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(a) Composited Scene
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Figure 1: Illustration of our object compositing pipeline with harmonization and relighting using
MV-CoLight. In (a), we show a composite scene with visually inconsistent inserted objects. Applying
our MV-CoLight method in (b), we generate realistic lighting, shadows, and harmonious integration of
objects into the 3D scene. Panel (c) highlights clear visual differences before and after harmonization,
accompanied by consistent novel view renderings below. Explore more demos on our project page:
https://city-super.github.io/mvcolight/.

Abstract

Object compositing offers significant promise for augmented reality (AR) and
embodied intelligence applications. Existing approaches predominantly focus on
single-image scenarios or intrinsic decomposition techniques, facing challenges
with multi-view consistency, complex scenes, and diverse lighting conditions. Re-
cent inverse rendering advancements, such as 3D Gaussian and diffusion-based
methods, have enhanced consistency but are limited by scalability, heavy data
requirements, or prolonged reconstruction time per scene. To broaden its applicabil-
ity, we introduce MV-CoLight, a two-stage framework for illumination-consistent
object compositing in both 2D images and 3D scenes. Our novel feed-forward
architecture models lighting and shadows directly, avoiding the iterative biases
of diffusion-based methods. We employ a Hilbert curve—based mapping to align
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2D image inputs with 3D Gaussian scene representations seamlessly. To facilitate
training and evaluation, we further introduce a large-scale 3D compositing dataset.
Experiments demonstrate state-of-the-art harmonized results across standard bench-
marks and our dataset, as well as casually captured real-world scenes demonstrate
the framework’s robustness and wide generalization.

1 Introduction

Object compositing in 3D scenes remains a formidable challenge due to the interplay of color
harmonization, shadow synthesis, light transport simulation, and multi-view consistency, all of
which must be addressed to achieve photorealistic integration. This capability is fundamental to AR,
robotics, and interactive media, where realism directly impacts user immersion and perception.

Early object compositing research focuses primarily on isolated subtasks like scene relighting [54}[17],
shadow generation [24, 25]], and color harmonization [[7, [12], yielding promising yet fragmented
solutions. However, The transition toward unified frameworks reveals intricate couplings between
these components, necessitating adherence to physical principles governing light transport and
occlusion phenomena. Diffusion-based pipelines such as ObjectStitch [38]] and ControlCom [53]]
attempt single-image object insertion by synthesizing harmonious lighting and shadows within a
background bounding box, but their reliance on stochastic sampling and the lack of large-scale,
high-quality compositing datasets limit their robustness and generalization in real-world scenarios.

In this work, we tackle the problem of seamlessly inserting novel objects into static 3D scenes
captured from multiple viewpoints. Our goal is to relight each object so that its appearance, including
ambient illumination, surface reflections, and cast shadows, matches the lighting of the scene, while
also modeling the reciprocal effects of the object on its surroundings (e.g. secondary shadows and
interreflections). We introduce MV-CoLight, a unified framework that preserves both geometric
fidelity and photorealism across views by learning and enforcing lighting-consistent priors at both
the image and scene levels. MV-CoLight adopts a two-stage training pipeline. In the 2D object
compositing stage, we train a feed-forward model to capture scene-specific lighting characteristics,
including background shadows and indirect illumination, from individual images. In the 3D object
compositing stage, we transform these learned features into a 3D Gaussian representation using
3D Gaussian splatting [19]], ordering them via a Hilbert curve to ensure spatial coherence and
enforce multi-view consistency. Leveraging recent advances in video-level instance segmentation and
3D-aware object insertion, our framework effectively eliminates common 2D mask artifacts while
achieving efficient inference (0.07s per frame) without compromising stability or visual quality.

To support training and evaluation, we introduce a large-scale synthetic dataset of over 480k composite
scenes rendered in Blender. Each scene features a table from the Digital Twin Catalog [8]], augmented
with Poly Haven HDR environment maps and materials [30]], and additional light sources for varied
illumination. We render 16 uniformly sampled RGB views per scene, along with depth maps
and segmentation masks. To simulate realistic compositing challenges, we mix foreground and
background layers under different lighting conditions, creating deliberate lighting inconsistencies for
training and evaluation. Further implementation details are provided in the supplementary material.

