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Abstract
Causal discovery with latent confounders is an
important but challenging task in many scientific
areas. Despite the success of some overcomplete
independent component analysis (OICA) based
methods in certain domains, they are computa-
tionally expensive and can easily get stuck into
local optima. We notice that interestingly, by mak-
ing use of higher-order cumulants, there exists a
closed-form solution to OICA in specific cases,
e.g., when the mixing procedure follows the One-
Latent-Component structure. In light of the power
of the closed-form solution to OICA correspond-
ing to the One-Latent-Component structure, we
formulate a way to estimate the mixing matrix
using the higher-order cumulants, and further pro-
pose the testable One-Latent-Component condi-
tion to identify the latent variables and determine
causal orders. By iteratively removing the share
identified latent components, we successfully ex-
tend the results on the One-Latent-Component
structure to the Multi-Latent-Component structure
and finally provide a practical and asymptotically
correct algorithm to learn the causal structure with
latent variables. Experimental results illustrate the
asymptotic correctness and effectiveness of the
proposed method.

1. Introduction
Causal discovery with latent confounders is needed in many
scientific discovery fields because we are usually unable
to collect or measure all the underlying causal variables.
Such latent confounders generally pose serious identifia-
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Figure 1. Two Directed Acyclic Graphs (DAGs), where the white
node represents the latent variable and the grey node represents
the observed variable.

bility problems in learning causal structures (Spirtes et al.,
2000; Hyvärinen & Smith, 2013; Chen et al., 2021; Adams
et al., 2021). In this paper, we consider the problem of
causal discovery with latent confounders in which observed
variables may be directly dependent.

Various methods, such as FCI (Spirtes et al., 1995), RFCI
(Colombo et al., 2012), and their variants (Colombo &
Maathuis, 2014) are proposed to solve the above problem,
but they cannot go beyond the well-known Markov equiv-
alence class. By utilizing linear and non-Gaussian models
(Hoyer et al., 2008; Hyvärinen & Smith, 2013; Tashiro et al.,
2014; Chen et al., 2021; Salehkaleybar et al., 2020; Wang &
Drton, 2020b;a), one is able to identify the causal structure
even in the presence of latent confounders. One typical
model is the Latent-Variable Linear, non-Gaussian Acyclic
Model (lvLiNGAM) (Hoyer et al., 2008), which utilizes the
Overcomplete Independent Component Analysis (OICA)
(Eriksson & Koivunen, 2004; Lewicki & Sejnowski, 2000)
to estimate the mixing matrix from the data, and then obtain
the causal structure through the estimated mixing matrix. In
practice, many existing OICA algorithms aim to maximize
the likelihood of the data. As a result, OICA algorithms of-
ten rely on the Expectation-Maximization (EM) procedure
along with approximate inference techniques, like Gibbs
sampling (Olshausen & Millman, 1999) and mean-field ap-
proximation (Højen-Sørensen et al., 2002). Overall, OICA
is hard to compute and may get stuck in local optima.

Accordingly, one practical issue with causal discovery
with latent confounders in the linear, non-Gaussian case
is how to estimate the mixing matrix and then recover
causal relationships without making use of the traditional
OICA procedure. Interestingly, by assuming the causal
model is linear and leveraging the higher-order cumulants
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that can be considered as a measure of certain types of
non-Gaussianity (Comon & Jutten, 2010), we provide a
closed-form solution to OICA in specific cases. One spe-
cific case corresponds to the structure with two observed
variables and one shared latent component directly affect-
ing them, defined as the One-Latent-Component struc-
ture and illustrated in Figure 1(a). We find that by em-
ploying higher-order cumulants, the ratio of causal coef-
ficients from the latent confounders can be estimated by
α1

α2
= cum(X1,X1,X1,X2)

cum(X1,X1,X2,X2)
, where cum(X1, X1, X1, X2) de-

notes the cumulant of variables (X1, X1, X1, X2). More-
over, if the variables have unit variance, we can estimate
the causal coefficient from latent confounder L to every
observed variable with cum(X1, X2) = α1α2 (note that
cum(X1, X2) is actually the covariance between X1 and
X2). This observation can also be extended to more than
one latent component case.

In light of the power of the above procedure, we provide a
method for estimating the mixing matrix when the causal
structure is given. By exploring the relation among the ex-
ogenous and endogenous variables in the mixing matrix, we
further develop a latent variable causal model estimation
algorithm under mild assumptions. The main idea is as fol-
lows. First, we assume that the causal structure over two ob-
served variable sets Xi and Xj is a One-Latent-Component
structure. Then, we estimate the mixing matrix based on
the hypothetical structure. Whether the hypothetical struc-
ture is true or not is examined by the proposed One-Latent-
Component condition. This condition holds for Xi and Xj if
and only if there exists a non-zero weight vector ω such that
ω⊤AXj,L = 0 and ω⊤Xj ⊥⊥ Xi, where AXj,L is the sub-
mixing matrix of Xj with a latent component L. This idea
can be generalized to identify the Multi-Latent-Component
structure by removing the shared independent components
and further recover the full causal structure.

The organization of this paper is as follows. Section 2
provides a closed-form solution to OICA in specific cases.
Section 3 introduces the One-Latent-Component condition
and proposes a causal discovery method for the linear latent
variable model. Section 4 provides the experiment results
on synthetic and real-world data. Section 5 discusses the
limitation of the proposed method in real-world applications.
Section 6 is the conclusion.

2. Closed-Form Solution to OICA in Specific
Cases

Linear OICA assumes the following data generating model:

X = AS, (1)

where X ∈ Rp, S ∈ Rd, and A ∈ Rp×d are observed
variables (mixtures), independent components, and mixing

matrix respectively. In OICA, d > p. The goal of OICA is
to recover A from X.

To develop a closed-form solution to OICA in specific cases,
we begin with a simple structure where two variables share
only one independent component, which is defined as the
One-Latent-Component structure, illustrated in Figure 1(a).

Definition 2.1 (One-Latent-Component structure). Let Xi

and Xj be two observed variable sets following Eq. (1). If
Xi and Xj share only one latent component L, Xi ← L→
Xj is a One-Latent-Component structure.

Without loss of generality, in this paper we assume that all
variables are zero-mean and that all latent variables have
a unit variance. In a One-Latent-Component structure, the
mixing matrix can be obtained based on the higher-order
cumulants. Before providing the closed-form solution, we
introduce the definition of cumulant:

Definition 2.2 (Cumulant (Brillinger, 2001)). Let X =
(X1, X2, . . . , Xn) be a random vector of length n. The k-th
order cumulant tensor of X is defined as a n× · · · × n (k
times) table, C(k), whose entry at position (i1, · · · , ik) is

C(k)
i1,···,ik = cum(Xi1 , . . . , Xik )

=
∑

(D1,...,Dh)

(−1)h−1(h−1)!E

∏
j∈Di

Xj

 · · ·E

∏
j∈Dh

Xj

, (2)

where the sum is taken over all partitions (D1, . . . , Dh) of
the set {i1, . . . , ik}.

If each variable Xi has zero mean, then the sum of the
partitions with size 1 is 0 and can be omitted. For example,
in Figure 1(a), the 2nd and 4th order cumulants are:

cum(X1, X2) =E[X1X2] = α1α2E[L2], and

cum(X1, X1, X2, X2) =E[X2
1X

2
2 ]− E[X1X1]E[X2X2]

−2E[X1X2]E[X1X2]

=α2
1α

2
2(E[L4]− 3E[L2]).

(3)
Note that for some distributions, the k-th order cumulants of
the variables will be zero. For example, when Xi follows a
Gaussian distribution, the third and higher-order cumulants
of Xi are zero. Interesting, it is worth noting that all other
distributions than the Gaussian one have an infinite number
of non-zero cumulants (Feller, 1991). Hence, given any non-
Gaussian distributions, we can always find non-zero higher-
order cumulants. In other words, under the non-Gaussian
assumption, if some cumulants are zeros, we can resort to
the other higher-order cumulants. Without loss of generality,
we only show the results based on the 2nd and 4th-order
cumulants, but our methodology can be modified to work
on other cumulants. Specifically, based on Eq. (3), if S is
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non-Gaussian, the mixing coefficients can be identified by
the 2nd and 4th order cumulants, which is summarized as
Theorem 2.3. The detailed procedure for using other typical
higher-order cumulants is provided in Appendix B.
Theorem 2.3. Let Xi and Xj be two observed variables
following Eq. (1). Suppose Xi and Xj follow the One-
Latent-Component structure and S is the only one shared
non-Gaussian latent component and has a unit variance.
Then the mixing coefficients between {Xi, Xj} and S, de-
noted by α̂i and α̂j respectively, can be identified by the
fourth-order cumulant as follows:

α̂i =

√
cum(Xi, Xi, Xj , Xj)

cum(Xi, Xj , Xj , Xj)
· cum(Xi, Xj),

α̂j =
cum(Xi, Xj)

α̂i
.

(4)

Theorem 2.3 provides the closed-form solution for estimat-
ing the mixing matrix in the One-Latent-Component struc-
ture case. If there are two shared independent components
illustrated in Figure 1 (b), can we still identify the mixing
matrix? Interestingly, we find that when considering only
X1 and X2, the causal coefficient of L1 on X1 and X2 (de-
noted by the coefficients α1 and α2) can be estimated. α3

can be estimated in the same way by considering X1 and
X3. But X2 and X3 are influenced by two independent com-
ponents, as shown in the part in Eq. (5), which violates
the condition in Theorem 2.3. Can we still identify β2 and
β3?

X1

X2

X3

 =

α1 0 γ1 0 0
α2 β2 0 ζ2 0
α3 β3 0 0 η3



L1

L2

SX1

SX2

SX3



ω⇒

X1

X̃2

X3

 =

α1 0 γ1 0 0
0 β2 −α2

α1
γ1 ζ2 0

α3 β3 0 0 η3



L1

L2

SX1

SX2

SX3


(5)

One may think if we can remove the influence of L1

from X2, then X̃2 (the residual after removing the influ-
ence of L1 on X2) and X3 share only one component L2.
Specifically, let ω be a non-zero weight vector satisfying
ω⊤[α1, α2]

⊤ = 0, then X̃2 = ω⊤[X1, X2]
⊤ and X3 share

one latent component L2, as seen from the part in Eq.
(5). So the mixing coefficients β2 and β3 can be further esti-
mated directly by Eq. (4). Intuitively, we have X̃2 ⊥⊥ L1,
because X̃2 successfully removes the influence of L1 by
making use of X1 as a surrogate, which will be explained
below. This particular regression is formalized as follows.

Definition 2.4 (Surrogate Regression). Let Xj be a sin-
gle observed variable and Xk be an observed variable set
following Eq. (1). Suppose S′ be the shared independent
components for Xj and Xk, and Xk be the surrogate vari-
able set of S′. By using Xk, the influence from S′ to Xj

can be removed. Then the surrogate regression residual of
Xj on S′ by utilizing Xk as a set of surrogate variables is
defined as:

X̃j = ω⊤[Xj ,Xk]
⊤

= ω⊤ [
A{Xj ,Xk},S′ A{Xj ,Xk},S′′

] [S′

S′′

]
= ω⊤A{Xj ,Xk},S′′S′′,

(6)

where A{Xj ,Xk},S′ is the sub-matrix of A in Eq. (1), which
represents the mixing coefficient from S′ to {Xj ,Xk}, and
ω satisfies ω⊤A{Xj ,Xk},S′ = 0 and ω ̸= 0.

Note that in this specific case, we can estimate the mixing
matrix A from data by Eq. (4). Based on this definition
and motivated by the above example, we can recursively
recover the mixing matrix according to Theorem 2.3, which
is summarized as Theorem 2.5.

Theorem 2.5. Let Xi and Xj be two observed variables and
Xk be an observed variable set following Eq. (1) (where
Xi, Xj /∈ Xk), S1 be an independent component set and S2

be an independent component not in S1. Suppose {S1, S2}
are the shared independent components of Xi and Xj , and
that S1 are the shared independent components of Xk and
{Xi, Xj}. Then the mixing coefficient from S2 to {Xi, Xj}
can be identified when Xi and X̃j share only one indepen-
dent component S2, where X̃j is the surrogate regression
residual of Xj on S1 by utilizing Xk as surrogates.

