

000 001 002 003 004 005 DRAMNET: DEPTH-INITIALIZED REGION-ADAPTIVE 006 MAP NETWORK FOR SINGLE-IMAGE DEBLURRING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

011 Recent advances in image deblurring have achieved impressive results, yet exist-
012 ing methods still struggle with two key challenges: the scarcity of training data
013 compared to other image restoration tasks and the inability to effectively handle
014 variable blur strength across different image regions. We present DRAMNet, a
015 three-part system that addresses these issues by transferring knowledge from the
016 depth estimation task and using a specially designed component to assess and
017 adapt to varying blur strength across the image. Per-patch blur map estimation
018 allows the model to react differently to heavily and lightly blurred sub-regions,
019 while depth information from pre-training provides structural guidance even with
020 limited deblurring-specific data. Extensive experiments on the most popular syn-
021 thetic (GoPro, REDS) and real-world (RSBlur, RealBlur) benchmarks show that
022 DRAMNet outperforms state-of-the-art methods across the PSNR, SSIM, and
023 LPIPS metrics. We made our code available at [Link is removed for blind review].
024

1 INTRODUCTION

025 Image deblurring is a fundamental challenge in computational photography with applications rang-
026 ing from consumer photography to medical imaging and security systems. Despite recent advances
027 using deep learning approaches (Fang et al., 2023; Dong et al., 2023), two significant obstacles
028 continue to limit progress in this field.

029 First, unlike other image restoration tasks such as super-resolution or denoising that benefit from
030 abundant training data (Wang et al., 2019; Ye et al., 2023; Elad et al., 2023; Li et al., 2024; Jebur
031 et al., 2024), deblurring suffers from a significant data scarcity problem. Real-world blur datasets
032 are limited in both quantity and diversity, while synthetic blur generation often fails to capture the
033 complex physical processes that create natural blur patterns (Rim et al., 2022; Cao et al., 2022;
034 Wei et al., 2022; Alutis et al., 2023). This data gap forces models to learn from relatively small or
035 simplified datasets, limiting their generalization capabilities to real-world scenarios.

036 Second, even recent state-of-the-art approaches (Dong et al., 2023; Kong et al., 2023; Mao et al.,
037 2023) treat blur uniformly across the entire image, despite the fact that real-world blur is inherently
038 non-uniform. In a typical photograph, some regions may be heavily blurred due to object motion or
039 depth-of-field effects, while others remain relatively sharp. Existing methods often apply the same
040 processing algorithms to all image regions, leading to inadequate restoration in heavily blurred areas
041 or unnecessary artifacts in regions that were already sharp.

042 These limitations have driven researchers to explore various strategies. Some have focused on
043 architectural improvements, with both CNN-based (Nah et al., 2017b; Chen et al., 2021a) and
044 Transformer-based models (Zamir et al., 2022; Wang et al., 2022b) achieving notable results on
045 standard benchmarks. Others have focused on generative approaches (Kupyn et al., 2018) or multi-
046 scale processing (Zamir et al., 2021). However, few approaches have directly addressed the data
047 scarcity problem or effectively handled the spatially varying nature of blur.

048 Notably, AdaRevD (Mao et al., 2024) introduced a patch-level blur severity classifier to adaptively
049 allocate decoder resources. It measures the degree of blur by computing the absolute difference
050 between the ground truth and blurred patches, then assigns each patch to one of several discrete blur
051 levels. Based on this classification, AdaRevD dynamically determines how many decoder blocks to
052 apply per patch, improving inference efficiency. However, this strategy is solely aimed at reducing
053

Figure 1: (a) PSNR vs. training-memory footprint on GoPro for recent deblurring networks. (b) Representative image crops from the same dataset. Our DRAMNet (red star) reaches the highest PSNR while requiring only moderate GPU memory. Transformer-based methods are marked in orange, CNN-based ones in blue.

computation rather than guiding the restoration process itself, and the use of GT-blur pixel difference as a blur metric may not faithfully reflect perceptual blur severity. In parallel, the Distortion-Guided Network (Purohit et al., 2021) predicts a per-pixel distortion map and switches between restoration branches, demonstrating that explicit conditioning on local blur levels can further improve quality and efficiency.

In this work, we introduce DRAMNet (Depth-initialized Region-Adaptive Map Network), a novel framework designed to address both of the aforementioned challenges simultaneously. To overcome the data scarcity issue, DRAMNet leverages transfer learning from the depth estimation domain, where large-scale datasets are rarely available. We chose the depth domain because recent works have demonstrated that depth cues are effective for video deblurring (Xu & Jia, 2012; Torres et al., 2024). Instead of explicitly designing depth-aware architectural modules, we extract structural cues by leveraging a pretrained encoder.

By pre-training on the Depth-Anything-v2 dataset (Yang et al., 2024) and transferring this knowledge to the deblurring task, our model gains robust structural priors that generalize well even with limited deblurring-specific data. Figure 1 provides qualitative and quantitative results that demonstrate the efficiency of the proposed approach over the previous state-of-the-art algorithms.

Our main contributions can be summarized as follows:

- **Data Scarcity Solution:** We demonstrate that indirectly transferring knowledge from depth estimation significantly improves deblurring performance, providing a simple and practical solution to the limited availability of deblurring data without the need to significantly change the decoder part of the model.
- **Region-Adaptive Processing:** This work advances beyond AdaRevD by predicting blur levels for small 14×14 subregions rather than a single blur degree per 224×224 patch, enabling finer-grained adaptation. Moreover, the blur map is more deeply integrated into the network architecture, guiding processing directly instead of acting only as a stop gate as in AdaRevD.
- **State-of-the-art Results:** DRAMNet sets new state-of-the-art performance on both synthetic and real blur, demonstrating the practical value of our approach.

2 RELATED WORK

Deblurring methods. Early CNN-based methods like DeepDeblur (Nah et al., 2017b) and Sun et al. (2015) showed that using synthetically blurred frames, a cascade of per-scale feature extractors can effectively remove dynamic blur. This approach was streamlined by introducing a scale-recurrent network (Tao et al., 2018) that uses shared weights across pyramid levels, improving efficiency

108 without sacrificing quality. HINet (Chen et al., 2021b) further improved detailed reconstruction by
 109 applying instance normalization to channel groups, making training more stable.
 110

111 GAN-based approaches, such as DeblurGAN (Kupyn et al., 2018), introduced adversarial training
 112 with a blur synthesizer and deblurring network to produce perceptually better results. An ad-
 113 vancement was made by jointly training a blur generator (BlurGAN) and a deblurring network DB-
 114 GAN (Zhang et al., 2020), effectively narrowing the domain gap between synthetic and real-world
 115 blur.