Our main contributions are as follows: 1) a feed-forward architecture for multi-view object composit-
ing that, unlike diffusion-based alternatives, offers improved computational efficiency and robustness
with high visual quality; 2) a two-stage training framework that connects 2D object compositing with
3D Gaussian color fields via a Hilbert curve ordering mechanism, thereby enforcing geometrically
consistent illumination priors and coherent multi-view shadows; and 3) curate a large-scale bench-
mark of over 480 K annotated multi-view scenes under varying lighting conditions, and demonstrate
that our method achieves state-of-the-art performance across several public datasets.

2 Related Works

Object compositing, the seamless integration of foreground objects into background scenes, is a
fundamental task in both image editing and 3D graphics. In the following, we briefly discuss three
principal paradigms that have guided existing solutions.



Multi-Task Decomposition Approach. Object compositing generally involves addressing three
challenges, including color harmonization, relighting, and shadow generation. Below, we briefly
review related works in these areas. Color harmonization has evolved from classical low-level
techniques using color statistics and gradient adjustments [20, 132} |39, 44] to learning-based meth-
ods [37, 13} 28l [12} [14} 149} |6]] powered by large-scale datasets like iHarmony [7]. Relighting
modifies an object’s shading while preserving its geometry and material properties. Recent learning-
based relighting techniques focused on specific image types, including outdoor scenes [10} 511,
portraits [54} 31]], and human subjects [16} 150], achieving high-quality results. Shadow genera-
tion employs diverse strategies, from using pixel height information to generate diverse lighting
effects [36} 135] to GAN-based [42] 56, 45]] and generative models [25] that bypass ray-tracing
requirements. While recent progress in these subdomains demonstrates improved fidelity, multi-view
harmonization and physically grounded shadow synthesis remain open challenges, highlighting the
need for holistic frameworks that ensure cross-task and cross-view coherence.

End-to-End Unified Frameworks. Unified end-to-end frameworks for image compositing have
emerged in recent studies [38} 3,153} 140]. ObjectStitch [38] introduces a diffusion-based architecture
that concurrently addresses geometry correction, harmonization, shadow generation, and view syn-
thesis. ControlCom [53] further enhances composite fidelity by incorporating a dedicated foreground
refinement module. However, these approaches predominantly process single-view inputs. Building
on ObjectStitch, MureObjectStitch [3] adopts a multi-reference strategy for multi-perspective com-
positing, yet it still struggles with inconsistent harmonization when applied to multi-view images
from the same scene. In contrast, our work leverages 3D modeling to ensure visual consistency
across views, directly addressing these limitations. By integrating 3D priors, our approach simplifies
the task to color-mapping transformations for inserted objects. This formulation inherently obviates
the need for diffusion-based generative capabilities while necessitating precise per-pixel color trans-
formations. Consequently, we employ a feed-forward network rather than diffusion-based models,
which prioritize pixel-level generation and often yield unstable color outputs.

Inverse Rendering Paradigm. This approach for object compositing first estimates intrinsic scene
properties, such as geometry, materials, and lighting, from input images through inverse rendering [1]].
Subsequently, traditional rendering pipelines or neural rendering pipelines are employed to render
novel views of the scene with inserted objects. Recent advancements [18} |9, 23] have incorporated
3D scene representations like NeRF [29] and 3D Gaussian Splats [[19] within neural rendering
pipelines. The emergence of large-scale image generative models [22} 52 21] has recently revitalized
inverse rendering research. The RGB<+X [52] framework first trains an image diffusion model
to estimate G-buffers from object and scene data. It then composites synthetic objects into these
estimated channels and employs a diffusion model to generate final images with consistent lighting
and shadow effects. However, such methods demand extensive high-quality datasets with fully paired
intrinsic properties to achieve robust generalization capabilities, which poses significant challenges
for real-world environment applications.

