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Abstract: In this paper, we propose a benchmark for studying robotic learning1

for functional manipulation. We identify handling complex contact dynamics and2

generalization as two central challenges in practical robotic manipulation. While3

many prior works have addressed one challenge or the other, few have studied both4

in combination. We hypothesize that making progress on the combination of these5

challenges requires a set of real-world benchmark tasks that balance complexity6

with accessibility, providing a set of tasks that are sufficiently narrowly scoped7

that models and datasets of reasonable scale can be used to make progress, but8

sufficiently varied that they present a meaningful generalization challenge not just9

in terms of basic and imprecise skills such as grasping, but also more complex10

and precise behaviors that require functional manipulation, such as repositioning11

and reorienting an object for a precise assembly task. Our functional manipulation12

benchmark consists of a variety of 3D printed objects that can be reproduced pre-13

cisely by other researchers, each one requiring a sequence of grasping, reorientation,14

and assembly behaviors. Generalization can be evaluated on test objects and varied15

positions, as well as more complex multi-stage assembly tasks. We also provide an16

imitation learning system that provides a basic set of policies for each skill, allow-17

ing researchers to use our tasks as a toolkit for studying any portion of the pipeline18

– for example by proposing a better design for a grasping controller and evaluating19

it in combination with our baseline reorientation and assembly controllers. Our20

dataset, object CAD files and evaluation videos can be found on our project website:21

https://sites.google.com/view/manipulationbenchmark22

Keywords: manipulation, imitation learning, benchmarking23

1 Introduction24

Manipulation is one of the foundational problems in robotics research, but enabling robots to perform25

dexterous manipulation skills that reflect the capabilities of humans is still out of reach. In fact,26

even matching the performance of human teleoperation remains a major challenge, particularly27

in environments that require generalization and are not constrained to a specific fixed set of well-28

characterized objects. As Cui and Trinkle [1] point out, two primary sources of difficulty in robotic29

manipulation lie in handling complex contact mechanics and intelligently handling the variability30

in the environment and objects. While robotic learning techniques hold potential to address these31

challenges, effective progress will require tasks that are accessible enough for current methods while32

still exposing the key challenges of complex contact mechanics and object generalization.33

While significant recent research in robotic learning has made progress on various aspects of the34

manipulation problem [2, 3], much of the emphasis on recent works has either been on broad gener-35

alization with relatively simple tasks, which often do not capture the many physical challenges of36

manipulation (e.g., focusing on picking or imprecise pick-and-place tasks) [4], or else training policies37

for narrow tasks that are physically more complex but not do demand extensive generalization [5].38
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Figure 1: Left: The 3D-printed parts for the simpler insertion tasks. Right: An illustration of the
steps for inserting a single part, which requires grasping the part, reorienting it (potentially using an
environment fixture), and then inserting it into the appropriate slot. Note that the full task requires
grasping, reorientation, and insertion to be performed in concert.

Figure 2: Two instantiations of the complex assembly task. These tasks require similar functional
manipulation behaviors as the simpler set of tasks, but with multiple interlocking objects and a more
complex higher-level structure that requires assembling the parts in the right order.

This is not unreasonable: it is very difficult to simultaneously make progress on broad generalization39

(which often requires huge datasets), and tackle the full physical complexity of dexterous manipula-40

tion. So how can we take a step toward facilitating robotic learning research that emphasizes both41

generalization and physically intricate skills, while still keeping the problem constrained enough so42

as to enable meaningful progress?43

In this paper, we propose a family of benchmarks that aims to cover the important dimensions of44

physical complexity and object generalization, while still providing a degree of accessibility by45

carefully restricting the scope to a domain where we can make progress with reasonable sized datasets46

and models. We approach the design of this benchmark by defining functional object manipulation as47

the problem of picking up an object in a functionality relevant way, positioning it in an appropriate48

pose, and then using it for a physical interaction. While this definition is more restrictive, we believe49

it captures a broad range of practical manipulation tasks, and includes both the challenges of complex50

contact dynamics and object generalization.51

The specific tasks we instantiate to capture functional manipulation are themed around assembly52

problems, including simpler pick-and-place tasks and more complex multi-part assemblies. These53

tasks, illustrated in Fig. 1, require picking up the individual pieces, reorienting them (potentially using54

environment affordances and regrasping), and then slotting them into their required location. Each55

phase requires addressing both the challenge of complex contacts and the challenge of generalization.56

