WebCanvas: Benchmarking Web Agents in Online Environments

Anonymous Authors'

Abstract

For web agents to be practically useful, they need
to generalize to the ever changing web environ-
ment — UI updates, page content updates, etc.
Unfortunately, most traditional benchmarks only
capture a static state of the web page. We intro-
duce WebCanvas, an innovative online evaluation
framework for web agents designed to address
the dynamic nature of web interactions. Web-
Canvas contains three main components support-
ing realistic assessments: (1) A key-node-based
evaluation metric, which stably capture critical
actions or states necessary for task completions
while disregarding noises caused by insignificant
events or changed web-elements; (2) A bench-
mark dataset called Mind2Web-Live, a refined
version of original Mind2Web static dataset con-
taining 542 tasks with 2439 intermediate evalu-
ation states; (3) Lightweight and generalizable
annotation tools and testing pipelines, which al-
lows us to maintain the high-quality, up-to-date
dataset and automatically detection shifts in live
action sequences. Despite the advancements, best-
performing model achieves only a 23.1% task
success rate, highlighting substantial room for
improvement in future work.

1. Introduction

Unlike text generation tasks that leverages built-in model
knowledge (Hendrycks et al., 2020; Chen et al., 2021; Cobbe
et al., 2021), agents require environmental observations and
feedback for context. Thus, dynamic, real-world environ-
ments are essential for agent evaluation. The World Wide
Web itself emerges as the most extensive arena for the as-
sessment of agents, offering an unparalleled complexity for
environmental interaction. However, the rapid evolution of
the web environment, driven by technological advancements
and evolving design trends, introduces significant data dis-
tribution shifts over time. Figurel shows three common
patterns of web tasks shift over time. in the course of our
study, it was discovered that 10% of the tasks annotated
within the renowned benchmark dataset Mind2Web (Deng
et al., 2024) in May 2023 have become totally obsolete, and

Before After

u K
Changes

e QEPE o QR
| GHoes Step 1 Step 2 Step 3 1year Step 1 Step 2 |
M e o e e o o e = o/
(T T T T T T — e ————— e ———————)
: Welbsite Book " @ @ :
c =
[epository Lyear 404 Error |
e, e, e, e, e, e e e e e e e e ——

Figure 1: Illustration of how web tasks change over time
due to various factors, placing challenges in building bench-
marks in online web environment where changes can signif-
icantly alter task pathways and outcomes.

an additional 38% have undergone modifications in their
completion logic and trajectories at the time of May 2024.
This data shift is fine as they are valid in the original setup,
but it has the potential to bring gaps between the offline
and online evaluation and development processes of real-
world web agents. Meanwhile, the accumulated knowledge
and training data of static websites leads to the saturation
of existing benchmarks, making it increasingly difficult to
compare models and reasoning frameworks fairly and rig-
orously. We found model trained in 2023 have already
had performance discrepancy between offline and online
evaluation as compared with close-sourced model such as
GPT-3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al.,
2023), which is discussed in §J.3.

Motivated by these demands, previous works have attempted
human evaluation of web agents performance in online en-
vironment (Zheng et al., 2024; He et al., 2024), yet there
lacks an objective, quantitative and automated method for
evaluation. Thus, we introduce WebCanvas, a dynamic and
real-time framework designed for online evaluation of web
agents. WebCanvas is built on the following principles:

1. Key nodes annotation provides in-progress evaluation.
In the dynamic and open environment of online benchmarks,
traditional evaluation methods that focus solely on action
prediction accuracy (Deng et al., 2024; Zheng et al., 2024)
and the final state achievement (Zhou et al., 2023; Mialon
et al., 2023) could not effectively adapt to the complexities

Submission and Formatting Instructions for ICML 2024

A Annotation

——————————————————————————————————

il ..

&> Operation

29 Step Score

. | |
| 1. Instruction ! 2.WebBrowser | [C3 | [Action |
! | ! } Click: button I p Q I

_—

| “Find top-rated upcoming adventure | ‘. | } — } URL Score: 1 :
| movies on Rotten Tomatoes” | ! Observation | |
: ! T o 1 i Agent " Web Browser ! i Element ;
S S A 1 ement — 1
! 3. Workflow ! 4. Key Nodes 1 s -
: i. Go to Rotten Tomatoes } i. URL include match : S Agent s Workflow E] TaSk Score
| i lck “Comingsoon o thester” | ji URL exact match | SRS TAAENE:
| i I

I
. :)

C

Completion Rate

[|
! |
| |

|
! |
|
e NG R) i]
O Platform | Goto: rottentomatoes.com Lo Goto: google.com | | o |
| ! |
................................... . |
: ! i Click: Coming soon to theaters ; | Search: upcoming movies on RT } | Task Success Rate ;
' “Find Dota 2 game and 5 @ | i 1 B ! | |
| add all DLC to cart on steam” Mind2Web ! | Web page: o Web page: | i !
! 1 | Movies Coming Soon o Movies Coming Soon } i o ;
| o | P 1 e | ! . |
| “Go to Airbnb and find a private = ! 14 X ;o . | ! Efficiency Score !
U room in New York for 2 adults” — @ain ! ! ©@ Genre: Adventure ! ! @ Sort: Most Popular ! | }
1 | - ="~ TTTTTTTTT T [| ! !
! < 1 | Sort: Most Popular . Genre: Adventure I | % ;
| “Check out the most recent N = | o l . l | |
! open issues on Gitlab” Channel B] (Finish @ ! ! Gl ! | Human Alignment !

| |
|\ f) .]

Figure 2: WebCanvas framework. The left side depicts the annotation process addressing each task, while the right side
demonstrates the evaluation process during inference time, which involves collection of predicted actions, URLs, and
elements targeted for interaction in online web environment, allowing for dynamic assessment. The framework accounts for
the non-uniqueness of paths in online web interactions, with “Trophies” representing step scores earned upon successfully
reaching each key node. The process of data maintenance related to these activities is detailed in §2.4.2.

of real-world web navigation. To address this gap, we in-
troduce a novel concept termed “key nodes” — essential
milestones that any task process must traverse, irrespective
of the path taken.

Implementing these key nodes allows for a detailed, step-
by-step analysis of agent behaviors during task execution,
thereby enhancing our understanding of the agent’s decision-
making strengths and weaknesses. Based on the key nodes
definition and evaluation metrics construction, we developed
the Mind2Web-Live dataset as a foundation benchmark
for the community. We sampled and annotated tasks from
Mind2Web (Deng et al., 2024), maintaining a collection of
542 web agent tasks, including 2439 intermediate evaluation
states.

2. Easy to Scale in Online Web Environment. WebCanvas
supports recording and annotation of web agent tasks and
their corresponding evaluation states through an advanced
recording browser plugin with transparent data access. Fur-
thermore, we have open-sourced an agent reasoning frame-
work that enhances the integration and customization of
various agent modules for online web tasks. This initiative
provided guidelines and toolkits for the community to ef-
fectively scale data for online evaluation within real-world
settings in their own scenario.

3. Regular maintenance under optimized cost. Online
environment is continuously evolving, making maintain-

ing data validity a challenge. To address this, WebCanvas
employs an efficient maintenance strategy with scheduled
monitoring and automated alerts that quickly identify action
sequences and key nodes validity. When data shifts occur,
our test report with error messages guide data owner through
quick and effective data corrections. This approach allows
us to dynamically adjust our evaluation sets in response to
real-time changes in web content with acceptable cost.

Comparative experiments across different models and set-
tings in online web environment found that GPT-4-turbo
achieved the best completion rate of 48.8% and task suc-
cess rate of 23.1% on Mind2Web-Live test set, leaving
substantial room for improvement in future work. We also
conducted a rigorous analysis to dissect various factors in-
fluencing online agent performance and quantitatively ex-
plored the distinctions between WebCanvas and previous
evaluation methods for web agent.

