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Abstract

Multi-intent natural language understanding
(NLU) has recently gained attention. It de-
tects multiple intents in an utterance, which
is better suited to real-world scenarios. How-
ever, the state-of-the-art joint NLU models
mainly detect multiple intents on threshold-
based strategy, resulting in one main issue:
the model is extremely sensitive to the thresh-
old settings. In this paper, we propose a
transformer-based Threshold-Free Multi-intent
NLU model (TFMN) with multi-task learning
(MTL). Specifically, we first leverage multi-
ple layers of a transformer-based encoder to
generate multi-grain representations. Then we
exploit the information of the number of multi-
ple intents in each utterance without additional
manual annotations and propose an auxiliary
detection task: Intent Number detection (IND).
Furthermore, we propose a threshold-free in-
tent multi-intent classifier that utilizes the out-
put of IND task and detects the multiple intents
without depending on the threshold. Exten-
sive experiments demonstrate that our proposed
model achieves superior results on two public
multi-intent datasets.

1 Introduction

Natural language understanding (NLU) consists of
two sub-tasks, including intent detection and slot
filling which allow the dialogue system to create a
semantic frame that summarizes the user’s requests.
Early works often approach these two tasks sepa-
rately (Cortes and Vapnik, 1995; McCallum et al.,
2000; Sarikaya et al., 2011; Yao et al., 2014; Vu,
2016). Considering intent detection and slot filling
are highly related, recent works tend to model these
two tasks jointly, where the correlation between the
intent and slots are utilized (Goo et al., 2018; E
etal.,, 2019; Qin et al., 2019; Zhou et al., 2021).
The works above only consider the scenario
where each utterance has one intent. However, in
real-life situations, users may express multiple in-
tents in an utterance, thus making it difficult to
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Figure 1: A threshold-based multi-intent detection ex-
ample in MixSNIPS with given utterance and intent
labels. Threshold, which is the dash line, is set to 0.5.

apply single intent NLU models. Recently, sev-
eral works have studied Multi-intent NLU prob-
lem. Gangadharaiah et al.(2019) investigated an
attention-based neural network. Qin et al.(2020)
proposed an Adaptive Graph Interactive Frame-
work (AGIF). Qin et al.(2021) explored a non-
autoregressive approach to speed up the inference
time. However, these works all predict multiple
intents with threshold, where the common practice
is estimating label-instance probabilities and pick-
ing the intent labels whose probabilities are higher
than the threshold value. We named them threshold-
based models. The main issue of threshold-based
models is that they are not robust to the threshold
settings. As shown in Figure 1, the correct intents
for the utterance are GetWeather’ and ’Search-
ScreeningEvent’. Although the model can detect
that *GetWeather’ and ’SearchScreeningEvent’ are
the two most probable intents, the threshold-based
model only considers *GetWeather’ as the intent
due to the threshold which is usually set as 0.5.

In this paper, we propose a transformer-based
Threshold-free Multi-NLU model (TFMN) and de-
tects multiple intents without relying on the thresh-
old. Specifically, we leverage the upper layers of a
transformer-based encoder to generate multi-grain
representations. Next, we fully exploit the annota-
tions from original multiple intents data and pro-
pose an Intent Number Detection (IND) task. The
motivation is to allow the model to detect the intent
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Figure 2: The architecture of transformer-based TFMN model.

numbers in a given utterance. Then we propose
a threshold-free intent classifier that utilizes the
output of IND task to detect the multiple intents.
We validate TFMN on two public datasets (Qin
et al., 2020): MixATIS and MixSNIPS, and show
that our method outperforms competitive baselines.
The contributions of our work are summarized
as follows: (1)We propose a novel threshold-free
Multi-NLU model based on transformers.(2) We
propose IND task, a feasible task to improve the
multi-intent NLU without additional manual an-
notation, and a threshold-free multi-intent classi-
fier that detects multiple intents without relying on
threshold. (3) We present extensive experiments
demonstrating the effectiveness of our approach.

2 Problem Formulation

Given an input sequence X = (z1, ..., Z,, ), multi-
intent detection is defined as a multi-label classifi-
cation task that outputs Of = (o, ..., 0l ), where
m is the number of predicted intent labels. Slot fill-
ing task can be regarded as a sequence labeling task
that outputs a slot sequence O° = (o7 5

07,...,0,).

3 Approach

In this section, we first introduce the architecture
of TFMN model, then detail the proposed IND task
and threshold-free intent classifier.