3 Methods

In this work, we focus on efficiently synthesizing consistent lighting and shadows to harmonize
scenes. Formally, given a background scene and a foreground object, we assume that the inserted
object and the background scene are entirely aligned and our task is to produce multi-view renderings
that insert, harmonize, and relight the object under novel illumination while maintaining overall
coherence, which presents an essential requirement for AR and embodied-intelligence applications
that demand real-time, view-consistent integration.

Fig. 2]illustrates our two-stage framework. (1) We begin with an inharmonious scene and convert
it into a pixel-aligned 3D Gaussian representation (Sec[3.1). (2) Each image is then processed
independently by a transformer-based network for single-view object compositing (Sec[3.2). (3) To
achieve multi-view consistency, we concatenate the extracted pixel-wise features with Gaussian-wise
features, order them along a Hilbert curve [15]], and decode them with a second transformer to predict
harmonious Gaussian color attributes (Sec. (4) Finally, Sec describes the loss functions
that drive our two-stage training. A brief introduction to Gaussian splatting and the Hilbert curve is
provided in the supplementary materials.
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Figure 2: Pipeline of MV-CoLight. In (a), we insert a white puppy as the composite object onto the
table between basketballs, and render multi-view inharmonious images, background-only images,
and depth maps using a camera trajectory moving from distant to close-up positions. Subsequently
in (b), we input a single-view data into the 2D object compositing model, which processes the data
through multiple Swin Transformer blocks to output the harmonized result. Finally in (c), we project
the multi-view features from 2D models into Gaussian space via ®(-), combine them with the original
inharmonious Gaussian colors projected into 2D Gaussian color space through ¥(-), and then feed
them into the 3D object compositing model. The model outputs harmonized Gaussian colors and
computes rendering loss by incorporating Gaussian shape attributes.

3.1 Data Preprocessing

Begin with a composed 3D scene, obtained via synthesis, 3D scanning, or multiview reconstruction
pipeline (e.g., [34, [43])), we place a set of cameras orbiting the scene center to obtain multi-view
composite images, background-only images, and depth maps. From each view’s images, camera
poses, and depth data, we build point maps including 3D positions and colors, then randomly sample
a fixed number M of points to initialize the 3D Gaussian model G’. During optimization, we fix each
Gaussian’s opacity at 1 and adjust only its shape parameters. As illustrated in Fig.[3] we organize 3D
Gaussian primitives, each tied to a unique training pixel, into spatially coherent patches by mapping
their centers along a space-filling Hilbert curve[15]], denoted as mapping ®(-).

3.2 2D Object Compositing

H H
R3>< xW RBX ><W’

Given an inharmonious composite image [ € , its background reference G €
and depth map D € RYH#>*W 'we form the input tensor {I, G, D} and feed it into our 2D object
compositing network:

H = Mag({I,G, D}; 024) 4))

where H is the predicted harmonized image and 5, are the network parameters. Following Grounded
DINO [26] and DINO-X [33], we adopt the Swin Transformer as our backbone. Its shifted-window
attention mechanism achieves linear computational complexity with respect to image size, while the
hierarchical pyramid structure ensures high hardware efficiency. Compared to the original transformer
architecture, swin transformer delivers superior performance across a variety of vision tasks, yet
requires fewer FLOPS and parameters under the same input resolution.

Specifically, Ma,4 begins with several 3 x 3 convolutions to extract shallow features, which are then
partitioned into non-overlapping P x P patches and fed into L Swin Transformer layers [27]]. For
each layer i € {1,..., L}, the input F;_; is normalized, processed by window-based multi-head
self-attention with a residual connection, renormalized, passed through an MLP with a second residual
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Figure 3: Mapping multi-view observations into a 2D Hilbert-ordered Gaussian color map. Starting
from inharmonious multi-view images, depth maps, and camera poses, we compute per-view point
maps and randomly sample M points to initialize 3D Gaussian primitives, which we then optimize to
fit the scene. Next, we construct a 3D Hilbert curve through the Gaussian centers and assign each
primitive to its nearest curve point, yielding an ordered 1D sequence. Finally, we fold this sequence
into a 2D grid along a 2D Hilbert curve, producing a spatially coherent projection in which each pixel
encodes the color of its corresponding Gaussian.

skip, and output as Fj, as summarized by
Fi = W—Atten(LN(Fi,l)) + Fi,h

R . 2
F; = MLP(LN(F})) + £,
At inference time, My, is applied independently to each input. We extract the output feature maps
F e Rm>xnxHxW from the final attention block, where m is the number of views and n is the feature
dimension. These features are then transformed into 3D Gaussians via the mapping function ®(-) for
downstream 3D compositing network (Sec.[3.3). See supplementary material for more details.