2. WebCanvas: An Online Evaluation
Framework for Web Agents

2.1. Problem formulation

The real-world web environment can be formulated as:
(S, A, T,O) with state space S, action space .A(Table 7),
deterministic transition function 7 : S x A — S and a
state observation space (O(§3.1). Given a task instruction

Submission and Formatting Instructions for ICML 2024

i, current observation o; € O and the action history a"i_l,
an agent issues an action a; € A. Consequently, after the
execution of the action, the environment transitions to a
new state s; 11 € S, and the corresponding observation up-
dates to 0,11 € O. To measure the completion of tasks, we
have defined key nodes and evaluation metrics, which are
elaborated in §2.2 and §2.3.

2.2. Key nodes

The concept of “key nodes” is one of the pivotal ideas in our
work. Key nodes refer to indispensable steps in the process
of completing specific web tasks, meaning that regardless of
the path taken to accomplish a task, these steps are required.
These may involve navigation to certain webpages or the
performance of specific actions on web pages, such as filling
out forms or clicking buttons. This design philosophy not
only reflects the dynamic nature of the web environment
but also captures the diversity of paths present in real-world
web pages.

As illustrated in Figure 2, consider the task of “Find top-
rated upcoming adventure movies on Rotten Tomatoes” as
an example. Users might start directly at the Rotten Toma-
toes homepage or use a search engine to navigate straight
to the “New Movies Coming Soon” page of the Rotten
Tomatoes. Moreover, when filtering the movies, users might
choose to first apply a filter for the “adventure” genre and
then sort by popularity, or alternatively, sort by popularity
before applying the genre filter. Despite the availability
of different paths to achieve the goal, entering the specific
page and performing the genre and popularity sorting are
essential steps in accomplishing the task. Therefore, these
three steps are identified as “key nodes”.

In the dynamic and noisy real-world web environment, iden-
tifying these key nodes is challenging due to the potential
changes in page content and UI updates, which could render
element selector paths obsolete. Therefore, we preferred
to use URL state as identifiers for key nodes rather than
element interaction, which enhanced the Benchmark’s ro-
bustness against layout changes. Only element class meth-
ods are considered for key nodes that cannot be represented
by URLs. The detailed judgment method is described in
Appendix C.3. By defining key nodes, WebCanvas is able
to dynamically assess the execution capabilities of web
agents in real-world web environments, offering a practical
and flexible evaluation method for the development of web
agents.

2.3. Evaluation Metrics

The evaluation metrics of WebCanvas comprised of two
main components: step score and task score. The step
score evaluates the agent’s performance with regard to each
key node, defining three types of evaluation targets along

with three evaluation functions at each step. The task score
includes two functions to assess the task’s completeness and
overall execution efficiency.

2.3.1. STEP SCORE

Inspired by previous works (Zhou et al., 2023; Koh et al.,
2024), we introduced three evaluation targets in calculating
step score, allowing us to examine from different aspects:
(1) URL: The webpage’s URL, used for page location and
parameter retrieval. (2) Element Path: Selector to pinpoint
element location. (3) Element Value: The text content of
the target element.

We designed three evaluation functions for these targets: (1)
Exact Match: This function requires the agent’s output to
exactly match the reference answer, suitable for scenarios
requiring precise matches, such as specific URL parame-
ters or form fields like names. (2) Include Match: This
function scores the agent’s output as long as it contains
reference answer, suitable for keyword matching scenarios.
(3) Semantic Match: Utilizing LLM for semantic match-
ing scoring, this function is appropriate for complex tasks
requiring content understanding, like identifying product
information.

Each key node is bonded with a specific evaluation target
and evaluation function. One step score is awarded when the
agent successfully reaches a key node and passes the asso-
ciated evaluation function verification. Table 5 shows a list
of possible evaluation functions for reference. To facilitate
the presentation of experimental results, the “Completion
Rate” will be used to represent the proportional scoring of
Step Scores.

2.3.2. TASK SCORE

Task Finish Score Task Finish Score is awarded based
exclusively on the agent’s success in completing all the
designated key nodes within the task. To facilitate the pre-
sentation of experimental results, the Task Finish Score will
be represented by the “Task Success Rate”.

Efficiency Score Efficiency Score(ES) is devised to eval-
uate the resource utilization effectiveness during task exe-
cution, which is calculated based on the average number
of steps required for the agent to achieve each unit of the
step score, thereby encouraging maximal efficiency with
minimal resource expenditure.

2.4. Data
2.4.1. DATASET: MIND2WEB-LIVE

To develop a real-world online benchmark for web agents,
we introduce Mind2Web-Live, which is derived from tasks
present in the Mind2Web dataset. We employed WebCanvas

Submission and Formatting Instructions for ICML 2024

framework as a guidance for the sampling and re-annotation
of these tasks to ensure their adaptability. Consequently, we
selectively excluded all tasks that contained time-sensitive
descriptions, such as those involving specific dates or times.
From the training set, we randomly sample 601 tasks, along
with all 179 tasks from the cross-task subset of the test set.
These tasks are then re-annotated in the real-world online
environment.

The annotation process presented multiple challenges. No-
tably, due to updates in website content and operational
changes, we discovered 96 tasks that were no longer ap-
plicable and subsequently removed them from the dataset.
Additionally, 142 tasks were discarded due to ambiguous
task definitions and the difficulty in clearly defining key
nodes. To enhance the clarity and reliability of task execu-
tion, we revised the descriptions for 51 tasks.

After a rigorous annotation and review process, which is de-
scribed in Appendix B due to length limit, 542 high-quality
tasks were established for the Mind2Web-Live dataset, in-
cluding 438 of the training set and 104 of the test set. As
shown in Figure 1, Mind2Web-Live encompasses 2439 key
nodes and 4550 detailed annotation steps. The tasks in
the dataset cover a wide range of webpage types and op-
erations, designed to comprehensively evaluate the perfor-
mance of web agents in a dynamic and variable online envi-
ronment. The distribution of the Evaluation Function within
the dataset is illustrated in subsection C.2.

Table 1: Data distribution

Statistic Number
Total selected tasks 780
- Expired Tasks 96
- Unable to annotate 142
- Mind2Web-Live 542

- training set 438

- testing set 104
Annotate steps 4550
Avg. steps 8.39 / task
Eval functions 2439
Avg. Eval functions 4.5 / task

2.4.2. DATASET MAINTENANCE

We have paid special attention to the dynamic nature of
the benchmark to adapt to the constantly changing web
environment. We recognize that updates and changes to
website content, such as Ul updates, database changes, or
website close-down, are inevitable as time progresses. Such
changes may lead to the obsolescence of previously defined
tasks or key nodes.

We thus implemented a regular data maintenance schedule.
During data collection process, in addition to key nodes an-
notation, we recorded detailed information about workflow
execution, including action types, selector paths, element
value, and element coordinates at each step. We managed
to stably playback these stored action workflows by an ele-
ment matching strategy in our replaySDK', and report any
invalidity in the workflows or the evaluation functions. We
periodically reassess key nodes by the above methods and
a human check to ensure that each task reflects the current
web environment, as illustrated in Appendix H. An example
of regular testing report is shown in Appendix D.

3. Experiment

Inspired by previous work (Yao et al., 2023; Zhou et al.,
2023; Zheng et al., 2024), we introduce a universal agent
framework, as illustrated in subsection G.2, which includes
four key modules: Planning, Observation, Memory and Re-
ward. This framework is engineered to perform complex
tasks within real-world online web environments.?> Experi-
mental settings are detailed in Appendix I.

3.1. Agent Framework

Planning Integrates past states’ history, current observa-
tions, and task queries to plan future actions and deter-
mine operational values based on the ReAct (Yao et al.,
2023) reasoning framework. It can be formally expressed
as: Planning(h$, o,1) — (24, at), where ht represents
history information until time t, o is the observation at
time t, i is the task instruction, while the outputs z; and a;
are the thought and action at time t respectively.

Observation Processes the current webpage’s source code
and screenshots, producing an accessibility tree (Zhou et al.,
2023) and visual observations as o;. Observation settings
are detailed in Appendix L.

