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Abstract
Multi-intent natural language understanding001
(NLU) has recently gained attention. It de-002
tects multiple intents in an utterance, which003
is better suited to real-world scenarios. How-004
ever, the state-of-the-art joint NLU models005
mainly detect multiple intents on threshold-006
based strategy, resulting in one main issue:007
the model is extremely sensitive to the thresh-008
old settings. In this paper, we propose a009
transformer-based Threshold-Free Multi-intent010
NLU model (TFMN) with multi-task learning011
(MTL). Specifically, we first leverage multi-012
ple layers of a transformer-based encoder to013
generate multi-grain representations. Then we014
exploit the information of the number of multi-015
ple intents in each utterance without additional016
manual annotations and propose an auxiliary017
detection task: Intent Number detection (IND).018
Furthermore, we propose a threshold-free in-019
tent multi-intent classifier that utilizes the out-020
put of IND task and detects the multiple intents021
without depending on the threshold. Exten-022
sive experiments demonstrate that our proposed023
model achieves superior results on two public024
multi-intent datasets.025

1 Introduction026

Natural language understanding (NLU) consists of027

two sub-tasks, including intent detection and slot028

filling which allow the dialogue system to create a029

semantic frame that summarizes the user’s requests.030

Early works often approach these two tasks sepa-031

rately (Cortes and Vapnik, 1995; McCallum et al.,032

2000; Sarikaya et al., 2011; Yao et al., 2014; Vu,033

2016). Considering intent detection and slot filling034

are highly related, recent works tend to model these035

two tasks jointly, where the correlation between the036

intent and slots are utilized (Goo et al., 2018; E037

et al., 2019; Qin et al., 2019; Zhou et al., 2021).038

The works above only consider the scenario039

where each utterance has one intent. However, in040

real-life situations, users may express multiple in-041

tents in an utterance, thus making it difficult to042
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Figure 1: A threshold-based multi-intent detection ex-
ample in MixSNIPS with given utterance and intent
labels. Threshold, which is the dash line, is set to 0.5.

apply single intent NLU models. Recently, sev- 043

eral works have studied Multi-intent NLU prob- 044

lem. Gangadharaiah et al.(2019) investigated an 045

attention-based neural network. Qin et al.(2020) 046

proposed an Adaptive Graph Interactive Frame- 047

work (AGIF). Qin et al.(2021) explored a non- 048

autoregressive approach to speed up the inference 049

time. However, these works all predict multiple 050

intents with threshold, where the common practice 051

is estimating label-instance probabilities and pick- 052

ing the intent labels whose probabilities are higher 053

than the threshold value. We named them threshold- 054

based models. The main issue of threshold-based 055

models is that they are not robust to the threshold 056

settings. As shown in Figure 1, the correct intents 057

for the utterance are ’GetWeather’ and ’Search- 058

ScreeningEvent’. Although the model can detect 059

that ’GetWeather’ and ’SearchScreeningEvent’ are 060

the two most probable intents, the threshold-based 061

model only considers ’GetWeather’ as the intent 062

due to the threshold which is usually set as 0.5. 063

In this paper, we propose a transformer-based 064

Threshold-free Multi-NLU model (TFMN) and de- 065

tects multiple intents without relying on the thresh- 066

old. Specifically, we leverage the upper layers of a 067

transformer-based encoder to generate multi-grain 068

representations. Next, we fully exploit the annota- 069

tions from original multiple intents data and pro- 070

pose an Intent Number Detection (IND) task. The 071

motivation is to allow the model to detect the intent 072
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[SEP]
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Figure 2: The architecture of transformer-based TFMN model.