The objects may vary between training and test-time, and their locations are randomized. The grasping57

phase requires selecting a grasp that is suitable for reorienting the object, the reorientation phase58

requires positioning the object so that contact with the environment changes its pose in the desired59

way, and the assembly phase requires compliant insertion and proper accounting for the contact60

forces on the object. Each phase requires handling different objects (including new test-time objects)61

and different poses. The robotic assembly task has been long seen as a representative manipulation62
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benchmark [6, 7, 8, 9]; however, the generalization effect across such tasks has been less studied63

comprehensively. Thus, performing such tasks among the pool of diverse shapes would be an ideal64

candidate for benchmarking generalizable dexterity.65

To ensure reproducibility and portability of our benchmark task, we use 54 3D-printed objects with66

diverse shapes and sizes that can be reproduced by other researchers, and a widely used Franka67

robotic arm. We collected a dataset of 9000 human demonstrations of grasping, repositioning, and68

inserting these objects, and trained a baseline imitation learning system to perform each stage of the69

task. Our dataset also contains a variety sensory modalities as presented in Fig. 3: we record RGB70

and depth images from eye-in-hand and eye-to-hand views. These make our environment modular so71

that other researchers can repurpose it for a variety of methods that they may wish to develop, and72

can focus on any stage or aspect of the task. For example, some researchers might choose to focus on73

better functional grasping methods, while the other stages are handled by our baseline system, while74

others might focus on compliant insertion, utilizing our baseline system for the grasping stage. Our75

tasks are also designed to accommodate pretraining with finetuning to other downstream behaviors.76

To this end, we also provide a set of more complex assembly objects, as shown in Fig. 2, which can be77

handled by policies adapted from pretraining on the main dataset. We describe our benchmark tasks,78

and conduct a comprehensive evaluation studying the performance of imitation learning methods79

trained on our data, evaluating both training object and test set performance. Our hope is that our80

functional manipulation benchmark (FMB) will provide a toolkit for robotic learning researchers to81

study manipulation both in terms of complex contact dynamics and generalization.82

2 Related Work83

Considerable recent progress on robotic manipulation has studied generalization, though often in84

the context of simpler tasks such as grasping [10, 2], pushing [10], and imprecise repositioning [10].85

A number of other works have studied tasks that are dynamic [11], precise (e.g., insertion) [12], or86

otherwise physically challenging [5]. However, few works have studied these factors in combination.87

We believe many of the central challenges in robotic manipulation lie at the confluence of these88

two challenges: tasks that require handling complex contact dynamics, not by memorizing the89

particular pattern needed for a single narrow task, but by learning general behaviors for handling90

object interaction that can generalize to new objects. Our aim is to propose a benchmark that can study91

this combination of challenges, while keeping the scope narrow enough that it remains accessible to92

many researchers.93

Our tasks combine aspects of grasping, repositioning, and peg insertion or assembly. A number94

of works have studied these individual stages [2, 13]. Our goal is not to attain the best possible95

performance in narrow settings for any of these stages (e.g., ultra-high-precision industrial insertion),96

but to use these tasks as a lens through which to gauge general manipulation capabilities learned via97

general-purpose robotic learning methods.98

A number of prior works have proposed datasets for robotic learning, including datasets consisting of99

demonstrations [4] and autonomously collected data [2, 14], as well as annotated datasets of grasp100

points [15], object geometries [16, 17], and simulated environments [18]. However, there has been101

comparatively little work on standard and accessible object sets that are combined with multi-stage102

