
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARD EDITABLE VECTOR GRAPHICS: LAYERED
SVG SYNTHESIS FROM MULTIMODAL PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scalable Vector Graphics (SVGs) are essential for modern design workflows,
yet existing methods are confined to single-modality inputs and produce non-
editable outputs. To bridge this gap, we introduce LayerVec, the first framework to
synthesize editable, layered SVGs from multimodal prompts. LayerVec is designed
to operate on top of powerful Unified Multimodal Models (UMMs), employing a
dual-stage pipeline: it first generates a raster guidance image, then uses an iterative
deconstruction process to intelligently segment it into semantically coherent vector
layers. To facilitate rigorous evaluation, we conduct MUV-Bench, a comprehensive
benchmark, and Layer-wise CLIP Consistency (LCC), a metric assessing structural
editability. Experiments show LayerVec significantly outperforms state-of-the-art
baselines in producing structurally clean and semantically accurate SVGs. We
further demonstrate its robustness and model-agnostic nature by showing consistent
performance gains across different UMM backbones.

1 INTRODUCTION

Scalable Vector Graphics (SVG) are vital for modern image rendering due to their resolution in-
dependence and editability (Polaczek et al., 2025; Yang et al., 2025; Song & Zhang, 2022). This
structure enables precise, non-destructive editing at the object level, where layered organization
is crucial for managing complex scenes. In professional design pipelines, different elements are
conventionally separated into <g> groups (as visualized in Fig. 1), allowing designers to manipulate
objects independently and maintain semantic clarity (Zhang et al., 2025). However, manually crafting
SVGs with such structured layers remains a significant challenge, demanding extensive time and
technical expertise (Jain et al., 2023; Wang et al., 2025). This challenge drives the urgent need for
automated methods that can translate high-level creative intent into production-quality, layered, and
editable vector graphics.

Existing methods adopt either optimization-based methods (Xing et al., 2024; Jain et al., 2023;
Song et al., 2025; Mirowski et al., 2022; Frans et al., 2022) or LLM-based approaches (Yang et al.,
2025; Wu et al., 2024) to generate SVG contents. Despite their effectiveness, as shown in Fig. 1
all existing SVG generation methods encounter a fundamental limitation: they operate exclusively
on single-modality inputs (text-only or image-only), creating a striking disconnect from real-world
design workflows that inherently rely on multi-modal inputs combining visual references with textual
instructions (Ye et al., 2025; Kawar et al., 2023). A reference raster image combined with an editing
instruction provides a more accurate and intuitive specification than text alone (Fu et al., 2024; Bai
et al., 2025a), since visual examples are both common and expressive than text alone. However, this
critical capability remains entirely unexplored in current SVG generation literature.

To bridge this gap, we introduce LayerVec, the first framework to synthesize SVG from multimodal
inputs. Our approach employs a two-stage pipeline. In the first stage, we generate a guidance raster
image that fuses visual references with textual instructions, creating a unified representation that
captures both visual context and editing intent(See Sec. 3.2). In the second stage, we propose an
iterative method that progressively extracts semantic entities from the guidance image and converts
them into distinct vector layers through post-vectorization(See Sec. 3.3). This process transforms the
raster guidance into a structured SVG file while ensuring coherent scene decomposition, preserving
object-level semantics, and enabling fine-grained layer-wise editing. The framework produces

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Change the style to Low-Poly art.

Let the character walking on the moon.

Add a cup of coffee near the pizza.

<svg width="1024"...>

<g id="man" transform="...">
 <path fill="#FFD700" d="..."/>
 <path fill="#00008B" d="..."/>
</g>

<g id="background" transform="...">
 <path fill="#90EE90" d="..."/>
 <path fill="#00508B" d="..."/>
</g>
</svg>

<svg width="1024"...>

<g id=“character" transform="...">
 <path fill="#FFD700" d="..."/>
 <path fill="#00008B" d="..."/>
</g>

<g id="background" transform="...">
 <path fill="#90EE90" d="..."/>
 <path fill="#00508B" d="..."/>
</g>
</svg>

<svg width="1024"...>
<g id=“pizza" transform="...">
 <path fill="#FFD700" d="..."/>
 <path fill="#00008B" d="..."/>
</g>

<g id=“coffee" transform="...">
 <path fill="#90EE90" d="..."/>
</g>
<g id="background" transform="...">
</g>
</svg>

Our Multimodal Input to Layered SVG Two Different Paradigms

Add a cheese near

the mouse.
Text

Image

Text-only

Image-only

(b) Multimodal Input to layered SVG

（Ours)

A mouse sitting

near a cheese.

