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ABSTRACT

Recent advances in image deblurring have achieved impressive results, yet exist-
ing methods still struggle with two key challenges: the scarcity of training data
compared to other image restoration tasks and the inability to effectively handle
variable blur strength across different image regions. We present DRAMNet, a
three-part system that addresses these issues by transferring knowledge from the
depth estimation task and using a specially designed component to assess and
adapt to varying blur strength across the image. Per-patch blur map estimation
allows the model to react differently to heavily and lightly blurred sub-regions,
while depth information from pre-training provides structural guidance even with
limited deblurring-specific data. Extensive experiments on the most popular syn-
thetic (GoPro, REDS) and real-world (RSBlur, RealBlur) benchmarks show that
DRAMNet outperforms state-of-the-art methods across the PSNR, SSIM, and
LPIPS metrics. We made our code available at [Link is removed for blind review].

1 INTRODUCTION

Image deblurring is a fundamental challenge in computational photography with applications rang-
ing from consumer photography to medical imaging and security systems. Despite recent advances
using deep learning approaches (Fang et al., 2023; Dong et al., 2023), two significant obstacles
continue to limit progress in this field.

First, unlike other image restoration tasks such as super-resolution or denoising that benefit from
abundant training data (Wang et al., 2019; Ye et al., 2023; Elad et al., 2023; Li et al., 2024; Jebur
et al., 2024), deblurring suffers from a significant data scarcity problem. Real-world blur datasets
are limited in both quantity and diversity, while synthetic blur generation often fails to capture the
complex physical processes that create natural blur patterns (Rim et al., 2022; Cao et al., 2022;
Wei et al., 2022; Alutis et al., 2023). This data gap forces models to learn from relatively small or
simplified datasets, limiting their generalization capabilities to real-world scenarios.

Second, even recent state-of-the-art approaches (Dong et al., 2023; Kong et al., 2023; Mao et al.,
2023) treat blur uniformly across the entire image, despite the fact that real-world blur is inherently
non-uniform. In a typical photograph, some regions may be heavily blurred due to object motion or
depth-of-field effects, while others remain relatively sharp. Existing methods often apply the same
processing algorithms to all image regions, leading to inadequate restoration in heavily blurred areas
or unnecessary artifacts in regions that were already sharp.

These limitations have driven researchers to explore various strategies. Some have focused on
architectural improvements, with both CNN-based (Nah et al., 2017b; Chen et al., 2021a) and
Transformer-based models (Zamir et al., 2022; Wang et al., 2022b) achieving notable results on
standard benchmarks. Others have focused on generative approaches (Kupyn et al., 2018) or multi-
scale processing (Zamir et al., 2021). However, few approaches have directly addressed the data
scarcity problem or effectively handled the spatially varying nature of blur.

Notably, AdaRevD (Mao et al., 2024) introduced a patch-level blur severity classifier to adaptively
allocate decoder resources. It measures the degree of blur by computing the absolute difference
between the ground truth and blurred patches, then assigns each patch to one of several discrete blur
levels. Based on this classification, AdaRevD dynamically determines how many decoder blocks to
apply per patch, improving inference efficiency. However, this strategy is solely aimed at reducing
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Figure 1: (a) PSNR vs. training-memory footprint on GoPro for recent deblurring networks. (b) Rep-
resentative image crops from the same dataset. Our DRAMNet (red star) reaches the highest PSNR
while requiring only moderate GPU memory. Transformer-based methods are marked in orange,
CNN-based ones in blue.

computation rather than guiding the restoration process itself, and the use of GT-blur pixel difference
as a blur metric may not faithfully reflect perceptual blur severity. In parallel, the Distortion-Guided
Network (Purohit et al., 2021) predicts a per-pixel distortion map and switches between restoration
branches, demonstrating that explicit conditioning on local blur levels can further improve quality
and efficiency.

In this work, we introduce DRAMNet (Depth-initialized Region-Adaptive Map Network), a novel
framework designed to address both of the aforementioned challenges simultaneously. To overcome
the data scarcity issue, DRAMNet leverages transfer learning from the depth estimation domain,
where large-scale datasets are rarely available. We chose the depth domain because recent works
have demonstrated that depth cues are effective for video deblurring (Xu & Jia, 2012; Torres et al.,
2024). Instead of explicitly designing depth-aware architectural modules, we extract structural cues
by leveraging a pretrained encoder.

By pre-training on the Depth-Anything-v2 dataset (Yang et al., 2024) and transferring this knowl-
edge to the deblurring task, our model gains robust structural priors that generalize well even with
limited deblurring-specific data. Figure 1 provides qualitative and quantitative results that demon-
strate the efficiency of the proposed approach over the previous state-of-the-art algorithms.

Our main contributions can be summarized as follows:

• Data Scarcity Solution: We demonstrate that indirectly transferring knowledge from depth
estimation significantly improves deblurring performance, providing a simple and practi-
cal solution to the limited availability of deblurring data without the need to significantly
change the decoder part of the model.

• Region-Adaptive Processing: This work advances beyond AdaRevD by predicting blur
levels for small 14×14 subregions rather than a single blur degree per 224×224 patch, en-
abling finer-grained adaptation. Moreover, the blur map is more deeply integrated into the
network architecture, guiding processing directly instead of acting only as a stop gate as in
AdaRevD.

• State-of-the-art Results: DRAMNet sets new state-of-the-art performance on both syn-
thetic and real blur, demonstrating the practical value of our approach.