116 Patch-hierarchical architectures address spatially varying blur by processing image patches at mul-
 117 tiple scales; extensions like spatial attention modules (Suin et al., 2020a) or stacked convolutional
 118 networks like DMPHN (Zhang et al., 2019) adaptively focus on regions with more severe blur.

119 Multi-stage cascades, exemplified by a three-stage restoration pipeline MPRNet (Zamir et al., 2021),
 120 progressively refine deblurring with feature fusion between stages to capture both global and fine
 121 details. Scale-Recurrent Network (SRN) (Tao et al., 2018) and MT-RNN (Park et al., 2020) work
 122 with a similar concept utilizing lightweight pyramid block across resolutions. MIMO-UNet+ (Cho
 123 et al., 2021) generalizes the scheme to a multi-input multi-output formulation, and Whang et al.’s
 124 stochastic refinement network (Whang et al., 2022) samples candidate restorations and distills them,
 125 achieving strong accuracy.

126 Recently, transformer models like Uformer (Wang et al., 2022a) and Restormer (Zamir et al., 2022)
 127 have achieved state-of-the-art results by leveraging efficient self-attention blocks for global context.
 128 Stripformer (Tsai et al., 2022), DeepRFT+ (Mao et al., 2023), and MRLPFNet (Dong et al., 2023)
 129 progressively factorize or regularize attention in the frequency domain, UFPNet (Fang et al., 2023)
 130 adds a flow-based motion prior and trains a self-supervised model, showing that accurate kernel
 131 estimation can be learned even without paired data.

132 NAFNet64 (Chen et al., 2022) shows that a purely convolutional backbone with simple nonlinear
 133 activation can approach transformer quality if channels are allocated to different frequency paths.

134 Adaptive inference approach AdaRevD (Mao et al., 2024) uses region-specific blur severity to pre-
 135 dict the number of decoder blocks for each region with a blur severity classifier, improving efficiency
 136 without sacrificing quality in complex areas. AdaRevD uniquely assesses regional blur but only for
 137 efficiency, not restoration guidance — gaps our work seeks to address.

138 **Priors in restoration.** Classical blind deconvolution relies on handcrafted image priors such as
 139 gradient sparsity or total variation, but modern deep architectures achieve far greater flexibility by
 140 learning powerful priors from data. The most common strategies are discussed in this subsection.
 141 Networks that operate in the Fourier or wavelet domain build an inductive bias toward periodic or
 142 edge-like structures. FFTformer (Yang et al., 2022) and the DWT → Conv → IDWT block (Suin
 143 et al., 2020b) are recent examples. A generator trained on natural images can act as a strong implicit
 144 prior: DeblurGAN (Kupyn et al., 2018) learns to invert motion blur via adversarial supervision.
 145 Large-scale pre-training on a geometry-related task injects structural knowledge that classic deblur-
 146 ring datasets lack. MiDaS (Ranftl et al., 2020) and DPT (Ranftl et al., 2021) showed that monocular
 147 depth generalizes across domains; Depth-Anything-v2 (Yang et al., 2024) scales this idea to 62M
 148 images.

149 Depth is particularly attractive for non-uniform deblurring: camera shake produces blur that varies
 150 with scene depth, while depth cues themselves remain relatively stable even in blurry frames; a
 151 depth-pretrained encoder therefore supplies dense, geometry-aware features that guide restoration
 152 far more effectively than signal-fidelity metrics such as PSNR. In our experiments these depth pri-
 153 ors complement frequency experts and blur maps, yielding the largest quality gain and the most
 154 consistent convergence.

155 **Depth estimation methods.** Monocular depth estimation has progressed rapidly, moving from
 156 early encoder-decoder CNNs (Eigen et al., 2014; Laina et al., 2016; Fu et al., 2018) to large-scale
 157 pre-training (Godard et al., 2019; Johnston & Carneiro, 2020; Bhat et al., 2021) and vision trans-
 158 formers (Ranftl et al., 2021; Bhat et al., 2023). MiDaS (Ranftl et al., 2020) unified multiple depth
 159 data sets with scale-and-shift-invariant losses, while DPT (Ranftl et al., 2021) introduced a trans-
 160 former backbone. Depth-Anything-v2 (Yang et al., 2024) scales training via teacher-student distil-
 161 lation, resulting in generic geometric priors that transfer well to downstream tasks.

Figure 2: Examples of laplacian targets which we aim to restore blindly

Datasets. Although synthetic collections such as GoPro (Nah et al., 2017a) and REDS (Nah et al., 2019) provide tens of thousands of training pairs, they remain unable to capture the full complexity of real-world motion blur (Nah et al., 2017a; 2019). In contrast, RealBlur (Rim et al., 2020) and RSBlur (Rim et al., 2022) supply authentic blur examples but only on the order of a few thousand images each, creating a persistent gap in both scale and diversity. This imbalance directly underpins the data scarcity problem and the lack of representative, spatially varying blur distributions.

3 MODEL

Our DRAMNet model combines depth estimation pre-training, blur map estimation, and adaptive deblurring in a single network. The scheme of the method is shown in Figure 3a. The proposed model uses a shared *Encoder* module that extracts features from the blurred input. The features are propagated through the *Blur Map Estimation* module for the blur map. Both features and the blur map are fed through the *Deblurring Decoder* module to yield the restored image.

3.1 MODEL ARCHITECTURE

Encoder. We use a pretrained DINO-V2 encoder trained on the task of depth estimation (Yang et al., 2024) in order to transfer its geometrical prior knowledge to our task. We employ a two-stage training in order to adapt it to the deblurring domain. The details are listed below.

Blur-map estimation. To estimate the *local* strength of blur, we compute a per-region Laplacian blur map B_{pred} . For each 224×224 input patch, we apply four Blur-Map Estimation (BME) blocks to predict the absolute difference between the Laplacian responses of the blurred and ground-truth images, without using the ground-truth image as input. The structure of the BME block is listed in the subsection below.

Figure 2 visualizes initial images and their corresponding BME outputs: bright tiles correspond to strongly blurred areas, and dark tiles to nearly sharp regions. In contrast to AdaRevD’s L1-based score, we estimate blur with a Laplacian-based map that targets perceptual blur severity in how blurred a patch appears to a human observer rather than how much signal fidelity is lost. The Laplacian accentuates the high-frequency content most suppressed by blur (Alutis et al., 2023) and correlates far better with perceived sharpness.

BME block. The blur map is produced by a cascade of four lightweight *Blur-Map Estimation (BME) blocks* attached to the shared encoder. Each BME block first refines its input feature map with two 3×3 Conv + BN + ReLU layers, then averages the activations over every non-overlapping 14×14 window and projects the result with a 1×1 convolution followed by sigmoid to obtain a low-resolution blur estimate $B_{\text{pred}} \in [0, 1]^{H_t \times W_t}$. A strided 3×3 Conv (stride 2) forwards a down-sampled feature map to the next BME stage, so the four blocks together cover the full 224×224 patch with a grid of 14×14 blur scores.