3.3 3D Object Compositing

For 3D object compositing, we seek an illumination-consistent Gaussian model G that preserves each
primitive’s 3D position (z, y, z), scale, and rotation from the inharmonious model G, but updates only
its color attributes C’. Thus, we freeze all positional and geometric parameters and learn a color-only
mapping. Inspired by recent advancements [47, (3] in processing point clouds with transformers, like
Point Transformer V3, we use a mapping V that first linearizes the sparse 3D Gaussians into a 1D
sequence via a 3D Hilbert curve and then arranges them into a 2D grid by the inverse 2D Hilbert
curve. We concatenate these Gaussian-wise features, combining the transformed 2D colors and the
M, features via ®(-), and feed them into our 3D compositing network:

Ie = Maa({®(2(F)), ¥(C')}; bsa),

where 634 are the network parameters and C’ are the original inharmonious Gaussian colors. The
output I gives harmonious, view-consistent colors, which we back-project onto the 3D Gaussians to
complete the compositing. Notably, M3, adopts the similar architectural designs as M, differing
only in its input and output dimensions. Please refer to supplementary material for more details.

3.4 Loss Design

During the two-stage training process, we employ similar loss function design, utilizing mean-square
error loss L, loss and perceptual loss £,, to optimize the object compositing models:

Log = Lonse(H,H) + AL, (H, H) 3)
Laq = B(Lonse (I, 9(C)) + ALy (15, 0(C))) + @ > (Lonse(Hi, Hy) + ALp(Hy, Hy)) (4)

i=1



Table 1: Single-view quantitative performance on our purposed dataset and the Objects With Lighting
dataset [41]]. We report visual quality metrics, inference time and memory storage, highlighting the
best and second-best in each category. Our* and Our} denote our method without depth input and
without both depth and background input, respectively.

Dataset Simple Synthetic Scene | Complex Synthetic Scene | Objects With Lighting
Paradigm ‘ Method PSNR?T SSIM?t LPIPS||PSNRT SSIMt LPIPS| |PSNRT SSIM?T LPIPS|

Diffusion-based | LumiNet 16.94 0.614 0.287 | 1994 0.671 0274 | 17.15 0.781 0.222 |23.82s| 13.79G
Feed-forward GPT-4o [4] 14.60 0418 0437 | 1513 0369 0415 | 12.14 0479 0.351 |1.36m -
Feed-forward Ourst 28.35 0957 0.031 | 29.61 0947 0.029 | 2748 0.945 0.051 | 0.07s | 32.89M
Feed-forward PCT-Net [12] | 22.58 0.912 0.055 | 2526 0.931 0.035 | 25.08 0.921 0.066 | 0.03s | 18.4M

Diffusion-based | Objectstitch 19.14 0.770 0.193 | 21.82 0.788 0.170 | 21.15 0.831 0.176 | 4.54s | 5.24G

Diffusion-based | ControlCom [53] | 18.85 0.765 0.209 | 19.88 0.771 0.185 | 19.75 0.811 0.189 | 4.63s | 10.94G

Diffusion-based| RGB+X 1228 0428 0.368 | 1291 0.507 0296 | 11.28 0.503 0.422 |19.71s| 10.68G

Diffusion-based | IC-Light [54] 17.66  0.659 0.217 | 20.87 0.679 0.190 | 1822 0.774 0.200 | 1.25s | 1.60G

Time] | Memory.