3. Estimation of Canonical lvLiNGAM
In this section, we aim to extend the above results in specific
cases to estimate the canonical lvLiNGAM with some mild
constraints by an efficient strategy. Specially, we will begin
with the canonical lvLiNGAM and provide the connection
between lvLiNGAM and OICA, and then intuitively show
how to use the results of specific OICA to identify the latent
variables and determine the causal order in a canonical
lvLiNGAM, and finally provide the estimation method for
the canonical lvLiNGAM.

3.1. Canonical lvLiNGAM

A canonical lvLiNGAM is X = BX +ΛL + SX, where
X is the vector of the observed variables, L is the vector
of the latent confounders, SX represents the independent
non-Gaussian noises, and B and Λ are the causal coefficient
matrices of X and L respectively. We also assume Λ has
full column rank. According to the definition of canonical
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lvLiNGAM (Hoyer et al., 2008), both the latent variables
and noises are exogenous variables, which can be regarded
as mutually independent components in OICA. Relating
the canonical lvLiNGAM to the OICA, the model can be
rewritten as:

X =
[
(I−B)−1Λ (I−B)−1

] [ L
SX

]
= AS, (7)

where A =
[
(I−B)−1Λ (I−B)−1

]
is the mixing ma-

trix and S = [L,SX]⊤ is the independent components. Both
L and SX are special cases of S.

To estimate the canonical lvLiNGAM, we further make the
following assumptions.

Assumption 3.1. [At least one pure set of observed vari-
ables] There is at least one pure set of observed variables
for a latent confounder as a child. A pure set of observed
variables is a nonempty subset of observed variables that
have no direct connections to other variables, except for
at most one latent confounder. But we allow causal edges
among the observed variables within the same pure set of
observed variables.

Assumption 3.2. [Three-child variables] Each latent con-
founder has at least three observed variables as children.

Assumption 3.3. [Causal faithfulness (Spirtes et al., 2000)]
Suppose Xi and Xj be two observed variables and C is a
subset of observed variables. Let C

⋂
{Xi, Xj} = ∅. If Xi

and Xj are independent conditional on C in P , then Xi is
d-separated from Xj conditional on C in causal graph G.

The practicality and rationality of the assumptions are as fol-
lows. Assumption 3.1 is weaker than the pure measurement
variable assumption in Tetrad (Silva et al., 2006), Triad (Cai
et al., 2019) and GIN (Xie et al., 2020), as they require each
observed variable to be pure while our assumption of at
least one pure set of observed variables is much weaker; the
former implies the latter, and we allow causal edges among
the variables in the same pure set. Assumption 3.2 is also
implied in the Triad and GIN conditions. Assumption 3.3 is
widely used in the existing causal discovery methods.

3.2. One-Latent-Component Condition

To utilize the closed-form solution to OICA in specific cases
to recover the causal model, including the structure, we
consider a simple case with two variable sets Xi and Xj

sharing only one independent component, i.e., the case with
the One-Latent-Component structure.

According to the definition of the One-Latent-Component
structure, we find that if the influence of the independent
component L on two variables X1 and X2 is removed, then
these two variables are independent. Take Figure 1(a) as
an example. The influence of L cannot be removed when
only X2 is utilized. If we utilize X1 and X2 to remove the

L

Xi Xj

(a)

SXi
SXj

Xi Xj

SXi
SXj

Xi Xj

(b)

Figure 2. Two Typical One-Latent-Component Structures. (a) A
structure over two observed variable sets Xi and Xj which are
influenced by 1 latent confounder L; (b) A structure over Xi and
Xj which are influenced by 1 latent noise SXi of Xi, transformed
from the ground truth Xi → Xj .

influence of L, we can not certify from the data that we
remove the influence of L correctly. So we need to use an
additional observed variable to give a testable condition,
which can be used to verify that the structure between the
observed variables is consistent with the hypothetical struc-
ture. Take Figure 1(b) as an example. Let Xi = {X1} and
Xj = {X2, X3}. We assume that Xi and Xj follow the
One-Latent-Component structure, where Xi and Xj share
only one latent component L1. Then we estimate the mixing
matrix by the method provided in Section 2. Based on Eq.
(5) and Eq. (6), we can find that ω⊤Xj is independent of
Xi because ω⊤Xj is proportional to [α3,−α2][X2, X3]

⊤ =
(α3β2−α2β3)L2+α3ζ2SX2−α2η3SX3 . Motivated by this,
we introduce the definition of the One-Latent-Component
condition and then provide Theorem 3.5 to test whether
(Xi,Xj) satisfies the condition.

Definition 3.4 (One-Latent-Component condition). Let Xi

and Xj be two subsets of observed variables following the
canonical lvLiNGAM model. Suppose the dimension of
Xj is greater than 2. (Xi,Xj) satisfies the One-Latent-
Component condition if and only if there exists a non-zero
ω such that ω⊤ÂXj,L = 0 and ω⊤Xj ⊥⊥ Xi, where ÂXj,L

is the causal coefficients of L on Xj that can be estimated
according to Eq. (4).

Theorem 3.5. Suppose Assumptions 3.1 - 3.3 hold. Let Xi

and Xj be two dependent subsets of observed variables fol-
lowing the canonical lvLiNGAM model. (Xi,Xj) satisfies
One-Latent-Component condition if and only if Xi and Xj

follow the One-Latent-Component structure.

Theorem 3.5 gives the conditions through a mixing matrix
consistent with the hypothetical structure. In Figure 2, the
mixing matrices for the models in (b) have the same support
as that for the model in (a), but we can successfully distin-
guish between them. The methods for identifying the two
structures are shown in Section 3.2.1 and Section 3.2.2.

3.2.1. IDENTIFY THE LATENT CONFOUNDERS

To identify the latent confounders, we provide the following
corollary based on the One-Latent-Component condition:
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Corollary 3.6 (Latent Confounder Identification). Suppose
Assumptions 3.1 - 3.3 hold. Let Xi and Xj be disjoint and
dependent subsets of the observed variables following the
canonical lvLiNGAM model. If (Xi,Xj) satisfies the One-
Latent-Component condition, then Xi and Xj are directly
caused by one latent confounder and there is no directed
path between Xi and Xj.

Based on the above corollary, we can utilize the follow-
ing steps to identify the latent confounders between ob-
served variable sets Xi and Xj as follows: 1) estimate
the mixing matrix Â, under the hypothetical structure that
Xi ← L → Xj given in Figure 2(a), 2) if the estimated
Â satisfies the One-Latent-Component condition, then ac-
cept the hypothetical structure Xi ← L → Xj as well
as the estimated mixing matrix Â, 3) otherwise, reject the
hypothesis.

3.2.2. DETERMINE THE CAUSAL ORDER

After identifying the latent confounders, the following ques-
tion is: if two observed variables Xi and Xj are causally
connected (i.e., one is a cause or ancestor of the other), how
can we determine the causal order between them? A gen-
eral method is trying to regress one on the another and test
whether the residual is independent of the regressor. But
if those two variables are affected by a latent confounder
and directly connected, the asymmetry of this independent
information is lost. However, one natural solution is if
we can remove the influence of latent confounders, then
they will share only one latent noise. That is, Xi → Xj

can be transformed to the One-Latent-Component structure
Xi ← SXi

→ Xj , as shown in Figure 2(b). We can derive
the following corollary:

Corollary 3.7 (Causal Order Determination). Suppose
Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two
dependent observed variables following the canonical
lvLiNGAM model. If ({Xi}, {Xi, Xj}) satisfies the One-
Latent-Component condition, then Xi is causally earlier
than Xj .

Based on the above corollary, we can utilize the following
steps to determine the causal order between observed vari-
able Xi and Xj : 1) estimate the mixing matrix Â, under the
hypothetical structure that Xi ← SXi → Xj , (i.e.,Xi →
Xj) given in Figure 2(b); 2) if the estimated Â satisfies the
One-Latent-Component condition, then accept the hypothet-
ical structure Xi → Xj as well the estimated mixing matrix
Â, 3) otherwise, reject the hypothesis.

3.3. From One-Latent-Component Structure to
Multi-Latent-Component Structure

In this section, we consider more general structures than the
One-Latent-Component structure and provide an algorithm
to estimate the canonical lvLiNGAM model. The frame-
work of the algorithm is summarized as Algorithm 1. First,
we begin with an undirected complete causal graph over ob-
served variables. Second, we identify the latent confounders
by utilizing the One-Latent-Component condition according
to Corollary 3.6, i.e., if a One-Latent-Component structure
is accepted, the causal graph and the corresponding mixing
matrix are updated accordingly. The details are shown in
lines 4-9 of Algorithm 1. Third, similar to the above steps,
we orient the causal direction of the edges by utilizing the
One-Latent-Component condition according to Corollary
3.7, as shown in lines 11-16 of Algorithm 1. Finally, we
eliminate redundant edges as shown in line 18 of Algorithm
1 (i.e., cutting off the edges between observed variables
that are not adjacent). Due to space limitations, a running
example is provided in Appendix C.

This algorithm is mainly based on the iterative identification
of One-Latent-Component structures, which ensures the
following two issues: 1) how to handle the cases that are not
the One-Latent-Component structure, i.e., with the Multi-
Latent-Component structure, and 2) how to eliminate the
redundant edges (figuring out whether observed variables
are adjacent)? Detailed solutions to these two key issues are
introduced in the following two subsections.

3.3.1. REMOVE SHARED IDENTIFIED LATENT
COMPONENTS

In this subsection, we will provide a way to remove the
influence of the shared independent components with the
help of surrogate variables, following the idea of Theorem
2.5. This may allow discovering the cases of more than one
latent component structure with the help of the One-Latent-
Component condition. The subsequent problem is how to
choose surrogate variables from observed variables.

Interestingly, with the help of the discovered One-Latent-
Component structure, we notice that the two variables sets
Xi and Xj in One-Latent-Component structure can help
remove the information of the shared one latent component
L. So we can use Xi and Xj as surrogate variables of each
other to remove the influence of L.

Therefore, considering two observed variable set Xi and
Xj, and their found shared components S′, if we would like
to detect whether there is another One-Latent-Component
structure over them, then we can find a set of observed
variables Xk that are also influenced by S′, then Xk can
be used as surrogate variables to “regress” Xj according
to Eq. (6) to obtain ω⊤Xj. This can remove the influence
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Algorithm 1 Estimating the canonical lvLiNGAM model
Input: Observed variable set X
Output: Causal graph G and mixing matrix Â

1: Initialize G as a complete undirected graph, the mixing
matrix Â = 0, and V as the variables that are non-fully
directed-edge connected;

2: repeat
3: //Identify the Latent Confounders
4: for each pair of variables, {Xi, Xj} ∈ V do
5: X̃i, X̃j ← surrogate regression residual of Xi and

Xj on the identified shared latent components S′;
6: if ∃Xk ∈ V \ {Xi, Xj}, (Xk, {X̃i, X̃j}) satisfies

the One-Latent-Component condition then
7: Add a new latent confounder L with Xk ←

L→ {Xi, Xj} to G and update Â;
8: end if
9: end for

10: //Determine the Causal Order
11: for each pairs of variables, {Xi, Xj} ∈ V, not con-

nected by directed edges do
12: X̃i, X̃j ← surrogate regression residual of Xi and

Xj on the identified shared latent components S′;
13: if (Xi, {X̃i, X̃j}) satisfies the One-Latent-

Component condition then
14: Orient Xi → Xj in G and update Â;
15: end if
16: end for
17: until G hasn’t changed
18: Remove redundant edges in G according to Proposition

3.9 and update Â.

of S′, which helps to reveal previously unidentified shared
latent components. The correctness of this procedure is
guaranteed by the following theorem, which ensures that all
shared independent components are identifiable under the
model assumptions.
Lemma 3.8. Suppose Assumptions 3.1 - 3.3 hold. If there ex-
ist unidentified shared independent components, there must
exist a pair of observed variable sets Xi and Xj, and the sur-
rogate variables of their identified independent components
S′ such that (Xi, X̃j) satisfies the One-Latent-Component
condition, where X̃j are the surrogate regression residuals
of Xj on S′.