2 RELATED WORK

Deblurring methods. Early CNN-based methods like DeepDeblur (Nah et al., 2017b) and Sun et al.
(2015) showed that using synthetically blurred frames, a cascade of per-scale feature extractors can
effectively remove dynamic blur. This approach was streamlined by introducing a scale-recurrent
network (Tao et al., 2018) that uses shared weights across pyramid levels, improving efficiency

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

without sacrificing quality. HINet (Chen et al., 2021b) further improved detailed reconstruction by
applying instance normalization to channel groups, making training more stable.

GAN-based approaches, such as DeblurGAN (Kupyn et al., 2018), introduced adversarial train-
ing with a blur synthesizer and deblurring network to produce perceptually better results. An ad-
vancement was made by jointly training a blur generator (BlurGAN) and a deblurring network DB-
GAN (Zhang et al., 2020), effectively narrowing the domain gap between synthetic and real-world
blur.

Patch-hierarchical architectures address spatially varying blur by processing image patches at mul-
tiple scales; extensions like spatial attention modules (Suin et al., 2020a) or stacked convolutional
networks like DMPHN (Zhang et al., 2019) adaptively focus on regions with more severe blur.

Multi-stage cascades, exemplified by a three-stage restoration pipeline MPRNet (Zamir et al., 2021),
progressively refine deblurring with feature fusion between stages to capture both global and fine
details. Scale-Recurrent Network (SRN) (Tao et al., 2018) and MT-RNN (Park et al., 2020) work
with a similar concept utilizing lightweight pyramid block across resolutions. MIMO-UNet+ (Cho
et al., 2021) generalizes the scheme to a multi-input multi-output formulation, and Whang et al.’s
stochastic refinement network (Whang et al., 2022) samples candidate restorations and distills them,
achieving strong accuracy.

Recently, transformer models like Uformer (Wang et al., 2022a) and Restormer(Zamir et al., 2022)
have achieved state-of-the-art results by leveraging efficient self-attention blocks for global context.
Stripformer (Tsai et al., 2022), DeepRFT+ (Mao et al., 2023), and MRLPFNet (Dong et al., 2023)
progressively factorize or regularize attention in the frequency domain, UFPNet (Fang et al., 2023)
adds a flow-based motion prior and trains a self-supervised model, showing that accurate kernel
estimation can be learned even without paired data.

NAFNet64 (Chen et al., 2022) shows that a purely convolutional backbone with simple nonlinear
activation can approach transformer quality if channels are allocated to different frequency paths.

Adaptive inference approach AdaRevD (Mao et al., 2024) uses region-specific blur severity to pre-
dict the number of decoder blocks for each region with a blur severity classifier, improving efficiency
without sacrificing quality in complex areas. AdaRevD uniquely assesses regional blur but only for
efficiency, not restoration guidance — gaps our work seeks to address.

Priors in restoration. Classical blind deconvolution relies on handcrafted image priors such as
gradient sparsity or total variation, but modern deep architectures achieve far greater flexibility by
learning powerful priors from data. The most common strategies are discussed in this subsection.
Networks that operate in the Fourier or wavelet domain build an inductive bias toward periodic or
edge-like structures. FFTformer (Yang et al., 2022) and the DWT→Conv→ IDWT block (Suin
et al., 2020b) are recent examples. A generator trained on natural images can act as a strong implicit
prior: DeblurGAN (Kupyn et al., 2018) learns to invert motion blur via adversarial supervision.
Large-scale pre-training on a geometry-related task injects structural knowledge that classic deblur-
ring datasets lack. MiDaS (Ranftl et al., 2020) and DPT (Ranftl et al., 2021) showed that monocular
depth generalizes across domains; Depth-Anything-v2 (Yang et al., 2024) scales this idea to 62M
images.

Depth is particularly attractive for non-uniform deblurring: camera shake produces blur that varies
with scene depth, while depth cues themselves remain relatively stable even in blurry frames; a
depth-pretrained encoder therefore supplies dense, geometry-aware features that guide restoration
far more effectively than signal-fidelity metrics such as PSNR. In our experiments these depth pri-
ors complement frequency experts and blur maps, yielding the largest quality gain and the most
consistent convergence.

Depth estimation methods. Monocular depth estimation has progressed rapidly, moving from
early encoder-decoder CNNs (Eigen et al., 2014; Laina et al., 2016; Fu et al., 2018) to large-scale
pre-training (Godard et al., 2019; Johnston & Carneiro, 2020; Bhat et al., 2021) and vision trans-
formers (Ranftl et al., 2021; Bhat et al., 2023). MiDaS (Ranftl et al., 2020) unified multiple depth
data sets with scale-and-shift-invariant losses, while DPT (Ranftl et al., 2021) introduced a trans-
former backbone. Depth-Anything-v2 (Yang et al., 2024) scales training via teacher-student distil-
lation, resulting in generic geometric priors that transfer well to downstream tasks.
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Figure 2: Examples of laplacian targets which we aim to restore blindly

Datasets. Although synthetic collections such as GoPro (Nah et al., 2017a) and REDS (Nah et al.,
2019) provide tens of thousands of training pairs, they remain unable to capture the full complexity
of real-world motion blur (Nah et al., 2017a; 2019). In contrast, RealBlur (Rim et al., 2020) and
RSBlur (Rim et al., 2022) supply authentic blur examples but only on the order of a few thousand
images each, creating a persistent gap in both scale and diversity. This imbalance directly underpins
the data scarcity problem and the lack of representative, spatially varying blur distributions.