(a) Single-Modality Input to SVG

+

Layered

Outputs

Ordered
Layers

Redundant
curves

Figure 1: Visualization Results of Our Proposed LayerVec. Our framework enables layered and editable
SVG generation from multimodal inputs, addressing the limitations of prior single-modality methods. Left:
LayerVec handles multimodal inputs into semantically layered SVG file. Right: Comparison against traditional
single-modality approaches (text-only or image-only), where our method (b) produces clean and well-ordered
layers, while prior methods (a) yield flat or entangled outputs.

multi-layered vector graphics that uniquely combine high visual fidelity with semantic consistency,
establishing a new paradigm for multimodal vector graphics generation.

Moreover, to enable rigorous evaluation of this unexplored task, we proposing MUV-Bench
(Multimodal-to-Vector Benchmark), the first comprehensive benchmark specifically designed for
multimodal-to-SVG generation. MUV-Bench comprises 50 diverse raster images paired with 10 pro-
fessional editing instructions each, resulting in 500 carefully curated tasks spanning five essential cat-
egories: Object Addition, Object Removal, Motion Change, Background Change, and Style Transfer.

Furthermore, we identify a fundamental misalignment in existing evaluation metrics of structured
vector generation. Furthermore, we identify a fundamental flaw in existing metrics: they evaluate
the final rendered image but ignore the crucial layered structure that defines editable vector graphics.
This allows models with visually plausible but structurally entangled outputs to score highly. To
address this, we propose Layer-wise CLIP Consistency (LCC), a novel metric that directly assesses
editability by computing the CLIP similarity (Frans et al., 2021) between each semantic layer and
its corresponding label(See Sec. 4.1). Comprehensive experiments have demonstrated that our
LayerVec significantly outperforms both open- and closed-source baselines across text-to-SVG and
multimodal-to-SVG tasks. Additionally, we validate the strong generalization capability of the
proposed framework across different backbone architectures(See Sec. 4.5).

In summary, our contributions are as follows:

1. To the best of our knowledge, this paper is the first to explore SVG generation from multimodal
inputs. We introduce LayerVec, a novel two-stage framework that first synthesizes a high-fidelity
raster image from multimodal inputs, then decomposes it into semantically coherent layers. This
enables the generation of semantically structured, multi-layered SVGs, bridging a critical gap in
vector graphics generation.

2. We introduce MUV-Bench (Multimodal-to-Vector Benchmark), the first comprehensive evalua-
tion benchmark comprising 500 diverse multimodal tasks, enabling systematic and standardized
assessment of multimodal SVG generation methods.

3. We identify a fundamental misalignment in existing evaluation metrics that ignore the structural
aspects crucial to vector graphics quality. To address this, we propose Layer-wise CLIP Con-
sistency (LCC), a novel metric that computes CLIP similarity between each raster layer and its
corresponding semantic label, serving as an automated proxy for structural editability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

4. Comprehensive experiments have demonstrated that our framework achieves significant im-
provements over strong baselines, successfully handling multimodal inputs to generate both
simple icons and complex illustrations with high fidelity. Moreover, our approach exhibits robust
generalization, transferring effectively across different Unified Multimodal Model backbones,
establishing its broad applicability and reliability.

