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ABSTRACT

We present a probabilistic model for point cloud generation, which is critical for
various 3D vision tasks such as shape completion, upsampling, synthesis and data
augmentation. Inspired by the diffusion process in non-equilibrium thermody-
namics, we view points in point clouds as particles in a thermodynamic system
in contact with a heat bath, which diffuse from the original distribution to a noise
distribution. Point cloud generation thus amounts to learning the reverse diffusion
process that transforms the noise distribution to the distribution of a desired shape.
Specifically, we propose to model the reverse diffusion process for point clouds
as a Markov chain conditioned on certain shape latent. We derive the variational
bound in closed form for training and provide implementations of the model. Ex-
perimental results demonstrate that our model achieves the state-of-the-art perfor-
mance in point cloud generation and auto-encoding.

1 INTRODUCTION

With recent advances in depth sensing and laser scanning, point clouds have attracted increasing
attention as a popular representation for modeling 3D shapes. Significant progress has been made
in developing methods for point cloud analysis, such as classification and segmentation (Qi et al.,
2017ajb; 'Wang et al,, [2019). On the other hand, learning generative models for point clouds is
powerful in unsupervised representation learning to characterize the data distribution, which lays
the foundation for various tasks such as shape completion, upsampling, synthesis, ezc..

Generative models such as variational auto-encoders (VAEs), generative adversarial networks
(GANSs), normalizing flows, efc., have shown great success in image generation (Kingma & Welling,
2013; |Goodfellow et al., 2014; |Chen et al.,|2016; Dinh et al., 2016). However, these powerful tools
cannot be directly generalized to point clouds, due to the irregular sampling patterns of points in
the 3D space in contrast to regular grid structures underlying images. Hence, learning generative
models for point clouds is quite challenging. Prior research has explored point cloud generation via
GANSs (Achlioptas et al., 2018; |Valsesia et al.,[2018}; Shu et al., 2019), auto-regressive models (Sun
et al.| 2020), flow-based models (Yang et al., 2019) and so on. While remarkable progress has been
made, these methods have some inherent limitations for modeling point clouds. For instance, the
training procedure could be unstable for GANs due to the adversarial losses. Auto-regressive mod-
els depend on the generation order, and thus lack flexibility. In flow-based models, the constraint of
invertibility might limit the expressive power of the model, and the training and inference are slow
especially when the flow is continuous.

In this paper, we propose a probabilistic generative model for point clouds inspired by non-
equilibrium thermodynamics, exploiting the reverse diffusion process to learn the point distribution.
As a point cloud is composed of discrete points in the 3D space, we regard these points as particles
in a non-equilibrium thermodynamic system in contact with a heat bath. Under the effect of the
heat bath, the position of particles evolves stochastically in the way that they diffuse and eventually
spread over the space. This process is termed the diffusion process that converts the initial distri-
bution of the particles to a simple noise distribution by adding noise at each time step (Jarzynskil
1997; |Sohl-Dickstein et al.l [2015)). Analogously, we connect the point distribution of point clouds
to a noise distribution via the diffusion process. Naturally, in order to model the point distribution
for point cloud generation, we consider the reverse diffusion process, which recovers the target point
distribution from the noise distribution.
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In particular, we model this reverse diffusion process as a Markov chain that converts the noise
distribution into the target distribution. Our goal is to learn its transition kernel such that the Markov
chain can reconstruct the desired shape. Further, as the purpose of the Markov chain is modeling the
point distribution, the Markov chain alone is incapable to generate point clouds of various shapes.
To this end, we introduce a shape latent as the condition for the transition kernel. In the setting of
generation, the shape latent follows a prior distribution which we parameterize via normalizing flows
(Chen et al., 2016} |Dinh et al.,|2016) for better model expressiveness. In the setting of auto-encoding,
the shape latent is learned end-to-end. Finally, we formulate the training objective as maximizing the
variational lower bound of the likelihood of the point cloud conditional on the shape latent, which
is further formulated into tractable expressions in closed form. We apply our model to point cloud
generation, auto-encoding and unsupervised representation learning, and results demonstrate that
our model achieves the state-of-the-art performance on point cloud generation and auto-encoding
and comparable results on unsupervised representation learning.