numbers in a given utterance. Then we propose073

a threshold-free intent classifier that utilizes the074

output of IND task to detect the multiple intents.075

We validate TFMN on two public datasets (Qin076

et al., 2020): MixATIS and MixSNIPS, and show077

that our method outperforms competitive baselines.078

The contributions of our work are summarized079

as follows: (1)We propose a novel threshold-free080

Multi-NLU model based on transformers.(2) We081

propose IND task, a feasible task to improve the082

multi-intent NLU without additional manual an-083

notation, and a threshold-free multi-intent classi-084

fier that detects multiple intents without relying on085

threshold. (3) We present extensive experiments086

demonstrating the effectiveness of our approach.087

2 Problem Formulation088

Given an input sequence X = (x1, ..., xn), multi-089

intent detection is defined as a multi-label classifi-090

cation task that outputs OI = (oI1, ..., o
I
m), where091

m is the number of predicted intent labels. Slot fill-092

ing task can be regarded as a sequence labeling task093

that outputs a slot sequence OS = (oS1 , ..., o
S
n).094

3 Approach095

In this section, we first introduce the architecture096

of TFMN model, then detail the proposed IND task097

and threshold-free intent classifier.098

3.1 Threshold-free Multi-intent NLU Model099

The architecture of our model is illustrated in Fig-100

ure 2. TFMN includes a transformer-based encoder101

with L layers and three task-specific classifiers.102

Multiple Intent Detection Following (Qin et al.,103

2019), we perform a token-level multiple intent104

detection which can be formalized as a sequence 105

labeling problem that maps the input utterance 106

X = (x1, ..., xn) to sequence of intent label 107

OI = (oI1, ..., o
I
n). According to (Jawahar et al., 108

2019; Rogers et al., 2020), transformer-based en- 109

coder tends to capture syntactic information in the 110

middle and semantic information at the top layers. 111

Therefore, we take the top j layers of the encoder 112

to form multi-grain intent features. First, we map 113

each hidden layer into a different feature space via 114

a fully connected layer, then we combine hidden 115

layers by adding them together: 116

hI =
∑L

n=L−j
wI
nhn (1) 117

where wI
n are trainable parameters and hn are dif- 118

ferent hidden layers. We then generate intent logits 119

with the intent feature hI : 120

lI = wih
I (2) 121

where wi are trainable parameters. The intent logits 122

will be used to provide token-level intent informa- 123

tion for slot filling and detect the final multiple 124

intent labels which we will detail in Section 3.3. 125

Slot Filling Similar to intent detection, We lever- 126

age the top j layers of a transformer-based encoder 127

for slot filling. The slot features hS are generated 128

by combining hidden layers and concatenating with 129

token-level intent information: 130

hStemp =
∑L

n=L−j
wS
nhn (3) 131

132

hS = hstemp ⊕ lI (4) 133

then slot classifier computes the slot prediction: 134

pSt = softmax(waLeakyReLU(wbh
S
t )) (5) 135

where wa and wb are trainable parameters. 136
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3.2 Intent Number Detection137