2 RELATED WORK

2.1 TEXT-GUIDED SVG GENERATION

Early approaches use the Sequence-To-Sequence (seq2seq) architecture to generate SVGs (Carlier
et al., 2020; Ha & Eck, 2018; Reddy et al., 2021; Wang & Lian, 2021; Wang et al., 2022). Nonetheless,
the absence of large-scale vector datasets constrains their generalization capabilities and the creation
of complex graphics, with most datasets focusing on specific areas like monochromatic vector
icons (Wu et al., 2023a) and fonts (Wang & Lian, 2021; Song & Zhang, 2022). Optimization-based
methods (Thamizharasan et al., 2024; Xing et al., 2024; Jain et al., 2023; Song et al., 2025; Mirowski
et al., 2022; Frans et al., 2022) directly optimize SVG paths by leveraging powerful priors from
vision-language models such as CLIP or diffusion models (Rombach et al., 2022), yet are critically
hampered by prohibitive computational costs and the production of structurally fragmented, poorly
editable vector outputs. More recently, the advent of Large Language Models (LLMs) unleashes the
potential of generating SVGs via XML code generation (Wu et al., 2024; Yang et al., 2025; Xing et al.,
2025). These methods, however, are often constrained by context length and require post-processing
to approximate a layered structure, undermining the goal of structured generation.

Crucially, professional vector graphics require multi-layer structures so that individual objects can
be independently edited, reused, or recomposed without entanglement. Existing methods, however,
either collapse into fragile shapes or produce incoherent groupings, which severely limits practical
usability. To address this, we propose a novel raster-to-vector deconstruction pipeline that is natively
multimodal: guided by an MLLM’s semantic hierarchy, our framework translates complex multimodal
prompts into clean, layered SVGs that align with real-world design workflows.

2.2 UNIFIED MULTIMODAL MODELS

Unified multimodal models has attracted significant attention in recent years (Wu et al., 2025b; Bai
et al., 2025b; Mao et al., 2025). For instance, OmniGen (Xiao et al., 2025) employs a streamlined
Transformer architecture to address diverse image generation tasks without requiring additional
plugins or preprocessors. Recent breakthroughs, such as Gemini-2.0-flash (Google, 2025) and GPT-
4o (OpenAI et al., 2024), have underscored the field’s vast potential, signaling a paradigm shift from
specialized models (Bai et al., 2025b; Black-Forest-Labs, 2024) towards powerful, unified multimodal
systems. While models like Chameleon (Chameleon, 2025) and Emu3 (Wang et al., 2024) utilize
discrete autoregressive methods across modalities, the Janus series (Wu et al., 2025a) employs dual
image encoders for both understanding and generation tasks.

3 METHODOLOGY

In this section, we present LayerVec, our unified framework for semantic layer-wise SVG generation.
As illustrated in Fig. 2, our pipeline consists of two parts: (a) Raster Guidance generation and (b)
Layered SVG generation.

3.1 PRELIMINARIES

Problem formulation. Our objective is to map a multimodal prompt P = {PT , IR}, consisting of
a textual description PT and an optional reference image IR, to a layered Scalable Vector Graphic
(SVG). The target SVG is a structured document, defined as an ordered set of layers L = (l1, . . . , lN)
representing the scene’s Z-order. Each layer li corresponds to a distinct semantic entity and is
composed of geometric primitives. The core task is to learn a mapping F , such that:

L = F(P) s.t. R

(
N⋃
i=1

θi

)
≈ I(P) , (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<g id="layer_1“>
<g id="layer_2“>
<g ...>

ℳMultimodal
Language Model

𝑃𝑇

𝐼𝑅

Diffusion
Transformer

𝒟

𝐼0
Entity

Extraction

𝐼𝑖−1
′

Raster Guidance Synthesis Layered SVG Synthesis

𝐼𝑖 Inpainting for
Occlusion

෡𝑙𝑖 = 𝐼𝑖−1 ⊙𝑚𝑖
Entities

𝐸 = {𝑒1, … , 𝑒𝑁−1}

Segmentation
& Extraction

Vectorization

Raster Layers

𝐼𝑖−1 ← 𝐼𝑖
Hidden States

መℒ = መ𝑙1, መ𝑙2, … , መ𝑙𝑏𝑔

Figure 2: The LAYERVEC framework architecture. The first stage, Raster Guidance Synthesis, generates
a high-fidelity image I0 from multimodal inputs P = {PT , IR}. The second stage, Layered SVG Synthesis,
iteratively deconstructs I0 into semantic raster layers which are then vectorized into the final layered SVG.

whereR(·) is a differentiable renderer converting path parameters θi into a raster image, and I(P)
is the ideal visual interpretation of the prompt.