tasks for studying generalization. The YCB object set [19] comes with a number of evaluation103

protocols [19], but these protocols generally focus on object repositioning tasks that do not evaluate104

the complex contacts challenges that we discuss in the previous section. A number of existing105

demonstration datasets cover many different behaviors [4, 20], but also focus on behaviors that106

emphasize basic pick-and-place skills rather than precise or contact-rich manipulation. Some works107

have focused on insertion skills in particular (e.g., connector insertion) [21]. While our benchmark108

is related, we aim specifically to cover a range of skills, including grasping and repositioning, that109

we believe cover a basis of basic manipulation capabilities. We also emphasize generalization as a110

primary challenge for our benchmark.111

We use 3D printed objects to facilitate reproducibility. Other prior works have also proposed standard112

meshes and 3D printed parts for benchmarking and reproducibility [19], typically focusing on object113

3



Side Camera 1
Side Camera 2

Wrist Cameras

Franka Emika 
Panda 

Reorientation Fixture

Peg

Randomization
Region

Assembly Board

Wrist view 1

Side View 2

Side View 1

Wrist View 2

RGB Depth Colormap

Figure 3: Illustration of the robot setup, with a standard Franka arm equipped with four cameras (two
on the wrist and two attached to the environment), each with RGB and depth, positioned in front of a
workspace containing an object, reorientation fixture, and assembly board. The board is placed into a
random pose within the randomization region, and the object is located in a randomized pose on the
table, from where it must be picked up, reoriented, and inserted.

grasping. These efforts are related, but our aim is to provide parts that are specifically well suited for114

evaluating all of the stages: grasping, reorientation, and assembly, rather than only grasping.115

3 Functional Manipulation Benchmark116

In this section, we introduce the basic principles behind FMB and the protocols to evaluate different117

methods on this benchmark. We are mostly concerned with studying the generalization of each118

individual functional manipulation task as well as the combinatorial ways of composing them to119

achieve novel behaviors. Therefore we collect a diverse dataset of robotic behaviors with different120

objects, viewpoints, and robot initial poses. We also additionally provide novel objects for the purpose121

of benchmarking the generalization capability of individual skills, as well as the ability for a method122

to compose these skills to solve unseen long-horizon tasks.123

3.1 Object Set124

We designed 54 3D-printed objects of different sizes, shapes, and colors, with examples shown in125

Figure 1.126

In total, we have 9 different basic shapes, and for each shape there are 6 different sizes. The parts127

are assigned 8 different random colors. There are three boards with matching holes for the objects.128

We additionally designed two more complex boards to facilitate multi-stage assembly tasks, shown129

in Figure 2, where multiple parts must be fitted together. The tolerance for mating these objects130

is consistently 1mm to 1.5mm. All of our CAD files including those for environment fixtures and131

camera mount are publicly available on our project website.132

3.2 Functional Manipulation Tasks133

In this section, we describe the individual tasks that we propose to evaluate with our benchmark.134

For each type of tasks, we provide demonstration trajectories collected with a Franka robot (see135

Figure 3), and an evaluation protocol. The modular design of our benchmark facilitates extension136

to add new tasks with the provided objects, but the tasks we describe here are suitable both for137

evaluating generalization and for testing a range of manipulation capabilities.138

Grasping. The grasping task in our benchmark is a functional grasping task, in the sense that the139

robot must grasp the object in a way that facilitates downstream reorientation, rather than simply140

picking the object in any pose. We illustrate this task in Fig. 4. A top-down grasp is reasonable if the141

object is placed in a vertical pose, as shown on the right side of Fig. 4. However, a horizontal grasp is142
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Figure 4: Objects may need to be grasped from a variety of poses, particularly when using the
reorientation fixture, where they might lie at an angle.