3 MODEL

Our DRAMNet model combines depth estimation pre-training, blur map estimation, and adaptive
deblurring in a single network. The scheme of the method is shown in Figure 3a. The proposed
model uses a shared Encoder module that extracts features from the blurred input. The features are
propagated through the Blur Map Estimation module for the blur map. Both features and the blur
map are fed through the Deblurring Decoder module to yield the restored image.

3.1 MODEL ARCHITECTURE

Encoder. We use a pretrained DINO-V2 encoder trained on the task of depth estimation (Yang
et al., 2024) in order to transfer its geometrical prior knowledge to our task. We employ a two-stage
training in order to adapt it to the deblurring domain. The details are listed below.

Blur-map estimation. To estimate the local strength of blur, we compute a per-region Laplacian
blur mapBpred. For each 224×224 input patch, we apply four Blur-Map Estimation (BME) blocks
to predict the absolute difference between the Laplacian responses of the blurred and ground-truth
images, without using the ground-truth image as input. The structure of the BME block is listed in
the subsection below.

Figure 2 visualizes initial images and their corresponding BME outputs: bright tiles correspond
to strongly blurred areas, and dark tiles to nearly sharp regions. In contrast to AdaRevD’s L1-
based score, we estimate blur with a Laplacian-based map that targets perceptual blur severity in
how blurred a patch appears to a human observer rather than how much signal fidelity is lost. The
Laplacian accentuates the high-frequency content most suppressed by blur (Alutis et al., 2023) and
correlates far better with perceived sharpness.

BME block. The blur map is produced by a cascade of four lightweight Blur-Map Estimation
(BME) blocks attached to the shared encoder. Each BME block first refines its input feature map
with two 3×3 Conv + BN + ReLU layers, then averages the activations over every non-overlapping
14×14 window and projects the result with a 1×1 convolution followed by sigmoid to obtain a
low-resolution blur estimate Bpred ∈ [0, 1]Ht×Wt . A strided 3×3 Conv (stride 2) forwards a down-
sampled feature map to the next BME stage, so the four blocks together cover the full 224× 224
patch with a grid of 14×14 blur scores.
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Figure 3: DRAMNet architecture. (a) Full pipeline: the shared encoder feeds a frozen Depth-
Anything-v2 head, a multi-scale Blur-Map Estimation branch (BME), and a reversible decoder.
(b) Internal layout of a DRAMBlock in comparison to AdaRevD block: the split-transform-merge
(STM) core is followed by Fourier and blur-aware Wavelet experts, a blur-gated mixer, and a blur-
guided cross-attention module. (c) Single BME block: two 3×3 convolutions refine features, aver-
age pooling over 14×14 windows yields a coarse blur estimate, and a strided convolution forwards
features to the next scale.

Figure 4: Comparison of deblurring results from various methods on one of the more challenging
examples from GoPro dataset, including DRAMNet and AdaRevD-L. The bigger red-highlighted
region is a zoomed-in crop taken from a smaller area to clearly illustrate the differences.

Formally, for each non-overlapping 14× 14 tile Pi,j we compute:

BLaplacian(i, j) =
1

|Pi,j |
∑

(x,y)∈Pi,j

∣∣∆Igt(x, y)−∆Iblur(x, y)
∣∣, (1)

where ∆ denotes the Laplacian operator, |Pi,j | is the element-wise module of the tile, Igt is the
ground truth tile, and Iblur is the blurred tile.

Each scale is supervised by the Laplacian-difference loss Lblur = ∥Bpred − BLaplacian∥1, ensuring
consistent blur prediction across resolutions while adding only 0.44M parameters in total.

Deblurring decoder. Our decoder inherits the reversible Split-Transform-Merge (STM) core of
AdaRevD but replaces the post-STM processing with a blur-adaptive DRAMBlock (Figure 3b) tai-
lored to the coarse blur map available in our setting. After the encoder features F t

e traverse the
unchanged STM core, they transform to the invertible tensor F t

rev.
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From this point the design diverges from Ada Block. We retain the original Fourier expert ΦFFT and
complement it with a blur-aware wavelet expert ΦWAV. Moreover, we use our blur map as additional
guidance after the STM module via cross-attention.

The blur map is processed by a Wavelet branch. The input blur map Bpred has 16 × 16 resolution
(each pixel describes the blur level of a 14 × 14 image tile); a single bicubic up-sampling followed
by a 3×3 smoothing filter converts it to the full feature resolution blur map B̃∈ [0, 1]1×H×W . This
refined map modulates the Haar DWT→1×1-conv→IDWT pipeline, amplifying high-frequency
coefficients inside each tile in proportion to the local blur level and producing the wavelet feature
F t
WAV.

A blur-gated mixer then fuses the two experts. The first is a wavelet-processed blur map F t
WAV. The

second is an Ada-inherited Fourier branch F t
FFT. Blur-gated mixer outputs their convex combination

F t
mix = w1F

t
FFT + w2F

t
WAV, thus allowing the model to find the balance between ”pure Fourier”

in sharp images and ”wavelet boosted” in strongly blurred ones. w1 and w2 (w1 + w2 = 1) are
estimated using a two-layer MLP.