Memory Responsible for storing the task description and
tracking the agent’s operational history, including thoughts
and actions history across states. It can be formally ex-
pressed as h§ = (z$,at, r}) within the framework, where

r} denotes the history of reward signal if presents.

Reward Utilizes a self-reflection structure (Shinn et al.,
2024), providing a series of reward signal, including a verbal
reflection and signal on whether the task is completed. This
can be formalized as Reward(h,i,0¢11) — ry.

"While the full codebase is not currently available, we intend
to open source the code upon completion of further refinement and
documentation

https://anonymous.4open.science/r/
WebCanvas_Agent-A2C3/README . md

https://anonymous.4open.science/r/WebCanvas_Agent-A2C3/README.md
https://anonymous.4open.science/r/WebCanvas_Agent-A2C3/README.md

Submission and Formatting Instructions for ICML 2024

Table 2: Performance of different models without reward module on Mind2Web-Live test set. “Task Success Rate(0)”
and “Task Success Rate(1)” denote the Task Success Rates with zero tolerance and tolerance for error at one key node,
respectively. As for the model, we experiment with gpt-3.5-turbo-0125(GPT-3.5), gpt-4-0125-preview(GPT-4).

Model Completion Rate Task Success testRate(0) Task Success Rate(1) Efficiency Score
GPT-3.5 40.2% 16.5% 32.0% 3.03
GPT-4 48.8% 23.1% 40.3% 2.47
Claude-3-Opus 32.1% 16.3% 24.9% 4.23
Gemini-Pro 35.3% 13.4% 31.6% 4.69
DeepSeek-V2 41.2% 18.2% 32.6% 4.44
Mixtral-8x7B 3.37% 0.00% 1.19% 61.8
Mixtral-8x22B 37.2% 17.3% 28.8% 4.80

3.2. Main Results

In this study, we extensively explore the impact of various
combinations of planning models and reward models on the
performance of web agents in online web tasks. We employ
reward module to determine whether a process has been
completed. In experiments without a reward module, we set
a maximum execution step length of 1.2 times the annotated
task length. Table 2 indicates that while GPT-4 outperforms
other models in both effectiveness and efficiency in live
environment, overall performance across all models remains
considerable room for future enhancements. In Appendix,
we conduct a detailed qualitative and quantitative analysis,
in Appendix K and Appendix J respectively, to identify the
main obstacles faced by web agents in live environments,
and to analyse factors that influence web agent performance
and evaluation.

4. Related Works

Agent Benchmarks Early researches (Shi et al., 2017)
(Liu et al., 2018) provided relatively simple simulations
and assessment methods for web navigation tasks. However,
with the rise of Large Language Models, these methods have
become inadequate for assessing agents’ capability. Recent
studies have chosen to construct realistic simulated envi-
ronments (Yao et al., 2022) (Zhou et al., 2023) (Koh et al.,
2024) (Drouin et al., 2024), use offline saved datasets (Deng
et al., 2024) (Lu et al., 2024), or select relatively stable
answers to assess the capabilities of web agents (Mialon
et al., 2023). In terms of dynamic evaluation methods, many
studies (Kiela et al., 2021) (Ma et al., 2021) (Jain et al.,
2024) have proposed their own solutions. Moreover, beyond
network platforms, several initiatives have also been under-
taken on other platforms such as Android mobile devices,
operating systems, and databases (Rawles et al., 2024; Liu
etal., 2023; Xie et al., 2024). As shown in Table 3, WebCan-
vas aims to more comprehensively test agents’ capability in
the real world through key nodes and corresponding evalua-
tion functions.

Agent Frameworks In the area of reasoning frameworks,
several studies have achieved notable success in logical rea-
soning challenges (Wei et al., 2022; Yao et al., 2024; 2023;
Shinn et al., 2024; Sumers et al., 2024). Regarding web
agent reasoning frameworks, many researches has been con-
ducted to enhance the capabilities of web agents (Nakano
et al., 2021; Gur et al., 2023; Giir et al., 2023; Kim et al.,
2024; Lo et al., 2023; Lai et al., 2024). Some studies have
introduced multimodal modules that integrate visual and
semantic information, thereby enhancing the capabilities of
agents on web platforms (Zheng et al., 2024; Furuta et al.,
2023; He et al., 2024).

5. Conclusion

In this work, we have pioneered the development of frame-
work for online evaluation of web agents, and investigated
the challenges associated with online evaluation and the
difficulties faced by current web agent reasoning frame-
works in online inference. Simultaneously, we have con-
structed a community-driven platform that empowers web
agent researchers and developers to build datasets and eval-
uate their web agent frameworks and models in an online
environment while collecting feedback on dataset design,
data annotation quality, and data validity throughout the pro-
cess. We strongly encourage further work on online datasets,
web agents, and evaluation function designs. By fostering
a collaborative and iterative value to dataset creation and
evaluation, we eagerly anticipate the continued growth of
advancement of autonomous intelligence.

Impact Statement

Ethical Impact: The technologies developed in this re-
search could potentially enhance the capabilities of web
crawlers, thereby exacerbating issues related to personal
privacy and data security. To mitigate these potential risks,
we specifically avoid using websites that involve sensitive
information in designing our benchmark. We emphasize

Submission and Formatting Instructions for ICML 2024

using our technology in compliance with website usage
agreements and data protection regulations. Furthermore,
our benchmark does not include any processes that require
user login or involve personal information and avoids any
irreversible actions. The selection of websites and processes
is entirely transparent. Additionally, the widespread adop-
tion of web automation technology could alter the nature of
human work, substituting certain types of employment, thus
causing structural changes in the labor market.

Societal Impact: On the positive side, this research could
improve the efficiency of various online services, such as
online customer support and data retrieval, potentially en-
hancing overall economic efficiency and user experience.
However, this may also exacerbate the digital divide, as
technological advancements may initially benefit techni-
cally advanced organizations and individuals, widening the
gap with other societal groups.

We encourage community members and policymakers to
pay attention to these potential issues and adopt appropriate
regulatory measures when using our technology. Addition-
ally, our research provides open access to data and models,
promoting transparent and responsible scientific practices
to foster healthy development in this field.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, L.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

Drouin, A., Gasse, M., Caccia, M., Laradji, 1. H., Del Verme,
M., Marty, T., Boisvert, L., Thakkar, M., Cappart, Q.,
Vazquez, D., et al. Workarena: How capable are web

agents at solving common knowledge work tasks? arXiv
preprint arXiv:2403.07718, 2024.

Furuta, H., Nachum, O., Lee, K.-H., Matsuo, Y., Gu,
S. S., and Gur, I. Multimodal web navigation with

instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Gur, L., Furuta, H., Huang, A., Safdari, M., Matsuo, Y., Eck,
D., and Faust, A. A real-world webagent with planning,
long context understanding, and program synthesis. arXiv
preprint arXiv:2307.12856, 2023.

Giir, 1., Nachum, O., Miao, Y., Safdari, M., Huang, A.,
Chowdhery, A., Narang, S., Fiedel, N., and Faust, A.
Understanding html with large language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pp. 2803-2821, 2023.

He, H., Yao, W.,, Ma, K., Yu, W., Dai, Y., Zhang, H., Lan,
Z., and Yu, D. Webvoyager: Building an end-to-end
web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F,, Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu,
Z., Vidgen, B., Prasad, G., Singh, A., Ringshia, P, et al.
Dynabench: Rethinking benchmarking in nlp. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4110-4124, 2021.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. Advances in Neural Information
Processing Systems, 36, 2024.

Koh, J. Y,, Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Lai, H., Liu, X., Iong, I. L., Yao, S., Chen, Y., Shen, P, Yu,
H., Zhang, H., Zhang, X., Dong, Y., et al. Autowebglm:
Bootstrap and reinforce a large language model-based
web navigating agent. arXiv preprint arXiv:2404.03648,
2024.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Submission and Formatting Instructions for ICML 2024

Liu, E. Z., Guu, K., Pasupat, P., and Liang, P. Reinforce-
ment learning on web interfaces using workflow-guided
exploration. In International Conference on Learning
Representations (ICLR), 2018.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y.,
Ding, H., Men, K., Yang, K., et al. Agentbench: Evalu-
ating llms as agents. arXiv preprint arXiv:2308.03688,
2023.