Feed-forward Ours* 29.11 0.959 0.030 | 30.00 0.951 0.027 | 28.18 0.945 0.050 | 0.07s | 32.92M
Feed-forward Ours 29.65 0961 0.029 | 30.20 0.953 0.027 | 28.75 0.946 0.049 | 0.07s | 32.94M
Composite LumiNet

GPT-40 Oursf PCTNet  ObjectStitch ControlCom GT

Figure 4: Single-view qualitative comparison with SOTA methods 4 [38 53], 52| [54] on
our proposed dataset and public datasets [53, 41]], with differences highlighted via colored patches.
Compared to existing baselines, our method successfully generates illumination consistent with the
background and physically plausible shadows while decoupling highlights from inserted objects,
demonstrating generalization capabilities on out-of-domain datasets. The method in the green box
does not incorporate background images as input, whereas the others do.

where H; and H; denote the ground truth images and the rendered images from the harmonized
Gaussian G’, which is composed of C’ and shape parameter from G, A and 3 are the hyper-parameter
and set as 0.05 and 0.5 by default.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. Our proposed dataset contains simple synthetic, complex synthetic, and real
captured scenes. From the simple synthetic set, 50 scenes are randomly held out for evaluation, while
the rest are used for training. In contrast, both the complex synthetic and real captured scenes are
solely used for evaluation. Besides, we evaluate our method on two public benchmarks, FOSCom [53]]
and Objects With Lighting (OWL) [41]]. For 2D object compositing, we test on 640 scenes from
FOSCom, 72 scenes from OWL, and 58 challenging scenes from our proposed dataset. For 3D
object compositing, we report results on 50 simple and 8 complex synthetic scenes from our dataset,



Table 2: Multi-view quantitative performance on our purposed dataset and real captured scenes. We
report visual quality metrics, inference time (Gaussian training time #7rain), highlighting the best
and second-best in each category. Our* and Our} denote our method without depth input and without
both depth and background input, respectively.

Dataset Simple Synthetic Scene | Complex Synthetic Scene | Real Captured Scene
Paradigm ‘ Method PSNR1 SSIMt LPIPS| |PSNRT SSIM?T LPIPS| | PSNRT SSIM?T LPIPS)

Diffusion-based | LumiNet [48] 17.15 0.573 0304 | 1845 0.663 0.222 | 20.05 0.770 0.198 6.31m (-)
Feed-forward GPT-4o0 [4] 1457 0375 0445 | 15.11 0.366 0411 | 1434 473  0.406 21.40m (-)
Feed-forward Ourst 2896 0.955 0.033 | 29.32 0946 0.029 | 2588 0.925 0.041 1.07s (1.08m)
Feed-forward PCT-Net 2297 0908 0.057 | 25.19 0.927 0.035 | 23.39 0.824 0.103 0.47s (-)

Diffusion-based | Objectstitch [38]1 | 19.12  0.726  0.217 | 21.84 0.792 0.163 | 18.43 0.785 0.193 1.21m (-)

Diffusion-based |ControlCom [33]| 18.95 0.722 0.231 | 19.60 0.773 0.181 | 18.54 0.778 0.199 1.23m (-)

Diffusion-based RGBX 1271  0.417 0360 | 12.69 0.504 0.304 | 13.68 0.594 0.312 5.26m (-)

Diffusion-based IC-Light 17.94 0.596 0242 | 20.60 0.689 0.183 | 20.23 0.718 0.233 19.36s (-)

Inverse Rendering GS-IR [23] 1556 0.742 0.134 | 16.81 0.664 0.249 | 1592 0.699 0.265 |17.62s (57.14m)

Inverse Rendering GI-GS [2] 18.97 0.808 0.126 | 16.56 0.674 0.310 | 16.07 0.716 0.234 | 16.69s (1.43h)

Inverse Rendering IRGS [1T] 17.79  0.688 0.237 | 21.04 0.702 0.291 | 20.19 0.744 0.215 | 9.72m (3.02h)
Feed-forward Ours* 29.73 0.958 0.031 | 29.51 0.949 0.028 | 26.10 0.926 0.041 | 1.07s(1.08m)
Feed-forward Ours 30.29 0960 0.030 | 30.13 0.952 0.027 | 26.39 0.927 0.040 | 1.08s (1.08m)