Foundational model. Our framework is designed to be model-agnostic, leveraging the capabilities
of any powerful Unified Multimodal Model (UMM) that provides both visual understanding and
image synthesis functionalities. For our primary experiments, we build upon OmniGen2 (Wu et al.,
2025b), which features a decoupled architecture with a distinct MLLM for reasoning (M) and a
Diffusion Transformer (DiT) for generation (Dθ). To adapt the model for the unique vector-graphics
aesthetic, we specialize its synthesis component. We freeze the core understanding modules (like
OmniGen2’s MLLM) and apply lightweight LoRA (Hu et al., 2021) fine-tuning only to the image
generation engine (i.e., the DiT) using a flow-matching objective on a curated vector-style dataset:

LFM(θ +∆θ) = Et,x0,x1
∥vθ+∆θ((1− t)x0 + tx1)− (x1 − x0)∥22 , (2)

Details of the training procedure are provided in App. F.1.This process yields a specialized generator
adept at creating high-quality raster priors. To validate our framework’s model-agnostic claim, we
demonstrate its effectiveness on another distinct UMM architecture, BAGEL-7B, in Sec. 4.5.

3.2 RASTER GUIDANCE GENERATION

The initial step in our pipeline is the generation of a high-fidelity raster image, I0, which serves
as the visual anchor for the subsequent deconstruction. This stage leverages our foundational
model to address two key challenges: resolving instructional ambiguity and preserving coherence
during editing. To do so, we adapt established techniques for instruction decomposition and guided
generation, integrating them directly into our MLLM-DiT architecture.

At inference, the MLLMM first interprets the multimodal prompt P to produce contextual hidden
states h. These states, encapsulating the high-level semantic intent, are then fed into our fine-tuned
Diffusion Transformer (DiT), Dθ′ , to guide the generation process. This yields a high-fidelity raster
image I0 that serves as a visual prior for the subsequent deconstruction.

3.3 LAYERED SVG GENERATION VIA SCENE DECONSTRUCTION

Iterative Scene Deconstruction. Given the raster prior I0 synthesized in Stage 1, we deconstruct
it into a layered representation through an Iterative Scene Deconstruction process. This process is
orchestrated by MLLMM, which functions as a high-level scene planner. Conditioned on the instruc-
tion PT and the image I0, it employs chain-of-thought reasoning to identify a sequence of foreground
entities E = {e1, . . . , eN−1} and determines their front-to-back Z-order, O = (o1, . . . , oN−1).

The framework then iteratively processes these entities, beginning with the initial image I0. As
shown in Fig. 3, in each iteration i, the MLLM directs the extraction of entity oi from the current
image Ii−1 in two steps. First, it proposes a bounding box Bi to guide a segmentation model S,
yielding a mask mi = S(Bi, Ii−1). This mask is used to extract the corresponding raster layer,
l̂i = Ii−1 ⊙ mi. Subsequently, to address the occlusion created by this extraction, the MLLM
generates a context-aware inpainting prompt P (i)

inp . A dedicated diffusion inpainting model Dinp then

synthesizes the missing region, producing the next image state Ii = Dinp(Ii−1,mi, P
(i)
inp).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This process repeats until all N − 1 entities are extracted. The final image state, IN−1, becomes