To achieve threshold-free multi-intent detection,138

we propose an Intent Number Detection task which139

trains with the intent detection and slot filling in a140

multi-task fashion. In IND task, we fully utilize the141

original intent label annotations by calculating the142

numbers of intents in each utterance and forming143

the intent number labels Y IND. Then we train the144

model to detect how many intents are there in the145

input utterance with Y IND. Specifically, we take146

the output of [CLS] token from the last hidden layer147

hcls as representation for IND task to classify:148

pIND = softmax(windhcls) (6)149

150

OIND = argmax(pIND) (7)151

We use cross-entropy to optimize IND task:152

LIND = −
∑

k
yIND
k logpIND

k (8)153

3.3 Threshold-free Intent Classifier154

Once having the intent logits lI and being able to155

predict the intent numbers with the proposed IND156

task, we send lI into a sigmoid activation function:157

158

pIt = sigmoid(lIt ) (9)159

where pIt is the intent probability distribution of160

tth token in the utterance. Since the final out-161

put should be the utterance-level intent detection,162

we sum pIt up for utterance-level intent probabil-163

ity distribution P I , and choose the top OIND,164

which is the predicted intent number of the utter-165

ance, most probable intent label as the final result166

OI = (oI1, ..., o
I
OIND).167

3.4 Multi-Task Training168

Our model optimizes the parameters jointly. Mul-169

tiple intent detection is trained with binary cross-170

entropy and slot filling is trained with cross-entropy.171

The total loss of TFMN is the weighted sum of172

three losses:173

Ltotal = α · LID + β · LSF + λ · LIND (10)174

with three hyper-parameters α, β, and λ to balance.175

4 Experiments176

4.1 Datasets177

We conduct experiments on two public multi-178

intent NLU datasets1. They are MixATIS (Qin179

1https://github.com/LooperXX/AGIF

et al., 2020) collected from ATIS dataset (Hemphill 180

et al., 1990) with 13162/759/828 utterances for 181

train/validate/test and MixSNIPS (Qin et al., 182

2020) collected from SNIPS dataset (Coucke 183

et al., 2018) with 39776/2198/2199 utterances for 184

train/validate/test. Both of the datasets have the ra- 185

tio of sentences with 1~3 intents as [0.3, 0.5, 0.2]. 186

4.2 Experimental Settings 187

For TFMN, we use the English uncased Bert-Base 188

model (Devlin et al., 2019) which consists of 12 189

hidden layers, 12 heads, and the hidden size is 190

768. For fine-tuning, we freeze the bottom half of 191

Bert and empirically choose the top 4 layers2 to 192

generate representations. The batch size is 128 and 193

the epoch is 80. Adam is used for optimization 194

with learning rate of 2e-5. The hyper-parameters 195

of loss are empirically set as α: β: λ= 0.6: 1: 1 for 196

MixATIS and α: β: λ= 0.7: 0.9: 1 for MixSNIPS. 197

We evaluate the performance of slot filling with F1 198

score, intent detection with accuracy, and the NLU 199

semantic frame parsing with overall accuracy. 200

4.3 Baselines 201

We compare our model with both single-intent and 202

multi-intent baselines. For single-intent models 203

to handle multi-intent utterances, multiple intent 204

labels are connected with "#" and treated as a sin- 205

gle label, named as concat version. For multi- 206

intent baselines, they are all threshold-based mod- 207

els, named as thresh version. We also obtain 208

our own pre-trained language model (PLM) base- 209

lines for comparison which are Bert-baseline and 210

Roberta-baseline. Following (Chen et al., 2019), 211

we obtain the hidden state of the first special token 212

([CLS]) with sigmoid function for detecting multi- 213

intent based on threshold and use hidden states of 214

utterance tokens for slot filling. 215

4.4 Results 216

The main results are illustrated in Table 1. We 217

observe that TFMN model outperforms previous 218

state-of-the-art (SOTA) baselines significantly. On 219

slot filling, our model outperforms GL-GIN 1.5% 220

on MixSNIPS. For multiple intent detection, we 221

achieve 3.5% and 2.1% improvement compared 222

with GL-GIN on MIxATIS and MixSNIPS respec- 223

tively. On overall accuracy, our model shows strong 224

performance which surpasses GL-GIN 6.7% on 225

2More information about utilizing layers is provided in
Appendix A.5.
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Model
MixATIS MixSNIPS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Bi-Model (concat) (2018) 83.9 70.3 34.4 90.7 95.6 63.4
SF-ID (concat) (2019) 87.4 66.2 34.9 90.6 95.0 59.9
Stack-Propagation (thresh) (2019) 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF (thresh) (2019) 84.6 73.4 36.1 90.6 95.1 62.9
AGIF (thresh)(2020) 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN (thresh)(2021) 88.3 76.3 43.5 94.9 95.6 75.4

Bert-baseline (thresh) 86.3 74.5 44.8 95.5 95.6 80.1
Roberta-baseline (thresh) 85.0 78.3 47.8 95.9 97.5 83.2

TFMN (Bert-base) 88.0 79.8 50.2 96.4 97.7 84.7

Table 1: Slot filling and multiple intent detection results on two multi-intent datasets.