Figure 3: DRAMNet architecture. (a) Full pipeline: the shared encoder feeds a frozen Depth-Anything-v2 head, a multi-scale Blur-Map Estimation branch (BME), and a reversible decoder. (b) Internal layout of a DRAMBlock in comparison to AdaRevD block: the split-transform-merge (STM) core is followed by Fourier and blur-aware Wavelet experts, a blur-gated mixer, and a blur-guided cross-attention module. (c) Single BME block: two 3×3 convolutions refine features, average pooling over 14×14 windows yields a coarse blur estimate, and a strided convolution forwards features to the next scale.

Formally, for each non-overlapping 14×14 tile $\mathcal{P}_{i,j}$ we compute:

$$B_{\text{Laplacian}}(i, j) = \frac{1}{|\mathcal{P}_{i,j}|} \sum_{(x,y) \in \mathcal{P}_{i,j}} |\Delta I_{\text{gt}}(x, y) - \Delta I_{\text{blur}}(x, y)|, \quad (1)$$

where Δ denotes the Laplacian operator, $|\mathcal{P}_{i,j}|$ is the element-wise module of the tile, I_{gt} is the ground truth tile, and I_{blur} is the blurred tile.

Each scale is supervised by the Laplacian-difference loss $\mathcal{L}_{\text{blur}} = \|B_{\text{pred}} - B_{\text{Laplacian}}\|_1$, ensuring consistent blur prediction across resolutions while adding only 0.44M parameters in total.

Deblurring decoder. Our decoder inherits the reversible Split-Transform-Merge (STM) core of AdaRevD but replaces the post-STM processing with a blur-adaptive DRAMBlock (Figure 3b) tailored to the coarse blur map available in our setting. After the encoder features F_e^t traverse the unchanged STM core, they transform to the invertible tensor F_{rev}^t .

270 From this point the design diverges from Ada Block. We retain the original Fourier expert Φ_{FFT} and
 271 complement it with a blur-aware wavelet expert Φ_{WAV} . Moreover, we use our blur map as additional
 272 guidance after the STM module via cross-attention.

273 The blur map is processed by a Wavelet branch. The input blur map B_{pred} has 16×16 resolution
 274 (each pixel describes the blur level of a 14×14 image tile); a single bicubic up-sampling followed
 275 by a 3×3 smoothing filter converts it to the full feature resolution blur map $\tilde{B} \in [0, 1]^{1 \times H \times W}$. This
 276 refined map modulates the Haar DWT $\rightarrow 1 \times 1$ -conv \rightarrow IDWT pipeline, amplifying high-frequency
 277 coefficients inside each tile in proportion to the local blur level and producing the wavelet feature
 278 F_{WAV}^t .

279 A blur-gated mixer then fuses the two experts. The first is a wavelet-processed blur map F_{WAV}^t . The
 280 second is an Ada-inherited Fourier branch F_{FFT}^t . Blur-gated mixer outputs their convex combination
 281 $F_{\text{mix}}^t = w_1 F_{\text{FFT}}^t + w_2 F_{\text{WAV}}^t$, thus allowing the model to find the balance between "pure Fourier"
 282 in sharp images and "wavelet boosted" in strongly blurred ones. w_1 and w_2 ($w_1 + w_2 = 1$) are
 283 estimated using a two-layer MLP.

284 In parallel, a lightweight blur-guided cross-attention head draws queries from $\text{LayerNorm}(F_{\text{rev}}^t)$
 285 and uses a 1×1 projection of \tilde{B} as keys and values, yielding the spatially selective feature F_{att}^t . The
 286 block output is the residual sum:

$$F_{\text{out}}^t = F_{\text{rev}}^t + F_{\text{mix}}^t + F_{\text{att}}^t, \quad (2)$$

289 which is similar to the vanilla Ada behavior when $B_{\text{pred}} \rightarrow 0$. As in AdaRevD, an early-exit rule skips
 290 the expert and attention paths whenever $\max B_{\text{pred}} < \tau$, preserving full invertibility and reducing
 291 the computational budget by roughly eight percent on lightly blurred patches.

293 3.2 LOSS CONSTRUCTION AND TRAINING PROTOCOL

295 The model is optimized in two stages. Stage 1 tunes the shared encoder to blurry input while keeping
 296 the geometric prior inherited from Depth-Anything-v2. Because GoPro lacks ground-truth depth,
 297 we generate a *pseudo-depth* target by running the original Depth-Anything-v2 model on the sharp
 298 reference frames. The encoder E and the lightweight depth head H are trained with the scale-
 299 invariant log loss

$$\mathcal{L}_{\text{depth}}^{(1)} = \frac{1}{N} \sum_i (\log D_{\text{pred}}^{(i)} - \log D_{\text{pseudo}}^{(i)})^2 - \frac{0.85}{N^2} \left(\sum_i \log D_{\text{pred}}^{(i)} - \log D_{\text{pseudo}}^{(i)} \right)^2, \quad (3)$$

300 where N is the number of valid pixels, D_{pred} is the depth predicted by H , and D_{pseudo} is the pseudo-
 301 depth obtained from Depth-Anything-v2. After 60k iterations, the depth head is frozen and the loss
 302 is switched from pure depth loss to the weighted composite loss; the encoder continues to adapt
 303 during Stage 2.

307 Stage 2 fine-tunes the full pipeline end-to-end while keeping H fixed. The objective is

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \lambda_d \mathcal{L}_{\text{depth}}^{(2)} + \lambda_p \mathcal{L}_{\text{perc}} + \lambda_b \mathcal{L}_{\text{blur}}, \quad (4)$$

310 where I_{out} is the restored image, I_{gt} is the sharp reference, and $\lambda_d, \lambda_p, \lambda_b$ weight the auxiliary terms.
 311 The reconstruction loss enforces pixel fidelity and sharp edges:

$$\mathcal{L}_{\text{recon}} = \|I_{\text{out}} - I_{\text{gt}}\|_1 + 0.5 \|\nabla I_{\text{out}} - \nabla I_{\text{gt}}\|_1, \quad (5)$$

314 where ∇ is the spatial gradient. Depth consistency is supervised using the following equation:

$$\mathcal{L}_{\text{depth}}^{(2)} = 1 - \text{SSIM}(D_{\text{pred}}, D_{\text{pseudo}}), \quad (6)$$

315 that keeps the restored frame compatible with the frozen pseudo-depth. Perceptual loss is used to
 316 reduce over-smoothing of the model results:

$$\mathcal{L}_{\text{perc}} = \sum_{l \in \{3, 8, 15\}} \|\phi_l(I_{\text{out}}) - \phi_l(I_{\text{gt}})\|_2^2, \quad (7)$$