much more desirable if the object is positioned as on the left side of Fig. 4. In case such a grasp is143

infeasible due to the robot’s kinematic constraints, the robot needs to perform additional repositioning144

steps to adjust the feasible grasp pose. The robot must learn grasping skills that deploy the appropriate145

grasp for the object’s current configuration, and also generalize across different object shapes, colors,146

and sizes. Our demonstration dataset for the grasping task consists of 50 trajectories per object, with147

varying object rest poses in the bin, for a total of 2700 trajectories performing functional grasping148

over the 54-object set.149

Repositioning. A repositioning step is sometimes necessary to adjust the grasping pose so that the150

object is held in a way that is suitable for downstream assembly. Manipulating and reorienting objects151

by leveraging environment affordances (e.g., tilting the object in the gripper by levering it against a152

table or wall) may often be necessary for fluent and complex manipulation, and this reorientation task153

exercises this capability. We provide a simple fixture that can serve as an environment affordance154

to rest the object at angle, as shown in Fig. ??. To reorient the objects into the right pose, the robot155

may need to use this fixture, resting the object on it and then regrasping it in a more appropriate156

pose for reorientation. We collected 3000 demonstrations for placing and regrasping, which can be157

used to learn strategies for using environmental affordances for regrasping and reorientation. Since158

objects land in the fixture in a relatively deterministic fashion, we partially script our demonstration159

collection process while maintaining a certain degree of randomness for the purpose of data diversity.160

Figure 5: An illustration of the
assembly task.

Assembly. Our assembly tasks consider assembling objects of161

diverse shapes into their matching slots, which requires performing162

fine-grained precise manipulation. An illustrative example is shown163

in Fig. 5. Here, having completed the preceding two steps, the robot164

is holding an object, and needs to insert it into the matching slot in165

the blue board. For each object, we collect 50 human demonstrations166

that include various robot initial poses and board positions, for a167

total of 3000 demonstrations performing the assembly task from168

various initial conditions. Note that the board is located in different169

places on the table for different episodes, requiring a reactive strategy that localizes the board and the170

appropriate opening, and guides the object into the correct location.171

Long-horizon manipulation. Aside from performing individual steps, such as grasping, reorienta-172

tion, and assembly, our benchmark and demonstrations can be used to learn the entire long-horizon173

sequence, performing the steps in turn to insert one or multiple objects into the board. The difficulty174

of this task mainly comes from the compounding errors accumulated over each individual step which175

gets even more magnified when switching between tasks.176

Multi-step interlocking assembly. We also present two sets of novel objects for benchmarking177

much broader generalization capability. The pieces in Fig. 2 are largely different from our original178

set of objects, and would require adaptation to perform grasping or insertion which can be achieved179

by pretraining on the collected dataset and finetuning on a few new demonstrations. The major180

challenge with these tasks is that these objects need to be put together in a specific order, such as in181

an interlocking fashion. While it may not be too hard to perform individual steps alone, the difficulty182

increases rapidly when a policy needs to simultaneously reason the manipulation sequence as well as183

accounting for compounding manipulation errors introduced by individual steps.184
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3.3 Robotic system and data collection185

We now describe the robotic system and the process we used to collect the training data.186

Robotic system overview Our system can be seen in Fig. 3. We use a Franka Panda robot to collect187

our dataset, since it is widely adopted for research and offers a torque control interface which is188

very desirable in contact-rich manipulation tasks. To record demonstrations, we use a SpaceMouse189

to control the robot at 10 HZ. In total, we have four Intel RealSense D405 cameras, two of which190

are mounted on the robot end-effector, and the rest are placed on each side of the bin to provide a191

complementary view of objects in the bin. We concurrently capture RGB and depth images from192

these cameras.193

Data collection protocol. Our dataset consists of 2700 demonstrations for the full long-horizon194

task of grasping, reorientation, and assembly for these 54 objects. For each object, we collect around195