Time] (#Train)

Composite LumiNet GPT-40 PCTNet  ObjectStitch RGB—X IC-Light Ours
3

Figure 5: Multi-view qualitative comparison with SOTA methods [48 41238 (5352, 54 23| 2, [11]
on our proposed dataset and real captured scenes, with differences highlighted via colored patches.
Our method synthesizes plausible illumination and shadows while ensuring multi-view consistency.
The method in the green box does not incorporate background images as input, whereas the others do.

with another two real captured scenes. All images are center-cropped and rescaled to 256 x 256 for
uniform comparison. Performance is quantified using PSNR, SSIM [46], and LPIPS [55]. Since each
ground-truth image embodies only one physically plausible lighting/albedo configuration, perceptual
metrics (SSIM and LPIPS) offer additional assessments of structural and visual fidelity than PSNR
alone.

Baselines. For 2D object compositing evaluation, we conduct comprehensive comparisons with rep-
resentative methods: PCTNet [[12]], ObjectStitch [38]], ControlCom [33]], RGB<«X [52], ICLight [54],
LumiNet [48] and GPT-4o [4]. For 3D object compositing evaluation, we additionally incorporate
Gaussian-based inverse rendering method such as GS-IR [23]], GI-GS [2]], and IRGS [[T1]], establishing
a unified benchmark comparing conventional 2D pipelines with emerging 3D-aware methods built
upon differentiable rendering frameworks.

Implementation Details. Our model architecture employs a unified Swin Transformer backbone
with consistent configurations for both 2D and 3D object compositing tasks. The network processes
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Figure 6: We evaluate our method on real-world scenes captured under varying illumination with six
cameras arranged in a circular array. On the left, we insert a cake and a black box; on the right, we
insert a toy, a mouse, and a backpack. MV-CoLight consistently harmonizes object colors, produces
physically plausible lighting interactions, and accurately casts shadows across all viewpoints.

256x256 resolution inputs with an embedding dimension of 96, structured with 3 cascaded transformer
blocks. Each block contains 6 successive Swin Transformer layers with 6 parallel attention heads.

We train the 2D object compositing model for 1M iterations with batch size 128 using AdamW (base
Ir=2e-3, weight decay=0.05, momentum parameters 31=0.9, $2=0.95), 10k iteration linear warmup
followed by cosine decay to le-6, FP16 mixed precision, gradient clipping at 10.0, and an EMA of
0.99. For 3D object compositing model, we reduce the learning rate to le-3 and batch size to 32,
training for 100k iterations. For trainig time, We train the 2D model from scratch for 15 days, and
the 3D model for 3 days with 16 NVIDIA A100 (80 GB) GPUs.

4.2 Performance Analysis

Below we show our method delivers physically plausible lighting and shadows for inserted objects,
out-performing both 2D harmonization [48] 4} [12] [38] 53, 52} [54] and Gaussian-based inverse
rendering baselines. The approach also generalizes from synthetic training to challenging
real-world captures, maintaining photorealism under diverse lighting and materials.

Single-view Harmonized Result. Current image harmonization methods exhibit notable limitations
when compositing new objects into a scene, as illustrated in Fig.[d For example, PCT-Net[12]
enforces only color consistency and omits realistic highlights and cast shadows, while RGB-X
material estimation yields inaccurate albedo maps that blur illumination and misalign geometry
during neural relighting. Diffusion-based frameworks such as ObjectStitch [38]] and ControlCom [53]]
produce visually compelling composites but often distort object shape and texture in the generative
process. ICLight [54]’s illumination estimator lacks robustness in cross-domain scenarios, resulting in
pronounced appearance artifacts under complex real-world lighting, while the light transport module
of LumiNet generates non-physical highlight patterns and jagged shadow boundaries. Even
advanced multimodal systems like GPT-4o [4], which improve local lighting coherence, introduce
unintended global modifications that undermine overall scene integrity which is particularly hard to
be strictly enforced via prompting.