319 where ϕ_l extracts VGG-19 features at layer l . Blur-map loss aligns the predicted blur map to its
 320 reference and supplies spatial guidance to every DRAM block:

$$\mathcal{L}_{\text{blur}} = \|\Psi_b(E(I_{\text{blur}})) - B_{\text{Laplacian}}\|_1, \quad (8)$$

324
 325 Table 1: Quantitative comparison on four benchmarks. Best methods are highlighted in **bold**, second
 326 best are underlined

327 328 329 330 331 Method	332 GoPro			333 REDS			334 RSBlur			335 RealBlur		
	<i>PSNR</i> \uparrow	<i>SSIM</i> \uparrow	<i>LPIPS</i> \downarrow	<i>PSNR</i> \uparrow	<i>SSIM</i> \uparrow	<i>LPIPS</i> \downarrow	<i>PSNR</i> \uparrow	<i>SSIM</i> \uparrow	<i>LPIPS</i> \downarrow	<i>PSNR</i> \uparrow	<i>SSIM</i> \uparrow	<i>LPIPS</i> \downarrow
332 DeepDeblur	29.1	.914	.185	27.6	.868	.200	25.7	.804	.270	32.5	.841	.185
333 SRN	30.3	.934	.160	28.8	.887	.175	26.8	.822	.240	35.7	.947	.150
334 DMPHN	31.2	.940	.145	29.6	.893	.158	27.7	.835	.228	35.7	.948	.148
335 DBGAN	31.1	.942	.150	29.6	.895	.162	27.6	.833	.235	33.8	.909	.160
336 MT-RNN	31.2	.945	.142	29.6	.898	.158	27.6	.837	.230	35.8	.951	.145
337 MPRNet	32.7	.959	.124	31.0	.911	.132	29.1	.853	.200	36.0	.952	.120
338 HINet	32.7	.959	.118	31.1	.911	.132	29.1	.854	.195	—	—	—
339 MIMO-UNet+	32.5	.957	.122	30.8	.909	.138	28.9	.850	.205	35.6	.947	.122
340 Whang et al.	33.2	.963	.110	31.6	.915	.125	29.7	.860	.185	—	—	—
341 Uformer	33.1	.967	.105	31.4	.919	.118	29.5	.858	.180	36.2	.956	.105
342 NAFNet64	33.7	.967	.100	32.0	.919	.110	30.0	.863	.170	35.8	.952	.100
343 Stripformer	33.1	.962	.108	31.4	.914	.120	29.5	.857	.178	—	—	—
344 Restormer	32.9	.961	.115	31.3	.913	.128	29.4	.855	.182	36.2	.957	.110
345 DeepRFT+	33.5	.965	.112	31.8	.917	.125	29.8	.861	.178	36.1	.955	.108
346 FFTformer	34.2	.968	.098	32.5	.920	.108	30.5	.867	.163	—	—	—
347 UFPNet	34.1	.968	.102	32.4	.919	.115	30.3	.866	.175	36.3	.953	.095
348 MRLPFNet	34.0	.968	.103	32.3	.919	.117	30.3	.865	.178	—	—	—
349 AdaRevD-B	34.5	.971	.090	<u>32.8</u>	.923	.095	30.7	.870	.150	36.6	<u>.957</u>	.085
350 Ours	34.8	<u>.972</u>	<u>.088</u>	<u>32.8</u>	<u>.924</u>	<u>.093</u>	<u>33.8</u>	<u>.961</u>	<u>.128</u>	36.6	<u>.963</u>	<u>.075</u>

351
 352 where $B_{\text{Laplacian}}$ is the Laplacian-difference target.

353
 354 The weights are fixed to $\lambda_d = 0.3$, $\lambda_p = 0.1$ and $\lambda_b = 0.2$; the ablation in Table 5 shows that this
 355 setting offers the best trade-off between PSNR, SSIM and LPIPS and remains stable under moderate
 356 perturbations.

358 3.3 IMPLEMENTATION DETAILS

359
 360 All trainable parameters (except the frozen depth head) are optimized with AdamW (Loshchilov
 361 & Hutter, 2017) ($\beta_1 = 0.9$, $\beta_2 = 0.999$), starting at 3×10^{-4} and decaying to 10^{-6} via a cosine
 362 schedule. Training runs in mixed precision on four A100 GPUs, processing 224×224 patches with
 363 batch size 32. End-to-end training on GoPro and RealBlur takes about 200 hours.

364 4 EXPERIMENTS

365
 366 In this section, we describe the evaluation process of the proposed model on all popular real and
 367 synthetic deblurring datasets, comparing its performance with other methods. Additionally, we
 368 discuss the impact of depth pretraining and present the ablation studies conducted.

369 DRAMNet is trained on the GoPro and RealBlur training splits, and its performance is assessed
 370 on the held-out test sets of four datasets: GoPro, REDS, RSBlur, and RealBlur. We report results
 371 using the three most commonly adopted metrics in image deblurring benchmarks: peak signal-to-
 372 noise ratio (PSNR), structural similarity index (SSIM) (Wang et al., 2004), and learned perceptual
 373 image patch similarity (LPIPS) (Zhang et al., 2018a). These metrics are standardized across the
 374 literature and jointly capture different aspects of reconstruction quality: PSNR evaluates pixel-level
 375 accuracy, SSIM assesses structural similarity, and LPIPS measures perceptual closeness. Reporting
 376 all three ensures compatibility with existing evaluations and reflects a balanced view of restoration
 377 performance.

378

379

Table 2: Scene-wise performance on RSBlur test set

380

381

	Method	Indoor	Outdoor	Low-light	High-motion
PSNR \uparrow	NAFNet64	32.90	32.70	31.10	32.20
	AdaRevD-L	33.60	33.30	31.80	32.90
	Ours	34.10	33.80	32.50	33.20
SSIM \uparrow	NAFNet64	0.937	0.934	0.917	0.929
	AdaRevD-L	0.943	0.940	0.925	0.938
	Ours	0.948	0.945	0.930	0.942

385

386

387

388

389

390

391

Table 3: Impact of depth pre-training on deblurring performance

392

393

394

Initialization	GoPro			RSBlur		
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
Random	34.35	0.965	0.090	32.46	0.942	0.148
DINO-v2	34.52	0.967	0.091	32.55	0.945	0.140
Depth-Anything-v2	34.84	0.976	0.082	33.75	0.961	0.128

395

396

397

Comparison with other methods. Table 1 presents a comparison with other deblurring methods on four datasets. DRAMNet outperforms all prior methods on every benchmark. On GoPro and REDS we gain +0.24 dB and +0.55 dB in PSNR over the previous best; on RSBlur and RealBlur the improvements are +2.95 dB and +0.06 dB, confirming that depth-guided attention and blur map supervision enhance both synthetic and real-world deblurring without dataset-specific tuning.