Our main contributions include: (1) We propose a novel probabilistic generative model for point
clouds, inspired by the diffusion process in non-equilibrium thermodynamics. (2) We derive a
tractable training objective from the variational lower bound of the likelihood of point clouds condi-
tioned on some shape latent. (3) Extensive experiments show that our model achieves the state-of-
the-art performance in point cloud generation and auto-encoding.

2 RELATED WORKS

Point Cloud Generation Early point cloud generation methods (Achlioptas et al.,[2018}; |Gadelha
et al.| [2018) treat point clouds as N x 3 matrices, where N is the fixed number of points, convert-
ing the point cloud generation problem to a matrix generation problem, so that existing generative
models are readily applicable. For example, (Gadelha et al.| (2018)) apply variational auto-encoders
(Kingma & Welling}, 2013)) to point cloud generation. |Achlioptas et al.| (2018)) employ generative
adversarial networks (Goodfellow et al., 2014) based on a pre-trained auto-encoder. The main de-
fect of these methods is that they are restricted to generating point clouds with a fixed number of
points, and lack the property of permutation invariance. FoldingNet and AtlasNet (Yang et al.||2018;
Groueix et al.l 2018)) mitigate this issue by learning a mapping from 2D patches to the 3D space,
which deforms the 2D patches into the shape of point clouds. These two methods allow generat-
ing arbitrary number of points by first sampling some points on the patches and then applying the
mapping on them. In addition, the points on the patches are inherently invariant to permutation.

The above methods rely on heuristic set distances such as the Chamfer distance (CD) and the Earth
Mover’s distance (EMD). As pointed out in (Yang et al.,|2019), CD has been shown to incorrectly
favor point clouds that are overly concentrated in the mode of the marginal point distribution, and
EMD is slow to compute while approximations could lead to biased gradients.

Alternatively, point clouds can be regarded as samples from a point distribution. This viewpoint
inspires exploration on applying likelihood-based methods to point cloud modeling and generation.
PointFlow (Yang et al., 2019) employs continous normalizing flows (Chen et al., 2018} |Grathwohl
et al., 2018) to model the distribution of points. PointGrow (Sun et al., [2020) is an auto-regressive
model with exact likelihoods. More recently, |Cai et al.|(2020) proposed a score-matching energy-
based model ShapeGF to model the distribution of points.

Our method also regards point clouds as samples from a distribution, but differs in the probabilistic
model compared to prior works. We leverage the reverse diffusion Markov chain to model the
distribution of points, achieving both simplicity and flexibility. Specifically, the training process
of our model involves learning the Markov transition kernel, whose training objective has a simple
function form. By contrast, GAN-based models involve complex adversarial losses, flow-based
methods involve expensive ODE integration and score-matching-based methods involve second-
order gradients. In addition, our model is flexible, because it does not require invertibility in contrast
to flow-based models, and does not assume ordering compared to auto-regressive models.

Diffusion Probabilistic Models The diffusion process considered in this work is related to the
diffusion probabilistic model (Sohl-Dickstein et al., [2015} [Ho et al., [2020). Diffusion probabilistic
models are a class of latent variable models, which also use a Markov chain to convert the noise
distribution to the data distribution. Prior research on diffusion probabilistic models focuses on
the unconditional generation problem for toy data and images. In this work, we focus on point
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Figure 1: The directed graphical model of the diffusion process for point clouds. NV is the number
of points in the point cloud X ().

cloud generation, which is a conditional generation problem, because the Markov chain considered
in our work generates points of a point cloud conditioned on some shape latent. This conditional
adaptation leads to significantly different training and sampling schemes compared to prior research
on diffusion probabilistic models.

3 THE DIFFUSION MODEL FOR POINT CLOUDS

In this section, we first formulate the probabilistic model of both the forward and the reverse dif-
fusion processes for point clouds. Then, we formulate the objective for training the model. The
implementation of the model will be provided in the next section.

3.1 FORMULATION

We regard a point cloud X (0 = {a:(o)} , consisting of IV points as a set of particles in an evolving
thermodynamic system. As discussed in Section [T} each point @; in the point cloud can be treated
as being sampled independently from a point distribution, which we denote as q(mgo) |z). Here, z is
the shape latent that determines the distribution of points.