50 demonstrations per task. Each such demonstration trajectory is around 20 to 30 seconds long, and196

thus it’s more practical to break them into individual “primitives" of shorter horizons. In fact, we197

automatically add indicators at the end of a manipulation skill such as grasping so that we can segment198

these long-horizon trajectories. In our dataset, these primitives include grasping, reorientation,199

move, insertion; so in that sense, we have 8100 demonstrations of each primitive with horizons200

around 5 seconds. For the grasping task, the object of interest is randomized around a 20cm x 30cm201

rectangular area in the bin; whereas for the insertion task, the board is randomized around a 40cm202

by 60cm area. We also include distractors (i.e. objects not needed for a task) when performing the203

insertion task, half of the insertion demonstrations were carried out when there are distractors present204

to gain robustness.205

4 Using the FMB in imitation learning206

To illustrate the utility of our benchmark in imitation learning. We describe a few example usages207

of our dataset and the corresponding evaluation protocol. The detailed evaluation protocol and met-208

ric can be found on our website https://sites.google.com/view/manipulationbenchmark.209

Although in principle our data can also be easily altered to study other approaches such as offline210

reinforcement learning.211

4.1 Training and Evaluation of Individual Skills212

Generally speaking, we expect to see the emergence of generalization by training on a large, diverse213

dataset. To verify this hypothesis, we refer to two ways of testing generalization. For grasping and214

insertion, we can hold out a specific object in the training set, train a policy without seeing any data215

associated with that object, and then test on the held-out object. Alternatively, we also provide five216

novel objects that are not contained in the dataset for which we can directly evaluate trained policies.217

4.2 Pre-training and Finetuning218

Pretraining and finetuning visuomotor skills is an open and important research question. By having a219

large-scale diverse dataset of robot manipulation behaviors, it’s possible for us to study this problem.220

We can pretrain on a set of robot behaviors associated with some objects, and then finetune on data221

from objects that are not present in the pretraining dataset. If that object is entirely novel, such as the222

more complex assembly objects in Figure 2, we can collect some additional demonstrations using our223

setup for finetuning.224

4.3 Composing Skills to Solve Long-Horizon tasks225

FMB also supports studying long-horizon tasks in various ways: one can train “flat" style imitation226

learning methods on all the data or hierarchical style methods that trigger individual primitives in227

some intelligent ways. In additional to the original “grasp-reorient-assembly" task, it’s also possible228

to study more complex novel tasks such as the one shown in Fig. 2, by finetuning on the new objects.229
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Figure 6: Unseen test objects used for evaluating generalization in our protocol. The robot must
generalize to new combinations of shapes, colors, and sizes using the diverse training set.

Figure 7: Architecture diagrams for the grasping and reorientation tasks (left), and the assembly task
(right). The models encode each observation with a ResNet34 encoder, and then fuse the modalities
with fully connected layers.

5 Experiments230

In this section, we conduct experiments first to verify our proposed tasks are actually feasible. We231

then seek to answer the following questions: (1) For each individual task, does training on a diverse232

manipulation dataset generalize across object properties? (2) When do multi-modal inputs help for233

which manipulation skill? (3) What are the necessary ingredients for solving long-horizon complex234

manipulation tasks?235

5.1 Grasping Task236

In Distribution Novel Objects

75% 

50% 

25% 

0% 

Figure 8: Comparison of grasping
success rates on in distribution and
novel objects when trained with
(Red) and without (Blue) depth in-
formation.

Oval

60% 

40% 

20% 

0% 

Figure 9: Success rates of grasp-
ing oval when training without oval
data (Blue) and only oval data
(Red).