Lo, R., Sridhar, A., Xu, F. F., Zhu, H., and Zhou, S. Hier-
archical prompting assists large language model on web
navigation. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 10217-10244,
2023.

Lu, X. H., Kasner, Z., and Reddy, S. Weblinx: Real-
world website navigation with multi-turn dialogue. arXiv
preprint arXiv:2402.05930, 2024.

Ma, Z., Ethayarajh, K., Thrush, T., Jain, S., Wu, L., Jia,
R., Potts, C., Williams, A., and Kiela, D. Dynaboard:
An evaluation-as-a-service platform for holistic next-
generation benchmarking. Advances in Neural Infor-
mation Processing Systems, 34:10351-10367, 2021.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983, 2023.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions

with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap, T.
Androidinthewild: A large-scale dataset for android de-
vice control. Advances in Neural Information Processing
Systems, 36, 2024.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., and Liang,
P. World of bits: An open-domain platform for web-
based agents. In International Conference on Machine
Learning, pp. 3135-3144. PMLR, 2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Sumers, T., Yao, S., Narasimhan, K., and Griffiths, T.
Cognitive architectures for language agents. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=11i6ZCv£f1QJ. Survey Certification.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R.,
Hua, T. J.,, Cheng, Z., Shin, D., Lei, F, et al. Os-
world: Benchmarking multimodal agents for open-ended
tasks in real computer environments. arXiv preprint
arXiv:2404.07972, 2024.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744-20757, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., , and Cao, Y. React: Synergizing reasoning and
acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-4v
(ision) is a generalist web agent, if grounded. arXiv
preprint arXiv:2401.01614, 2024.

Zhou, S., Xu, F. E., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., et al. Webarena:
A realistic web environment for building autonomous
agents. In NeurIPS 2023 Foundation Models for Decision
Making Workshop, 2023.

https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ

Submission and Formatting Instructions for ICML 2024

A. Case study of previous benchmarks

See Table 3.
Table 3: Case study of previous benchmarks
Benchmark Real-world Dynamic Keep Updated Intermediate Easy to Scale Disk Usage
Intents Environment Env. State
MiniWoB++ X v v X X < 1GB
WebShop X v X X X ~ 10GB
Mind2Web v X X X X ~ 10GB
WebArena v v X X 4 > 100GB
VWebArena v 4 X X 4 > 100GB
GAIA v v X X v < 1GB
WEBLINX v X X 4 X < 1GB
OmniACT v X X 4 X < 1GB
WebCanvas v 4 v v 4 < 1GB

B. Data Collection Details

B.1. Recording process

In the construction of Mind2Web-Live, the quality and reliability of the data are paramount. To this end, we have employed
the iMean Builder plugin®, an efficient tool for recording browser operations. This tool precisely captures browser interaction
from the users, covering a wide range of activities such as clicks and input actions. The recorded details include the type
of operation, execution parameters, target element’s selector path, element content, and its coordinates on the webpage.
Moreover, iMean Builder accompany each step with a webpage screenshot, not only facilitating process replication but
also providing a visual reference for workflow validation and review. This approach enables us to comprehensively record
all the steps required to complete specific tasks, forming the foundation of Mind2Web-Live. Upon completion of the data
recording, we meticulously annotated the key nodes of each process along with their corresponding Evaluation Functions.

B.2. Annotation process

In our study, the annotation process plays a pivotal role in ensuring data quality and task validity. To ensure the accuracy and
consistency of data annotations, we assembled an annotation team comprised of several authors of this paper and five senior
undergraduate students majoring in Computer Science. Not only do the members of the annotation team possess a solid
background in Computer Science, but they also received specialized training to ensure consistency in their understanding
and identification abilities in annotating key nodes.

During the annotation phase, we employed a comprehensive reward mechanism. Each annotator was compensated based on
the number of tasks they completed, with additional bonuses awarded for high-quality annotations to encourage precise and
consistent results. This combined reward system not only bolstered work enthusiasm but also enhanced the overall quality
of the annotation work, laying a solid foundation for the construction of an efficient web agent benchmark.

To guarantee the quality of annotations, we instituted a variety of strategies. Each task was annotated independently by
one annotator, followed by individual reviews by two other members to verify the accuracy of the key nodes. Throughout
the annotation process, we regularly organized discussion sessions for the annotation team to share their experiences and
challenges encountered, thereby improving the overall efficiency and quality of the team’s annotations.

*https://builder.imean.ai/

https://builder.imean.ai/

Submission and Formatting Instructions for ICML 2024

Table 4: Example Annotations of the Evaluation Functions

State Title Annotation Details

Locate a large store in Washington that has kids’ Evaluation Function: Element value semantic match
and maternity products in uniglo

Instructions: Decide Whether is searching for
Washington D.C.

g 5 = 5[5[z[§

— Find parking in California city for Limos which Evaluation Function: URL include match
[—— also offers free wi-fi in yelp

= Param: attrs

= Value: WiFi.free

SR corcose contr

= 00000

Find Dota 2 game and add all DLC to cart in steam Evaluation Function: Element path exact match

Selector: //*[@1id="dlc_purchase_action"]/div[2]/a/span

C. Details of evaluation functions

C.1. Available evaluation functions

See Table 5

C.2. Evaluation Function distribution

See Figure 3
Table 5: Evaluation functions
URL exact(319)
Evaluate target Exact Include Semantic Y 319 URL include(1292)
match match match 28 URL semantic(117)
170 Value exact(170)
URL v v v uz m Value include(0)
Element path v/ X x 1292 Value semantic(28)
Element value v v v Path exact(513)

Figure 3: Evaluation Function distribution.

C.3. How to define evaluation functions

For input operations on the page First, determine whether it is a necessary condition for task completion. If it is a
necessary condition, then judge whether the execution result can be reflected by the change of the URL. If so, simply take
the state after execution as the key node and select the evaluation function as URL exactly/included/semantic match.

If it cannot be reflected by changes in the URL, it needs to be defined as a key node based on click or input operations.
Select element path exactly match or element value exactly/included/semantic match for input operations (to determine
whether the content of the input element matches).

For click operations on the page Firstly, determine whether it is a necessary condition for completing the task. If it is a
necessary condition, then judge whether the execution result can be reflected by the change of the URL. If so, simply take
the state after execution as the key node and select the match rule as URL exactly/included/semantic match.

If it cannot be reflected by the change of URL, each click operation should be defined as a key node, and the match can be
selected as element element path exactly match or element value match.

Submission and Formatting Instructions for ICML 2024

urlincluded match

url exactly match(param)

No
Should the URL -
ou © Find all related parameters,
parameters be — Yes —D . . g
define the evaluation functions
parsed?
é
Yes
|
Page URL can — no —p| Define the click action to enter this
be matched? page as a key node
Yes
|
Entering a Clicking on an e G
— — o —b> 8 — Yes —b> value should be

webpage? element?

matched?