Physically, as time goes by, the points gradually diffuse into a chaotic set of points. This process is
termed the diffusion process, which converts the original meaningful point distribution into a noise
distribution. The forward diffusion process is modeled as a Markov chain (Jarzynski, |1997):

q( (1T (0) Hq (t)|w(t 1) (1)

where q(:cgt) |a:z(-t_1)) is the Markov diffusion kernel. The kernel adds noise to points at the previous
time step and models the distribution of points at the next time step. Following the convention of
(Sohl-Dickstein et al.l 2015)), we define the diffusion kernel as:

gz )2~y = N (2|1 - Bz, 1), t = 1,. )
where (31 ... O are variance schedule hyper-parameters that control the diffusion rate of the process.
Our goal is to generate point clouds with a meaningful shape, encoded by the latent representation
z. We treat the generation process as the reverse of the diffusion process, where points sampled

from a simple noise distribution p(x; (T )) that approximates q(a:ET)) are given as the input. Then, the
points are passed through the reverse Markov chain and finally form the desired shape. Unlike the
forward diffusion process that simply adds noise to the points, the reverse process aims to recover
the desired shape from the input noise, which requires training from data. We formulate the reverse
diffusion process for generation as:

T
po(z*")|2) = p(z™) H 2Dz, 2), (3)

po(z Pz, 2) = N (2D |pe(x,t, 2), BT), (4)
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where p1g is the estimated mean implemented by a neural network parameterized by 6. z is the latent

encoding the target shape of the point cloud. The starting distribution p(mET)) is set to a standard
normal distribution NV (0, I'). Given a shape latent z, we obtain the point cloud with the target shape

by passing a set of points sampled from p(x; (T )) through the reverse Markov chain.

For the sake of brevity, in the following sections, we use the distribution with respect to the entire
point cloud X (©). Since the points in a point cloud are independently sampled from a distribution,
the probability of the whole point cloud is simply the product of the probability of each point:

N
o XX = [Ta@™ ") and po(XO1)|z) = Hp @"z). )

Having formulated the forward and reverse diffusion processes for point clouds, we will formalize
the training objective of the reverse diffusion process for point cloud generation as follows.

3.2 TRAINING OBJECTIVE

The goal of training the reverse diffusion process is to maximize the log-likelihood of the point
cloud: E[log pe(X (?))]. However, since directly optimizing the exact log-likelihood is intractable,
we instead maximize its variational lower bound:

pg(X(O:T),Z)
E[logpg(X(O))} > E, [log q(X(LT), Z|X(O))]

T
XD x®) x(0)
ZEq[Ing(X(T))-i-Zlogpe( | z) “log qe (2| )]
t=1

(6)

g(X M| x(=1) p(2)

The above variational bound can be adapted into the training objective L to be minimized (the de-
tailed derivation is provided in Appendix [A):

po(XUVIXW,2) g2 X))
dXED|XO, X©0) BT 50 }

) v

L(0,p) =E [1ogp9(X<0>\X<1> 2 Jero

:Eq[ZDKL( X DX X O) g (XD XD, 2

- logpe(X(O) \X(1)7 z) — Dxy, (QLF(Z‘X(O))HP(Z))} .

The objective L allows efficient training as all the terms have closed-form expressions, which we
will show later.

Since the distributions of points are independent of each other as described in Eq. (§), we further
expand the training objective:

T N
L0,0) =B, [ 3> Diaa(alal Vil 2l po(a! 2", 2))
t=2 i=1 (8)
N

= t0gpo(@” 2", 2) — Die.(a (21X @) Ip(2)) |

i=1
Next, we elaborate on each term in the above objective in order to show its tractability.

The ¢(x; (¢=1) |w(t) (0)) in the first term can be computed with the following closed-form Gaussian
(Sohl- chkstem et al.l|2015)):

g2 V2, 2") = N (@ | (@, 2), 3. 1), ©)
where, using the notation a; = 1 — ; and &y = Hizl Qg
Vp_ 1—ay_ 1-—
), 20) = YO0 vatl( - Vo® and = —oe Toethe 0)
- G - g

4
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Figure 2: The illustration of the proposed model. (a) illustrates how the objective is computed during
the training process. (b) illustrates the generation process.