To show that it is feasible to perform the grasping tasks using237

our dataset, we first train a grasping BC policy specifically for238

the oval object. We obtain 12 successful grasps out of 30 trials,239

which amounts to 40% success rate. During the evaluation, we240

test on all six oval objects, performing five trials per each object241

so that generalization can be fairly tested.242

Then we train two grasping BC policies on all the data and243

test the trained policy on both in-distribution objects as well244

as novel objects. We present results in Fig. 8. One grasping245

policy is trained with RGB images, the other one we provide246

additional depth information; their neural network architecture247

can be seen in Fig. 7. We find that depth information is crucial248

in helping achieve better grasping performance.249

5.2 Repositioning Task250

For the repositioning task, we train BC policies to first place251

the object on the fixture and then try to re-grasp the object from252

the other end. The policy’s success rate is 0% if trained to solve253

place and reorient at once with all the data. If we train only254

on placing data, the policy can achieve 33.3% success rate out255

of 30 trials; however, the re-grasping policy is 5% success rate256

trained on corresponding re-grasping data. The failure mode257

includes missing the object, flipping over the object, and the258
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arm wasn’t able to turn over. This is reasonable since we only train policies on visual data without259

robot state, and the re-grasping part is particularly challenging due to its multi-modal nature.260

5.3 Assembly Task261

Trained on Round

Trained on Hexa
gon

Trained on Double Square

30% 

20% 

10% 

0% 

Figure 10: Comparing insertion
success rates when training only on
one peg data with (Red) and with-
out (Blue) depth then evaluating
only on trained peg.

Evaluated on Round Evaluated on Star

30%
 

20%
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0%
 

Figure 11: Comparing insertion
on specific pegs when training on
round with RGB only(Blue) vs
training on all data with RGB only
(Red).

For the assembly task, we first train three separate insertion262

policies on the shapes of round, hexagon, and two-square. We263

train these policies on a small portion of our dataset that only264

contains their corresponding shapes, e.g., the policy to insert265

round objects is trained on only round data. We also vary each266

policy’s input modality differentiating by depth information.267

The results can be seen in Fig. 10. We can see the success268

rate does decrease as the shape becomes more complex, this269

implies the chosen assembly task is indeed a challenging robotic270

manipulation task thus worthwhile benchmarking. We also271

find that naïvely adding depth information doesn’t help for the272

insertion tasks.273

To carry out an initial study on the generalization of training274

on diverse shapes, we train an insertion BC policy with all the275

data and test it on the round and star shapes; which we get 4/30276

and 0/30 success rates respectively. However, when we train277

individual policies just with data from that particular shape,278

we are able to get 9/30 and 0/30. This is reasonable because279

this task is very precise, naively mixing the data will cause the280

uni-modal BC model confused so that performance gets hurt.281

We present this result in Fig. 11.282

5.4 Long-Horizon Task283

In addition to training BC policies on only primitives, we train284

an end-to-end long-horizon Behavioral Cloning (BC) policy285

with all the long horizon demos and transitions. We provide all286

the RGB camera views for this policy. The goal of this policy287

is to successfully grasp, reorient, and perform assembly. We evaluate the end-to-end Behavioral288

Cloning policy on 5 different pegs for a total of 10 trials; this policy achieves a success rate of 0/10.289

This is reasonable due to the accumulation of errors in long-horizon end-to-end behavioral cloning.290

Full Long-Horizon Task

20% 

15% 

10% 

5% 

0% 

Figure 12: Comparison between
end-to-end behavioral cloning
(Blue) for grasping, reorientation,
and assembly and manually trig-
gered learned skills (Red) and
scripted skills

We explore alternatives to naive Behavioral Cloning and modify291

our approach to include our previously trained grasping and in-292

sertion policies. By manually triggering the grasp and insertion293

policies, as well as using a scripted reorientation motion, we294

achieve a success rate of 2/10. We present this result in Fig. 12.295

6 Discussion and Limitation296

In this paper, we present a benchmark for functional manipu-297

lation. We opensource all the data as well as the object CAD298

files to facilitate reproducibility. We evaluate imitation learning299

methods with different input modalities and their abilities to300

generalize across objects. We hope our benchmark FMB would301

encourage and contribute to in robotic manipulation research.302

Limitations and future work. Although our dataset has a303

variety of diverse objects, we still only have one scene; it would304

be helpful if we can include more background scenes. Addi-305

tionally, 3D-printed objects are easy to reproduce, however, it would be more useful if we include306

real standardized objects in the future so we can study much broader generalization.307
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