Has Text Been The value

Entered?

url semantic match(param)

urlincluded match(param)

element path exactly match

The value should

should be the — No —=> be semantically — No
same? close?
| |
Yes Yes
element value exactly match element value semantic match l l element value included match

Figure 4: Guide to defining an evaluation function

10

Submission and Formatting Instructions for ICML 2024

D. Data Validity Test Report
See Figure 5.

a Az | Passed 1 x Faied 1| Flaky 0 | Skpped o

Add a new address to the account. The address is 2983 Marietta
Street, APT 2. Business name is Buck in instacart

ez s3m

ror: inishprocesslock API response
at . s
o |
o |
o | ol ponse))
o |
@i on
e
at Tin
< Toststeps
> Beloe Hooks a0oms
v The scees.. 19
sa6m:
36
v pe T2 10
. w2 Buckint.ims
< responsstestx o a1
> Ao Hooks osms
< Worer Cleanup me
~ screenshots
= Sinstacarn Qs .
Order groceries for \)
delivery or pickup today s . %
. “
Ghoose your store in Columbus
G 1
0 scrsanstor
[oyps—
< tachment
>
v 0
a nstacart. con/graphql? o

Losc
Status coder 403
Usercase 15 Tineout

Figure 5: Data Validity Test Report

11

Submission and Formatting Instructions for ICML 2024

E. Additional Evaluation Metrics

Human Alignment Score The Human Alignment Score(HAS) assesses how well an agent’s workflow aligns with human
behavior. It’s crucial for agents not just to be efficient, but to operate in ways that resemble human actions. The evaluation
of this aspect is conducted by contrasting the agent’s task completion signal with the ground truth annotations provided
by humans, to gauge the level of consistency. An agent that accurately issues a completion signal upon task completion is
deemed to exhibit a high degree of alignment with human behavior, thus earning a full score of one point. Conversely, a
delay in issuing the completion signal upon task completion results in a deduction of 0.05 points from the full score as a
penalty for decision latency. In instances where an agent stops its operation before accomplishing all the task objectives, the
score is determined by the ratio of the step score attained to the maximum step score achievable for that task. Furthermore,
if a task is not fully completed and the system forcibly terminates the process due to reaching the maximum step limit, the
score awarded is 0.8 times the proportion of the step score attained. The specific algorithm is shown in the formula, where
P represents achieved step scores, P4, denotes the max step scores of the task.

1 if task is completed with completion signal
0.95 if task is completed without completion signal
HAS = P . . . (H
T if task is incomplete but completion signal
0.8 x 5 j — if task is incomplete and is terminated

F. Comparison of the Mind2Web-Live and Mind2Web Datasets
See Table 6.

Table 6: Comparison of the Mind2Web-Live and Mind2Web Datasets. “Ele.” indicates “Element”, “Op.” indicates “Option”
and “SR” indicates “success rate”.

Attributes Mind2Web-Live Mind2Web
Dataset Size 438 2350
Evaluation Environment Real-world Online Offline
Evaluation State Key Nodes Each Step
Target Element Element, URL Element, Option
Evaluation Metrics Step Score & Task Score Step(Ele., Op.) SR & Task SR
Avg. Steps 8.51/task 7.3 / task
G. Agent Framework
G.1. Action Space
See Table 7.

Table 7: Action Space

Action Operation value
Goto Value
Google Search Value
Click Target id
Hover Target id
Fill Form Target id, value
Fill Search Target id, value
Switch Tab Target id
Go Back /

12

Submission and Formatting Instructions for ICML 2024

G.2. Diagram of Agent Framework

See Figure 6.

H. Diagram of Data Maintenance

See Figure 7.
& Maintenance
;’ 1. Find Invalid Workflows \;
| Task A Task B |
I
| L L |
i~ |
i) R !
; Auto run Human test J
| ! ! :
| (o) ~ |
e e L & T
| Workflow failed Workflow failed |
| |

I I

I
I
I
| Memory Reward
I
I

Observation)—{ Planning H Action]—4
I

2. Bug Feedback

o ? =

Key Nodes Task New path
cracks unworkable emerges

3. Fix & Re-annotate

FE ®© o

—_—— e e — — J Fix Add new Delete
workflow workflow workflow
Figure 6: Agent Framework Figure 7: Illustration of how maintenance system works.

I. Experimental Settings
L.1. Observation Space

Accessibility Tree We employ an accessibility tree-based approach to extract the fundamental textual feature representation
from the web environment. The accessibility tree serves as an abstract representation of the structure of a web page, detailing
the characteristics of each element within the page. However, the accessibility tree contains a significant amount of redundant
information, necessitating the use of a stringent set of filtering criteria to select interactive elements. These filtering criteria
include the element’s tag, visibility, usability, as well as textual or image content. Concurrently with the construction of the
accessibility tree, we annotate each filtered interactive element, providing information such as element ID, tag, and content.
For example, ([1] input ’search’, etc.). This annotation method facilitates the precise generation of corresponding CSS
selector paths during subsequent LLM prediction and execution phases, thereby accurately locating the required elements.

Screenshot We capture screenshots of the current web page to obtain its visual representation and provide this visual
context to visual language models, such as GPT-4V. This input method mimics human visual perception, allowing the model
to gather the most comprehensive information from the web page. Compared to relying solely on the accessibility tree,
using screenshots enhances the ability to identify the layout, appearance, and positioning of web elements more effectively.
Additionally, it captures interactive elements and other crucial page information that the accessibility tree might miss. To
balance inference costs and recognition effectiveness, the original resolution of the screenshots is set to 1080 x 720, though
users can define the screenshot resolution according to their specific needs in practical applications.

13

Submission and Formatting Instructions for ICML 2024

Table 8: Experiments on implementation of reward module. “(+)” indicates the inclusion of a reward module with golden
reference. Model notation follows Table 2, except for gpt-4-vision-preview(GPT-4V). Human Alignment score represents
agents’ alignment with human decision on task completion, while the larger indicates better alignment, detailed in Appendix
E.

. Completion Task Success Efficienc Human
Planning Model Reward Model Rl:lte Rate Score y Alignment
GPT-3.5 / 34.2% 13.0% 5.29 /
GPT-4 / 48.3% 16.7 % 3.77 /
GPT-4 GPT-3.5 42.9% 14.6% 3.28 0.440
GPT-4 GPT-4 41.7% 12.3% 3.10 0.426
GPT-3.5 GPT-4 36.6% 10.8% 3.73 0.385
GPT-4 GPT-4V 42.4% 8.3% 342 0.419
GPT-3.5 GPT-4(+) 43.6% 13.8% 3.28 0.452
GPT-4 GPT-4(+) 52.3% 12.5% 3.27 0.506
GPT-4 GPT-4V(+) 51.3% 12.5% 2.71 0.502

J. Quantitative Analysis of Experiments
J.1. Planning with Golden Reward Reference

We contemplated the impact of the quality of the reward signal on the web agent performance, raising a natural question
- Can high-quality reward signals lead to better agent performance? In our study, we introduced a reward module with
golden reference. The experimental results on Mind2Web-Live, which confirm our hypothesis, are detailed in Table 8.

From the original data, we extracted post-action URLSs, action types, CSS selector paths, and key nodes functions as metadata
for our golden reference synthesis. We then employed a carefully designed prompt (available in Appendix O, using GPT-4
to generate a structured linguistic guidance for task progress estimation for each task. This guidance includes the overall
goal of the current task and task completion criteria (specifically highlighting all key nodes that must be met for the task to
be considered fully completed). We then integrate the content of the current task’s golden reference with the original design
of history and current observation for reward reasoning.

J.1.1. RESULTS

We found that in the complex web environment, the capability of language models to utilize self-generated feedback is
limited. The integration of a reward module does not enhance agent performance and may even lead to a decline in Task
Success Rate and Task Completion Rate. This is often due to the models prematurely concluding the tasks, whether with
textual or visual observations. This finding aligns with findings in (Shinn et al., 2024) about the effect of self-reflection
modules in web agent tasks.

Regardless of the planning model used, whether GPT-3.5 or GPT-4, the performance of model inference improves with the
integration of a reward module with golden reference, particularly in terms of Task Completion Rate and Task Efficiency
Score. This enhancement is primarily due to the reward model’s better alignment with human understanding of task
completion.

J.2. Task Complexity & Task Difficulty

In this section, we investigate the factors influencing the agent performance and their correlation with agent performance.
Our analysis primarily focuses on the relationship between the complexity of a task, as quantified by the number of steps
annotated(step count) and the number of key nodes needed to complete the task, and the performance metrics of agent
completion and success rates.

Figure 8A and Figure 8B highlights a discernible trend: as the step count and the number of key nodes increases, there is a
notable decline in both the task completion rate and the success rate, suggesting that tasks involving more steps and more
key nodes are inherently more challenging.