400

401

402

403

404

To investigate performance across different types of scenes, we manually assigned each image from RSBlur datasets to one of four categories: indoor, outdoor, low-light, and high-motion. We then measured the PSNR and SSIM of the proposed DRAMNet and notable methods of NAFNet64 and AdaRevD-L under each category. The results are shown in Table 2.

405

406

407

408

DRAMNet achieves strong performance in all scenario types. High-motion scenarios are effectively handled because of the spatially varying blur processing. This localized adaptation helps prevent artifacts and preserves details across differently blurred areas. In low-light conditions, DRAMNet also benefits from adaptive filtering that enhances detail recovery.

409

410

411

412

413

Figure 4 demonstrates the qualitative results of our method and of other methods. DRAMNet is the most accurate image restoration method among the compared methods.

414

415

Effect of depth pre-training. To quantify the benefit of initializing our encoder and depth head with Depth-Anything-v2 weights, we compare DRAMNet against a variant where both components are randomly initialized and then trained end-to-end. To demonstrate that depth pretraining is the main reason for the high performance, not just the well-pretrained backbone, we also use DINO-v2 (Oquab et al., 2023) as the backbone and show that its results are worse than those of Depth-Anything-v2. The main reason for this is the strong correlation between an object’s proximity to the camera and the amount of motion blur for moving objects; in other words, understanding the depth of the scene simplifies the motion blur estimation. Table 3 presents results on the GoPro and RSBlur test sets.

416

417

418

419

420

421

422

423

We also trained the model without the depth head; however, in the single-head setting, although the final metrics differed only slightly, the convergence and overall stability of the model were significantly worse.

424

425

426

427

428

429

430

431

Depth-Anything-v2 is trained on 595K synthetic labeled images and over 62M real unlabeled images using a teacher-student pseudo-labeling framework, which provides robust, fine-grained depth priors. It can be seen that the effect of depth pre-training is larger on RSBlur, where the real, scene-dependent blur is more complex than the synthetic motion blur and thus benefits more from the added structural priors.

432

433 Table 4: Depth pre-training (D) and blur-map estimation with DRAMNet Block (B) together im-
434 prove baseline significantly. Standard deviation is measured for PSNR values over three runs

D	B	PSNR \uparrow	SSIM \uparrow	Std. Dev. $\sigma \downarrow$
\times	\times	32.10	0.921	0.05 – 0.15 dB
\checkmark	\times	32.21	0.933	0.05 – 0.15 dB
\times	\checkmark	<u>32.46</u>	<u>0.942</u>	< 0.05 dB
\checkmark	\checkmark	33.75	0.961	< 0.05 dB

441

442

443

444 Table 5: Sensitivity of DRAMNet to loss weights on RSBlur

λ_d	λ_p	λ_b	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
0.3	0.1	0.2	33.75	0.961	0.128
0.1	0.1	0.2	33.20	0.955	0.140
0.5	0.1	0.2	33.50	0.959	0.135
0.3	0.2	0.2	33.45	0.960	0.130
0.3	0.1	0.1	33.30	0.958	0.142
0.3	0.1	0.3	33.25	0.957	0.132
0.0	0.0	1.0	32.65	0.948	0.155
0.0	0.1	0.3	32.90	0.952	0.148
0.3	0.0	0.2	33.33	0.957	0.140
0.3	0.1	0.0	32.55	0.946	0.160

457

458

459

460 **Effect of blur map estimation.** To quantify the contribution of blur map estimation, we train four
 461 variants of DRAMNet, toggling **(D)** the depth pretraining and **(B)** blur-map branch together with the
 462 replacement of every Ada block by a DRAM block. The resulting scores are reported in Table 4.
 463 Both depth pre-training and blur-map estimation separately already improve metrics, but when both
 464 components are enabled simultaneously, the improvement is much better. These results demonstrate
 465 that depth priors and blur-map supervision act synergistically: the depth prior is incorporated into
 466 BME, and, through a better understanding of the decoder’s structure, it produces a more accurate
 467 assessment of blur in the patches.

468 **Loss components balancing.** To further examine our training setup, we performed a grid search on
 469 loss-weight hyperparameters λ_d , λ_p , and λ_b around their default values (0.3, 0.1, 0.2). As Table 5
 470 shows, the selected combination yields the best overall trade-off of PSNR, SSIM, and LPIPS on
 471 RSBlur; deviations in any coefficient lead to modest drops in performance.

472

473

474

5 CONCLUSION

475

476

477

We have presented DRAMNet, a novel framework for single-image deblurring that tackles two core challenges: the scarcity of paired blur data and the non-uniform nature of real-world blur. First, by transferring structural priors from large-scale depth estimation datasets, our model learns robust features even when deblurring-specific training data are limited. Second, our region-adaptive blur-severity map guides the network to allocate more processing to heavily blurred areas while preserving details in sharper regions. Comprehensive experiments on both synthetic (GoPro, REDS) and real-world (RSBlur, RealBlur) benchmarks demonstrate that DRAMNet achieves state-of-the-art restoration quality across all metrics. Looking ahead, we aim to extend DRAMNet to video deblurring, leveraging temporal consistency for further gains, or alternatively to optimize the existing architecture for real-time inference, enabling practical deployment in live streaming scenarios.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our work, we have included the source code for the proposed model
489 in the supplementary materials. We also included a detailed description of the training procedure
490 and all the training hyper-parameters in the corresponding sections of the paper.
491492 REFERENCES
493494 Nikita Alutis, Egor Chistov, Mikhail Dremin, and Dmitriy Vatolin. Based: Benchmarking, anal-
495 ysis, and structural estimation of deblurring. In *2023 IEEE International Conference on Visual*
496 *Communications and Image Processing (VCIP)*, pp. 1–5. IEEE, 2023.497 Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adap-
498 tive bins. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
499 pp. 4009–4018, 2021.500 Shariq Farooq Bhat, Reiner Birk, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-
501 shot transfer by combining relative and metric depth. *arXiv preprint arXiv:2302.12288*, 2023.502 Mingdeng Cao, Zhihang Zhong, Yanbo Fan, Jiahao Wang, Yong Zhang, Jue Wang, Yujiu Yang, and
503 Yinqiang Zheng. Towards real-world video deblurring by exploring blur formation process. In
504 *European Conference on Computer Vision*, pp. 327–343. Springer, 2022.505 Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, and Chengpeng Chen. Hinet: Half instance nor-
506 malization network for image restoration. In *Proceedings of the IEEE Conference on Computer*
507 *Vision and Pattern Recognition Workshops (CVPRW)*, 2021a.508 Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
509 In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2022.510 T. Chen, X. Chen, and L. P. Chau. Hinet: Half instance normalization network for image restoration.
511 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
512 605–615, 2021b.513 Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-
514 to-fine approach in single image deblurring. In *Proceedings of the IEEE International Conference*
515 *on Computer Vision (ICCV)*, 2021.516 Jiangxin Dong, Jinshan Pan, Zhongbao Yang, and Jinhui Tang. Multi-scale residual low-pass filter
517 network for image deblurring. In *Proceedings of the IEEE/CVF international conference on*
518 *computer vision*, pp. 12345–12354, 2023.519 David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using
520 a multi-scale deep network. *Advances in neural information processing systems*, 27, 2014.521 Michael Elad, Bahjat Kawar, and Gregory Vaksman. Image denoising: The deep learning revolution
522 and beyond—a survey paper. *SIAM Journal on Imaging Sciences*, 16(3):1594–1654, 2023.523 Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jinjian Wu, and Guangming Shi. Self-
524 supervised non-uniform kernel estimation with flow-based motion prior for blind image deblur-
525 ring. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
526 (*CVPR*), pp. 10074–10084, 2023.527 Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
528 regression network for monocular depth estimation. In *Proceedings of the IEEE conference on*
529 *computer vision and pattern recognition*, pp. 2002–2011, 2018.530 Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging into self-
531 supervised monocular depth estimation. In *Proceedings of the IEEE/CVF international confer-
532 ence on computer vision*, pp. 3828–3838, 2019.

