1b1; � � � ; � L W L ; � L bL) of
rescaled parameters. Also, we extend the loss de�nition as

L(S; �) =
1

jSj

X

(x ;y)2 S

`(f (� ; x); y); (3)

which is the average loss of the model with� on a minibatch of samplesS. Correspndingly, we de-
note one SFW optimization step obtained on minibatchS asSFW(S; f; C(f K l gL

l =1 ; �); � 0; 1; � 0; �).

1HereK l = 5% refers to5% of the weights in layerl . Also, we let� be rescaled by the expected initializa-
tion norm. See Section 5 for detailed implementation setup.

2We refer to the nature sparsity of a neural network as the largest pruning ratio that keeps the test perfor-
mance undamaged.

6

	Introduction
	Related Work
	Stochastic Franke-Wolfe Pruning Framework
	Pruning-Aware DNN Training and Stochastic Frank-Wolfe Algorithm
	Stochastic Frank–Wolfe One-shot Pruning without Retraining

	Initialization Scheme for Stochastic Frank-Wolfe Algorithm
	Experiments
	Settings
	One-Shot weight-magnitude Unstructured Pruning
	Adding the New SFW Initialization
	Comparison to State-of-the-Art Methods

	Conclusion
	Implementation Details
	K-Sparse Polytope Constraints and DNN Weight Distirbutions
	More about K-Sparse Polytope Constraints
	Ablation Study of K-Sparse Polytope Constraints Parameters
	Performance on More Architectures and Datasets