Multi-view Harmonized Result. Multi-view object compositing compounds the inconsistencies of
2D harmonization methods, resulting in visible color shifts and misaligned shadows across viewpoints.
Gaussian-based inverse rendering techniques attempt to remedy this by enriching each primitive with
material attributes, such as estimated albedo and normals, and estimating an environment map from
the background Gaussians to relight the composite. However, their reliance on imperfect decoupling
causes specular highlights and shadowed regions from the original images to be treated as textures.
As shown in Fig. 5] the result is a conflated relighting effect that blurs the distinction between
intrinsic material properties and new environmental illumination, failing to achieve true multi-view
coherence. Unlike environment mapping-based methods, our approach directly learns illumination
and shadow priors from the multi-view composite scene and transfers them to the inserted object,
guaranteeing seamless, view-consistent lighting. By encoding these learned visual cues into Gaussian
feature representations and propagating them through our transformer-based 2D-3D pipeline, we
maintain spatial coherence and realistic shadowing without explicit environment map estimation.
Extensive evaluations on public benchmarks [41]] and our own dataset demonstrate that our
method outperforms both 2D harmonization and Gaussian-based inverse-rendering baselines in
quantitative metrics and visual quality.

Real Scene Harmonized Result. We further assess our method on diverse real-world multi-view
captures that diverge markedly from our synthetic training data in terms of lighting complexity and
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Figure 7: Visual results of inserting luminous objects. Our method successfully simulates the
illumination effects of luminous spheres within the scene environment.

Table 3: Ablation study conducted on the simplified synthetic scenes within our proposed dataset.
We report visual quality metrics, inference time and model parameters. For variable control, the cor-
responding 2D models for 3D object compositing are kept as baseline versions, and their parameters
are not counted.

Model 2D Object Compositing Model 3D Object Compositing Model
Method PSNR?T SSIMT LPIPS| Time] Params.| | PSNRT SSIM?T LPIPS| Time| Params.)
baseline 29.65 0961 0.029 0.07s 2.957M | 3029 0.960 0.030 1.08s 2.957M

transformer block (2) 2834 0955 0.032 0.06s 2.085M | 28.70 0.953 0.035 0.97s 2.085M
transformer layer (4) 2839 0956 0.032 0.06s 2.119M | 28.83 0.957 0.034 098 2.118M
embedding dim (60) 27.68 0951 0.035 0.05s 1.779M | 28.11 0949 0.039 0.81s 1.778M
w/ Linear transform - - - - 2899 0951 0.036 1.08s 2.957M

w/ PTv3 feat. extractor - - - - - 30.08 0959 0.031 1.16s 49.16M
w/o 2D OC model - - - - - 2583 0913 0.051 0.08s 2.957M
w/o depth input 29.11 0959 0.030 0.07s 2957M | 29.73 0958 0.031 1.07s 2.957M

w/o background input | 28.81 0.958 0.030 0.07s 2.955M | 29.44 0956 0.032 1.07s 2.957M

material detail, as shown in Fig.[6] These scenes feature unpredictable illumination conditions and
intricate textures that typically confound traditional harmonization and inverse-rendering pipelines.
Nevertheless, our approach consistently produces photorealistic composites, accurately estimat-
ing lighting and casting coherent shadows across all viewpoints. This robust performance under
uncontrolled, real-world conditions highlights the generalization robustness of our learning-based
illumination priors.

4.3 Efficiency and Extensibility

Inference Time Comparison. For 2D object compositing, our feedforward architecture enables
inference times as short as about 0.07 seconds, significantly outperforming diffusion-based methods
like LumiNet [48]], which require more than 20 seconds to complete the multi-step denoising process
(default 50 steps). While GPT-4o [4] remains closed-source, we utilize its web interface to generate
results, incurring a latency of several minutes. For 3D object compositing, Gaussian-based inverse
rendering methods necessitate both environmental map extraction and material attribute optimization
atop pre-trained Gaussians. In contrast, our method achieves harmonized Gaussian color attributes
with about 1 second of inference time after a few minutes of scene-specific Gaussian representation
learning, demonstrating superior efficiency. Notably, our framework eliminates the need for Gaussian
retraining when repositioning inserted objects. This efficiency makes our framework especially well
suited for real-time AR and embodied-intelligence applications.