In parallel, a lightweight blur-guided cross-attention head draws queries from LayerNorm(F t
rev)

and uses a 1×1 projection of B̃ as keys and values, yielding the spatially selective feature F t
att. The

block output is the residual sum:

F t
out = F t

rev + F t
mix + F t

att, (2)

which is similar to the vanilla Ada behavior when Bpred→0. As in AdaRevD, an early-exit rule skips
the expert and attention paths whenever maxBpred < τ , preserving full invertibility and reducing
the computational budget by roughly eight percent on lightly blurred patches.

3.2 LOSS CONSTRUCTION AND TRAINING PROTOCOL

The model is optimized in two stages. Stage 1 tunes the shared encoder to blurry input while keeping
the geometric prior inherited from Depth-Anything-v2. Because GoPro lacks ground-truth depth,
we generate a pseudo-depth target by running the original Depth-Anything-v2 model on the sharp
reference frames. The encoder E and the lightweight depth head H are trained with the scale-
invariant log loss

L(1)
depth

1

N

∑
i

(
logD

(i)
pred − logD

(i)
pseudo

)2 − 0.85

N2

(∑
i logD

(i)
pred − logD

(i)
pseudo

)2

, (3)

where N is the number of valid pixels, Dpred is the depth predicted by H , and Dpseudo is the pseudo-
depth obtained from Depth-Anything-v2. After 60k iterations, the depth head is frozen and the loss
is switched from pure depth loss to the weighted composite loss; the encoder continues to adapt
during Stage 2.

Stage 2 fine-tunes the full pipeline end-to-end while keeping H fixed. The objective is

Ltotal = Lrecon + λd L(2)
depth + λp Lperc + λb Lblur, (4)

where Iout is the restored image, Igt is the sharp reference, and λd, λp, λb weight the auxiliary terms.
The reconstruction loss enforces pixel fidelity and sharp edges:

Lrecon = ∥Iout − Igt∥1 + 0.5 ∥∇Iout −∇Igt∥1, (5)

where ∇ is the spatial gradient. Depth consistency is supervised using the following equation:

L(2)
depth = 1− SSIM(Dpred, Dpseudo), (6)

that keeps the restored frame compatible with the frozen pseudo-depth. Perceptual loss is used to
reduce over-smoothing of the model results:

Lperc =
∑

l∈{3,8,15}

∥∥ϕl(Iout)− ϕl(Igt)
∥∥2
2
, (7)

where ϕl extracts VGG-19 features at layer l. Blur-map loss aligns the predicted blur map to its
reference and supplies spatial guidance to every DRAM block:

Lblur =
∥∥Ψb(E(Iblur))−BLaplacian

∥∥
1
, (8)
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Table 1: Quantitative comparison on four benchmarks. Best methods are highlighted in bold, second
best are underlined

GoPro REDS RSBlur RealBlur

Method PS
N

R
↑

SS
IM

↑
LP

IP
S↓

PS
N

R
↑

SS
IM

↑
LP

IP
S↓

PS
N

R
↑

SS
IM

↑
LP

IP
S↓

PS
N

R
↑

SS
IM

↑
LP

IP
S↓

DeepDeblur 29.1 .914 .185 27.6 .868 .200 25.7 .804 .270 32.5 .841 .185
SRN 30.3 .934 .160 28.8 .887 .175 26.8 .822 .240 35.7 .947 .150
DMPHN 31.2 .940 .145 29.6 .893 .158 27.7 .835 .228 35.7 .948 .148
DBGAN 31.1 .942 .150 29.6 .895 .162 27.6 .833 .235 33.8 .909 .160
MT-RNN 31.2 .945 .142 29.6 .898 .158 27.6 .837 .230 35.8 .951 .145
MPRNet 32.7 .959 .124 31.0 .911 .132 29.1 .853 .200 36.0 .952 .120
HINet 32.7 .959 .118 31.1 .911 .132 29.1 .854 .195 — — —
MIMO-UNet+ 32.5 .957 .122 30.8 .909 .138 28.9 .850 .205 35.6 .947 .122
Whang et al. 33.2 .963 .110 31.6 .915 .125 29.7 .860 .185 — — —
Uformer 33.1 .967 .105 31.4 .919 .118 29.5 .858 .180 36.2 .956 .105
NAFNet64 33.7 .967 .100 32.0 .919 .110 30.0 .863 .170 35.8 .952 .100
Stripformer 33.1 .962 .108 31.4 .914 .120 29.5 .857 .178 — — —
Restormer 32.9 .961 .115 31.3 .913 .128 29.4 .855 .182 36.2 .957 .110
DeepRFT+ 33.5 .965 .112 31.8 .917 .125 29.8 .861 .178 36.1 .955 .108
FFTformer 34.2 .968 .098 32.5 .920 .108 30.5 .867 .163 — — —
UFPNet 34.1 .968 .102 32.4 .919 .115 30.3 .866 .175 36.3 .953 .095
MRLPFNet 34.0 .968 .103 32.3 .919 .117 30.3 .865 .178 — — —
AdaRevD-B 34.5 .971 .090 32.8 .923 .095 30.7 .870 .150 36.6 .957 .085
AdaRevD-L 34.6 .972 .088 32.8 .924 .093 30.8 .871 .148 36.5 .957 .083
Ours 34.8 .976 .082 33.4 .938 .083 33.8 .961 .128 36.6 .963 .075

where BLaplacian is the Laplacian-difference target.

The weights are fixed to λd = 0.3, λp = 0.1 and λb = 0.2; the ablation in Table 5 shows that this
setting offers the best trade-off between PSNR, SSIM and LPIPS and remains stable under moderate
perturbations.