3.1 Threshold-free Multi-intent NLU Model

The architecture of our model is illustrated in Fig-
ure 2. TFMN includes a transformer-based encoder
with L layers and three task-specific classifiers.
Multiple Intent Detection Following (Qin et al.,
2019), we perform a token-level multiple intent

detection which can be formalized as a sequence
labeling problem that maps the input utterance
X = (x1,...,oy) to sequence of intent label
O! = (ol,...,0L). According to (Jawahar et al.,
2019; Rogers et al., 2020), transformer-based en-
coder tends to capture syntactic information in the
middle and semantic information at the top layers.
Therefore, we take the top j layers of the encoder
to form multi-grain intent features. First, we map
each hidden layer into a different feature space via
a fully connected layer, then we combine hidden
layers by adding them together:

L
hf::§ j wlh
n=L—j " "
I

where wy, are trainable parameters and h,, are dif-
ferent hidden layers. We then generate intent logits
with the intent feature hj:

1" = wh!
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where w; are trainable parameters. The intent logits
will be used to provide token-level intent informa-
tion for slot filling and detect the final multiple
intent labels which we will detail in Section 3.3.
Slot Filling Similar to intent detection, We lever-
age the top j layers of a transformer-based encoder
for slot filling. The slot features h° are generated
by combining hidden layers and concatenating with

token-level intent information:
L

S
htemp Zn:L—j Wy, hn

hS - temp @ lI (4)
then slot classifier computes the slot prediction:

p? = softmaz(wyLeakyReLU (wyhy))  (5)
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where w, and wy, are trainable parameters.



3.2 Intent Number Detection

To achieve threshold-free multi-intent detection,
we propose an Intent Number Detection task which
trains with the intent detection and slot filling in a
multi-task fashion. In IND task, we fully utilize the
original intent label annotations by calculating the
numbers of intents in each utterance and forming
the intent number labels Y/NP_ Then we train the
model to detect how many intents are there in the
input utterance with YV Specifically, we take
the output of [CLS] token from the last hidden layer
hes as representation for IND task to classify:
pIND = Softmax(windhcls) (6)
OND — argmaa:(pIND) @)

We use cross-entropy to optimize IND task:

LiNp = — Zk yi " PlogpyMP €]

3.3 Threshold-free Intent Classifier

Once having the intent logits I/ and being able to
predict the intent numbers with the proposed IND
task, we send [/ into a sigmoid activation function:

p! = sigmoid(IY) 9)

where p! is the intent probability distribution of
tth token in the utterance. Since the final out-
put should be the utterance-level intent detection,
we sum p; up for utterance-level intent probabil-
ity distribution P, and choose the top O'NP,
which is the predicted intent number of the utter-
ance, most probable intent label as the final result
O! = (of, ---,Oémp)-

3.4 Multi-Task Training

Our model optimizes the parameters jointly. Mul-
tiple intent detection is trained with binary cross-
entropy and slot filling is trained with cross-entropy.
The total loss of TFMN is the weighted sum of
three losses:

Liotat = Lip+ - Lsp+A-Linp (10)
with three hyper-parameters «, 3, and A to balance.

4 [Experiments

4.1 Datasets

We conduct experiments on two public multi-
intent NLU datasets!. They are MixATIS (Qin

'https://github.com/LooperXX/AGIF

et al., 2020) collected from ATIS dataset (Hemphill
et al., 1990) with 13162/759/828 utterances for
train/validate/test and MixSNIPS (Qin et al.,
2020) collected from SNIPS dataset (Coucke
et al., 2018) with 39776/2198/2199 utterances for
train/validate/test. Both of the datasets have the ra-
tio of sentences with 1~3 intents as [0.3, 0.5, 0.2].

4.2 Experimental Settings

For TFMN, we use the English uncased Bert-Base
model (Devlin et al., 2019) which consists of 12
hidden layers, 12 heads, and the hidden size is
768. For fine-tuning, we freeze the bottom half of
Bert and empirically choose the top 4 layers? to
generate representations. The batch size is 128 and
the epoch is 80. Adam is used for optimization
with learning rate of 2e-5. The hyper-parameters
of loss are empirically set as a: 5: A= 0.6: 1: 1 for
MixATIS and «: 8: A=0.7: 0.9: 1 for MixSNIPS.
We evaluate the performance of slot filling with F1
score, intent detection with accuracy, and the NLU
semantic frame parsing with overall accuracy.

4.3 Baselines

We compare our model with both single-intent and
multi-intent baselines. For single-intent models
to handle multi-intent utterances, multiple intent
labels are connected with "#" and treated as a sin-
gle label, named as concat version. For multi-
intent baselines, they are all threshold-based mod-
els, named as thresh version. We also obtain
our own pre-trained language model (PLM) base-
lines for comparison which are Bert-baseline and
Roberta-baseline. Following (Chen et al., 2019),
we obtain the hidden state of the first special token
([CLS]) with sigmoid function for detecting multi-
intent based on threshold and use hidden states of
utterance tokens for slot filling.