In both the first and the second term, {pg(wgtfl) \:I:Et ,z)}L_, are trainable Gaussians described in
Eq. . In the last term, g, (2| X (0)) is the approximate posterior distribution. Using the language

of variational auto-encoders, g, (2| X (0)) is an encoder that encodes the input point cloud X (*) into
the distribution of the latent code z. We assume it a Gaussian following the convention:

q(z|X©) = N (2]pp(X @), 2, (X)), an

The last term p(z) is the prior distribution. The most common choice of p(z) is the isotropic Gaus-
sian A/(0, I). In addition to a fixed distribution, the prior can be a trainable parametric distribution,
which is more flexible. For example, normalizing flows (Chen et al.,|2016; Dinh et al.,[2016)) can be
employed to parameterize the prior distribution.

Consequently, all the terms in Eq. (8 can be computed with closed-form expressions, which enables
efficient training. Further details about the derivation and optimization are provided in Appendix [A]
and Appendix [B]

4 MODEL IMPLEMENTATIONS

The general training objective in Eq. (8) lays the foundation for the formulation of specific point
cloud tasks. Next, we adapt the training objective to point cloud generation and point cloud auto-
encoding, respectively.

4.1 POINT CLOUD GENERATOR

Leveraging on the model in Section [3| we propose a probabilistic model for point cloud generation
by employing normalizing flows to parameterize the prior distribution p(z), which makes the model
more flexible (Rezende & Mohamed, 2015 |Chen et al., [2016).

Specifically, we use a stack of affine coupling layers (Dinh et al.,2016) as the normalizing flow (the
detail of affine coupling layers is provided in Appendix [C). In essence, the affine coupling layers
provide a trainable bijector F, that maps an isotropic Gaussian to a complex distribution. Since
the mapping is bijective, the exact probability of the target distribution can be computed by the
change-of-variable formula:

-1

0F

_ , Ol _ -1
P(2) = pw(w) ’det S where w = F " (z), (12)

where p(z) is the prior distribution in the model, F,, is the trainable bijector implemented by the
affine coupling layers, and p,, (w) is the isotropic Gaussian (0, I).
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Figure 3: Visualization of our generated samples.

Substituting Eq. (I2) into Eq. (8)), the training objective for the generative model is:

La(0.¢ [ZZDKL D120, 20 pe(2 V2, 2))

t=2 i=1 (13)

N 0)) (1) (0) OFq |~
= > togpo(al”lef",2) - Diw (a0 (<1 X ) fpulw) - |det 2] )]

Specifically, we adopt PointNet (Qi et al., 2017a) as the architecture for p1,, and X, of the encoder

7o (2| X (0)), and employ a modified MLP as the function approximator for the mean pg of the

(t-1)

kernel pg(x; |:cz(-t), z). The detail of the architecture is presented in Appendix

To sample a point cloud, we first draw w ~ N(0, I') and pass it through Fy, to acquire the shape
latent z. Then, with the shape latent z, we sample some points {a:(T)} from the noise distribution
p(2(™)) and pass the points through the reverse Markov chain pg( \z) defined in Eq. (3) to
generate the point cloud X (9 = {af:l(.O WL

4.2 POINT CLOUD AUTO-ENCODER

Also, we implement a point cloud auto-encoder based on the probabilistic model in Section[3] We
employ the PointNet as the representation encoder, denoted as E, (X (0)) with parameters ¢, and
leverage the reverse diffusion process presented in Section [3.1] for decoding, conditioned on the
latent code produced by the encoder.

Leveraging on Eq. (8), we train the auto-encoder by minimizing the following adapted objective:

T N
=E,| 32 D (el Vel 2" lpo(a Vel £,(X )
t=2 i=1 (14)
—Zlogpe 2", By (X())].
To decode a point cloud that is encoded as the latent code z, we sample some points {x; T)} rom
the noise distribution p(a:ET)) and pass the points through the reverse Markov chain pg(x EO |2)

defined in Eq. (3) to acquire the reconstructed point cloud X (9 = {wgo) N

5 EXPERIMENTS

In this section, we evaluate our model’s performance on three tasks: point cloud generation, auto-
encoding, and unsupervised representation learning.
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Table 1: Comparison of point cloud generation performance.

| MMD() | COV (% 1) | I-NNA(%,]) | ISD ()
Shape Model | CD EMD | CD EMD | CD EMD | -

PC-GAN 3.819 1.810 | 42.17 13.84 | 77.59 98.52 6.188
GCN-GAN | 4.713  1.650 | 39.04 18.62 | 89.13  98.60 6.669
TreeGAN 4323 1953 | 39.37 840 | 83.86 99.67 | 15.646
Airplane  PointFlow 3.688 1.090 | 4498 44.65 | 66.39  69.36 1.536
ShapeGF 3727 1.061 | 46.79 4498 | 62.69 7191 1.314