Example 1. Considering the example shown in Figure
3. We first assume {X1, X2, X4} are influenced by L1,
then use X4 to estimate the mixing matrix from L1 to
{X1, X2, X4}. Based on the estimated mixing matrix,
({X4}, {X1, X2}) satisfies One-Latent-Component condi-
tion, we accept the hypothetical structure with L1. Similarly,
we can also identify that L1 affects {X3, X5}. Let X̃1 and
X̃2 be the surrogate regression residuals of X1 and X2 on
L1 by utilizing X4 as a surrogate variable, respectively.

L1 L2

X1 X2 X3

X4 X5

SX1 SX2 SX3

SX4
SX5

Figure 3. A causal graph with 2 latent variables and 5 observed
variables, where SXi is the exogenous variable of Xi.

Then X5 can be used to estimate the mixing matrix from L2

to {X̃1, X̃2, X5}. Finally, since ({X5}, {X̃1, X̃2}) satisfies
the One-Latent-Component condition, we can identify that
the latent confounder L2 affects {X1, X2, X5}.

3.3.2. ELIMINATE THE REDUNDANT EDGES

Now the remaining problem is how to remove the redun-
dant edges from the detected causal order (i.e., finding out
whether the observed variables are adjacent to each other).
Inspired by the graphical criterion on conditional indepen-
dence without latent confounders, a variable is independent
of its ancestors but non-parent variables, conditioned on its
parents. These parents act as mediating variables between
the variable and its ancestors. Similarly, if we can find me-
diate variables and remove their influence on their children,
then independent information can be found. That is, the
edge between the considered two variables is redundant.
The following proposition explains how to find such cases.

Proposition 3.9 (Redundant edges elimination). Suppose
Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two observed
variables following the canonical lvLiNGAM model where
Xi is causally earlier than Xj . There is no directed edge
between Xi and Xj , if and only if there exists an observed
variable set Xk satisfying that 1) Xk does not contain
Xi and Xj ; 2) ∀X ′

k ∈ Xk, if X ′
k is a descendant of Xi,

then X ′
k must be an ancestor of Xj; 3) X̃ ′

j and X̃ ′′
j are

independent of Xi, where X̃ ′
j and X̃ ′′

j are the surrogate
regression residuals of Xj on the independent components
by utilizing Xk and {Xi,Xk} as surrogates, respectively.

Specifically, given two adjacent variables Xi and Xj where
Xi is causally earlier than Xj and the identified indepen-
dent components Si, we use the following steps to check
whether there is a direct edge between them. First, we select
the observed variables Xk that satisfies the condition in
Proposition 3.9, to estimate the mixing matrix A{Xj ,Xk},Si

.
Second, if X̃ ′

j is independent of Xi, then Xi is not a parent
of Xj . Note that Si is a subset of independent components,
which can be latent confounders or shared noises of the
observed variables. In practice, we can find Si and estimate
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Table 1. F1-score (and its variance) of learned directed causal edges with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 2
500 0.00 (0.00) 0.35 (0.05) 0.45 (0.02) 0.20 (0.09) 0.35 (0.09) 0.60 (0.24)

1000 0.00 (0.00) 0.15 (0.05) 0.50 (0.00) 0.13 (0.07) 0.20 (0.09) 0.70 (0.21)
2000 0.00 (0.00) 0.30 (0.06) 0.50 (0.00) 0.07 (0.04) 0.12 (0.06) 0.50 (0.25)

Case 3
500 0.00 (0.00) 0.38 (0.03) 0.30 (0.03) 0.43 (0.09) 0.44 (0.10) 0.35 (0.12)

1000 0.00 (0.00) 0.45 (0.01) 0.35 (0.02) 0.16 (0.06) 0.22 (0.08) 0.40 (0.11)
2000 0.00 (0.00) 0.43 (0.01) 0.39 (0.03) 0.07 (0.04) 0.13 (0.07) 0.47 (0.09)

Case 4
500 0.00 (0.00) 0.31 (0.03) 0.45 (0.01) 0.12 (0.06) 0.21 (0.07) 0.58 (0.09)

1000 0.00 (0.00) 0.33 (0.01) 0.48 (0.01) 0.05 (0.02) 0.20 (0.07) 0.49 (0.12)
2000 0.00 (0.00) 0.30 (0.02) 0.50 (0.00) 0.00 (0.00) 0.04 (0.01) 0.38 (0.11)

Case 6
500 0.00 (0.00) 0.17 (0.02) 0.29 (0.00) 0.00 (0.00) 0.00 (0.00) 0.60 (0.24)

1000 0.00 (0.00) 0.17 (0.02) 0.17 (0.02) 0.00 (0.00) 0.00 (0.00) 0.40 (0.24)
2000 0.00 (0.00) 0.17 (0.02) 0.20 (0.02) 0.00 (0.00) 0.00 (0.00) 0.30 (0.21)

the corresponding mixing matrix iteratively.

Until now, we can remove the redundant causal edges be-
tween observed variables, and determine the causal coef-
ficient matrix based on the estimated mixing matrix and
recovered causal structure directly. The identifiability of
the causal structure as well as the causal coefficients are
summarized in Theorem 3.10.

Theorem 3.10. Suppose Assumptions 3.1 - 3.3 hold, and
that the data is generated by the canonical lvLiNGAM model.
Then the causal structure as well as the causal coefficients
can be identified by Algorithm 1.

3.4. Time Complexity Analysis

For the computational complexity of the proposed algorithm,
the big O runtime of Algorithm 1 is O(n3m) in the worst
case, where n represents the number of observed variables
and m represents the number of latent variables.

In detail, for the for-loop in lines 4 - 9 of Algorithm
1, it chooses three observed variables to test One-Latent-
Component condition, so the worst computational complex-
ity is O(n3). For the for-loop in lines 11 - 16 of Algorithm
1, it chooses two observed variables to test One-Latent-
Component condition, so the worst computational com-
plexity is O(n2). According to Lemma 3.8, some latent
components need to be identified by iteratively removing
the identified latent components. The loop in lines 2 - 17
of Algorithm 1 is to remove the identified latent compo-
nents iteratively, and the worst computational complexity
is O(n3m). For line 18 of Algorithm 1, it chooses two
observed variables that are directly connected to remove a
redundant edge between them, and the worst computational
complexity is O(n2).

4. Experiments
4.1. Synthetic Data

To mimic real, complex situations, we exploited rather com-
plex simulation settings. In these settings, the observed data
is generated according to the lvLiNGAM model, where the
causal coefficient bij is sampled from a uniform distribution
between [0.2, 0.8], and the noises are generated from stan-
dard normal variables raised to the third power. For each
model, the sample size N is varied among [500, 1000, 2000].
The details of the causal structures are as follows:

[Case 1]: One latent variable has three observed variables
as children and there is no direct edge among the observed
variables, i.e., L1 → {X1, X2, X3}.

[Case 2]: Add one edge X2 → X3 to the graph in Case 1.

[Case 3]: Add one observed variable X4 and three edges
L1 → X4, X1 → X2, X3 → X4 to the graph in Case 1.

[Case 4]: Add one observed variable X4 and two edges
L1 → X4, X3 → X4 to the graph in Case 2.

[Case 5]: Add one observed variable X4 and one la-
tent variable L2 that influences three observed variables
{X2, X3, X4} to the graph in Case 1.

[Case 6]: Add two edges X2 → X3 and L1 → X4 to the
graph in Case 5.

We compare our method with FCI (Spirtes et al., 2000),
lvLiNGAM (Hoyer et al., 2008), DLiNGAM (Shimizu et al.,
2011), PLiNGAM (Tashiro et al., 2014), and RCD (Maeda
& Shimizu, 2020). The results are evaluated in terms of
directed causal edges between variables and non-adjacent
relationships, using Precision, Recall and F1-score as eval-
uation metrics. In detail, Precision is the percentage of
correct directed causal/non-adjacent relationships between
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Table 2. F1-score (and its variance) of learned non-adjacent relationships with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 1
500 0.50 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.06) 0.35 (0.05) 0.92 (0.01)

1000 0.35 (0.05) 0.00 (0.00) 0.05 (0.02) 0.15 (0.05) 0.30 (0.06) 0.94 (0.01)
2000 0.35 (0.05) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 (0.05) 0.96 (0.01)

Case 2
500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07 (0.04) 0.80 (0.16)

1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)
2000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.90 (0.09)

Case 3
500 0.74 (0.02) 0.00 (0.00) 0.04 (0.01) 0.39 (0.08) 0.47 (0.04) 0.84 (0.02)

1000 0.69 (0.00) 0.00 (0.00) 0.00 (0.00) 0.17 (0.07) 0.32 (0.08) 0.83 (0.03)
2000 0.61 (0.01) 0.00 (0.00) 0.08 (0.03) 0.07 (0.04) 0.32 (0.08) 0.88 (0.01)

Case 4
500 0.51 (0.02) 0.04 (0.01) 0.00 (0.00) 0.08 (0.03) 0.16 (0.04) 0.88 (0.00)

1000 0.48 (0.01) 0.00 (0.00) 0.00 (0.00) 0.04 (0.01) 0.12 (0.03) 0.86 (0.00)
2000 0.32 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.77 (0.07)

Case 5
500 0.41 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.39 (0.05) 0.75 (0.01)

1000 0.31 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.33 (0.01) 0.80 (0.02)
2000 0.29 (0.00) 0.00 (0.00) 0.03 (0.01) 0.00 (0.00) 0.26 (0.01) 0.78 (0.01)

Case 6
500 0.44 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.94 (0.02)

1000 0.22 (0.04) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.98 (0.01)
2000 0.10 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.98 (0.01)

observed variables among all directed causal/non-adjacent
relationships returned by the algorithm. Recall is the per-
centage of correct directed causal/non-adjacent relationships
that are found by the search among true directed causal/non-
adjacent relationships between observed variables. F1-score
is defined as F1 = 2×Precision×Recall

Precision+Recall . Besides, we use
Root Mean Square Errors (RMSE) as a metric to evaluate
the performance of causal coefficient estimation and com-
pute the average computation time to show the efficiency
of our method. Each experiment was repeated 10 times
with randomly generated data and the results were averaged.
Precision and Recall, RMSE and average computation time
of all methods as well as more experimental results are
given in Appendix E.1. We also conducted experiments in
a more simple, easy-to-learn setting and three settings on
violating assumptions of our method, and the corresponding
experimental results are provided in Appendix E.2 - E.3,
respectively.

Evaluation on directed causal edges. In Table 1, we only
show the results of Cases 2 - 4, and Case 6, because Case 1
and Case 5 are no directed edges between observed variables
in the truth graph. The value in parentheses indicates the
variance of F1-score. As shown in Table 1, most methods ob-
tain low F1-scores. This is because the considered settings
are harder to learn. The number of directed edges in the
true graph is very small, so the F1-scores is very low if any
causal edges are incorrectly learned. From the result, our
algorithm performs well in almost all cases. This implies

that the pure set of observed variables helps to determine the
causal relations. lvLiNGAM obtains a lower F1-score than
ours except Case 3. Because its performance depends on
the estimation of the mixing matrix and the transformation
from the mixing matrix to the causal coefficient matrix, even
when the mixing matrix estimated by OICA is correct, the
causal coefficient matrix also relies on which columns of
the mixing matrix correspond to the latent variables, which
leads to the low F1-scores. FCI obtains the worst results.
Because in these cases, all variables are influenced by the
latent confounder, which makes FCI return undetermined
edges. The other methods without the pure set of observed
variables as a surrogate variable of latent confounder, falsely
determine the spurious relations between observed variables.
Considering the variance of F1-score, our method performs
worst in case 2 and case 6. This is because there is only
one true edge in the graph and the result is either all right or
none (i.e., F1-score is 1 or 0).

Evaluation on non-adjacent relationships. As shown
in Table 2, our algorithm achieves the highest precision,
recall, and F1-score on all cases. FCI achieves the second-
best performance in Cases 3 - 5, which implies that the
independence-based method can remove some edges be-
tween two variables that are not shared by the same latent
confounders. But it performs worst in Case 2 and Case 6.
PLiNGAM performs poorly in recovering the non-adjacent
relationships in all cases, because it cannot determine the
causal relations between two observed variables that share
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the same latent confounders. RCD can remove a few causal
edges in Case 5 because X1 and X4 are independent with-
out conditioning on the latent confounders. DLiNGAM
also perform poorly due to the unsatisfied causal sufficient
assumption. lvLiNGAM obtains the worst result, and can-
not discover any non-adjacent relationships, because it is
based on model selection and prefers a dense graph without
a sparse constraint. Considering the variance of F1-score,
the variance of many methods is zero, because the mean of
their result is zero. In these cases, our method can obtain
much higher means and slightly small variances, which re-
flects the reliability and soundness in learning non-adjacent
relationships.