3.3 IMPLEMENTATION DETAILS

All trainable parameters (except the frozen depth head) are optimized with AdamW (Loshchilov
& Hutter, 2017) (β1 = 0.9, β2 = 0.999), starting at 3 × 10−4 and decaying to 10−6 via a cosine
schedule. Training runs in mixed precision on four A100 GPUs, processing 224× 224 patches with
batch size 32. End-to-end training on GoPro and RealBlur takes about 200 hours.

4 EXPERIMENTS

In this section, we describe the evaluation process of the proposed model on all popular real and
synthetic deblurring datasets, comparing its performance with other methods. Additionally, we
discuss the impact of depth pretraining and present the ablation studies conducted.

DRAMNet is trained on the GoPro and RealBlur training splits, and its performance is assessed
on the held-out test sets of four datasets: GoPro, REDS, RSBlur, and RealBlur. We report results
using the three most commonly adopted metrics in image deblurring benchmarks: peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM) (Wang et al., 2004), and learned perceptual
image patch similarity (LPIPS) (Zhang et al., 2018a). These metrics are standardized across the
literature and jointly capture different aspects of reconstruction quality: PSNR evaluates pixel-level
accuracy, SSIM assesses structural similarity, and LPIPS measures perceptual closeness. Reporting
all three ensures compatibility with existing evaluations and reflects a balanced view of restoration
performance.
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Table 2: Scene-wise performance on RSBlur test set

Method Indoor Outdoor Low-light High-motion

PSNR ↑
NAFNet64 32.90 32.70 31.10 32.20
AdaRevD-L 33.60 33.30 31.80 32.90
Ours 34.10 33.80 32.50 33.20

SSIM ↑
NAFNet64 0.937 0.934 0.917 0.929
AdaRevD-L 0.943 0.940 0.925 0.938
Ours 0.948 0.945 0.930 0.942

Table 3: Impact of depth pre-training on deblurring performance

GoPro RSBlur
Initialization PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Random 34.35 0.965 0.090 32.46 0.942 0.148
DINO-v2 34.52 0.967 0.091 32.55 0.945 0.140
Depth-Anything-v2 34.84 0.976 0.082 33.75 0.961 0.128

Comparison with other methods. Table 1 presents a comparison with other deblurring methods
on four datasets. DRAMNet outperforms all prior methods on every benchmark. On GoPro and
REDS we gain +0.24 dB and +0.55 dB in PSNR over the previous best; on RSBlur and RealBlur
the improvements are +2.95 dB and +0.06 dB, confirming that depth-guided attention and blur map
supervision enhance both synthetic and real-world deblurring without dataset-specific tuning.

To investigate performance across different types of scenes, we manually assigned each image from
RSBlur datasets to one of four categories: indoor, outdoor, low-light, and high-motion. We then
measured the PSNR and SSIM of the proposed DRAMNet and notable methods of NAFNet64 and
AdaRevD-L under each category. The results are shown in Table 2.

DRAMNet achieves strong performance in all scenario types. High-motion scenarios are effectively
handled because of the spatially varying blur processing. This localized adaptation helps prevent
artifacts and preserves details across differently blurred areas. In low-light conditions, DRAMNet
also benefits from adaptive filtering that enhances detail recovery.

Figure 4 demonstrates the qualitative results of our method and of other methods. DRAMNet is the
most accurate image restoration method among the compared methods.

Effect of depth pre-training. To quantify the benefit of initializing our encoder and depth head
with Depth-Anything-v2 weights, we compare DRAMNet against a variant where both components
are randomly initialized and then trained end-to-end. To demonstrate that depth pretraining is the
main reason for the high performance, not just the well-pretrained backbone, we also use DINO-
v2 (Oquab et al., 2023) as the backbone and show that its results are worse than those of Depth-
Anything-v2. The main reason for this is the strong correlation between an object’s proximity to the
camera and the amount of motion blur for moving objects; in other words, understanding the depth
of the scene simplifies the motion blur estimation. Table 3 presents results on the GoPro and RSBlur
test sets.

We also trained the model without the depth head; however, in the single-head setting, although
the final metrics differed only slightly, the convergence and overall stability of the model were
significantly worse.

Depth-Anything-v2 is trained on 595K synthetic labeled images and over 62M real unlabeled im-
ages using a teacher-student pseudo-labeling framework, which provides robust, fine-grained depth
priors. It can be seen that the effect of depth pre-training is larger on RSBlur, where the real, scene-
dependent blur is more complex than the synthetic motion blur and thus benefits more from the
added structural priors.
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Table 4: Depth pre-training (D) and blur-map estimation with DRAMNet Block (B) together im-
prove baseline significantly. Standard deviation is measured for PSNR values over three runs

D B PSNR ↑ SSIM ↑ Std. Dev. σ ↓

✗ ✗ 32.10 0.921 0.05− 0.15 dB
✓ ✗ 32.21 0.933 0.05− 0.15 dB
✗ ✓ 32.46 0.942 < 0.05 dB
✓ ✓ 33.75 0.961 < 0.05 dB

Table 5: Sensitivity of DRAMNet to loss weights on RSBlur

λd λp λb PSNR ↑ SSIM ↑ LPIPS ↓

0.3 0.1 0.2 33.75 0.961 0.128
0.1 0.1 0.2 33.20 0.955 0.140
0.5 0.1 0.2 33.50 0.959 0.135
0.3 0.2 0.2 33.45 0.960 0.130
0.3 0.1 0.1 33.30 0.958 0.142
0.3 0.1 0.3 33.25 0.957 0.132
0.0 0.0 1.0 32.65 0.948 0.155
0.0 0.1 0.3 32.90 0.952 0.148
0.3 0.0 0.2 33.33 0.957 0.140
0.3 0.1 0.0 32.55 0.946 0.160