14

Submission and Formatting Instructions for ICML 2024

90% | 50.66% 70% 6576%

80% 59.05%
o
70% |66.57% 65.42% 60% 54 659%

60% 52 93%5R S 50% 44.41% 45.06%
h 48.91 37.96%
54.18% o
50% 3105 40% 36.18% 35.96%
o 40.91% 37.29%)
40% 34.82% 32.31% 34 30 30% 25.00%

32.87%

30% 18.75%
20%
9

20% 6.42%
10%

10% 1140 2:60%

1.30% 4.54%

o
0.00% 0.00%

0% = = o o8 oy
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 25 2 3 4 5 6 7 8 9 12 20
num. of steps num. of key nodes
Task completion rate —®— Task success rate Task completion rate ~ —@&— Task success rate
(&) (B)

Figure 8: The relationship between task complexity and task difficulty. The “step count” refers to the length of the action
sequence in the annotated data, which, along with the number of key nodes, serves as a reference for task complexity.

J.3. Discrepancy between Offline and Online Evaluation

The settings of evaluation on offline datasets that reflect real-world intents, such as Mind2Web (Deng et al., 2024), are
inherently different from WebCanvas framework. Nevertheless, we managed to compare the experimental results between
offline and online testing. During online inference, we attempted to reproduce the setting of the MindAct model, which was
trained and evaluated on the offline dataset, as proposed in the Mind2Web paper. It is important to note that the evaluation
metrics used in offline evaluation differ from those proposed in our online evaluation framework. The Step Success Rate in
offline testing assesses the accuracy of single-step action prediction, and for the entire task dimension, a positive reward is
given only when all single-step actions are correctly predicted (which is not the case in online evaluation, as we evaluate the
intermediate state, not the referenced action). As shown in Table 9, we have two main findings:

1. The model trained on the Mind2Web training set does not generalize well to the online environment one year later. The
comparative relationship between the results of MindAct-Large (Deng et al., 2024), GPT-3.5, and GPT-4 is the opposite of
that in offline testing.

2. The metrics used in offline testing only evaluate the accuracy of action prediction and do not consider the complexity of
the decision space in the real-world environment. Consequently, the Task Success Rate of GPT-3.5 and GPT-4 in offline
testing is inconsistent with the results in online testing.

Table 9: Comparison of web agent performance in online and offline evaluations. We sampled 40 instances from the
Mind2Web test set and annotated them according to the WebCanvas framework to define key nodes. These were then tested
in both online and offline settings. ‘Task SR(0)’ and ‘Task SR(1)’ denote the Task Success Rates with zero tolerance and
tolerance for error at one step (or key node), respectively.

Model Offline Online
Step Task Task Completion Task Task
SR(%) SR(0)(%) SR(1)(%) Rate(%) SR(0)(%) SR(1)(%)
MindAct 443 10.0 25.0 25.5 7.50 12.5
GPT-3.5 15.5 2.50 7.50 354 10.0 17.5
GPT-4 28.4 5.00 22.5 41.1 10.0 25.0

15

Submission and Formatting Instructions for ICML 2024

K. Qualitative Analysis of Experiments

In this section, we conducted a qualitative analysis of error cases in our experimental results. Typical errors include: local
optima, premature termination of tasks, and information loss during inference.

K.1. Local Optima

In our online environment experiments, the result data shows that a task may involve multiple constraints or requirements,
or it may require navigating through multiple web states within a specific domain. Web pages often contain numerous
clickable links, and frequently feature interactable elements with similar or even identical names. This complexity demands
that web agent faces an almost exponential growth in the decision space as the number of steps increases, while precisely
selecting the web element that can complete the task and appropriately advancing the fulfillment of multiple constraints.
Specifically, our web agent tends to operate on an unidirectional forward path (described in K.3), making it difficult to revert
to an intermediate state within a limited number of steps. Furthermore, due to a lack of prior knowledge about the web
domain associated with current task and confusion caused by similar elements, the planning module’s local decision-making
for the current web state is not always accurate, and it also lacks proactive thinking to explore alternative paths. This is one
of the main reasons for the low task success rate. As shown in Table 10, in the task “Check the rating and user reviews for
the game ‘Deathloop’ on IGN”, the web agent ended up at the review article page for ‘Deathloop’ on IGN due to incorrect
path selection from the Google search results, rather than the expected page for ratings and user reviews.

K.2. Premature Termination of Tasks

In the experiments, we also discovered that the web agent sometimes only partially completes tasks. This typically indicates
that web agent sometimes prematurely judges itself as having finished the task. The reasons for premature termination are
varied. For instance, the agent might hallucinate during inference (such as simplifying a task of reaching a page and filling
out content to just reaching the page), leading it to self-judge the task as complete after only finishing intermediate steps and
not continuing further. In other instances, it may have the right thought process in earlier steps, but fails to deliver the correct
action input or effectively execute the action on the page, yet in subsequent steps, it “reads” this thought and mistakenly
believes the action has been executed. Lastly, when it is difficult to continue along the current path, the agent might lower its
standards for task completion and erroneously judge the task as complete, thus terminating the task prematurely. As shown
in Table 10, in the task “Track the status of a rebate for Monty Lue, house number 4847, zip code 10019 in Menards”, the
web agent reached the “Track Your Rebate” page but did not continue to complete the form, instead prematurely deciding
the task was complete and ending the task.

Table 10: Case Study of Failure Trajectories

Task Title Agent’s Thought

Check the rating and user reviews To view the full review and user comments for ‘Deathloop’ on IGN, I need to click on the IGN

for the game “Deathloop” in ign review link provided in the search results.

Track the status of a rebate for After navigating through various steps and overcoming challenges related to the website’s
ok Your Rebote ~ Monty Lue, house number 4847, interaction model, we’ve successfully reached the point where the *Track Your Rebate’ form is
e zip code 10019 in menards ready for Monty Lue’s information. The task is marked as ’finished’ because the user has been

guided to the correct section for submission, aligning with the goal of tracking the rebate status.

K.3. Information Loss during Inference

Element Mapping The relationships between web elements are varied and complex. Often, the essential information
of an element is not contained within the element itself but is instead found within its child elements, parent, or even
sibling elements. For instance, a button tag might not always contain useful attributes; sometimes, they are empty or
irrelevant. Based on our understanding of the DOM tree on the web, we map information from specific elements (like span)
to interactive elements such as buttons. Due to the diversity of these mapping relationships, our framework currently only

16

Submission and Formatting Instructions for ICML 2024

considers mapping valuable information from certain special elements to their parent elements, recursively iterating until
an interactive element is identified, as shown in Figure 9 in Appendix L. If this recursive search fails to find an interactive
element or reaches the recursion limit, the element is discarded, as illustrated in Figure 10 in Appendix L. Given the
complexity of webpage elements, our initial implementations focus predominantly on parent-child mapping relationships.
Future work will delve deeper into inter-element mappings to ensure the accuracy and correctness of element mappings.

Unidirectional Execution Actions planned web agents depend on the attributes fetched from the network environment.
However, our analysis of the execution process reveals that these planned actions are often tied to specific web page elements.
When these actions are executed, such as clicking a link, the page may redirect to unpredictable pages, leading to several
issues during the execution. Our analysis has identified two primary types of problems:

1. Pages may load to irrelevant sites due to network issues, access restrictions, or login requirements, resulting in
navigation to pages like blank screens or CAPTCHA verification, exemplified in Figure 11B.
2. Although an action may lead to a reasonable page, extracting relevant information from this page can be challenging.

As shown in Figure 11A, without additional vision or OCR processing, the action sequence stalls.

The limitations of browser automation tools currently prevent the complete restoration of a web page to its state before action
execution. Meanwhile, memory management of web agents also could not eliminate the effect of past incorrect trajectories.
Therefore, task completion often falls into a loop state. Despite efforts to selectively remove ineffective or infeasible actions
from the historical trajectory, these problems persist, highlighting the challenges of autonomous web interaction.

L. Additional Examples on Case Study

See Figure 9, Figure 10, Figure 11

€« X @ sportsyahoo.com/nbateams/denver/ > % A O @ mawz

yfsports Q Search &

D NBA~ Scores/Schedules Mews Playoffs Draft Standings Stats Teams Players Injuries Video Odds

Denver Nuggets CZE=d -

Field Goal 3-point Paint

4th gth 1 3t;’llb TIh

red Total Rebounds

News Schedule Roster Stats Injuries Transactions Shop Gear

Figure 9: Example on parent-child element mapping strategy(1).