4.4 Results

The main results are illustrated in Table 1. We
observe that TFMN model outperforms previous
state-of-the-art (SOTA) baselines significantly. On
slot filling, our model outperforms GL-GIN 1.5%
on MixSNIPS. For multiple intent detection, we
achieve 3.5% and 2.1% improvement compared
with GL-GIN on MIXATIS and MixSNIPS respec-
tively. On overall accuracy, our model shows strong
performance which surpasses GL-GIN 6.7% on

“More information about utilizing layers is provided in
Appendix A.S.
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MixATIS MixSNIPS
Model
Slot (F1)  Intent (Acc)  Overall (Acc)  Slot (F1) Intent (Acc)  Overall (Acc)
Bi-Model (concat) (2018) 83.9 70.3 344 90.7 95.6 63.4
SF-ID (concat) (2019) 87.4 66.2 349 90.6 95.0 59.9
Stack-Propagation (thresh) (2019) 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF (thresh) (2019) 84.6 734 36.1 90.6 95.1 62.9
AGIF (thresh)(2020) 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN (thresh)(2021) 88.3 76.3 43.5 94.9 95.6 75.4
Bert-baseline (thresh) 86.3 74.5 44.8 95.5 95.6 80.1
Roberta-baseline (thresh) 85.0 78.3 47.8 95.9 97.5 83.2
TFMN (Bert-base) 88.0 79.8 50.2 96.4 97.7 84.7
Table 1: Slot filling and multiple intent detection results on two multi-intent datasets.
MixATIS MixATIS
Model Model
ode Slot  Intent  Overall ode Int-1  Int-2 Int-3  Avg.
(F1)  (Acc) (Acc)
AGIF 96.5 837 7677 85.6
TFMN 88.0 79.8 50.2 GL-GIN 96.5 946 875 928
-w/oT-free Cls 87.1 71.3 47.0 Bert-baseline 944 878 835 922
-w/oT-free Cls & IND task  86.3 76.8 46.7 Roberta-baseline  97.2 89.5 78.0 83.2
TFMN 98.6 99.7 993 989

Table 2: Ablation study. T-free Cls indicates
threshold-free intent classifier.

MixATIS and 9.3% on MixSNIPS. When compar-
ing with PLM baselines, although Bert-baseline has
much worse performance than Roberta-baseline,
our Bert-base TFMN model still manages to out-
perform Roberta-baseline. The results suggest that
our approach brings significant improvements to
multi-intent NLU. We believe this is due to the pro-
posed IND task which fully exploits original intent
annotations and threshold-free intent classifier that
allows our model to detect multiple intents without

a threshold and lead to performance gains’.

4.5 Ablation Study

We compare TFMN with two simplified versions,
-w/o T-free Cls and -w/o T-free Cls & IND
task in Table 2 to analyze the effectiveness of
threshold-free intent classifier and IND task. We
can see that as the threshold-free intent classifier is
removed, the performances drop 0.9%, 2.5%, and
3.2% on slot F1, intent accuracy, and overall accu-
racy respectively. We attribute this to the fact that
the threshold-free approach can better detect the
intent number in an utterance compare to threshold
strategy. We further remove the INP task and the
performance again drops 0.8%, 0.5%, and 0.3%
on slot F1, intent accuracy, and overall accuracy
respectively. This indicates the effectiveness of
introducing the INP task to multi-intent NLU.

$More comparisons about inference speed and PLMs are
provided in Appendix A.1 A.2.

Table 3: A comparison of intent number prediction
between threshold-based and threshold-free approaches.
The evaluation metric is accuracy. Int-# means the
utterance with the number of “#” intent. Avg. is the
average accuracy.

4.6 Threshold-based vs Threshold-free

To compare threshold-based and threshold-free ap-
proaches, we evaluate how well a model can de-
tect the number of intents. The results are demon-
strated in Table 3. We obtained that the threshold-
free model, TFMN, significantly outperforms the
threshold-based baselines. Our model achieves
2.1%, 5.1%, 11.8%, and 6.1% improvements on
one to three intent utterances and average accuracy
over the previous SOTA baseline, GL-GIN. We find
it interesting that threshold-based models predict
intent number well when there is one intent in the
utterance and become worse as the intent number
increase while TFMN shows more consistency.