Model
MixATIS

Slot Intent Overall
(F1) (Acc) (Acc)

TFMN 88.0 79.8 50.2
-w/o T -free Cls 87.1 77.3 47.0
-w/o T -free Cls & IND task 86.3 76.8 46.7

Table 2: Ablation study. T -free Cls indicates
threshold-free intent classifier.

MixATIS and 9.3% on MixSNIPS. When compar-226

ing with PLM baselines, although Bert-baseline has227

much worse performance than Roberta-baseline,228

our Bert-base TFMN model still manages to out-229

perform Roberta-baseline. The results suggest that230

our approach brings significant improvements to231

multi-intent NLU. We believe this is due to the pro-232

posed IND task which fully exploits original intent233

annotations and threshold-free intent classifier that234

allows our model to detect multiple intents without235

a threshold and lead to performance gains3.236

4.5 Ablation Study237

We compare TFMN with two simplified versions,238

-w/o T -free Cls and -w/o T -free Cls & IND239

task in Table 2 to analyze the effectiveness of240

threshold-free intent classifier and IND task. We241

can see that as the threshold-free intent classifier is242

removed, the performances drop 0.9%, 2.5%, and243

3.2% on slot F1, intent accuracy, and overall accu-244

racy respectively. We attribute this to the fact that245

the threshold-free approach can better detect the246

intent number in an utterance compare to threshold247

strategy. We further remove the INP task and the248

performance again drops 0.8%, 0.5%, and 0.3%249

on slot F1, intent accuracy, and overall accuracy250

respectively. This indicates the effectiveness of251

introducing the INP task to multi-intent NLU.252

3More comparisons about inference speed and PLMs are
provided in Appendix A.1 A.2.

Model
MixATIS

Int-1 Int-2 Int-3 Avg.

AGIF 96.5 83.7 76.7 85.6
GL-GIN 96.5 94.6 87.5 92.8
Bert-baseline 94.4 87.8 83.5 92.2
Roberta-baseline 97.2 89.5 78.0 88.2

TFMN 98.6 99.7 99.3 98.9

Table 3: A comparison of intent number prediction
between threshold-based and threshold-free approaches.
The evaluation metric is accuracy. Int-# means the
utterance with the number of “#” intent. Avg. is the
average accuracy.

4.6 Threshold-based vs Threshold-free 253

To compare threshold-based and threshold-free ap- 254

proaches, we evaluate how well a model can de- 255

tect the number of intents. The results are demon- 256

strated in Table 3. We obtained that the threshold- 257

free model, TFMN, significantly outperforms the 258

threshold-based baselines. Our model achieves 259

2.1%, 5.1%, 11.8%, and 6.1% improvements on 260

one to three intent utterances and average accuracy 261

over the previous SOTA baseline, GL-GIN. We find 262

it interesting that threshold-based models predict 263

intent number well when there is one intent in the 264

utterance and become worse as the intent number 265

increase while TFMN shows more consistency. 266

5 Conclusion 267

In this paper, we propose TFMN model which de- 268

tects intent numbers in an utterance by a novel IND 269

task that does not require additional manual anno- 270

tations. Then we propose a threshold-free intent 271

classifier to detect multiple intents without rely- 272

ing on the threshold. Extensive experiments show 273

that TFMN achieves performance gains over strong 274

baselines, and verify the effectiveness of the pro- 275

posed IND task and threshold-free intent classifier. 276
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A Appendix376

Model
MixATIS

Latency (s) Speedup

Stack-Propagation 34.5 8.2x
Joint Multiple ID-SF 45.3 11.0x
AGIF 48.5 11.8x
GL-GIN 4.2 1.0x

TFMN 4.1 1.0x

Table 4: Inference speed comparison. The speed is
evaluated by running an epoch on the MixATIS dataset
with batchsize set to 32 for each model.