Ours | 3.276 1.061 | 48.71 4547 | 64.83 7512 | 1.067

PC-GAN 13436 3.104 | 46.23 22.14 | 69.67 100.00 | 6.649
GCN-GAN | 15354 2.213 | 39.84 35.09 | 77.86  95.80 | 21.708
TreeGAN 14.936 3.613 | 38.02 6.77 | 7492 100.00 | 13.282
Chair PointFlow | 13.631 1.856 | 41.86 43.38 | 66.13 68.40 | 12.474
ShapeGF 13.175 1.785 | 48.53 46.71 | 56.17  62.69 5.996

Ours | 12.276 1.784 | 48.94 47.52 | 60.11  69.06 | 7.797

5.1 EXPERIMENTAL SETUP

Datasets For generation and auto-encoding tasks, we employ the ShapeNet dataset (Chang et al.,
2015) containing 51,127 shapes from 55 categories. The dataset is randomly split into training,
testing and validation sets by the ratio 80%, 15%, 5% respectively. For the representation learning
task, we use the training split of ShapeNet to train an encoder. Then we adopt ModelNet10 and
ModelNet40 (Wu et al., 2015) to evaluate the representations learned by the encoder. We sample
2048 points from each of the shape to acquire the point clouds and normalize each of them to zero
mean and unit variance.

Evaluation Metrics Following prior works, we use the Chamfer Distance (CD) and the Earth
Mover’s Distance (EMD) to evaluate the reconstruction quality of the point clouds (Achlioptas et al.,
2018)). To evaluate the generation quality, we employ the minimum matching distance (MMD), the
coverage score (COV), 1-NN classifier accuracy (1-NNA) and the Jenson-Shannon divergence (JSD)
(Yang et al., [2019). The MMD score measures the fidelity of the generated samples and the COV
score detects mode-collapse. The 1-NNA score is computed by testing the generated samples and
the reference samples by a 1-NN classifier. If the performance of the classifier is close to random
guess, i.e., the accuracy is close to 50%, the quality of generated samples can be considered better.
The JSD score measures the similarity between the point distributions of the generated set and the
reference set.

Architectures In order to make fair comparisons, the encoder architecture of our model is identical
to that of the PC-GAN, PointFlow and ShapeGF. Other details about the architecture of our model
are discussed in Appendix [D]

5.2 POINT CLOUD GENERATION

We quantitatively compare our method with the following state-of-the-art generative models: PC-
GAN (Achlioptas et al., 2018), GCN-GAN (Valsesia et al., 2018)), TreeGAN (Shu et al., |2019),
PointFlow (Yang et al., [2019) and ShapeGF (Cai et al.| [2020). Following the convention of prior
works, we train each model using point clouds from two categories in ShapeNet: airplane and
chair. Each of the baseline models is trained and tested using the setup reported in their papers.
Following ShapeGF (Cai et al., [2020), during the evaluation, we normalize the point clouds in both
the generated set and the reference set into a bounding box of [—1, 1]3, so that the metrics focus on
the shape of point clouds but not the scale. We evaluate the point clouds generated by the models
using the metrics in Section and summarize the results in Table |I} Our model outperforms the
state-of-the-art methods under most evaluation metrics, and achieves comparable performance to
PointFlow and ShapeGF under the 1-NNA score. We also visualize some generated point cloud
samples from our method in Fig. [3|and present more visualizations in Appendix [E}
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Table 2: Comparison of point cloud auto-encoding performance. Atlas (S1) and Atlas (P25) denote
1-sphere and 25-square variants of AtlasNet respectively.

Dataset Metric | Atlas (S1)  Altas (P25) PointFlow ShapeGF  Ours | Oracle

Airol CD 2.000 1.795 2.420 2102  2.118 | 1.016
plane — pvp 4311 4366 3311 3508  2.876 | 2.141
Car CD 6.906 6.503 5.828 5468 5493 | 3917
EMD 5.617 5.408 4.390 4489 3937 | 3.246

Chair CD 5.479 4.980 6.795 5.146  5.677 | 3.221
EMD 5.550 5.282 5.008 4784 4153 | 3.281

ShaneNet CD 5.873 5.420 7.550 5725 5252 | 3.074
P EMD 5.457 5.599 5.172 5049  3.783 | 3.112

Table 3: Comparison of representation learning in linear SVM classification accuracy.