4.2. Stock Market Data

We applied our method to the Hong Kong Stock Market
Data, aiming at discovering the causal relationships among
the selected 14 stocks. The data contains 1331 daily returns.
More details are provided in Appendix E.5.

The found causal relationships are:

1) all observed variables are affected by a latent confounder.
Besides, all observed variables except X7 and X14 are in-
fluenced by another latent confounder at the same time;

2) the directed causal edges between observed variables are:
X2 → {X3, X8}, X9 → X4, X11 → X10 → X1; 3) the
undirected edges are X1−X4, X2−X6, X1−X13−X14.

The estimated causal structure inspires us with some find-
ings as follows:

1) the whole market environment is affected by the hidden
common factors (which may be policy, the total risk in the
market and so on) (Cai et al., 2019). This is also consistent
with the expert knowledge of the stock market.

2) There are often connections among stocks belonging
to the same sub-index. For example, X2, X3 and X6 are
dependent because they are constituent stocks under the
Hang Seng Utilities Index.

3) The edge X10 → X1 is consistent with the knowledge
that ownership relations (X1 holds about 50% of X10) tend
to cause causal relations (Zhang & Chan, 2008).

5. Discussion
In practice, the causal graph may be very complex, as seen
from the extensive studies provided in Appendix E.4, and
our assumptions may be violated in some way. So in this
section, we discuss the limitations of the proposed procedure
in real-world applications.

The validity of our assumptions generally depends on the
domain. If the number of latent variables, relative to the

observed variables, is not very large, our assumptions may
hold true in many problems. However, please notice that if
our assumptions do not hold true, the output of the proce-
dure may indicate it, to avoid misleading results in complex
scenarios. Theoretically, the contrapositive of Theorem
3.10 implies that if the causal structure produced by our
Algorithm 1 contains undirected links, then the data vio-
late at least one of the three assumptions somewhere (or it
is because of the finite sample size effect). On the other
hand, if one observes such a complete undirected sub-graph
in the output, it strongly suggests violations of certain as-
sumptions. One may conclude that certain assumptions are
violated, or try to use other methods to go further. Besides,
we also conducted experiments on synthesis data to evaluate
the behavior of the procedure when various assumptions are
violated; empirical results are given in Appendix E.3.

Furthermore, our correctness result assumes a large sample
size, and in practice, the result may be sensitive to random
errors on finite samples. Thus, we have emphasized that
one should pay more attention to the assumptions of our
procedure and try to validate the results before using it.

6. Conclusion
We investigated the causal discovery problem with latent
confounders by using higher-order cumulants. First, we pro-
posed a closed-form solution to OICA in specific cases,
which explicitly estimates the mixing matrix using the
higher-order cumulants. Second, we further extended the
results to estimate a canonical lvLiNGAM, by iteratively em-
ploying the proposed One-Latent-Component condition to
test for the existence of latent confounders and determine the
causal directions between observed variables. Experimen-
tal results further verified the correctness and effectiveness
of our algorithm. Future research along this line includes
allowing nonlinear causal relationships and relaxing the
independence assumption among the latent variables.
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Appendix
In App.A, we provide the proof of theorems, corollaries, and propositions. In App.B, we provide a detailed procedure to
use the general higher-order cumulants. In App.C, we provide a running example of our proposed algorithm. In App.D,
we provide the estimating variance of the higher-order statistics. In App.E, we provide more details of experiments and
theoretical analysis.

A. Proofs
Before providing the proofs, we need to introduce the following important theorem first.

Theorem A.1 (Darmois-Skitovitch Theorem). (Darmois, 1953; Skitovitch, 1953). Define two random variables X1 and X2,
as linear combinations of independent random variables Si, i = 1, . . . , n:

X1 =

n∑
i=1

αiSi, X2 =

n∑
i=1

βiSi. (8)

If X1 and X2 are statistically independent, then all variables Sj for which αjβj ̸= 0 are Gaussian.

In other words, if random variables Si, i = 1, . . . , n are independent and for some α1, α2, . . . , αn and β1, β2, . . . , βn, X1

is independent of X2, then for any Sj that is non-Gaussian, at most one of αj and βj can be nonzero.

A.1. Proof of Theorem 2.3

Theorem 2.3. Let Xi and Xj be two observed variables following Eq. (1). Suppose Xi and Xj follow the One-Latent-
Component structure and that S is the only one shared non-Gaussian latent component of them and has a unit variance. Then
the mixing coefficients between {Xi, Xj} and S, denoted by α̂i and α̂j respectively, can be identified by the fourth-order
cumulant as follows:

α̂i =

√
cum(Xi, Xi, Xj , Xj)

cum(Xi, Xj , Xj , Xj)
· cum(Xi, Xj),

α̂j =
cum(Xi, Xj)

α̂i
.

(9)

Proof. Suppose Xi and Xj follow the One-Latent-Component structure, and S is the only one shared latent component of
them. The generating process of Xi and Xj can be written in terms of the mixing matrix:

Xi = αiS +AXi,S′
i
S′
i,

Xj = αjS +AXj ,S′
j
S′
j,

(10)

where αi and αj are the mixing coefficients between {Xi, Xj} and S, respectively. S, S′
i and S′

j are independent of
each other. To obtain the mixing coefficients α and β, we consider the cumulant of (Xi, Xj), (Xi, Xi, Xj , Xj) and
(Xi, Xj , Xj , Xj) as:

cum(Xi, Xj) = αiαjcum(S, S),

cum(Xi, Xi, Xj , Xj) = α2
iα

2
jcum(S, S, S, S),

cum(Xi, Xj , Xj , Xj) = αiα
3
jcum(S, S, S, S).

(11)

Then the square of αi is obtained in the following way:

cum(Xi, Xi, Xj , Xj)

cum(Xi, Xj , Xj , Xj)
· cum(Xi, Xj)

=
αi

αj
· (αiαjcum(S, S))

=
αi

αj
· αiαjσ

2
S

=α2
iσ

2
S ,

(12)
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where σS is the standard deviation of the non-Gaussian exogenous variable S. Similarly, we have the square of αj as:

cum(Xi, Xi, Xj , Xj)

cum(Xi, Xi, Xi, Xj)
· cum(Xi, Xj)

=
αj

αi
· (αiαjcum(S, S))

=
αj

αi
· αiαjσ

2
S

=α2
jσ

2
S .

(13)

Assumed that S has a unit variance, the square of the mixing coefficient can be estimated directly from Eq. (12) or Eq. (13).

To determine the sign of the mixing coefficients, we can use the cumulant of (Xi, Xj) as:

α̂i =

√
cum(Xi, Xi, Xj , Xj)

cum(Xi, Xj , Xj , Xj)
· cum(Xi, Xj),

α̂j =
cum(Xi, Xj)

α̂
.

(14)

Thus, αi and αj can be estimated by the cumulants according to Eq. (14).

A.2. Proof of Theorem 2.5

Theorem 2.5. Let Xi and Xj be two observed variables and Xk be an observed variable set following Eq. (1) (where
Xi, Xj /∈ Xk), S1 be an independent component set and S2 be an independent component not in S1. Suppose {S1, S2} are
the shared independent components of Xi and Xj , and that S1 are the shared independent components of Xk and {Xi, Xj}.
Then the mixing coefficient from S2 to {Xi, Xj} can be identified when Xi and X̃j share only one independent component
S2, where X̃j is the surrogate regression residual of Xj on S1 by utilizing Xk as surrogates.

Proof. Let Xi and Xj be two observed variable and Xk be an observed variable set following Eq. (1) (where Xi, Xj /∈ Xk),
S1 be an independent component set and S2 be an independent component not in S1. Suppose {S1, S2} are the shared
independent components of Xi and Xj , and S1 are the shared independent components of Xk and {Xi, Xj}. We can
rewrite the generation process of {Xi, Xj ,Xk} as follows:

Xi = AXi,S1S1 +AXi,S2
S2 + S′

i,

Xj = AXj ,S1S1 +AXj ,S2
S2 + S′

j ,

Xk = AXk,S1S1 +AXk,S′
k
S′
k,

(15)

where S′
i, S

′
j ,S

′
k are mutually independent. Then X̃j shares the only independent component S2 with observed variable Xj .

We can rewrite X̃j as follows:

X̃j = ω⊤
[
Xj

Xk

]

= ω⊤
[
AXj ,S1

AXk,S1

]
S1 + ω⊤

[
AXj ,S2 1 0

0 0 AXk,S′
k

]S2

S′
j

S′
k


= ω⊤

[
AX,S2

1 0
0 0 AXk,S′

k

]S2

S′
i

S′
k

 ,

(16)

where ω⊤
[
AXj ,S1

AXk,S1

]
= 0. When Dim({Xj ,Xk}) > Rank

([
AXj ,S1

AXk,S1

])
, ω has infinite solutions. We can choose a

solution satisfying ωXj
= 1. This allows the mixing coefficient between the shared independent component S2 and X̃j

to be consistent with the mixing coefficient between the shared independent component S2 and the original variable Xj .
Thus, we can transform the estimation of the mixing coefficients between {Xi, Xj} and S2 into the estimation of the mixing
coefficients between {Xi, X̃j} and S2.
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A.3. Proof of Theorem 3.5

Theorem 3.5. Suppose Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two dependent subsets of observed variables following
the canonical lvLiNGAM model. (Xi,Xj) satisfies One-Latent-Component condition if and only if Xi and Xj follow the
One-Latent-Component structure.

Proof. Let Xi shares independent components S′
s with Xj. We can rewrite the generation process of Xi and Xj as follows:[

Xi

Xj

]
=

[
AXi,S′

s

AXj,S′
s

]
S′
s +

[
AXi,S′

i
0

0 AXj,S′
j

] [
S′
i

S′
j

]
, (17)

where S′
s, S′

i and S′
j are mutually independent.

The “if” part: If Xi and Xj follow the One-Latent-Component structure, we can estimate the mixing coefficients ÂXi,L and
ÂXj,L consistent with the generation process according to Theorem 2.3. Because the dimension of Xj is greater than 2, the
dimension of Xj is greater than the rank of ÂXj,L. Hence, there exists non-zero ω such that ω⊤AXj,L = 0 and

ω⊤Xj = ω⊤AXj,S′
s
+ ω⊤AXj,S′

j
= ω⊤AXj,S′

j
. (18)

We can further simplify the generation process as S′
i → Z← L, ω⊤Xj ← S′

j. From the above analysis, we can conclude
that ω⊤Xj is independent of Xi, i.e., (Xi,Xj) satisfies the One-Latent-Component condition.

The “only if” part: Suppose (Xi,Xj) satisfies the One-Latent-Component condition. There must exist non-zero ω satisfies
ω⊤AXj,S′

s
= 0 and ω ̸= 0 such that ω⊤Xj ⊥⊥ Xi. If Xi and Xj do not follow the One-Latent-Component structure, i.e.,

Xi and Xj share multiple independent components. Under the faithfulness assumptions, ω⊤ÂXj,L = 0 does not guarantee
that ω⊤AXj,S′

s
= 0 according to Theorem 2.3. Hence, Xi and Xj follow the One-Latent-Component structure.

A.4. Proof of Corollary 3.6

Corollary 3.6 Suppose Assumptions 3.1 - 3.3 hold. Let Xi and Xj be disjoint and dependent subsets of the observed
variables following the canonical lvLiNGAM model. If (Xi,Xj) satisfies the One-Latent-Component condition, then Xi

and Xj are directly caused by one latent confounder and there is no directed path between Xi and Xj.

Proof. We will prove it by contradiction. Supposed that Xi and Xj are affected by more than one latent variable. If Xi and
Xj are affected by two or more latent variables or have more than one directed path between Xi and Xj. Then they must
share two or more independent components. According to Theorem 3.5, (Xi,Xj) won’t satisfy the One-Latent-Component
condition.

A.5. Proof of Corollary 3.7

Corollary 3.7. Suppose Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two dependent observed variables following the
canonical lvLiNGAM model. If ({Xi}, {Xi, Xj}) satisfies the One-Latent-Component condition, then Xi is causally earlier
than Xj .