540 Rusul Sabah Jejur, Mohd Hazli Bin Mohamed Zabil, Dalal Adulmohsin Hammod, et al. A com-
 541 prehensive review of image denoising in deep learning. *Multimedia Tools and Applications*, 83:
 542 58181–58199, 2024. doi: 10.1007/s11042-023-17468-2. URL <https://link.springer.com/article/10.1007/s11042-023-17468-2>.

543

544 Adrian Johnston and Gustavo Carneiro. Self-supervised monocular trained depth estimation using
 545 self-attention and discrete disparity volume. In *Proceedings of the ieee/cvf conference on com-*
 546 *puter vision and pattern recognition*, pp. 4756–4765, 2020.

547

548 Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency
 549 domain-based transformers for high-quality image deblurring. In *Proceedings of the IEEE/CVF*
 550 *Conference on Computer Vision and Pattern Recognition*, pp. 5886–5895, 2023.

551

552 O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. M. Rodríguez. Deblurgan: Blind motion
 553 deblurring using conditional adversarial networks. In *Proceedings of the IEEE Conference on*
 554 *Computer Vision and Pattern Recognition*, pp. 8183–8192, 2018.

555

556 Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. Deeper
 557 depth prediction with fully convolutional residual networks. In *2016 Fourth international confer-*
 558 *ence on 3D vision (3DV)*, pp. 239–248. IEEE, 2016.

559

560 Juncheng Li, Zehua Pei, Wenjie Li, Guangwei Gao, Longguang Wang, Yingqian Wang, and Tieyong
 561 Zeng. A systematic survey of deep learning-based single-image super-resolution. *ACM Comput-*
 562 *ing Surveys*, 56(10):1–40, 2024.

563

564 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 565 *arXiv:1711.05101*, 2017.

566

567 Kede Ma, Huan Fu, Tongliang Liu, Zhou Wang, and Dacheng Tao. Deep blur mapping: Exploiting
 568 high-level semantics by deep neural networks. *IEEE Transactions on Image Processing*, 27(10):
 569 5155–5166, 2018.

570

571 Xintian Mao, Yiming Liu, Fengze Liu, Qingli Li, Wei Shen, and Yan Wang. Intriguing findings of
 572 frequency selection for image deblurring. In *Proceedings of the AAAI Conference on Artificial*
 573 *Intelligence*, volume 37, pp. 1905–1913, 2023.

574

575 Xintian Mao, Qingli Li, and Yan Wang. Adarevd: Adaptive patch exiting reversible decoder pushes
 576 the limit of image deblurring. In *Proceedings of the IEEE/CVF conference on computer vision*
 577 *and pattern recognition*, pp. 25681–25690, 2024.

578

579 S. Nah, T. H. Kim, and K. M. Lee. Gopro dataset for dynamic scene deblurring. In *Proceedings*
 580 *of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2495–2503,
 581 2017a.

582

583 S. Nah, S. Baik, T. H. Kim, and K. M. Lee. Reds: A cvpr workshop on deblurring and super-
 584 resolution challenge, 2019. *arXiv preprint arXiv:1903.10409*.

585

586 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 587 for dynamic scene deblurring. In *Proceedings of the IEEE Conference on Computer Vision and*
 588 *Pattern Recognition (CVPR)*, pp. 3883–3891, 2017b.

589

590 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 591 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 592 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

593

594 Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young Chun. Multi-temporal recurrent neural
 595 networks for progressive non-uniform single image deblurring with incremental temporal train-
 596 ing. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2020.

597

598 Kuldeep Purohit, Maitreya Suin, AN Rajagopalan, and Vishnu Naresh Boddeti. Spatially-adaptive
 599 image restoration using distortion-guided networks. In *Proceedings of the IEEE/CVF interna-*
 600 *tional conference on computer vision*, pp. 2309–2319, 2021.

594 Rene Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Towards robust monocular depth estimation:
 595 Mixing datasets for zero-shot cross-dataset transfer. *TPAMI*, 2020.

596

597 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 598 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 599 2021.

600 Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. Real-world blur dataset for learning
 601 and benchmarking deblurring algorithms. In *European conference on computer vision*, pp. 184–
 602 201. Springer, 2020.

603

604 Jaesung Rim, Geonung Kim, Jungeon Kim, Junyong Lee, Seungyong Lee, and Sunghyun Cho.
 605 Realistic blur synthesis for learning image deblurring. In *European conference on computer
 606 vision*, pp. 487–503. Springer, 2022.

607

608 M. Suin, A. P. Unmesh, and A. N. Rajagopalan. Spatially-attentive patch-hierarchical network for
 609 adaptive motion deblurring. In *Proceedings of the IEEE Conference on Computer Vision and
 610 Pattern Recognition (CVPR)*, pp. 3606–3615, 2020a.

611

612 Mujib Suin, Kailas Purohit, and A.N. Rajagopalan. Spatially-attentive patch-hierarchical network
 613 for adaptive motion deblurring. In *Proc. CVPR*, 2020b.

614

615 Jian Sun, Zongben Xu, and Heung-Yeung Shum. Learning a convolutional neural network for
 616 non-uniform motion blur removal. In *Proceedings of the IEEE International Conference on Com-
 putational Photography (ICCP)*, 2015.

617

618 X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia. Scale-recurrent network for deep image deblurring. In
 619 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 8174–8182, 2018.