Dataset \ AtlasNet PC-GAN(CD) PC-GAN(EMD) PointFlow ShapeGF \ Ours
ModelNet-10 91.9 954 954 93.7 90.2 94.2
ModelNet-40 86.6 84.5 84.0 86.8 84.6 87.6

5.3 POINT CLOUD AUTO-ENCODING

We evaluate the reconstruction quality of the proposed auto-encoder, with comparisons against state-
of-the-art point cloud auto-encoders: AtlasNet (Groueix et al.,2018), PointFlow (Yang et al.,[2019)
and ShapeGF (Cai et al.,[2020). Four datasets are used in the evaluation, which include three cate-
gories in ShapeNet: airplane, car, chair and the whole ShapeNet. We also report the lower bound
“oracle” of the reconstruction errors. This bound is obtained by computing the distance between two
different point clouds with the same number of points and the identical shape. As shown in Table[2]
our method outperforms other methods when measured by EMD, and greatly pushes closer towards
the lower bounded “oracle” performance. The CD score of our method is comparable to others.
Notably, when trained and tested on the whole ShapeNet dataset, our model outperforms others in
both CD and EMD, which suggests that our model has higher capacity to encode different shapes.

5.4 UNSUPERVISED REPRESENTATION LEARNING

Further, we evaluate the representation learned by our auto-encoder. Firstly, we train an auto-encoder
with the whole ShapeNet dataset. During the training, we augment point clouds by applying random
rotations along the gravity axis, which follows previous works. Then, we learn the feature repre-
sentations of point clouds in ModelNet-10 and ModelNet-40 using the trained encoder, and train a
linear SVM using the codes of point clouds in the training split and their categories. Finally, we
test the SVM using the testing split and report the accuracy in Table [3] We run the official code of
AtlasNet and ShapeGF to obtain the results, since the results are not provided in their papers. For
PC-GAN and PointFlow, we use the results reported in the papers. The performance of our encoder
is comparable to related state-of-the-art generative models.

6 CONCLUSIONS

We propose a novel probabilistic generative model for point clouds, taking inspiration from the
diffusion process in non-equilibrium thermodynamics. We model the reverse diffusion process for
point cloud generation as a Markov chain conditioned on certain shape latent, and derive a tractable
training objective from the variational bound of the likelihood of point clouds. Experimental re-
sults demonstrate that the proposed model achieves the state-of-the-art performance in point cloud
generation and auto-encoding.
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A DETAILED DERIVATIONS

We present the detailed derivations of the training objective in Eq.

E,. [mgpe(X(O))] / o (X () [log po(XOD 2)d X 42| d X©

> log/qdam(X( Npe(X O 2)d XET d2d X©  (Jensen’s inequality)

pg(X(O:T), Z)

(1:T) (0)
q(X<1:T>,z|X<0))dX dzd X© (ELBO)

> [ aaan (X)X, 2 X)L
Note that X (:T) and z are conditionally independent on X (),
~ [ (X)X O X O)g, (21X ) [0 (X D) + Iog p(2)
T
+ Z log pe(X V| X 2) —log g, (2| X )
T
- log q(X<t>|X(t—1>)} dXOT) qz
t

~ [ (X ©)a(X DX O)g, (21X ) [ 10gp(X D) + log p(2)

T
X -1 x @) )
—l—Zlogpeq( | ,2) —10gq¢(z|X(0))} dXOT) g2

2 (XD X D)

Since ¢(X )| X (*=1)) is intractable, we rewrite it using Bayes’ rule,

~ [ (X)X 0D X O)g, (21X ) [0 (X D) + log p(2)
g POXUTIIX® 2) (XX ©)
+2 1o (XT XD, X0) ~ XO[X0)

P(XOIXD,2)
(XX O)

t=2

+ log - long(z\X(O))} dXOT) dz

p(X™)

— /qdata(X(O))q(X(l’T)|X(0))qw(zX(O))[logq()((ﬂ“)p((o))

T
po(XU~V|X W, 2) () x (1)
+ ;log Q(X(t_l)lx(t), X(O)) + logpe(X |X ,Z)

+log p(z) — log q¢(z|X(()))} d X O:1) 4 »

X(T) (XD X 2)
_ (0:T) p@
—/Qq:(X ,z)[log q( X(O —I-ZI X (1) |X (t) X(o))

O & (0T)
+ log pe (X | X 7z)+logq¢(z|X(0))]dX dz
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On the right hand side, all the terms except log pg (X (?)| X (1), 2) can be rewritten into the form of
the KL divergence. We show how to do it on one of the terms. For other terms, it is similar.