Extentions on Various Illumination Priors. By design, our unified compositing pipeline can also
accommodate other illumination priors - whether HDR environment maps, learned light distributions,
or discrete emitters, with similar training and inference pipeline. This challenging capability has
been largely neglected by prior works. As a demonstrative extension in Fig. [7, we focus here on
inserting new light sources to dynamically relight the scene. To support emissive-object compositing
with true multi-view consistency, our method estimates light propagation through the existing 3D
Gaussian geometry, capturing how point or area emitters illuminate surrounding surfaces, and
computes secondary shadows and interreflections to generate physically plausible shading on all
objects. This extension underscores the flexibility of our approach and its applicability to a wide
range of illumination scenarios.



4.4 Ablation Study

We perform a series of ablations to isolate the factors driving our 2D and 3D compositing pipelines,
the results are shown in Tab. E} First, we vary the number of swin transformer blocks, layers
and the feature-embedding dimension. We find that embedding size has a greater impact on final
performance than the depth of the transformer stack, with a modest drop in harmonization quality
when reducing the block number or layer number. Next, we examine the 2D compositing inputs,
removing the background image prevented reliable object placement, while omitting the depth map
eliminated essential geometric priors. We find that both scenarios degrade the model’s ability to
learn illumination conditions. When we feed these 2D features into the 3D network, excluding
them entirely still allowed plausible color matching but produced unrealistic shadows and highlights,
underscoring the importance of 2D illumination cues. Introducing the Hilbert curve reordering further
accelerate training convergence and improve visual quality by preserving Gaussian color locality in
2D Hilbert space. Furthermore, a comparison with the use of PTv3 [47] to extract Gaussian features
also indicates that our method based on the Hilbert curve is more lightweight and effective.

5 Limitation

While our approach achieves superior performance across diverse synthetic and real-world scenes,
several limitations persist: (a) Color bias in real-world scenes. Trained predominantly on large-scale
synthetic data, the model occasionally exhibits color discrepancies when applied to certain real-
world environments. (b) Physically inconsistent illumination. Due to the absence of strict physical
constraints, deviations in specular highlight positions and shadow directions may arise under complex
lighting conditions. (c) Gaussian representation limitations. Errors in Gaussian parameterization,
constrained by their inherent capacity to model complex scene details, can propagate to degrade
harmonization quality. To address these problems, future work may focus on: (a) Integration
of physical constraints. Enhancing shadow consistency by estimating light source positions and
constraining shadow regions. (b) 4D scene harmonization. Extending harmonization to dynamic
scenes to enable consistent movement of inserted objects within dynamic environments.

6 Conclusion

In this paper, we introduce MV-CoLight, a two-stage framework that seamlessly combines a 2D feed-
forward harmonization network with a 3D Gaussian-based compositing model to deliver efficient,
view-consistent object insertion. In the first stage, our 2D network rapidly learns per-view color
and illumination alignment; in the second, the 3D Gaussian fields enforce geometric and lighting
coherence across viewpoints, producing realistic shadows and reflections with minimal runtime
overhead. Extensive experiments on both synthetic and real-world benchmarks show that MV-
CoLight outperforms state-of-the-art 2D and 3D baselines in visual fidelity and consistency. To
drive further progress, we also introduce a new large-scale multi-view compositing dataset with
photorealistic accurate annotations. Finally, we demonstrate that our pipeline naturally generalizes to
additional lighting effects, underscoring its versatility for broader applications.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We described the method and its quality.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitation in the main content.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We discussed the reason in the Exp section.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We described clearly in the method and exp section.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the code after acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We described clearly in the Exp section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Don’t need.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide them in the implementation section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: No Broader impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cited them.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We described well the proposed dataset.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide a user study in the supplementary material, and describe the
method of investigation, sample capacity and quantitative results in detail.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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