Current

Image 𝐼𝑖

𝐼0

𝐼1

𝐼2

Extracted
Layers

መ𝑙2

መ𝑙𝑏𝑔

መ𝑙1

መℒ

Iteration 1

Iteration 2

Iteration 3

Inpainting for
Occlusion

Inpainting for
Occlusion

Se
gm

e
n

ta
ti

o
n

&

 E
xt

ra
ct

io
n

Se
gm

e
n

ta
ti

o
n

&

 E
xt

ra
ct

io
n

Se
gm

e
n

ta
ti

o
n

&

 E
xt

ra
ct

io
n

Figure 3: The process of our Iterative Scene Decon-
struction. Our pipeline iteratively "peels" the raster
image (I0) from front to back. In each step, it segments
and extracts the foremost object into a layer (l̂i) and then
inpaints the remaining image (Ii) to handle occlusions.

the background layer l̂bg. The result is
a complete set of raster layers, L̂ =

{l̂1, . . . , l̂N−1, l̂bg}, ready for the final vectoriza-
tion stage. In summary, this process’s detailed
procedure is shown in App. E.

Vectorization and composition. In the final
stage, we convert the deconstructed raster layers
L̂ into a structured SVG. For this, we employ
VTracer (Sanford Pun, 2020), as the image vec-
torization engine, to process each raster layer l̂i
independently. At a high level, VTracer operates
by first tracing the boundaries of color regions
in the raster layer to form initial polygons. It
then intelligently simplifies these polygons by
removing redundant vertices and fits the sim-
plified boundaries with smooth Bézier curves.
This process yields compact and faithful vector
representations li for each layer. Crucially, by
applying this powerful vectorizer to our semanti-
cally pre-separated raster layers, we ensure that
the final SVG maintains the clean, editable, and
meaningful structure established during our it-
erative deconstruction.

Finally, the complete SVG document L is assem-
bled by composing all generated vector layers.
The layers are stacked in reverse order of extraction, thereby preserving the Z-order hierarchy inferred
during the deconstruction stage. This hierarchical composition is represented as:

L = Merge(lbg, lN−1, . . . , l1) . (3)
The outcome is a fully structured and editable vector graphic, enabling object-level manipulations
such as translation, scaling, and recoloring in standard vector graphics software.

4 EXPERIMENTS

To comprehensively validate the effectiveness of LayerVec, we first describe the experimental setup in
Sec. 4.1. We then present both quantitative and qualitative comparisons with state-of-the-art methods
in Sec. 4.2 and Sec. 4.3, respectively. Furthermore, we conduct a user study in Sec. 4.4 to assess the
editability of the generated SVGs. Finally, we provide evaluation studies in Sec. 4.5 to analyze the
contribution of different components within our framework.

4.1 EXPERIMENTAL SETUP

Baselines. We compare our proposed method with various baseline approaches.

• Text-to-SVG baselines: We compare LayerVec with state-of-the-art approaches spanning both
optimization-based and auto-regressive methods. For optimization-based methods, we evaluate
against NeuralSVG (Polaczek et al., 2025), VectorFusion (Jain et al., 2023), SVGDreamer (Xing
et al., 2024), and LayerTracer (Song et al., 2025). For LLM-based approaches, we compare
with OmniSVG (Yang et al., 2025). Additionally, we assess a range of multimodal large lan-
guage models (MLLMs) including open-source models (Deepseek-V3.1 (DeepSeek-AI, 2025) and
Qwen2.5-VL-32b-Instruct (Bai et al., 2025b)) and closed-source models (Gemini 2.5 Pro (Google,
2025) and GPT-4o (OpenAI et al., 2024)), representing the most advanced closed-source multi-
modal capabilities.

• Multimodal-to-SVG baselines: Given the absence of methods specifically designed for multimodal-
to-SVG generation, we evaluate LayerVec against the same MLLMs mentioned above, prompting
them to generate layered SVGs with <g> structures from multimodal inputs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Evaluation Benchmarks. For the Text-to-SVG task, we follow previous works (Wang et al., 2025;
Yang et al., 2025) and evaluate on the MMSVG-Bench, which includes two subsets: MMSVG-Icon for
simple objects and MMSVG-Illustration for complex scenes. As no standard benchmark exists for the
multimodal-to-SVG task, we introduce our own: MUV-Bench (Multimodal-to-Vector Benchmark). It
comprises 500 carefully curated tasks created from 50 source images and 10 editing instructions each.
The benchmark covers five key professional editing categories: Object Addition, Object Removal,
Motion Change, Background Change, and Style Transfer.