-1 x®
(0:T) po(X | 1 2) (0:T)
/qw(X ,z)log J(XEDX @ X0 dX dz

pG(X(t71)|X(t)7 Z) dX(O,tfl,t) dz
g(X =D | X ® Xx(0))

pG(X(t71)|X(t)7 Z) dx(O,tfl,t) dz
g( X=X ®) X(0)

_ /q¢(X(O),X(t’1),X(t),z) log

= [alx DX, X ), (X0, X, 2)log
- / 4o (X, X, 2) Dict. (XD X 0, X ) g (XD X0, 2)) a X0 d 2

= —Ex0,x0 2nq, {DKL (q(X(tfl)‘X(t)vX(O))HPO(X(t—l)|X(t)’z))} .

. p(X T
NeXt, notice that log W

objective. Finally, by negating the variational bound and decomposing the distributions, we obtain
the training objective in Eq.[7]as follows:

[ZZDKL “D12® 20) |pe(2 V)2, 2))

t=2 i=1

has no trainable parameters, so we can ignore it in the training

A
(15)

- Z log pe(x ) ,z) — Dkr, (qv(z|X(O))||p(z)) }

L© L.

B TRAINING ALGORITHM

The training algorithm can be formulated according to the generator’s training objective in Eq.

Algorithm 1 Training Algorithm 2 Sampling

: repeat

1
2: Sample X© ~ gaaea(X©) 1: Sample w ~ N(0,1)
3: Sample z ~ g, (2| X©) 2: z ¢ Fa(w)
4 fort=1...T do 3: XM {2} ~ N(0,T)
5: Sample X ~ g(X® | x¢-1) 4: fort=T...1do
6: end for 5: Sample X1 ~ pp(X V| XD 2)
7: Compute VLc(0, @, ) using samples X %) 6. end for
and z; Then perform gradient descent. 7: return X ©

8: until converged

Ho et al.[(2020) proposed a simplified training algorithm. We also adapt the simplified algorithm for
our model. Before formulating the simpliﬁed algorithm, we should further analyse L(t_l) Since
both q(mgt_1)|m§t), mgo)) and pg(x; (t-1) \a: , z) are Gaussians (Eq. @ Eq , the term L(t Ve

be expanded as:

LYY o o | —
i MOMOP Qﬁt

1—a, 2
Yaib o Vol Z @) o 00 2

1—0(75 T 1_64t ¢

+C. (16)

Evaluating Lf;t_l) requires sampling wgt) from ¢(z¥)|x(®)). In principle, it can be done by sam-
pling iteratively through the Markov chain. Fortunately, Ho et al./(2020) showed g(x®)|x(?)) is a

Gaussian, thus allowing us to sample (*) efficiently without iterative sampling:
q(@V|z) = N2V |Vae®, (1 —an)). (17)

12
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D as 2l (2 €) = VA" +/T— aze, where

i

1 (w(_t) _ Bte) _ Ne(w(-t) t,2)

Using the Gaussian above, we can parameterize x
e ~N(0,I):

1 2

— C. 18
27, + (18)

Lgtil) = Em<0),e,z [

T'he above equation reveals that [j,g(iL'l(-t), t) must predict —\/1@ (wgt) — 15:5“ e) given wz(t). Thus,
;Lg(:])l(»t), t) can be parameterized as:
® 1 (®) B ()
po(x;”’,t) = x, — —— St 19
o(@t) \/07t< ¢ \/1—(3%66(%z ”Z)>’ (19)

®

%

where eg(wl(-t)

,t, z) is a function approximator (i.e., neural network) intended to predict € from x
Finally, Ll(-tfl) can be simplified as

(t-1) _ B — (0 - 2
L; =E_o, e—eg(Varx; +V1—ae t,2)|| | +C.  (20)