A.1 Speed377

Most previous works approach slot filling with378

autoregressive models, which lead to slow infer-379

ence speed because they are not parallelizable.380

GL-GIN (Qin et al., 2021) is the most recent381

study that propose a non-autoregressive model with382

graph interaction layer. Our model also has a non-383

autoregressive paradigm, so we follow the speed384

test in (Qin et al., 2021) by running the model on385

the MixATIS test data by fixing batchsize to 32 for386

one epoch. The results are shown in Table 4. As387

indicated, our model ends up having similar infer-388

ence speed as GL-GIN model, but with significant389

performance gains. When comparing with auto-390

regressive models, our model achieves x8.2, x11.0,391

x11.8 speedup compared with stack-propogation ,392

Joint Multiple ID-SF, and AGIF.393

A.2 Visualization394

In Table 1, we notice an interesting outcome when395

comparing the PLM-based baselines with previous396

state-of-the-art baselines. PLM-based baselines397

tend to have better performance in intent detection,398

which is utterance-level, and come short in slot fill-399

ing, which is token-level, especially on MixATIS400

dataset. We argue that this is due to the representa-401

tion degeneration problem (Gao et al., 2019), which402

is that the output embedding space is squeezed403

into a narrow cone. And such anisotropic shape404

limits the expressiveness of word embedding. On405

the other hand, our proposed model, which is also406

PLM-based, shows strong performances. So we407

visualize the token representation of bert-baseline,408

roberta-baseline, and TFMN from two datasets in409

Figure 3 and Figure 4. As shown, the visualiza-410

tions of bert-baseline and roberta-baseline from411

two dataset are anisotropic and sparse while the412

(a) Bert (b) Roberta (c) TFMN

Figure 3: PCA visualization of the slot representations
on MixATIS dataset.

(a) Bert (b) Roberta (c) TFMN

Figure 4: PCA visualization of the slot representations
on MixSNIPS dataset.

visualizations of TFMN are much more expressive. 413

This results explain the insights we mention above 414

and also show that our approach of leveraging mul- 415

tiple layers of Bert model for slot features alleviates 416

the representation degeneration problem. 417

Hyper-parameter Search Range

Learning Rate {2e-5, 5e-5}
Loss weight of intent classifier {0.6, 0.7, 0.8, 1}
Loss weight of slot classifier {0.9, 1, 1.2}
Loss weight of IND classifier {0.9, 1}

Table 5: Hyper-parameter search range of
our proposed TFMN model.

A.3 Computing Infrastructure and 418

Computation Time 419

All experiments are conducted using a single 420

Geforce RTX 3090 GPU. When training for 80 421

epochs, time costs approximately 42 minutes on 422

MixATIS and 105 minutes on MixSNIPS. 423

A.4 Number of Parameters 424

TFMN includes one Bert encoder and three task- 425

specific classifiers. The parameters in TFMN are 426

slightly larger than uncased Bert-base model which 427

is around 111 million. 428

A.5 Hyper-parameter and Bert Layers 429

The main hyper-parameters of TFMN are the learn- 430

ing rate and weights of losses for Multiple intent 431

detection, slot filling, and intent number detection. 432

We randomized search for the best setting to maxi- 433
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Bert layers
MixATIS

Slot (F1) Intent (Acc) Overall (Acc)

{10, 11, 12} 87.4 79.1 48.7
{8, 9, 10, 11, 12} 85.6 79.4 48.7

{9, 10, 11, 12} 88.0 79.8 50.2

Table 6: Results of different combinations of bert layers
for representation.

mize the semantic frame accuracy. Detailed search434

range of hyper-parameters are given in Table 5.435

Empirically, we choose the top 4 layers of Bert436

for generating our representations. We have also437

tried out different combinations as shown in Table438

6. We argue that only choosing the top 3 layers of439

Bert does not offer enough linguistic information440

while choosing the top 5 layers will bring in noise441

which leads to a performance decrease.442

A.6 Dataset Explanation443

We conduct our experiments on two English Multi-444

intent NLU datasets. They are the cleaned version445

of MixATIS and MixSNIPS, because they found446

some repeated sentences in the original MixATIS447

and MixSNIPS datasets so that they clean these two448

datasets and recommend using the cleaned version.449
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