5 Conclusion

In this paper, we propose TFMN model which de-
tects intent numbers in an utterance by a novel IND
task that does not require additional manual anno-
tations. Then we propose a threshold-free intent
classifier to detect multiple intents without rely-
ing on the threshold. Extensive experiments show
that TFMN achieves performance gains over strong
baselines, and verify the effectiveness of the pro-
posed IND task and threshold-free intent classifier.
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A Appendix

MixATIS
Model
ode Latency (s)  Speedup

Stack-Propagation 34.5 8.2x
Joint Multiple ID-SF 453 11.0x
AGIF 48.5 11.8x
GL-GIN 4.2 1.0x
TFMN 4.1 1.0x

Table 4: Inference speed comparison. The speed is
evaluated by running an epoch on the MixATIS dataset
with batchsize set to 32 for each model.

A.1 Speed

Most previous works approach slot filling with
autoregressive models, which lead to slow infer-
ence speed because they are not parallelizable.
GL-GIN (Qin et al., 2021) is the most recent
study that propose a non-autoregressive model with
graph interaction layer. Our model also has a non-
autoregressive paradigm, so we follow the speed
test in (Qin et al., 2021) by running the model on
the MixATIS test data by fixing batchsize to 32 for
one epoch. The results are shown in Table 4. As
indicated, our model ends up having similar infer-
ence speed as GL-GIN model, but with significant
performance gains. When comparing with auto-
regressive models, our model achieves x8.2, x11.0,
x11.8 speedup compared with stack-propogation ,
Joint Multiple ID-SF, and AGIF.

A.2 Visualization

In Table 1, we notice an interesting outcome when
comparing the PLM-based baselines with previous
state-of-the-art baselines. PLM-based baselines
tend to have better performance in intent detection,
which is utterance-level, and come short in slot fill-
ing, which is token-level, especially on MixATIS
dataset. We argue that this is due to the representa-
tion degeneration problem (Gao et al., 2019), which
is that the output embedding space is squeezed
into a narrow cone. And such anisotropic shape
limits the expressiveness of word embedding. On
the other hand, our proposed model, which is also
PLM-based, shows strong performances. So we
visualize the token representation of bert-baseline,
roberta-baseline, and TFMN from two datasets in
Figure 3 and Figure 4. As shown, the visualiza-
tions of bert-baseline and roberta-baseline from
two dataset are anisotropic and sparse while the

(a) Bert (b) Roberta

(c) TFMN

Figure 3: PCA visualization of the slot representations
on MixATIS dataset.

e

(a) Bert (b) Roberta (c) TEMN

Figure 4: PCA visualization of the slot representations
on MixSNIPS dataset.

visualizations of TFMN are much more expressive.
This results explain the insights we mention above
and also show that our approach of leveraging mul-
tiple layers of Bert model for slot features alleviates
the representation degeneration problem.

Hyper-parameter Search Range
Learning Rate {2e-5, S5e-5}
Loss weight of intent classifier ~ {0.6, 0.7, 0.8, 1}
Loss weight of slot classifier {0.9,1,1.2}
Loss weight of IND classifier {0.9, 1}

Table 5: Hyper-parameter search range of
our proposed TFMN model.

A.3 Computing Infrastructure and
Computation Time

All experiments are conducted using a single
Geforce RTX 3090 GPU. When training for 80
epochs, time costs approximately 42 minutes on
MixATIS and 105 minutes on MixSNIPS.

A.4 Number of Parameters

TFMN includes one Bert encoder and three task-
specific classifiers. The parameters in TFMN are
slightly larger than uncased Bert-base model which
is around 111 million.

A.5 Hyper-parameter and Bert Layers

The main hyper-parameters of TFMN are the learn-
ing rate and weights of losses for Multiple intent
detection, slot filling, and intent number detection.
We randomized search for the best setting to maxi-



MixATIS

Bert layers

Slot (F1)  Intent (Acc)  Overall (Acc)
{10, 11, 12} 87.4 79.1 48.7
{8,9,10, 11, 12} 85.6 79.4 48.7
{9, 10, 11, 12} 88.0 79.8 50.2

Table 6: Results of different combinations of bert layers
for representation.

mize the semantic frame accuracy. Detailed search
range of hyper-parameters are given in Table 5.

Empirically, we choose the top 4 layers of Bert
for generating our representations. We have also
tried out different combinations as shown in Table
6. We argue that only choosing the top 3 layers of
Bert does not offer enough linguistic information
while choosing the top 5 layers will bring in noise
which leads to a performance decrease.

A.6 Dataset Explanation

We conduct our experiments on two English Multi-
intent NLU datasets. They are the cleaned version
of MixATIS and MixSNIPS, because they found
some repeated sentences in the original MixATIS
and MixSNIPS datasets so that they clean these two
datasets and recommend using the cleaned version.
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