Proof. We will prove it by contradiction. Supposed that Xi is not causally earlier than Xj and Xi and Xj are dependent. Then
Xi and Xj must share at least one latent component. Assume faithfulness holds, Xi must be affected by latent component
SXi

. So {Xi} and {Xi, Xj} share more than one latent components. According to Theorem 3.5, ({Xi}, {Xi, Xj}) won’t
satisfy the One-Latent-Component condition.

A.6. Proof of Lemma 3.8

To prove Lemma 3.8, let us provide the following lemmas first.

Lemma A.2. Suppose Assumptions 3.1 - 3.2 hold. Assume the observed variables follow the canonical lvLiNGAM model. Let
Ss be the independent components that affect more than one observed variable. Then ∀Si, Sj ∈ Ss, Aff(Si) ̸= Aff(Sj),
where Aff(Si) is denoted as a set of observed variables affected by Si.

proof. Assume the observed variables follow the canonical lvLiNGAM model. Let Ss be the independent components that
affect more than one observed variable.

14
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The independent components contain the latent variables and the noises of observed variables, so there are three cases to
consider.

1. Suppose both two different independent components, Si and Sj , are the noises of observed variables.

According to the data generating model, each observed variable has its own noise which is independent of other noises.
For any pair of observed variables, even when there is a directed edge between them, there still exists at least one noise
only affects the variable that is causally earlier than the other. That is, Aff(Si) ̸= Aff(Sj).

2. Suppose both two different independent components, Si and Sj , are latent variables.

According to Assumption 3.1, we know that for each latent variable, there is at least one observed variable only affected
by that latent variable. That means, there exist a Xi is in Aff(Si) but not in Aff(Sj). So Aff(Si) ̸= Aff(Sj).

3. Suppose two different independent components consist of a latent variable Si and a noise of an observed variable Sj .

1) If the observed variables are influenced by the same latent variables Si, according to Assumption 3.1, there must
exist a pair of observed variables Xi and Xj that have no direct path between them. So the noises only influence their
corresponding observed variables. That is, Sj only affects Xj but does not affect Xi.

2) If the observed variables are influenced by the same noises Sj , then there must exist a direct path from Xj to Xi.
According to Assumption 3.1, we know that for each latent variable, there is at least one observed variable that is only
affected by that latent variable. That is, there is an extra observed variable that is affected by Si but not affected by
others.

From the above analysis, we can obtain that: ∀Si, Sj ∈ Ss, Aff(Si) ̸= Aff(Sj), where Aff(Si).

Lemma A.3. Let Xi and Xj be the observed variable set following the canonical lvLiNGAM model, and S be all the
independent components. We divide S into two disjoint subsets S1 and S2, i.e., S1 ∪ S2 = S and S1 ∩ S2 = ∅. We can
rewrite the generating process of Xi and Xj as follows:

Xi = AXi,SS = AXi,S1S1 +AXi,S2S2,

Xj = AXj,SS = AXj,S1S1 +AXj,S2S2.
(19)

Assume that the rows of AY,S1 are not all zeros. ω⊤Xj is independent of Xi, if the following conditions are met: 1)
Dim(Xj) > Rank(AXj,S1); 2) AXi,S2A

⊤
Xj,S2

= 0.

Proof. If we can find a non-zero vector ω such that ω⊤AXj,S1 = 0, then

ω⊤Xj = ω⊤AXj,S1S1 + ω⊤AXj,S2S2 = ω⊤AXj,S2S2, (20)

which will be independent of Xi in light of conditions 2).

We now construct the vector ω. Because of condition 1), there must exist a non-zero vector ω, determined by AXj,S1 , such
that ω⊤AXj,S1 = 0, and ω⊤Xj = ω⊤AXj,S2S2, which is independent of Xi. Thus, the theorem holds.

Lemma A.4. Suppose Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two observed variables following the canonical
lvLiNGAM model. Let S′ be the subset of the independent components shared by Xi and Xj . There must exist an observed
variable set Xk such that the influence of S′ on Xj can be removed by utilizing the surrogate regression.

proof. We need to consider two kinds of independent components, which are latent variables and the noises of observed
variables.

1. If S′ contains the noises of the observed variables, each observed variable corresponding to its noise can be used as the
surrogate variables of the noise, e.g., the observed variable Xi is a surrogate variable of the independent component
SXi .

2. If S′ contains latent variables, based on Assumption 3.1, there must exist a pure set of observed variables Xk that can
be used as surrogate variables of each latent variable.
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From the above analysis, there exists an observed variable set Xk such that Dim({Xj ,Xk}) > Rank(A{Xj ,Xk},S′) for
any S′. According to the Lemma A.3, there must exist a non-zero weight vector ω, determined by A{Xj ,Xk},S′ , such that
ω⊤A{Xj ,Xk},S′ = 0. Hence, there must exist an observed variable set Xk such that S′ can be removed from Xj by utilizing
the surrogate regression.

Lemma 3.8. Suppose Assumptions 3.1 - 3.3 hold. If there exist unidentified shared independent components, there must
exist a pair of observed variable sets Xi and Xj, and the surrogate variables of their identified independent components S′

such that (Xi, X̃j) satisfies the One-Latent-Component condition, where X̃j are the surrogate regression residuals of Xj on
S′.

proof. Let Xk be the surrogate variable set of S′ in the surrogate regression. We will prove it by induction.

1) Assumed that there is only one independent component shared by Xi and Xj. That means, S′ = ∅, Xk = ∅, X̃j = Xj.
Suppose Assumptions 3.1 - 3.2 hold. There must exist a pair of variable set {Xi,Xj}, and Xi and Xj follow the One-Latent-
Component structure. We can identify the shared independent component according to Theorem 3.5.

2) Assumed that there are two independent components S2 = {S21, S22} shared by Xi and Xj.

We can always find an observed variable set Xk that could remove the influence of one of the independent components
from Xj. According to Lemma A.2, there must have an observed variable only affected by one of these two independent
components S2. We use Xk1 to denote the observed variable set that shares one independent component (denoted by S2)
with {Xi,Xj}. We can directly identify only one independent component S2 \ {S22} shared by Xk1 and {Xi,Xj} by the
One-Latent-Component condition, and we can estimate the mixing matrix A{Xi,Xj,Xk1

},S21
for {Xi,Xj,Xk1}. Then their

generating process can be rewritten as follows: Xi

Xj

Xk1

 =

 AXi,S21
AXi,S22

AXj,S21
AXj,S22

AXk1
,S21

0

[
S21

S22

]
+

 S′
i

S′
j

S′
k1

 , (21)

where S′
i,S

′
j,S

′
k1

are independent of each others. Next, let X̃ ′
j be the surrogate regression residual of X ′

j on S21 by
utilizing Xk1 as surrogate variables. For all X ′

j in Xj, we can obtain X̃ ′
j according to Lemma A.4. Then we have

(Xi, X̃j) (where X̃j = {X̃ ′
j , . . . } (Xi, X̃j) satisfies One-Latent-Component condition, so Xi and X̃j follow the One-

Latent-Component structure according to Theorem 3.5. So when Xi and Xj share two independent components S2 and
one of these two independent components S2 have been identified, there must exist Xk1 such that Xi and X̃j follow the
One-Latent-Component structure.

3) Assumed that there are n independent components Sn = {Sn1, . . . , Snn} shared by Xi and Xj.

We can still find an observed variable set Xk that could remove the influence of one of the independent components from Xj.
According to Lemma A.2, there must have an observed variable that will only be affected by n− 1 of these n independent
components Sn. We use Xkn−1 to denote the observed variable set that shares one independent component (denotes by
Sn \ {Snn}) with {Xi,Xj}. We can identify n− 1 independent components Sn \ {Snn} shared by {Xi,Xj} and Xkn−1

with the One-Latent-Component condition when in the case that n− 1 independent component shared by two observed
variable set, and we can estimate the mixing matrix A{Xi,Xj,Xkn−1

},Sn\{Snn} for {Xi,Xj,Xkn−1}. We can rewrite their
generating process as follows: Xi

Xj

Xkn−1

 =

 AXi,Sn\{Snn} AXi,Snn

AXj,Sn\{Snn} AXj,Snn

AXkn−1
,Sn\{Snn} 0

[
Sn \ {Snn}

Snn

]
+

 S′
i

S′
j

S′
kn−1

 , (22)

where S′
i,S

′
j,S

′
kn−1

are independent of each others. Next, let X̃ ′
j be the surrogate regression residual of X ′

j on Sn \ {Snn}
by utilizing Xkn−1 as surrogate variables. For all X ′

j in Xj, we can obtain X̃ ′
j according to Lemma A.4. Then we get Xi

and X̃j = {X̃ ′
j , . . . } sharing only independent component S22, so Xi and X̃j follow the One-Latent-Component structure.

So when Xi and Xj share n independent components Sn and n − 1 of these n independent components Sn have been
identified, there must exist Xkn−1 such that Xi and X̃j follow the One-Latent-Component structure.

From the above analysis, when there are unidentified independent components, there must exist a pair of variable sets
{Xi,Xj} and a surrogate variable set Xk such that Xi and X̃j follow the One-Latent-Component structure, whatever how
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many shared independent components have been currently identified, where X̃j are the surrogate regression residuals of Xj

on the shared identified independent components by utilizing Xk as surrogate variables.

For the unidentified independent component in the unidentified One-Latent-Component structure, there are two cases to
consider.

Case 1) The unidentified independent component is the noise of the observed variable. There must exist two observed
variables influenced by this unidentified independent component, where two observed variables have a direct path between
them. Hence, there must exist a pair of observed variables Xi and Xj such that (Xi, X̃j) satisfies the One-Latent-Component
condition according to the Corollary 3.7.

Case 2) The unidentified independent component is the latent variable. Suppose Assumption 3.2 holds, there must exist
three observed variables influenced by this unidentified independent component. Suppose Assumption 3.1 holds, there must
exist a variable set X̃j whose dimension is greater than 2. Hence, there must exist a pair of observed variables Xi and Xj

such that (Xi, X̃j) satisfies the One-Latent-Component condition according to the Corollary 3.6.

From the above analysis, there must exist a pair of variable sets {Xi,Xj} and the surrogate variables of S′ such that the
One-Latent-Component condition holds for (Xi, X̃j).

A.7. Proof of Proposition 3.9

Proposition 3.9. Suppose Assumptions 3.1 - 3.3 hold. Let Xi and Xj be two observed variables following the canonical
lvLiNGAM model and satisfying Xi is causally earlier than Xj . There is no directed edge between Xi and Xj , if and
only if there exists an observed variable set Xk satisfying that 1)Xi, Xj /∈ Xk; 2)∀X ′

k ∈ Xk, if X ′
k is a descendant of Xi,

then X ′
k must be an ancestor of Xj ; 3) X̃ ′

j and X̃ ′′
j are independent of Xi, where X̃ ′

j and X̃ ′′
j are the surrogate regression

residuals of Xj on the independent components by utilizing Xk and {Xi,Xk} as surrogates, respectively.

Proof. Let Xi and Xj be two variables following the lvLiNGAM model and Bk,l be the causal coefficient of l on k. Let
P(Xj , Xi) denotes the set of directed paths from Xj to Xi, Xl → Xk denotes as a directed edge from Xl to Xk. The
mixing coefficient AXj ,SXi

between Xj and the independent component SXi related to the Xi can be rewritten as:

AXj ,SXi
=

∑
P∈P(Xi,Xj)

∏
Xl→Xk∈P

BXk,Xl

=
∑

P∈P(Xi,Xj)\<Xi,Xj>

∏
Xl→Xk∈P

BXk,Xl
+BXj ,Xi

,
(23)

where < Xi, Xj > is denotes as a directed path from Xi to Xj that only contains two variables Xi and Xj . Let
Pa(Xj) be the parents of Xj . Then, ∀PXj ∈ Pa(Xj), APXj

,SXi
=

∑
P∈P(Xi,PXj

)

∏
l→k∈P Bk,l and AXj ,SXi

=∑
PXj

∈Pa(Xj)
BXj ,PXi

APXj
,SXi

.

Let Si be the independent components of Xi. There are two cases to consider.