17

Submission and Formatting Instructions for ICML 2024

€ 5 C @ amazoncom/Google-Play-Gifi-Code o/BO7AT: " " oy GittsCa w3637285pwefix

amazon

s | (8 Google Play gift code - give the gift of games, apps and more (Email or Text
Message Delivery - US Only)
oy ooge

Q. 19m carg
000

1. Gift card design

Google Play

' 2. Gift card details.

Google Play Amount [32500 ‘35000) s0nse | (w150 s
ouary Tt essoge
IS
o From
Message [Fope ou ey o ot st
uarary 1
(© DevTools is now available in Chinese! ((EEeueile MR Eneners) CRIL TR TRRYITY o't show again
i€ [B FElements Console Sources Network Peformance Memory Applicaion Security Lighthouse ~ Recorder & ©6 B3

aui-da-ge-retail-atc” data-

ng-none a-declarative”>

tton a-button-normal a-button-spanl2 a-button-primary a-button-icon gc-buy-box-button” "a-autoid-@">

‘a-button-input gc-buy-box-disabled” type="submi

3-autold-G-announce™s AGd o cart]

» <span ui-da-gc-retail-atc” data-

ge-retail-atc="{
</div>
</div>
</div>

15x-37d02-486mal-12ubugd™> ==

</div>

Figure 10: Example on failure case of parent-child element mapping strategy(2).

100w

This site can't be reached

amc®DINE-IN

APPETIZERS

Loaded Bacon Fries or Tots 9101070 Cal
Choice of tots o fries topped with applewood-smoked
bacon, rich cheddar sauce and ranch dressing

Fried Mozzarella
Whole-milk mozzarella, garlic-herb breading,
romano and parmesan, served with marinara

Dry Rub Wings es07900s

Crispy bone-in chicken wings tossed in smokehouse

A) (B)

Figure 11: Examples on unidirectional failure case.

18

Submission and Formatting Instructions for ICML 2024

M. Examples of More Annotated Samples
See Figure 12, Figure 13.

& Goto gamestop and find Playstation 5 digital edition Al mode Preview ® Playback © settings

Input playstation 5 digital edition

Press Enter

tion 5 digital edition

Figure 12: Example on the Annotated Interface and Evaluation Function for the Task “Go to GameStop and Find PlayStation
5 Digital Edition”

19

Submission and Formatting Instructions for ICML 2024

Figure 13:
kohls”

& Locate astore in spring, Texas in kohls

Al mode

Click store Locator

& Fast & Frel

Input String, TX

" Fasta Free store Picky)

& Fasta Free storePicky

Click Spring

Preview

- U included match

1 Element path exactly match

® Playback

9 Settings

Example on the Annotated Interface and Evaluation Function for the Task “Locate a store in spring, Texas in

20

Submission and Formatting Instructions for ICML 2024

N. Limitations & Future works

Developing a suitable evaluation framework is a fundamental component in the advancement of autonomous web agents.
This research addresses the challenge of live evaluation in a real-world web environment. Among these are the need to
define key nodes in a completely open environment, unify the inference processes across different digital autonomous agents,
and reduce the maintenance costs associated with real-time data and evaluation functions. Through our efforts, we have
made significant strides toward establishing a robust and accurate online evaluation system for web agents.

However, the transition to live, dynamic evaluations in unpredictable online environments introduces new complexities not
present in controlled, offline settings. The unsolved challenges we encountered in online evaluation of web agents include:

1. Network Instability: The variability in network conditions can lead to discrepancies between the results obtained
from online real-time evaluations and those from closed environments. For instance, issues such as CAPTCHAs, network
outages, or inconsistencies across different IPs can influence outcomes. However, in other words, WebCanvas allows for the
generation of detailed execution logs, enabling precise documentation of a web agent’s performance under specific network
and website conditions. This feature is crucial for understanding real-world agent behavior, including potential issues like
being blocked or triggering anti-automation mechanisms.

2. Complex Task Pathways: The diversity of potential execution paths for a given task may not be completely identified by
human annotators. This oversight can lead to a misalignment between the defined key nodes and the essential components
of task completion, inadvertently penalizing correct processes. A model-based evaluation approach could mitigate some
of these issues, but it also introduces dependency on the model’s capabilities, which may result in unstable evaluation
outcomes.

3. Static Evaluation Functions: The current static nature of our evaluation functions does not accommodate changes in
task instructions based on environmental variables such as time, location, or weather conditions. For example, a task might
involve booking a flight to Hawaii next month if the weather is favorable. Ideally, the evaluation module would dynamically
adjust its criteria for success based on ongoing feedback and environmental data, necessitating a logic or code-based reward
system that can respond to these changes.

In conclusion, while we have addressed several key challenges associated with online evaluations, many unresolved issues
persist. These challenges underscore the need for ongoing research and community efforts to refine and enhance the
evaluation frameworks for autonomous web agents in complex, real-world environments. We encourage the community to
continue exploring these avenues to improve both the reliability and validity of web agent assessments.

21

Submission and Formatting Instructions for ICML 2024

O. Prompts of Planning and Reward Module

Planning Prompt

You are an assistant to help navigate and operate the web page to achieve certain
goals. Answer the following questions as best as you can.
There are key information you will get:
*xKey Informationx:
— Previous trace: all thoughts, actions and reflections you have made
historically.
— Accessibility tree: characteristic expression of the current web page.

*+Introduction to Accessibility Treexx:

The accessibility tree is a tree-like data structure that describes the
relationships between elements on a web page and provides accessibility
information for each element (such as text, links, form elements, etc.).

— xxAccessibility Tree Examplexx:

Here is an example of an accessibility tree:
current web tab name is ’Google’
[40] link ’About’
[41] link ’Store’
[186] link ’Gmail’
[187] link ’Images’
[163] textarea ’Search’
[236] button ’See more’
In this example, each row represents the characteristic representation of a web page
element. It has three attributes: ’[40]’ for the element’s element_id, ’link’
indicates the element is a link, and ’'About’ for the content of the element.
Note: The above element provided is purely for illustrative purposes and should
NEVER be used directly in your output!

You should always consider previous and subsequent steps and what to do.
**Thought Spacexx*:

- What action do you think is needed now to complete the task?

— What’s the reason of taking that action?

You have access to the following tools (helpful to interact with web page):
*+Execution Action Spacexx:
- goto: useful for when you need visit a new link or a website, it will open a
new tab.
— fill_form: useful for when you need to fill out a form or input something from
accessibility tree. Input should be a string.
- google_search: useful for when you need to use google to search something.
— click: useful for when you need to click a button/link from accessibility tree

— select_option: useful for when you need to select a drop-down box value. When
you get (select and option) tags from the accessibility tree, you need to
select the serial number (element_id) corresponding to the select tag, not the
option, and select the most likely content corresponding to the option as Input

— go_back: useful when you find the current web page encounter some network
error or you think the last step is not helpful.

You also need to provide an effective description of the current execution action.
A proper description contains:

- What website it is;

— Which action you choose;

- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

You have to follow the instructions or notes:

22

Submission and Formatting Instructions for ICML 2024

*xImportant Notesx*x:
— Under the following conditions, you are restricted to using the ’google_search
" or ’'goto’ tools exclusively:
1. In the initial step of a process or when there’s no preceding interaction
history (i.e., the previous trace is empty).
2. In situations where the accessibility tree is absent or not provided.
— Your action should not be the same as last step’s action.
— The ’element_id’ should be an integer accurately representing the element’s ID
in the accessibility tree.
— AVOID using the provided example’s element_id as your output.
— The output JSON blob must be valid; otherwise, it cannot be recognized.

**Special Circumstances Guidelinesxx:
— When performing a search on a website, if you find the search results do not
display sufficient content, consider simplifying or modifying your search query
Reducing the complexity of your search query or altering keywords may yield
more comprehensive results.