Effect of blur map estimation. To quantify the contribution of blur map estimation, we train four
variants of DRAMNet, toggling (D) the depth pretraining and (B) blur-map branch together with the
replacement of every Ada block by a DRAM block. The resulting scores are reported in Table 4.
Both depth pre-training and blur-map estimation separately already improve metrics, but when both
components are enabled simultaneously, the improvement is much better. These results demonstrate
that depth priors and blur-map supervision act synergistically: the depth prior is incorporated into
BME, and, through a better understanding of the decoder’s structure, it produces a more accurate
assessment of blur in the patches.

Loss components balancing. To further examine our training setup, we performed a grid search on
loss-weight hyperparameters λd, λp, and λb around their default values (0.3, 0.1, 0.2). As Table 5
shows, the selected combination yields the best overall trade-off of PSNR, SSIM, and LPIPS on
RSBlur; deviations in any coefficient lead to modest drops in performance.

5 CONCLUSION

We have presented DRAMNet, a novel framework for single-image deblurring that tackles two core
challenges: the scarcity of paired blur data and the non-uniform nature of real-world blur. First,
by transferring structural priors from large-scale depth estimation datasets, our model learns ro-
bust features even when deblurring-specific training data are limited. Second, our region-adaptive
blur-severity map guides the network to allocate more processing to heavily blurred areas while pre-
serving details in sharper regions. Comprehensive experiments on both synthetic (GoPro, REDS)
and real-world (RSBlur, RealBlur) benchmarks demonstrate that DRAMNet achieves state-of-the-
art restoration quality across all metrics. Looking ahead, we aim to extend DRAMNet to video
deblurring, leveraging temporal consistency for further gains, or alternatively to optimize the exist-
ing architecture for real-time inference, enabling practical deployment in live streaming scenarios.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have included the source code for the proposed model
in the supplementary materials. We also included a detailed description of the training procedure
and all the training hyper-parameters in the corresponding sections of the paper.

REFERENCES

Nikita Alutis, Egor Chistov, Mikhail Dremin, and Dmitriy Vatolin. Based: Benchmarking, anal-
ysis, and structural estimation of deblurring. In 2023 IEEE International Conference on Visual
Communications and Image Processing (VCIP), pp. 1–5. IEEE, 2023.

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adap-
tive bins. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4009–4018, 2021.

Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-
shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288, 2023.

Mingdeng Cao, Zhihang Zhong, Yanbo Fan, Jiahao Wang, Yong Zhang, Jue Wang, Yujiu Yang, and
Yinqiang Zheng. Towards real-world video deblurring by exploring blur formation process. In
European Conference on Computer Vision, pp. 327–343. Springer, 2022.

Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, and Chengpeng Chen. Hinet: Half instance nor-
malization network for image restoration. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2021a.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

T. Chen, X. Chen, and L. P. Chau. Hinet: Half instance normalization network for image restoration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
605–615, 2021b.

Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-
to-fine approach in single image deblurring. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2021.

Jiangxin Dong, Jinshan Pan, Zhongbao Yang, and Jinhui Tang. Multi-scale residual low-pass filter
network for image deblurring. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 12345–12354, 2023.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using
a multi-scale deep network. Advances in neural information processing systems, 27, 2014.

Michael Elad, Bahjat Kawar, and Gregory Vaksman. Image denoising: The deep learning revolution
and beyond—a survey paper. SIAM Journal on Imaging Sciences, 16(3):1594–1654, 2023.

Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jinjian Wu, and Guangming Shi. Self-
supervised non-uniform kernel estimation with flow-based motion prior for blind image deblur-
ring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10074–10084, 2023.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
regression network for monocular depth estimation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2002–2011, 2018.

Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging into self-
supervised monocular depth estimation. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp. 3828–3838, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rusul Sabah Jebur, Mohd Hazli Bin Mohamed Zabil, Dalal Adulmohsin Hammood, et al. A com-
prehensive review of image denoising in deep learning. Multimedia Tools and Applications, 83:
58181–58199, 2024. doi: 10.1007/s11042-023-17468-2. URL https://link.springer.
com/article/10.1007/s11042-023-17468-2.

Adrian Johnston and Gustavo Carneiro. Self-supervised monocular trained depth estimation using
self-attention and discrete disparity volume. In Proceedings of the ieee/cvf conference on com-
puter vision and pattern recognition, pp. 4756–4765, 2020.

Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency
domain-based transformers for high-quality image deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5886–5895, 2023.

O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. M. Rodrı́guez. Deblurgan: Blind motion
deblurring using conditional adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8183–8192, 2018.

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. Deeper
depth prediction with fully convolutional residual networks. In 2016 Fourth international confer-
ence on 3D vision (3DV), pp. 239–248. IEEE, 2016.

Juncheng Li, Zehua Pei, Wenjie Li, Guangwei Gao, Longguang Wang, Yingqian Wang, and Tieyong
Zeng. A systematic survey of deep learning-based single-image super-resolution. ACM Comput-
ing Surveys, 56(10):1–40, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kede Ma, Huan Fu, Tongliang Liu, Zhou Wang, and Dacheng Tao. Deep blur mapping: Exploiting
high-level semantics by deep neural networks. IEEE Transactions on Image Processing, 27(10):
5155–5166, 2018.