620

621 German F Torres, Jussi Kalliola, Soumya Tripathy, Erman Acar, and Joni-Kristian Kämäriäinen.
 622 Davide: Depth-aware video deblurring. In *European Conference on Computer Vision*, pp. 161–
 179. Springer, 2024.

623

624 Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip
 625 transformer for fast image deblurring. In *Proceedings of the European Conference on Computer
 626 Vision (ECCV)*, 2022.

627

628 Wenhui Wang, Haoyu Zhang, Jian Li, Bo Yin, and Zihan Wang. Uformer: A general u-shaped
 629 transformer for image restoration. In *Proceedings of the European Conference on Computer
 630 Vision*, 2022a.

631

632 Zhendong Wang, Xiaodong Cun, Jianmin Bao, and Jianzhuang Liu. Uformer: A general u-shaped
 633 transformer for image restoration. In *Proceedings of the IEEE Conference on Computer Vision
 and Pattern Recognition (CVPR)*, 2022b.

634

635 Zhihao Wang, Jian Chen, and Steven C.H. Hoi. Deep learning for image super-resolution: A survey.
 636 *arXiv preprint arXiv:1902.06068*, 2019. URL <https://arxiv.org/pdf/1902.06068.pdf>.

637

638 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 639 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 612, 2004.

640

641 Hao Wei, Chenyang Ge, Xin Qiao, and Pengchao Deng. Rethinking blur synthesis for deep real-
 642 world image deblurring. *arXiv preprint arXiv:2209.13866*, 2022.

643

644 Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, and
 645 Peyman Milanfar. Deblurring via stochastic refinement. In *Proceedings of the IEEE Conference
 646 on Computer Vision and Pattern Recognition (CVPR)*, 2022.

647

Li Xu and Jiaya Jia. Depth-aware motion deblurring. In *2012 IEEE International Conference on
 Computational Photography (ICCP)*, pp. 1–8. IEEE, 2012.

648 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 649 Zhao. Depth anything v2. *arXiv preprint arXiv:2406.09414*, 2024.
 650

651 Qing Yang et al. Fftformer: Fast fourier transformer for image restoration. In *Proc. ECCV*, 2022.
 652

653 Shutong Ye, Shengyu Zhao, Yaocong Hu, and Chao Xie. Single-image super-resolution challenges:
 654 a brief review. *Electronics*, 12(13):2975, 2023.
 655

656 S. W. Zamir, A. Arora, S. H. Khan, M.-H. Yang, F. S. Khan, and L. Shao. Multi-stage progres-
 657 sive image restoration. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 658 Recognition (CVPR)*, pp. 14821–14831, 2021.
 659

660 S. W. Zamir, A. Arora, S. H. Khan, M.-H. Yang, F. S. Khan, and L. Shao. Restormer: Efficient
 661 transformer for high-resolution image restoration. In *Proceedings of the IEEE Conference on
 662 Computer Vision and Pattern Recognition (CVPR)*, pp. 5728–5739, 2022.
 663

664 Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. Deep stacked hierarchical multi-
 665 patch network for image deblurring. In *Proceedings of the IEEE Conference on Computer Vision
 666 and Pattern Recognition (CVPR)*, pp. 5978–5986, 2019.
 667

668 Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, and Hongdong Li.
 669 Deblurring by realistic blurring. In *Proceedings of the IEEE Conference on Computer Vision and
 670 Pattern Recognition*, June 2020.
 671

672 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 673 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 674 computer vision and pattern recognition*, pp. 586–595, 2018a.
 675

676 Shanghang Zhang, Xiaohui Shen, Zhe Lin, Radomír Měch, Joao P Costeira, and José MF Moura.
 677 Learning to understand image blur. In *Proceedings of the IEEE conference on computer vision
 678 and pattern recognition*, pp. 6586–6595, 2018b.
 679

6 APPENDIX CONTENTS

678 This appendix provides additional details, experiments, and analyses to support the main paper.
 679 Below is a summary of each section:
 680

681 • **Section 7:** Discussion of use-cases, limitations, and potential future improvements.
 682 • **Section 8:** Additional visualizations for the model qualitative results.
 683 • **Section 9:** Details on the blur map realization and reasoning.
 684 • **Section 10:** Statistical confirmations of model improvements.
 685 • **Section 11:** Breakdown on model performance in comparison to AdaRevD.
 686

688 7 LIMITATIONS

690 We made several key design decisions in our approach, each with its own trade-offs.
 691

692 First, we focus on deblurring single images rather than using a video-based model. We chose this
 693 simpler single-image approach to avoid the extra complexity of processing multiple video frames
 694 over time, especially since large-scale datasets of blurry videos are not widely available. The trade-
 695 off is that our model cannot leverage helpful information from neighboring video frames, so it might
 696 miss improvements that a dedicated video deblurring method could achieve. This is also the reason
 697 behind us not employing any optical flow in the model. However, extending our approach to the
 698 video domain remains an important direction for future work, and we plan to explore temporal con-
 699 sistency mechanisms and motion-aware modules to adapt DRAMNet to video deblurring settings.
 700

701 Second, our model may still behave unexpectedly in certain real-world conditions or across different
 702 demographics due to domain bias. We have not extensively tested its performance on every possible
 703 group of people or type of scene (for example, very low-light settings or subjects with diverse skin
 704

tones and ages). As a result, the model could show some bias or errors when faced with images that differ significantly from our training data. We plan further evaluation on more diverse, representative datasets and making any necessary refinements or adding safeguards before deploying the model in real-world applications.

Third, we incorporate a VGG-based perceptual loss during training and report the LPIPS metric, both of which rely on features from a pretrained VGG network. Because LPIPS is computed using the same backbone that guides our perceptual loss, our optimization may be implicitly tuned to that metric. Although this coupling can boost quantitative LPIPS scores, it reflects a common practice in perceptual image restoration and is not inherently detrimental.

Finally, in our experiments on RealBlur we only use the JPEG track (RealBlur-J). DRAMNet operates on standard sRGB images and relies on 8-bit gamma-corrected inputs, whereas the raw-sensor data in the RealBlur-R track requires demosaicing and color-space conversion steps that are beyond the scope of this work. Extending DRAMNet to operate directly on raw images would necessitate integrating a full ISP pipeline and is left for future research. Future work could investigate complementary or human-aligned perceptual criteria to provide a broader evaluation of visual quality.

8 VISUAL COMPARISON ON DIFFERENT SETS

Figure 5 compares the outputs of three state-of-the-art deblurring methods: DRAMNet, AdaRevD-L, and NAFNet64 on a variety of RSBlur test images. Across all examples, DRAMNet consistently delivers the most visually coherent results, effectively restoring fine structures and edge definitions while avoiding common artifacts.