Please ensure the accuracy of your output, as we will execute subsequent steps based
on the ’action’, ’action_input’ and ’element_id’ you provide.

**xOutput Requirementsxx:
— Ensure your output strictly adheres to the JSON blob format outlined below:

AURTRY

{
"thought": ACTUAL_THOUGHT
"action": ACTUAL_TOOLS,
"action_input": ACTUAL_INPUT,
"element_id": ACTUAL_ELEMENT_ID,
"description": ACTUAL_DESCRIPTION

- A VALID JSON BLOB EXAMPLE AS FELLOWS:

AURTRY

{

"thought": "In order to complete this task, I need to go to the Google home
page",

"action": "click",

"action_input": "button",

"element_id": "236",

"description": "Now I\’m on Google\’s main page. I\’m now clicking the

button with element_id [236] to see more information."

Reward Prompt

You are an assistant to help navigate and operate the web page to achieve certain
task.
Your goal is to evaluate the previous series of traces(thoughts and actions) and
think about what key steps are needed to complete the task in the future.
There are key information you will get:
**Key Informationxx:
— Previous trace: all thoughts, actions and reflections you have made
historically.
— Accessibility tree: characteristic expression of the current web page.
— Screenshot: visual information of the current web page (may include).

23

Submission and Formatting Instructions for ICML 2024

You also need to combine the previous trace to give the completion status of the
current task.
**xStatus Of Task Completionxx*
— doing: You have completed the intermediate steps of the target task but not
entirely finish the target task.
— finished: You are entirely certain about completing the target task.
— loop: You find that the the last two steps of previous actions are the same,
it is determined that the process is stuck in a local optimum solution.

You will judge and score the task completion and reasonableness of previous actions.
The score ranges from 1-10, but the score you give can only be selected from [1,
3, Ty 9, 107
**Judging and Scoring Criteriaxx:
- score = 1: You find that the status of the task is stuck in a loop by
analyzing the previous trace.
- score = 3: You find that performing the previous trajectories (thoughts and
actions) is not likely helpful in completing target task and you need to adjust
the direction of your planning and action or start over from beginning.

— score = 7: You find that performing the previous trajectories (thoughts and
actions) are helpful in completing the target task.

— score = 9: You find that performing the previous trajectories (thoughts and
actions) are a very critical intermediate step to complete this task.

— score = 10: You find that performing the previous trajectories (thoughts and

actions) have completed the task perfectly.
You need to provide an effective evidence of scoring for the series of the previous
trace.

— Why do you give this score?

— What is the reason?

You also need to provide an effective description or summary of the above
requirements through key information and characteristics of the current web page.
**A proper description containsxx:
— What is the current completion status of the task? (IMPORTNAT)
— What is your overall plan for completing your goal and target task in the
future? (IMPORTNAT)
— REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

**x0Output Requirementsxx:
- Ensure your output strictly follows this format:

AURTRY

json
{
"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}

AURNRY

- A VALID JSON BLOB EXAMPLE AS FELLOWS:

AURNRY

{

"status": "doing",
llscore": ll3"’
"reason": "You need to complete a search for camping tents that can

accommodate 2 people and sort the results in rei by price from low to high.
According to your previous trajectory, you navigated to the rei official
website and clicked the 2-person button, which are correct actions. But
when you complete the final step of sorting prices, you actually click on a
link to a tent product. This is a completely unreasonable action. So I
give it 3 points. Maybe you need to return to the previous interface to re-
plan and select the ’'sort by’ button"
"description": "According to the current web page information, you can know
that this is the homepage of a tent product, which is not very consistent
with the purpose of the target task. The next overall plan to complete this

24

Submission and Formatting Instructions for ICML 2024

task is to return to the previous page and select the sort by button."

Reward Prompt - With Golden Reference

You are an assistant to help navigate and operate the web page to achieve certain
task.
Your goal is to evaluate the previous series of traces(thoughts and actions) and
think about what key steps are needed to complete the task in the future.
There are key information you will get:
**Key Informationwx:
— Previous trace: all thoughts, actions and reflections you have made
historically.
— Current Webpage Information:
— Accessibility tree: characteristic expression of the current web page.
— Screenshot: visual information of the current web page. (may include)
— Reference Guide: detailed and step-by-step reference guide for completing the
target task, serving as a benchmark for evaluating progress and strategizing
the necessary actions.

**Notes to Reference Guidexx:
— The Reference Guide plays a crucial role in aiding the evaluation of the
current Status of Task Completion. The ’'Completion Verification’ section within
the Reference Guide is instrumental in determining whether a task can be
classified as ’finished.’
— Furthermore, for a task to be considered fully completed, all xxkey conditions
*% must be met as specified.

You also need to combine the previous trace to give the completion status of the

current task.
*xStatus of Task Completionxx
- doing: You have completed the intermediate steps of the target task but not
entirely finish the target task.
— finished: You are entirely certain about completing the target task.
— loop: You find that the the last two steps of previous actions are the same,
it is determined that the process is stuck in a local optimum solution.

You will judge and score the task completion and reasonableness of previous actions.
The score ranges from 1-10, but the score you give can only be selected from [1,
3, 7, 9, 101.
*xJudging and Scoring Criteriaxx:
- score = 1: You find that the status of the task is stuck in a loop by
analyzing the previous trace.
- score = 3: You find that performing the previous trajectories (thoughts and
actions) is not likely helpful in completing target task and you need to adjust
the direction of your planning and action or start over from beginning.

— score = 7: You find that performing the previous trajectories (thoughts and
actions) are helpful in completing the target task.

— score = 9: You find that performing the previous trajectories (thoughts and
actions) are a very critical intermediate step to complete this task.

— score = 10: You find that performing the previous trajectories (thoughts and

actions) have completed the task perfectly.
You need to provide an effective evidence of scoring for the series of the previous
trace.

- Why do you give this score?

— What is the reason?

You also need to provide an effective description or summary of the above

25

Submission and Formatting Instructions for ICML 2024

requirements through key information and characteristics of the current web page.
**xA proper description containsxx:
— What is the current completion status of the task? (IMPORTNAT)
- What is your overall plan for completing your goal and target task in the
future? (IMPORTNAT)
- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

**Output Requirementsxx:
— Ensure your output strictly follows this format:

AURTRY

json
{
"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}

AURNRY

- A VALID JSON BLOB EXAMPLE AS FELLOWS:

AURTRY

{

"status": "doing",
"SCOre": "3",
"reason": "You need to complete a search for camping tents that can

accommodate 2 people and sort the results in rei by price from low to high.
According to your previous trajectory, you navigated to the rei official
website and clicked the 2-person button, which are correct actions. But
when you complete the final step of sorting prices, you actually click on a
link to a tent product. This is a completely unreasonable action. So I
give it 3 points. Maybe you need to return to the previous interface to re-
plan and select the ’'sort by’ button"

"description": "According to the current web page information, you can know
that this is the homepage of a tent product, which is not very consistent
with the purpose of the target task. The next overall plan to complete this

task is to return to the previous page and select the sort by button."

Semantic Match Prompt

Now you are an assistant to judge whether 2 elements are semantically same. I’11

provide a judge rule and an answer.

If they are the same, you should return 1. If they are not related, you should

return O.

If they are related but not identical, return a decimal (two decimal places) between
0 and 1 of the degree of relevance you think.

For example, the judge rule is: Decide whether the place is New York. The score of "

new york" and "New York" are both 1, "Brooklyn" should be O.

However, if the judge rule is: Decide whether the place is in New York. The score of
"new york" and "New York" and "Brooklyn" are all 1.

Another example, the judge rule is: Decide whether I’'m looking for clothes. The

score of "red Clothes" and "green jacket"should also be 1.

However, if the judge rule is: Decide whether I’'m looking for red clothes. the score
of "bright red Clothing" could be 0.85(red include bright red but they are not the
same), the score of "green Clothes"should be 0.5(red is not green).

Remember, you should return a number with " and an explanation. Like output: "1", (

your explanation)

26