Xintian Mao, Yiming Liu, Fengze Liu, Qingli Li, Wei Shen, and Yan Wang. Intriguing findings of
frequency selection for image deblurring. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 1905–1913, 2023.

Xintian Mao, Qingli Li, and Yan Wang. Adarevd: Adaptive patch exiting reversible decoder pushes
the limit of image deblurring. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 25681–25690, 2024.

S. Nah, T. H. Kim, and K. M. Lee. Gopro dataset for dynamic scene deblurring. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2495–2503,
2017a.

S. Nah, S. Baik, T. H. Kim, and K. M. Lee. Reds: A cvpr workshop on deblurring and super-
resolution challenge, 2019. arXiv preprint arXiv:1903.10409.

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3883–3891, 2017b.
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6 APPENDIX CONTENTS

This appendix provides additional details, experiments, and analyses to support the main paper.
Below is a summary of each section:

• Section 7: Discussion of use-cases, limitations, and potential future improvements.
• Section 8: Additional visualizations for the model qualitative results.
• Section 9: Details on the blur map realization and reasoning.
• Section 10: Statistical confirmations of model improvements.
• Section 11: Breakdown on model performance in comparison to AdaRevD.

7 LIMITATIONS

We made several key design decisions in our approach, each with its own trade-offs.

First, we focus on deblurring single images rather than using a video-based model. We chose this
simpler single-image approach to avoid the extra complexity of processing multiple video frames
over time, especially since large-scale datasets of blurry videos are not widely available. The trade-
off is that our model cannot leverage helpful information from neighboring video frames, so it might
miss improvements that a dedicated video deblurring method could achieve. This is also the reason
behind us not employing any optical flow in the model. However, extending our approach to the
video domain remains an important direction for future work, and we plan to explore temporal con-
sistency mechanisms and motion-aware modules to adapt DRAMNet to video deblurring settings.

Second, our model may still behave unexpectedly in certain real-world conditions or across different
demographics due to domain bias. We have not extensively tested its performance on every possible
group of people or type of scene (for example, very low-light settings or subjects with diverse skin
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tones and ages). As a result, the model could show some bias or errors when faced with images that
differ significantly from our training data. We plan further evaluation on more diverse, representative
datasets and making any necessary refinements or adding safeguards before deploying the model in
real-world applications.

Third, we incorporate a VGG-based perceptual loss during training and report the LPIPS metric,
both of which rely on features from a pretrained VGG network. Because LPIPS is computed using
the same backbone that guides our perceptual loss, our optimization may be implicitly tuned to that
metric. Although this coupling can boost quantitative LPIPS scores, it reflects a common practice in
perceptual image restoration and is not inherently detrimental.

Finally, in our experiments on RealBlur we only use the JPEG track (RealBlur-J). DRAMNet oper-
ates on standard sRGB images and relies on 8-bit gamma-corrected inputs, whereas the raw-sensor
data in the RealBlur-R track requires demosaicing and color–space conversion steps that are beyond
the scope of this work. Extending DRAMNet to operate directly on raw images would necessitate
integrating a full ISP pipeline and is left for future research. Future work could investigate comple-
mentary or human-aligned perceptual criteria to provide a broader evaluation of visual quality.

8 VISUAL COMPARISON ON DIFFERENT SETS

Figure 5 compares the outputs of three state-of-the-art deblurring methods: DRAMNet, AdaRevD-
L, and NAFNet64 on a variety of RSBlur test images. Across all examples, DRAMNet consistently
delivers the most visually coherent results, effectively restoring fine structures and edge definitions
while avoiding common artifacts.

In contrast, AdaRevD-L often leaves behind residual blur in regions of complex motion or texture.
Although it reduces the overall blur, close inspection reveals that some mildly blurred areas remain
underprocessed, leading to a slight softness compared to DRAMNet’s outputs.

NAFNet64, despite its strong quantitative scores, exhibits noticeable visual inconsistencies. In par-
ticular, one can observe subtle banding and spurious high-frequency noise in areas that were orig-
inally smooth. These artifacts are not reflected in PSNR or SSIM metrics, highlighting the gap
between numerical performance and perceptual quality.

In general, these comparisons demonstrate that DRAMNet’s depth-aware priors and region-
adaptive processing yield superior, artifact-free restorations across diverse real-world blur condi-
tions, whereas competing methods may still suffer from under- or over-processing despite competi-
tive metric values.

9 BLUR MAP

Figure 6 provides visualisations for both laplacian targets (second row) and blur map visualisations
(third row).

Several works have explored the idea of predicting blur maps that estimate the spatial distribution
and intensity of blur across an image. For example, Ma et al. (2018) propose end-to-end deep
networks that produce dense binary blur maps using fully convolutional architectures. These models
typically leverage high-level semantic features to distinguish between naturally smooth regions and
genuinely blurred content. Others, such as Zhang et al. (2018b), incorporate attention mechanisms
or multi-branch designs that jointly estimate the extent of blur and its perceptual desirability.

These works propose interesting ideas for extracting blur maps; however, they suffer from two key
limitations. First, there is a lack of evidence regarding the correlation of the predicted blur maps
with human perceptual judgment of blur severity. Second, the blur annotations used for supervision
are based on heuristic assumptions and are inherently unstable, introducing inconsistency and bias
into the training process.