Case 1) Assume that there is a directed edge from Xi to Xj , then BXj ,Xi ̸= 0. Because of condition 1) and 2), if
AX′

k,SXi
̸= 0, then AXj ,SX′

k

̸= 0. Furthermore, AXj ,SXi
=

∑
P∈P(Xi,Xj)\<Xi,Xj>

∏
l→k∈P Bk,l +BXj ,Xi

and AXj ,Si

is not a linear combination of AXk,Si
. Hence, the vectors in A{Xj ,Xk},Si

are linearly dependent, there does not exist
ω ̸= 0 such that ω⊤A{Xj ,Xk},Si

= 0, which violate the condition in Lemma A.3. From the above analysis, X̃ ′
i wouldn’t be

independent of Xi.

Case 2) Assume that there is no directed edge from Xi to Xj , then BXj ,Xi = 0. Because of condition 1) and 2), if
AX′

k,SXi
̸= 0, then AXj ,SX′

k

̸= 0. Furthermore, we have AXj ,SXi
=

∑
P∈P(Xi,Xj)\<Xi,Xj>

∏
l→k∈P Bk,l, and AXj ,Si

is a linear combination of AXk,Si
. So there must exist an observed variable set Xk satisfying AXj ,SXi

= BXj ,Xk
AXk,SXi

,
i.e., AXj ,SXi

is a linear combination of AXk,SXi
. Further, AXj ,Si

is a linear combination of AXk,Si
. Because Xi is

causally earlier than Xj , then Dim({Xi, Xj ,Xk}) > Rank(A{Xi,Xj ,Xk},Si
) according to Lemma A.4. It also holds that

Dim({Xj ,Xk}) > Rank(A{Xj ,Xk},Si
). Then there exist ω such that ω⊤A{Xj ,Xk},Si

= 0 and ω ̸= 0. Thus, Xk can be
used as surrogate variables of Si to remove the influence of Si on Xj , so the corresponding surrogate regression residual X̃ ′

j

is independent of Xi. Similarly, by using {Xj ,Xk} as surrogate variables, we can obtain the surrogate regression residual
X̃ ′′

j that does not contain the influence of Si, which makes the X̃ ′′
j and Xi independent.
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A.8. Proof of Theorem 3.10

Theorem 3.10. Suppose Assumptions 3.1 - 3.3 hold, and that the data is generated by the canonical lvLiNGAM model.
Then the causal structure as well as the causal coefficients can be identified by Algorithm 1.

Proof. Supposed that Assumptions 3.1 - 3.3 hold, and the data is generated by the canonical lvLiNGAM model. According
to Theorem 3.5 and Lemma 3.8, we can utilize the One-Latent-Component condition to identify all shared independent
components. Thus, the causal coefficient can be identified. According to Corollary 3.6, we can identify how the latent
variables affect the observed variables. According to Corollary 3.7, we can identify the causal order between the observed
variables. According to Proposition 3.9, we can remove the redundant edges from causal order. Thus, the causal structure is
identified.

B. Closed-Form Solution to OICA in Specific Cases by General Higher-order Cumulants
Note that we have to rely on the second-order cumulant (equaling covariance) which is inevitable. Specifically, on the
Gaussian assumption, we can only use second-order information. One makes use of higher-order statistics. First of
all, it is worth mentioning that our result can be applied to each of the higher-order cumulants. Using other orders of
cumulants will not hold further technical challenges. However, generally speaking, the higher order of the cumulants is
more sensitive to outliers. Furthermore, a lot of distributions may be symmetric with the zero third-order cumulants, while
their non-Gaussianity can be reflected by the four-order cumulant. Besides, fourth-order cumulants would not be zero for
most non-Gaussian distributions (Hyvärinen et al., 2001). So in this paper, we decide to use the fourth-order cumulant. If
needed, in a specific case, one may use cumulants of other orders or even their combinations as well.

We further provide a detailed procedure to use other typical higher-order cumulants as follows. For convenience, let
Ca(Xi) = cum(Xi, . . .︸ ︷︷ ︸

a times

), Ca,b(Xi, Xj) = cum(Xi, . . .︸ ︷︷ ︸
a times

, Xj , . . .︸ ︷︷ ︸
b times

), where a > 0 and b > 0. For example, C3(Xi) =

cum(Xi, Xi, Xi), C2,1(Xi, Xj) = cum(Xi, Xi, Xj). The following theorem can be seen as the generalization of Theorem
2.3.

Theorem B.1. Let Xi and Xj be two observed variables following Eq. (1). Suppose Xi and Xj follow the One-Latent-
Component structure and that S is the only one shared non-Gaussian latent component of them and has a unit variance.
Further suppose there exists n and m such that Cn,m+1(Xi, Xj) ̸= 0 and Cn+1,m(Xi, Xj) ̸= 0 where n > 0 and m > 0.
The mixing coefficients between {Xi, Xj} and S, denoted by α̂i and α̂j respectively, can be identified by the higher-order
cumulant as follows:

α̂i =

√
Cn,m+1(Xi, Xj)

Cn+1,m(Xi, Xj)
C1,1(Xi, Xj),

α̂j =
C1,1(Xi, Xj)

α̂i
.

(24)

Proof. Similar to the proof of 2.3, we consider the cumulant (Xi, Xj), (Xi, . . .︸ ︷︷ ︸
n times

, Xj , . . .︸ ︷︷ ︸
m+1 times

) and (Xi, . . .︸ ︷︷ ︸
n+1 times

, Xj , . . .︸ ︷︷ ︸
m times

) as:

C1,1(Xi, Xj) = αiαjC2(S),
Cn,m+1(Xi, Xj) = αn

i α
m+1
j Cn+m+1(S),

Cn+1,m(Xi, Xj) = αn+1
i αm

j Cn+m+1(S).

(25)

Then the square of αi is obtained in the following way:

Cn,m+1(Xi, Xj)

Cn+1,m(Xi, Xj)
C1,1(Xi, Xj)

=
αi

αj
(αiαjσ

2
S)

=α2
iσ

2
S .

(26)
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Thus, αi and αj can be estimated by the cumulants according to Eq. (24), which can be easily proved according to the proof
of Theorem 2.3.

C. Running Example of Our Method
In this section, we will show how our proposed algorithm works by an example whose ground truth is shown in Figure 4(a).
We start from the complete undirected graph as Figure 4(b).

L1 L2

X1 X2 X3

X4 X5

(a) Ground truth

X1 X2 X3

X4 X5

(b) Fully undirected graph

L1 L2

X1 X2 X3

X4 X5

(c) Step 1: Identify the latent
confounders

L1 L2

X1 X2 X3

X4 X5

(d) Step 2: Determine the
causal orders among ob-
served variables

L1 L2

X1 X2 X3

X4 X5

(e) Step 3: Eliminate the re-
dundant edges

Figure 4. A running example of the proposed algorithm on five observed variables {X1, X2, . . . , X5} and two latent confounders
{L1, L2}.

Step 1: Identifying the latent confounders

According to Algorithm 1, we first randomly select two observed variables, e.g. X1 and X2. Second, we first randomly select
an observed variable different from the previously selected observed variables, such as X3. Then we assume {X1, X2, X3}
are influenced by latent variable L1. Third, let Xi = {X3} and Xj = {X1, X2}, and we use Xi to estimate the mixing
matrix between L1 and {X1, X2, X3}. Based on the estimated mixing matrix, we cannot find a non-zero ω such that
ω⊤Xj ⊥⊥ Xi, i.e., ({X3}, {X1, X2}) violates One-Latent-Component condition. Then we move to the next iteration.
After many iterations, we may find ({X4}, {X1, X2} satisfies the One-Latent-Component condition, then we accept the
hypothetical structure, introduce a new latent confounder L1 affecting X1, X2 and X3, and remove the edges between
({X1, X2} and {X3}. Similarly, we can also identify L1 affecting {X4, X5}.

After that, we can remove the influence of L1 from X1 and X2 by utilizing surrogate regression with X4, and the surrogate
regression residuals are denoted by X̃1 and X̃2 respectively. Then X̃1 and X̃2 can be used to estimate the mixing matrix
between another latent component L2 and {X1, X2, X5}. With the situation that ({X5}, {X̃1, X̃2}) satisfies the One-Latent-
Component condition, we can identify the latent confounder L2 affecting {X1, X2, X5}. Finally, we can obtain the causal
graph shown in Figure 4(c).

Step 2: Determining the causal orders among observed variables
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Figure 5. The local causal structure after removing the influence of L1 and L2 on X1 in Figure 4(a).

Based on Step 1, we have identified the latent variables L1 and L2, and obtain pure sets of observed variables {X1, X2, X3},
{X4} and {X5}. Next, we focus on determining the causal order among {X1, X2, X3}, and use the additional variables as
the surrogates of latent components.

The procedure is performed as follows. First, we assume X1 is causally earlier than X2. Second, we remove the influence
of {L1, L2} from X1 and X2 by utilizing surrogate regression with {X4, X5}, and the surrogate regression residuals are
denoted by X̃1 and X̃2 respectively. The causal graph over X̃1 and X2 is illustrated in Figure 5. Third, let Xi = {X1} and
Xj = {X̃1, X̃2}. Xi is used to estimate the mixing matrix between SX1

and {X1, X2} where SX1
is the noise of X1. With

the situation that ({X1}, {X̃1, X̃2}) satisfies the One-Latent-Component condition, we can accept the hypothetical causal
order that X1 is causally earlier than X2. Similarly, we can also determine the causal order among {X1, X2, X3}. At last,
we can obtain the causal graph shown in Figure 4(d).

Step 3: Eliminating the redundant edges

In the previous steps, we obtain the causal order among {X1, X2, X3}. Naturally, one may be interested in whether there is
a direct edge between two variables. If not, then the edge is redundant and can be removed. Considering X1 and X3, the
procedure is performed as follows. We have known that both X1 and X2 are causally earlier than X3 and X1 is causally
earlier than X2, so we assume there is no directed edge between X1 and X3. According to the result of Step 2, we can remove
the influence of {L1, L2, SX1

} from X3 by utilizing surrogate regression with {X2, X4, X5} and {X1, X2, X4, X5}, and
the surrogate regression residuals are denoted by X̃ ′

3 and X̃ ′′
3 respectively. With the situation that X̃ ′

3 ⊥⊥ X1 and X̃ ′′
3 ⊥⊥ X1,

we obtain that there is no directed edge between X1 and X3, that is, the edge between X1 and X3 is redundant and can be
eliminated. For other pairs {X1, X3} and {X2, X3}, we perform the similar produce described above, and cannot find the
satisfactory situation provided in Proposition 3.9. Thus, the result of this step is refined in Figure 4(e).

D. Analysis of Estimation Variance of Fourth-order Cumulant
In this paper, we use the unbiased estimator (Schefczik & Hägele, 2019) to calculate the cumulant. Besides, the variance of
estimated fourth order cumulant C4 is

V ar(C4) = (µ8 − 12µ6µ2 − 8µ5µ3 − µ2
4 + 48µ4µ

2
2 + 64µ2

3 − µ2 − 36µ4
2)/n,

where µk is kth order central moment and n is the sample size, which is provided in (Krasilnikov et al., 2019; Pandav et al.,
2019). From this point of view, the cumulant estimators are consistent.

E. Experiments
E.1. Synthetic Data in Six Specific Cases

In the simulation studies, to mimic real, complex situations, we exploited six rather complex simulation settings. In these
settings, the observed data is generated according to the latent variable LiNGAM model, where the causal coefficient bij is
sampled from a uniform distribution between [0.2, 0.8], and the noises are generated from normal distribution (0.0, 1.0)
variables to the third power. For each model, the sample size N is among [500, 1000, 2000]. The true causal structures are
given in Figure 6.

We compare our method with FCI (Spirtes et al., 2000), lvLiNGAM (Hoyer et al., 2008), DLiNGAM (Shimizu et al., 2011),
PLiNGAM (Tashiro et al., 2014) and RCD (Maeda & Shimizu, 2020). We evaluate the results in terms of directed causal
edges between variables and non-adjacent relationships, by using the precision, recall and F1-score as evaluation metrics.