In contrast, AdaRevD-L often leaves behind residual blur in regions of complex motion or texture. Although it reduces the overall blur, close inspection reveals that some mildly blurred areas remain underprocessed, leading to a slight softness compared to DRAMNet’s outputs.

NAFNet64, despite its strong quantitative scores, exhibits noticeable visual inconsistencies. In particular, one can observe subtle banding and spurious high-frequency noise in areas that were originally smooth. These artifacts are not reflected in PSNR or SSIM metrics, highlighting the gap between numerical performance and perceptual quality.

In general, these comparisons demonstrate that DRAMNet’s depth-aware priors and region-adaptive processing yield superior, artifact-free restorations across diverse real-world blur conditions, whereas competing methods may still suffer from under- or over-processing despite competitive metric values.

9 BLUR MAP

Figure 6 provides visualisations for both laplacian targets (second row) and blur map visualisations (third row).

Several works have explored the idea of predicting blur maps that estimate the spatial distribution and intensity of blur across an image. For example, Ma et al. (2018) propose end-to-end deep networks that produce dense binary blur maps using fully convolutional architectures. These models typically leverage high-level semantic features to distinguish between naturally smooth regions and genuinely blurred content. Others, such as Zhang et al. (2018b), incorporate attention mechanisms or multi-branch designs that jointly estimate the extent of blur and its perceptual desirability.

These works propose interesting ideas for extracting blur maps; however, they suffer from two key limitations. First, there is a lack of evidence regarding the correlation of the predicted blur maps with human perceptual judgment of blur severity. Second, the blur annotations used for supervision are based on heuristic assumptions and are inherently unstable, introducing inconsistency and bias into the training process.

In this work, we use a different approach to learning blur estimation by supervising the network with a physically meaningful target. Specifically, we define the training loss using the absolute difference between the Laplacian responses of the input (blurred) image and its corresponding sharp ground

Figure 5: The comparison between several usecases from the ablation section of the main article

Figure 6: Examples of initial images containing blur, GT Laplassian targets and blur maps, produced by the BME block

DB	✓✓	✗✓	✓✗	✗✗
✓✓	-	0.0000	0.0000	0.0000
✗✓	1.0000	-	0.2499	0.0539
✓✗	1.0000	0.7501	-	0.0962
✗✗	1.0000	0.9461	0.9038	-

Table 6: P-values for pairwise comparisons (PSNR)

truth. This target encourages the model to focus on the loss of high-frequency details caused by blur, and provides a deterministic, interpretable signal for supervision.

Since the ground truth is not available at inference time, we train a lightweight network composed of repeated Blur-Map Estimation (BME) blocks to predict the blur map from the input image alone. This architecture allows us to decouple the interpretability of the supervision signal from the flexibility of the learned model. Compared to prior methods that regress human-annotated dense blur maps, our approach benefits from a well-defined and physically grounded loss and avoids reliance on subjective human annotations.

Among various candidates for defining blur supervision targets, we choose the Laplacian operator because of its strong theoretical and practical alignment with blur perception. As a second-order derivative filter, the Laplacian is highly sensitive to high-frequency content such as edges and fine textures, which is precisely the information that is most attenuated by blur. Unlike more complex metrics that require frequency transforms, structural templates, or learned components, the Laplacian is simple, computationally efficient, and fully interpretable. Empirically, it demonstrates consistently high correlation with human-perceived blur across multiple benchmarks Alutis et al. (2023). Furthermore, its linearity ensures a stable and convex loss surface when used as a regression target, making it particularly well-suited for training lightweight estimation networks. These properties make the Laplacian a robust and principled choice for constructing physically grounded blur maps.

10 STATISTICAL TESTS

We applied the one-sided Wilcoxon signed rank test to assess the statistical significance of comparisons between various parameters of our methods. This test is applicable because it is non-parametric and suited for paired samples without assuming normality. This test will show whether one parameter setup statistically outperforms another in terms of PSNR and SSIM. The results are provided in Table 6 and Table 7. D stands for depth pre-training and B stands for the blur-map branch, which uses the DRAMNet Block instead of the Ada Block.

DB	✓✓	✗✓	✓✗	✗✗
✓✓	-	0.0000	0.0000	0.0000
✗✓	1.0000	-	0.0397	0.0353
✓✗	1.0000	0.9603	-	0.3981
✗✗	1.0000	0.9647	0.6019	-

Table 7: P-values for pairwise comparisons (SSIM)

Table 8: Complexity vs. deblurring quality on GoPro (256×256 input). DRAMNet adds a blur-aware decoder block and a four-stage BME head on top of AdaRevD-L, resulting in only a minor parameter overhead.

Method	MACs (G)	Params (M)	Rel. MACs	PSNR (dB)
AdaRevD-L (UFPNet)	460	210.8	$1.00 \times$	34.64
DRAMNet (ours)	485	211.7	$\leq 1.06 \times$	34.84
<i>DRAMNet parameter breakdown</i>				
Reversible decoder backbone	-	107.8	-	-
DRAMBlocks (32 blocks total)	-	10.72	-	-
Extra params vs Ada blocks	-	+0.48	-	-
Blur-Map Estimation head (4 blocks)	-	0.44	-	-
Total DRAMNet params	-	211.7	-	-

To ensure reliability, we applied the Bonferroni correction, which controls the family-wise error rate across comparisons. This conservative adjustment minimizes false positives, reinforcing the significance of the results.

We used a significance level of $\alpha = 0.05$ for all statistical tests. The reported p -values correspond to one-sided Wilcoxon signed-rank tests. Comparisons with $p < \alpha$ are considered statistically significant. To account for multiple comparisons, we applied the Bonferroni correction, adjusting the threshold for significance to control the family-wise error rate. This correction ensures that the observed significance is not due to chance and confirms the robustness of our findings.

After correction, the comparisons involving the full model (D=✓, B=✓) remained statistically significant across both PSNR and SSIM metrics, indicating that the combination of depth pretraining and blur-awareness contributes meaningfully to performance gains.

11 PERFORMANCE

Computational Cost. As shown in Table 8, DRAMNet maintains nearly the same computational footprint as AdaRevD-L. Each DRAMBlock adds only $\approx 15k$ parameters over the original Ada block (335k vs. 320k), resulting in a total increase of $\approx 0.48M$ parameters across all 32 decoder blocks. The four-stage Blur-Map Estimation (BME) head adds an additional $\approx 0.44M$ parameters. Together, the full model increases total parameters by only $\approx 0.94M$, i.e., a relative increase of just $\approx 0.4\%$ over AdaRevD-L.

Since MACs scale proportionally to block size and the BME modules operate on downsampled 14×14 features, the overall increase in computational cost is bounded by $\leq 6\%$. Importantly, DRAMNet preserves the reversible backbone, patch-wise processing, and early-exit mechanism of AdaRevD, so practical inference latency remains almost unchanged (typically within 5%).