# {2@50&(1 —ay)

The simplified algorithm proposed in Ho et al.| (2020) suggests choosing a random term from
{Zfil Lgt_l)}thl to optimize at each training step. In addition to that, the prior loss term L.
in our objective function should also be considered. Since only one term in {Zf\il Lgt_l)}f:l is

optimized at each step, we re-weight L, with % The adapted simplified training algorithm is as
follows:

Algorithm 3 Training (Simplified)

1: repeat

2 Sample XO© o qdma(X(O))

3: Sample z ~ g, (2| X ()

4:  Sample t ~ Uniform({1,...,7T})

5:  Sample e ~ N(0,1)

6:  Compute V[N | [le—eo(vaa!” + T —are, t, 2)||* — £ Dxr(ge (2| X @)||p(2)]: Then perform
gradient descent.

7: until converged

C AFFINE COUPLING LAYERS

In affine coupling layers (Dinh et al.l [2016), both the input w* and the output w**! are partitioned
into two segments with the same length: w’ = [w!, w}], w'*! = [wit! wiT!]. The first segment
of the input w¢ is unchanged, and is used to update the other segment w¥ by scaling and translation
(affine transform):
041 ¢

w1+ = wl’ (21)
41 ¢ ¢ ¢

wyt = wy © F(wy) + G(wy),
where F'(-) and G(-) can be arbitrary (non-invertible) neural networks, and “®” denotes element-
wise multiplication. The inverse of the above affine transform is trivially obtained by subtraction
and division, since wf“ = w!. Several affine coupling layers can be stacked with alternating
partitioning to construct a complex invertible flow.

D MODEL ARCHITECTURES

PointNet Encoder The architecture of our encoder follows that of PC-GAN, PointFlow and
ShapeGF (Qi et al., 2017a; |Achlioptas et al.| 2018 [Yang et al., 2019; |Cai et al., |2020). Specifi-
cally, we feed point clouds into a 3-128-256-512 MLP with the ReLU nonlinearity followed by a
max-pooling to obtain a global 512-dimension feature. Then, the feature is fed into a 512-256-128-
256 MLP with the ReLU nonlinearity and we obtain the latent code of 256-dimension.

13
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Figure 4: The t-SNE clustering visualization of latent codes obtained from the encoder.

Prior Flow We stack 14 affine coupling layers to construct the prior flow. The dimension of
hidden states is 256, identical to the dimension of latent codes. Following each of the layers, we

apply moving batch normalization (loffe & Szegedy} [2015;|Grathwohl et al.,[2018). Both the scaling
and translation networks F'(-) and G(-) are 128-256-256-128 MLPs with the ReLU nonlinearity.

Diffusion Process The number of steps 7" in the diffusion process is 200. We set the variance
schedules to be 51 = 0.0001 and S = 0.05, and ;s (1 < ¢t < T') are linearly interpolated.

Reverse Diffusion Kernel The reverse diffusion kernel in Eq.Ié—_llis paramtereized by €g (:cgt), t,z),
as derived in Appendix |Bl We implement it using a variant of MLP, which consists of a series of

concatsquash layers (Grathwohl et al}, 2018)) defined as:
Rl =cs(h’ t,z) = (Wih! 4+ b)) © 0(Wac + by) + Wac, (22)

where h' is the input to the layer and h**! is the output. The input to the first layer is the 3D posi-

tions of points :c( ). e= [t,sin(t), cos(t), z] is the context vector, and o denotes the sigmoid func-
tion. Wy, Wy, W3, b; and b are all trainable parameters. The dimension of the concat squash-
MLP used in our model is 3-128-256-512-256-128-3, and we use the LeakyReLLU nonlinearity be-
tween the layers.

E ADDITIONAL VISUAL RESULTS

We project the latent codes of ModelNet-10 point clouds produced by the encoder trained by
ShapeNet into the 2D plane using t-SNE (Maaten & Hinton| 2008), and present it in Figure [4]
It can be observed that there are significant margins between most categories, which indicates that
our model manages to learn informative representations. In Figure[5] we visualize the interpolation
and extrapolation between latent codes. In Figure[6] we present more generated samples obtained
from our model.

14



Under review as a conference paper at ICLR 2021

g

|
t

1K

B S A g
TR T T - Sl Sy S o5

W o e e o

: P
-04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 5: Latent space interpolation and extrapolation.

Figure 6: More generated samples from our model.
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