20



Causal Discovery with Latent Confounders Based on Higher-Order Cumulants

L

X1 X2 X3

(a) Case1

L

X1 X2 X3

(b) Case2

L

X1 X2 X3 X4

(c) Case3

L

X1 X2 X3 X4

(d) Case4

L1 L2

X1 X2 X4X3

(e) Case5

L1 L2

X1 X2 X4X3

(f) Case6

Figure 6. The causal graphs corresponding to six cases in the experiments on synthetic data

In detail, Precision is the percentage of correct directed causal/non-adjacent relationships between observed variables
among all directed causal/non-adjacent relationships returned by the algorithm. Recall is the percentage of correct directed
causal/non-adjacent relationships that are found by the search among true directed causal/non-adjacent relationships between
observed variables. F1-score is defined as F1 = 2×Precision×Recall

Precision+Recall .

Besides, we use Root Mean Square Errors (RMSE) as evaluation metrics to evaluate the performance of estimating the
causal coefficients and compute the average computation time to show the efficiency of our method. RMSE is estimated as√

1
n2

∑n
i=1

∑n
j=1(bij − b̂ij)2, where bij is the true causal coefficient between xi and xj , and b̂ij is the estimated causal

coefficient between xi and xj . Each experiment was repeated 10 times with randomly generated data and the results were
averaged.

The results of different methods are illustrated in Table 3 - Table 8.

Evaluation on directed causal edges. As shown in Table 3 and Table 4, our algorithm obtain the highest precision in
almost cases. Theoretically speaking, FCI cannot learn fully directed edges in these cases, so both its precision and recall are
zero. Because lvLiNGAM uses overcomplete independent component analysis (OICA) to estimate the mixing matrix, it is
difficult to learn the correct causal structure when the mixing matrix is estimated inaccurately. DLiNGAM is based on causal
sufficient assumption, i.e., without considering the presence of latent variables, which will learn redundant and incorrect
directed edges. So lvLiNGAM and DLiNGAM get the highest recall with low precision in almost all cases. The reason
PLiNGAM and RCD achieve low precision and low recall is that they cannot determine the causal relationship between
observed variables directly affected by latent confounders.

Evaluation on non-adjacent relationships. As shown in Table 5 and Table 6, our algorithm obtains the highest precision
and recall in almost cases. It shows that our method can accurately estimate the mixing matrix. Also with the help of the
One-Latent-Component condition, the causal relationship between variables can be learned correctly. None of these methods
has the ability to detect causal relationships between observed variables under the influence of latent variables, except for
lvLiNGAM. But the overcomplete independent component analysis (OICA) used by lvLiNGAM usually gets stuck in local
optima and further results in its low accuracy.

Evaluation on average computation time. Table 7 illustrates the average computation time of each method. Compared
with lvLiNGAM, the average computation time is lower than that of lvLiNGAM, especially when the sample size is 500.
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Table 3. Precision (and its variance) of learned directed causal edges with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 2
500 0.00 (0.00) 0.23 (0.02) 0.30 (0.01) 0.15 (0.05) 0.25 (0.05) 0.60 (0.24)

1000 0.00 (0.00) 0.10 (0.02) 0.33 (0.00) 0.10 (0.04) 0.15 (0.05) 0.70 (0.21)
2000 0.00 (0.00) 0.20 (0.03) 0.33 (0.00) 0.05 (0.02) 0.08 (0.03) 0.50 (0.25)

Case 3
500 0.00 (0.00) 0.25 (0.01) 0.20 (0.02) 0.52 (0.15) 0.43 (0.10) 0.47 (0.23)

1000 0.00 (0.00) 0.30 (0.00) 0.23 (0.01) 0.18 (0.10) 0.23 (0.11) 0.60 (0.24)
2000 0.00 (0.00) 0.28 (0.01) 0.26 (0.01) 0.10 (0.09) 0.20 (0.16) 0.70 (0.21)

Case 4
500 0.00 (0.00) 0.21 (0.01) 0.30 (0.00) 0.09 (0.03) 0.15 (0.04) 0.58 (0.11)

1000 0.00 (0.00) 0.22 (0.01) 0.32 (0.00) 0.05 (0.02) 0.16 (0.04) 0.53 (0.15)
2000 0.00 (0.00) 0.20 (0.01) 0.33 (0.00) 0.00 (0.00) 0.03 (0.01) 0.38 (0.12)

Case 6
500 0.00 (0.00) 0.10 (0.01) 0.17 (0.00) 0.00 (0.00) 0.00 (0.00) 0.60 (0.24)

1000 0.00 (0.00) 0.10 (0.01) 0.10 (0.01) 0.00 (0.00) 0.00 (0.00) 0.40 (0.24)
2000 0.00 (0.00) 0.10 (0.01) 0.12 (0.01) 0.00 (0.00) 0.00 (0.00) 0.30 (0.21)

Table 4. Recall (and its variance) of learned directed causal edges with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 2
500 0.00 (0.00) 0.70 (0.21) 0.90 (0.09) 0.30 (0.21) 0.60 (0.24) 0.60 (0.24)

1000 0.00 (0.00) 0.30 (0.21) 1.00 (0.00) 0.20 (0.16) 0.30 (0.21) 0.70 (0.21)
2000 0.00 (0.00) 0.60 (0.24) 1.00 (0.00) 0.10 (0.09) 0.20 (0.16) 0.50 (0.25)

Case 3
500 0.00 (0.00) 0.75 (0.11) 0.60 (0.14) 0.40 (0.09) 0.50 (0.15) 0.30 (0.11)

1000 0.00 (0.00) 0.90 (0.04) 0.70 (0.06) 0.15 (0.05) 0.25 (0.11) 0.30 (0.06)
2000 0.00 (0.00) 0.85 (0.05) 0.75 (0.11) 0.05 (0.02) 0.10 (0.04) 0.35 (0.05)

Case 4
500 0.00 (0.00) 0.60 (0.09) 0.90 (0.04) 0.20 (0.16) 0.35 (0.20) 0.65 (0.15)

1000 0.00 (0.00) 0.65 (0.05) 0.95 (0.02) 0.05 (0.02) 0.30 (0.16) 0.50 (0.15)
2000 0.00 (0.00) 0.60 (0.09) 1.00 (0.00) 0.00 (0.00) 0.05 (0.02) 0.40 (0.14)

Case 6
500 0.00 (0.00) 0.60 (0.24) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.60 (0.24)

1000 0.00 (0.00) 0.60 (0.24) 0.60 (0.24) 0.00 (0.00) 0.00 (0.00) 0.40 (0.24)
2000 0.00 (0.00) 0.60 (0.24) 0.70 (0.21) 0.00 (0.00) 0.00 (0.00) 0.30 (0.21)

Notice that the cases shown in Figure 6 contain at most four observed variables. If the number of observed variables
increases, the computation time of lvLiNGAM will be very high. Thus, these experiment results on average computation
time validate the effectiveness of our methods compared with lvLiNGAM.

Evaluation on the causal coefficient estimation. Because FCI only returns the causal structure without causal coefficient,
and the results of PLiNGAM and RCD contain many or all “Nan” values, for fairness, we only provide the RMSE of
lvLiNGAM, DLiNGAM, and our methods which are illustrated in Table 8. From the results, we can see that the RMSE of
our method is the smallest, and the variance of the RMSE is close to zero. This reflects the reliability and robustness of our
method on causal coefficient estimation by higher-order cumulants. The RMSE and its variance of lvLiNGAM vary greatly
because the lvLiNGAM easily gets stuck in local optima. The variances of RMSE of DLiNGAM are also close to zero, but
the RMSE of DLiNGAM is larger than ours in most cases. Since DLiNGAM returns the dense graphs, these graphs contain
the causal coefficient estimation of the true causal edges.

E.2. Synthetic Data in a More Easy-to-learn Setting

Besides, we conducted more experiments to show the performance of our algorithm in a more simple, easy-to-learn setting.
In detail, we designed the Case 7 over six observed variables {X1, . . . , X6} and two latent variables {L1, L2} as follows:

[Case 7]: latent variable L1 has six observed variables as children, i.e., L1 → {X1, X2, X3, X4, X5, X6}; the other latent
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Table 5. Precision (and its variance) of learned non-adjacent relationships with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 1
500 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.60 (0.24) 0.70 (0.21) 1.00 (0.00)

1000 0.70 (0.21) 0.00 (0.00) 0.10 (0.09) 0.30 (0.21) 0.60 (0.24) 1.00 (0.00)
2000 0.70 (0.21) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.21) 1.00 (0.00)

Case 2
500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.09) 0.80 (0.16)

1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)
2000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.90 (0.09)

Case 3
500 1.00 (0.00) 0.00 (0.00) 0.10 (0.09) 0.70 (0.21) 0.90 (0.09) 0.80 (0.02)

1000 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.21) 0.60 (0.24) 0.83 (0.03)
2000 1.00 (0.00) 0.00 (0.00) 0.20 (0.16) 0.10 (0.09) 0.60 (0.24) 0.91 (0.01)

Case 4
500 1.00 (0.00) 0.10 (0.09) 0.00 (0.00) 0.20 (0.16) 0.40 (0.24) 0.96 (0.01)

1000 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.09) 0.30 (0.21) 0.96 (0.01)
2000 0.80 (0.16) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.90 (0.09)

Case 5
500 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.09) 1.00 (0.00)

1000 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
2000 1.00 (0.00) 0.00 (0.00) 0.10 (0.09) 0.00 (0.00) 0.90 (0.09) 1.00 (0.00)

Case 6
500 0.90 (0.09) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.98 (0.00)

1000 0.60 (0.24) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)
2000 0.30 (0.21) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)

Table 6. Recall (and its variance) of learned non-adjacent relationships with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 1
500 0.33 (0.00) 0.00 (0.00) 0.00 (0.00) 0.20 (0.03) 0.23 (0.02) 0.87 (0.03)

1000 0.23 (0.02) 0.00 (0.00) 0.03 (0.01) 0.10 (0.02) 0.20 (0.03) 0.90 (0.02)
2000 0.23 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.02) 0.93 (0.02)

Case 2
500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.05 (0.02) 0.80 (0.16)

1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)
2000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.90 (0.09)

Case 3
500 0.60 (0.03) 0.00 (0.00) 0.03 (0.01) 0.28 (0.04) 0.33 (0.03) 0.90 (0.02)

1000 0.53 (0.01) 0.00 (0.00) 0.00 (0.00) 0.13 (0.04) 0.23 (0.04) 0.85 (0.03)
2000 0.45 (0.01) 0.00 (0.00) 0.05 (0.01) 0.05 (0.02) 0.23 (0.04) 0.88 (0.02)

Case 4
500 0.35 (0.02) 0.03 (0.01) 0.00 (0.00) 0.05 (0.01) 0.10 (0.02) 0.83 (0.01)

1000 0.33 (0.01) 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.08 (0.01) 0.80 (0.01)
2000 0.20 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.68 (0.05)

Case 5
500 0.27 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.25 (0.03) 0.62 (0.02)

1000 0.18 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.20 (0.00) 0.68 (0.04)
2000 0.17 (0.00) 0.00 (0.00) 0.02 (0.00) 0.00 (0.00) 0.15 (0.00) 0.65 (0.02)

Case 6
500 0.30 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.92 (0.03)

1000 0.14 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.96 (0.01)
2000 0.06 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.96 (0.01)
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Table 7. Evaluation on average computation time with different methods.

Algorithm FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Case 1
500 0.10 3.27 0.08 0.17 0.18 0.34
1000 0.58 4.61 0.03 0.73 0.91 2.19
2000 4.01 6.63 0.03 3.53 5.46 15.51

Case 2
500 0.13 3.38 0.04 0.12 0.14 0.53
1000 0.68 4.84 0.04 0.64 0.92 2.86
2000 4.18 6.86 0.02 3.81 5.70 18.14

Case 3
500 0.43 64.74 0.04 0.26 0.38 1.20
1000 2.63 44.25 0.04 1.33 2.30 7.57
2000 16.06 42.90 0.06 7.18 14.72 47.27

Case 4
500 0.38 39.04 0.03 0.23 0.38 1.07
1000 2.34 71.15 0.04 1.25 2.39 7.10
2000 15.80 67.83 0.08 7.03 14.80 49.81

Case 5
500 1.25 207.05 0.04 0.26 0.38 3.54
1000 8.27 291.65 0.04 1.30 1.72 24.21
2000 45.25 353.70 0.07 7.07 10.00 134.99

Case 6
500 1.18 188.65 0.05 0.19 0.45 3.41
1000 7.09 176.42 0.05 1.13 2.55 20.85
2000 50.83 334.49 0.05 6.93 15.12 155.45

variable L2 directly causes three observed variables X4, X5 and X6, i.e., L2 → {X4, X5, X6}; observed variable X2

directly causes two observed variables X3 and X4, i.e., X2 → {X3, X4}; observed variable X3 directly causes two observed
variables X4 and X5, i.e., X3 → {X4, X5}; observed variable X4 directly causes observed variable X5, i.e., X4 → X5.