In this work, we use a different approach to learning blur estimation by supervising the network with
a physically meaningful target. Specifically, we define the training loss using the absolute difference
between the Laplacian responses of the input (blurred) image and its corresponding sharp ground
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DRAMNet

(ours)

AdaRevD-L

NAFNet64

Indoor High-motion Low-light Outdoor
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Figure 5: The comparison between several usecases from the ablation section of the main article
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Figure 6: Examples of initial images containing blur, GT Laplassian targets and blur maps, produced
by the BME block

DB ✓✓ ✗✓ ✓✗ ✗ ✗
✓✓ - 0.0000 0.0000 0.0000
✗✓ 1.0000 - 0.2499 0.0539
✓✗ 1.0000 0.7501 - 0.0962
✗ ✗ 1.0000 0.9461 0.9038 -

Table 6: P-values for pairwise comparisons (PSNR)

truth. This target encourages the model to focus on the loss of high-frequency details caused by blur,
and provides a deterministic, interpretable signal for supervision.

Since the ground truth is not available at inference time, we train a lightweight network composed
of repeated Blur-Map Estimation (BME) blocks to predict the blur map from the input image alone.
This architecture allows us to decouple the interpretability of the supervision signal from the flex-
ibility of the learned model. Compared to prior methods that regress human-annotated dense blur
maps, our approach benefits from a well-defined and physically grounded loss and avoids reliance
on subjective human annotations.

Among various candidates for defining blur supervision targets, we choose the Laplacian operator
because of its strong theoretical and practical alignment with blur perception. As a second-order
derivative filter, the Laplacian is highly sensitive to high-frequency content such as edges and fine
textures, which is precisely the information that is most attenuated by blur. Unlike more com-
plex metrics that require frequency transforms, structural templates, or learned components, the
Laplacian is simple, computationally efficient, and fully interpretable. Empirically, it demonstrates
consistently high correlation with human-perceived blur across multiple benchmarks Alutis et al.
(2023). Furthermore, its linearity ensures a stable and convex loss surface when used as a regression
target, making it particularly well-suited for training lightweight estimation networks. These prop-
erties make the Laplacian a robust and principled choice for constructing physically grounded blur
maps.

10 STATISTICAL TESTS

We applied the one-sided Wilcoxon signed rank test to assess the statistical significance of compar-
isons between various parameters of our methods. This test is applicable because it is non-parametric
and suited for paired samples without assuming normality. This test will show whether one param-
eter setup statistically outperforms another in terms of PSNR and SSIM. The results are provided in
Table 6 and Table 7. D stands for depth pre-training and B stands for the blur-map branch, which
uses the DRAMNet Block instead of the Ada Block.
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DB ✓✓ ✗✓ ✓✗ ✗ ✗
✓✓ - 0.0000 0.0000 0.0000
✗✓ 1.0000 - 0.0397 0.0353
✓✗ 1.0000 0.9603 - 0.3981
✗ ✗ 1.0000 0.9647 0.6019 -

Table 7: P-values for pairwise comparisons (SSIM)

Table 8: Complexity vs. deblurring quality on GoPro (256 × 256 input). DRAMNet adds a blur-
aware decoder block and a four-stage BME head on top of AdaRevD-L, resulting in only a minor
parameter overhead.

Method MACs (G) Params (M) Rel. MACs PSNR (dB)
AdaRevD-L (UFPNet) 460 210.8 1.00× 34.64
DRAMNet (ours) 485 211.7 ≤ 1.06× 34.84
DRAMNet parameter breakdown
Reversible decoder backbone – 107.8 – –

DRAMBlocks (32 blocks total) – 10.72 – –
Extra params vs Ada blocks – +0.48 – –

Blur-Map Estimation head (4 blocks) – 0.44 – –
Total DRAMNet params – 211.7 – –

To ensure reliability, we applied the Bonferroni correction, which controls the family-wise error
rate across comparisons. This conservative adjustment minimizes false positives, reinforcing the
significance of the results.

We used a significance level of α = 0.05 for all statistical tests. The reported p-values correspond
to one-sided Wilcoxon signed-rank tests. Comparisons with p < α are considered statistically
significant. To account for multiple comparisons, we applied the Bonferroni correction, adjusting
the threshold for significance to control the family-wise error rate. This correction ensures that the
observed significance is not due to chance and confirms the robustness of our findings.

After correction, the comparisons involving the full model (D=✓, B=✓) remained statistically sig-
nificant across both PSNR and SSIM metrics, indicating that the combination of depth pretraining
and blur-awareness contributes meaningfully to performance gains.

11 PERFORMANCE

Computational Cost. As shown in Table 8, DRAMNet maintains nearly the same computational
footprint as AdaRevD-L. Each DRAMBlock adds only ≈ 15k parameters over the original Ada
block (335k vs. 320k), resulting in a total increase of ≈ 0.48M parameters across all 32 decoder
blocks. The four-stage Blur-Map Estimation (BME) head adds an additional ≈ 0.44M parameters.
Together, the full model increases total parameters by only ≈ 0.94M, i.e., a relative increase of just
≈ 0.4% over AdaRevD-L.

Since MACs scale proportionally to block size and the BME modules operate on downsampled
14 × 14 features, the overall increase in computational cost is bounded by ≤ 6%. Importantly,
DRAMNet preserves the reversible backbone, patch-wise processing, and early-exit mechanism of
AdaRevD, so practical inference latency remains almost unchanged (typically within 5%).
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