Unfortunately, the lvLiNGAM cannot return the results of one generated dataset in 5 days. So we only provide the results of
our method and compared methods except for lvLiNGAM in Table 9 - 10. From the result, we observed that if the number
of directed edges is larger than that of the cases in the original manuscript, the F1-score of the learned directed causal edges
by our method is much higher than that in the original manuscript. But the F1-scores of other methods are still very low
because they cannot recover the structure that all observed variables are directly affected by the same latent variables.

E.3. Synthetic Data in Three Settings of Assumptions Violation

In order to evaluate the behavior of the procedure when various assumptions are violated, we further conducted experiments
on synthesis data. In detail, we designed the following three cases over six observed variables {X1, X2, . . . , X6} and two
latent variables {L1, L2} based on Case 7.

[Case 8]: We remove the edge L2 → X4 from the graph in Case 7.

[Case 9]: We further remove the edge X3 → X5 from the graph in Case 7, and then add the edge X5 → X6 in the graph.

[Case 10]: We further remove the edge X2 → X4 from the graph in Case 7, and then add the edge X1 → X2 in the graph.

Accordingly, the properties of different cases are as follows:

1. Case 7 satisfies all the assumptions;

2. The local structure over one latent variable in Case 8 violates assumption 1;

3. The local structure over one latent variable in Case 9 violates assumption 2;

4. All local structure over two latent variables in Case 10 violates all assumptions.

The F1-scores of the learned directed causal edges and non-adjacent relationships by our method with different cases are
given in Table 11 - 12. From the result, we observed the output of the proposed procedure may contain undirected links,
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Table 8. Evaluation on average RMSE from synthetic data.

Algorithm lvLiNGAM DLiNGAM Ours

Case 1
500 6.38 (328.03) 0.23 (0.00) 0.05 (0.00)
1000 0.53 (0.14) 0.23 (0.00) 0.00 (0.00)
2000 2.44 (37.07) 0.23 (0.01) 0.00 (0.00)

Case 2
500 0.34 (0.03) 0.28 (0.02) 0.04 (0.00)
1000 2.86 (16.87) 0.27 (0.01) 0.03 (0.00)
2000 0.83 (0.46) 0.27 (0.02) 0.04 (0.00)

Case 3
500 1.66 (3.36) 0.28 (0.02) 0.16 (0.01)
1000 0.70 (0.11) 0.23 (0.00) 0.24 (0.09)
2000 1.83 (7.13) 0.23 (0.01) 0.12 (0.00)

Case 4
500 19.34 (2792.92) 0.30 (0.03) 0.07 (0.00)
1000 5.59 (98.18) 0.28 (0.02) 0.08 (0.00)
2000 0.57 (0.12) 0.25 (0.01) 0.08 (0.00)

Case 5
500 1.27 (3.29) 0.19 (0.01) 0.10 (0.01)
1000 1.39 (2.77) 0.26 (0.00) 0.21 (0.04)
2000 7.28 (200.35) 0.26 (0.01) 0.09 (0.01)

Case 6
500 9.30 (269.89) 0.25 (0.01) 0.02 (0.00)
1000 4.96 (117.11) 0.27 (0.01) 0.03 (0.00)
2000 1.15 (0.65) 0.28 (0.01) 0.03 (0.00)

Table 9. Metrics of learned directed causal edges with different methods in the Case 7.

Sample Size FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Precision
500 0.00 - 0.07 0.16 0.33 0.86
1000 0.00 - 0.10 0.11 0.00 0.85
2000 0.00 - 0.15 0.00 0.06 0.87

Recall
500 0.00 - 0.22 0.14 0.10 0.42
1000 0.00 - 0.30 0.10 0.00 0.50
2000 0.00 - 0.46 0.00 0.02 0.64

F1-score
500 0.00 - 0.11 0.14 0.15 0.55
1000 0.00 - 0.15 0.10 0.00 0.61
2000 0.00 - 0.23 0.00 0.03 0.73

Table 10. Metrics of learned non-adjacent relationships with different methods in the Case 7.

Sample Size FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Precision
500 0.00 - 0.00 0.17 0.41 0.86
1000 0.00 - 0.00 0.17 0.00 0.90
2000 0.00 - 0.10 0.00 0.05 0.95

Recall
500 0.00 - 0.00 0.04 0.13 0.92
1000 0.00 - 0.00 0.03 0.00 0.92
2000 0.00 - 0.01 0.00 0.01 0.93

F1-score
500 0.00 - 0.00 0.06 0.19 0.88
1000 0.00 - 0.00 0.05 0.00 0.91
2000 0.00 - 0.02 0.00 0.02 0.94
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Table 11. Metrics of learned directed causal edges in the cases violate the assumptions.

Sample Size Case 7 Case 8 Case 9 Case 10

Precision
500 0.86 0.67 0.43 0.10

1000 0.85 0.58 0.30 0.00
2000 0.87 0.63 0.23 0.00

Recall
500 0.42 0.34 0.20 0.02

1000 0.50 0.30 0.18 0.00
2000 0.64 0.32 0.16 0.00

F1-score
500 0.55 0.43 0.25 0.03

1000 0.61 0.39 0.21 0.00
2000 0.73 0.41 0.19 0.00

Table 12. Metrics of learned non-adjacent relationships in the cases violate the assumptions.

Sample Size Case 7 Case 8 Case 9 Case 10

Precision
500 0.86 0.90 0.82 0.35

1000 0.90 0.96 0.83 0.00
2000 0.95 0.87 0.85 0.00

Recall
500 0.92 0.90 0.65 0.07

1000 0.92 0.86 0.57 0.00
2000 0.93 0.93 0.60 0.00

F1-score
500 0.88 0.90 0.71 0.12

1000 0.91 0.90 0.67 0.00
2000 0.94 0.89 0.69 0.00

which implies that some of the assumptions are violated and we do not know the relationships between observed variables.
That is, the algorithm can identify the causal structure over subsets of the variables for which the assumptions are satisfied
(under random errors because of finite samples).

E.4. Synthetic Data Generated by Random Graphs

We conducted more experiments to show the performance of our algorithm for randomly generated graphs and more
variables. In detail, we randomly generated the causal graphs with 6 observed variables according to the latent variables
model. Unfortunately, the lvLiNGAM cannot return the results of one generated dataset in 5 days. So we only provide the
results of our method and compared methods except lvLiNGAM in Table 13-14.

E.5. Stock Market Data

We applied our method to the Hong Kong Stock Market Data, aiming at discovering the causal relationships among the
selected 14 stocks. The data contains 1331 daily returns.

The observed stock variables are given in Table 15.

We use the expert knowledge of the stock market and the results from two papers (Zhang & Chan, 2008; Cai et al., 2019) as
references to evaluate the output of our proposed algorithm, and we find the following discoveries are consistent with the
expert knowledge. In detail, the found causal relationships are:

1) all observed variables are affected by a latent confounder. Besides, all observed variables except X7 and X14 are
influenced by another latent confounder at the same time;

2) the directed causal edges between observed variables are: X2 → {X3, X8}, X9 → X4, X11 → X10 → X1; 3) the
undirected edges are X1 −X4, X2 −X6, X1 −X13 −X14.
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Table 13. Metrics (and its variance) of learned causal directed edges with randomly generated graphs.

Sample Size FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Precision
500 0.00 (0.00) - 0.17 (0.00) 0.00 (0.00) 0.35 (0.20) 0.60 (0.24)
1000 0.00 (0.00) - 0.19 (0.00) 0.00 (0.00) 0.10 (0.09) 0.62 (0.19)
2000 0.00 (0.00) - 0.18 (0.00) 0.00 (0.00) 0.00 (0.00) 0.77 (0.16)

Recall
500 0.00 (0.00) - 0.87 (0.03) 0.00 (0.00) 0.17 (0.05) 0.23 (0.05)
1000 0.00 (0.00) - 0.93 (0.02) 0.00 (0.00) 0.03 (0.01) 0.37 (0.08)
2000 0.00 (0.00) - 0.90 (0.02) 0.00 (0.00) 0.00 (0.00) 0.43 (0.07)

F1-score
500 0.00 (0.00) - 0.29 (0.00) 0.00 (0.00) 0.22 (0.08) 0.33 (0.08)
1000 0.00 (0.00) - 0.31 (0.00) 0.00 (0.00) 0.05 (0.02) 0.45 (0.10)
2000 0.00 (0.00) - 0.30 (0.00) 0.00 (0.00) 0.00 (0.00) 0.54 (0.09)

Table 14. Metrics of learned causal non-adjacent relationships with randomly generated graphs.

Sample Size FCI lvLiNGAM DLiNGAM PLiNGAM RCD Ours

Precision
500 1.00 (0.00) - 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.88 (0.00)
1000 1.00 (0.00) - 0.10 (0.09) 0.00 (0.00) 1.00 (0.00) 0.90 (0.01)
2000 1.00 (0.00) - 0.10 (0.09) 0.00 (0.00) 1.00 (0.00) 0.91 (0.00)

Recall
500 0.49 (0.01) - 0.00 (0.00) 0.00 (0.00) 0.83 (0.04) 0.92 (0.01)
1000 0.31 (0.00) - 0.01 (0.00) 0.00 (0.00) 0.70 (0.02) 0.89 (0.00)
2000 0.29 (0.00) - 0.01 (0.00) 0.00 (0.00) 0.57 (0.02) 0.85 (0.01)

F1-score
500 0.65 (0.01) - 0.00 (0.00) 0.00 (0.00) 0.89 (0.02) 0.90 (0.00)
1000 0.47 (0.00) - 0.02 (0.00) 0.00 (0.00) 0.81 (0.01) 0.89 (0.00)
2000 0.45 (0.00) - 0.02 (0.00) 0.00 (0.00) 0.71 (0.01) 0.87 (0.00)

Table 15. The stocks corresponding to the observed variables.

Observed Variable Stock

X1 Cheung Kong (0001.hk)
X2 CLP Hldgs (0002.hk)
X3 HK China Gas (0003.hk)
X4 Wharf (Hldgs) (0004.hk)
X5 HSBC Hldg (0005.hk)
X6 HK Electric (0006.hk)
X7 Hang Lung Dev (0010.hk)
X8 Hang Seng Bank (0011.hk)
X9 Henderson Land (0012.hk)
X10 Hutchison (0013.hk)
X11 Sun Hung Kai Prop (0016.hk)
X12 Swire Pacific ’A’ (0019.hk)
X13 Bank of East Asia (0023.hk)
X14 Cathay Pacific Air (0293.hk)
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This estimated causal structure inspires us the findings as follows:

1) the whole market environment is affected by the hidden variable (which may be government policy, the total risk in the
market and so on) (Cai et al., 2019). This is also consistent with the expert knowledge of the stock market.

2) There is often a connection between stocks belonging to the same sub-index. For example, X2, X3 and X6 are dependent
because they are constituent stocks under the Hang Seng Utilities Index.

3) The edge X1 → X10 is consistent with the knowledge that ownership relations (X1 holds about 50% of X10) tend to
cause causal relations (Zhang & Chan, 2008).

4) If the principal activity of company A is a subset of that of company B, there usually exists a causal edge from A to B. For
example, the result includes X9 → X4; in fact, real estate is the principal activity for X9, while X4 has principal activities
in real estate, transportation, and retail. Similarly for the relationships between X10 and X11.

5) If the principal activities of two companies partially overlap, then we usually end up with an undirected link between
them. For example, this is the case for X1 and X4; in fact, the activities of X1 include residential, office, retail, industrial,
and hotel properties, and the activities of X4 include port and related services, real estate and hotels, and department stores
and retail.

6) Banks tend to be effects of other related companies; we suspect those companies are the bank’s clients and hence their
returns are also reflected in the bank’s return in some way (we treat this only as a hypothesis). For example, the result
includes X2 → X8; X8 is one of the largest banks in Hong Kong, and X2 may be a client of X8.
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