Metrics. For text-to-SVG task, following prior works (Xing et al., 2024; Jain et al., 2023; Yang
et al., 2025), we use CLIP Score to measure how well the rendered SVG aligns with the input
text, and use LAION aesthetic predictor (Wang et al., 2022) to estimate the aesthetic appeal of
outputs. Moreover, we use HPS (Wu et al., 2023b) to evaluate our approach from a human aesthetic
perspective.

Besides all the above metrics operating only on the raster image, we introduce Layer-wise CLIP Con-
sistency (LCC). Given K layers with semantic labels {e1, . . . , eK} and corresponding rasterizations
{l̂1, . . . , l̂K}, LCC computes the average CLIP similarity:

LCC =
1

K

K∑
i=1

CLIP(l̂i, ei) . (4)

A high LCC indicates that each layer faithfully captures its intended semantic entity, ensuring
that vector paths grouped within SVG <g> blocks are both visually coherent and semantically
interpretable. This makes LCC a direct and automatable proxy for the editability and structural
soundness of the final SVG, complementing conventional image-level metrics.

For the multimodal task, we use three metrics. Following the protocol of GEdit-Bench (Liu et al.,
2025), we employ GPT-4o (OpenAI et al., 2024) as an automated judge to score the rendered outputs
on a 0–10 scale for: (1) Semantic Fidelity (SF), measuring instruction alignment, and (2) Structural
Coherence (SC), assessing the visual similarity between non-edited regions of the output and the
original image. Additionally, we use our proposed Layer-wise CLIP Consistency (LCC) to evaluate
the semantic purity and editability of the generated layers.

4.2 QUALITATIVE COMPARISONS

Fig. 4 and Fig. 6 provide qualitative comparisons. On text-to-SVG tasks, we observe that LAYERVEC
consistently produces visually faithful and structurally coherent SVGs across both Icon and Illustra-
tion domains. In contrast, optimization-based methods (e.g., SVGDreamer, VectorFusion) frequently
yield noisy, over-complex curves with entangled paths that compromise editability, while LLM-based
approaches (e.g., GPT-4o, Gemini2.5-Pro) often degenerate into oversimplified geometric shapes,
particularly under complex illustration prompts.

Fig. 5 further emphasizes this point: compared to the disorganized curves from SVGDreamer and the
overly primitive decomposition from Gemini2.5-Pro, LAYERVEC outputs well-layered SVGs with
clean object boundaries and visually appealing design, making them both semantically accurate and
directly usable in real editing workflows.

On multimodal-to-SVG, LayerVec effectively handles diverse editing operations, including motion
edits, object addition, background replacement, and removal, while preserving scene coherence and
editability. In contrast, LLM-based baselines struggle to generate code for complex illustrations,
leading to incomplete or oversimplified edits. Optimization-based methods are not applicable in this
setting due to their reliance on text-only inputs.

4.3 QUANTITATIVE COMPARISONS

Tab. 1 presents results on the text-to-SVG task. Existing LLM-based methods (e.g., GPT-4o,
Gemini2.5-Pro) reach competitive CLIP scores on simple icons, showing basic text-image alignment,
but their outputs degrade on complex illustrations, where oversimplified SVG code leads to poor Aes-
thetic and HPS scores. Optimization-based approaches (e.g., VectorFusion) generate more detailed
images but produce tangled paths without meaningful layer separation, making them incompatible
with LCC evaluation. By contrast, LayerVec achieves strong CLIP alignment across both icons

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LayerVec
(OURS)VectorFusionSVGDreamer Deepseek-V3.1NeuralSVGText Prompts

Ic
o
n

Il
lu
st
ra
ti
o
n

GPT-4o Gemini2.5-Pro

An icon of a hamburger.

An icon of a flower.

A person reading a
book on a green sofa
next to a floor lamp.

An astronaut riding a
horse on the moon.

An icon of an engineer.

An icon of a calendar.

Three kids flying kites
on the grass.

A poster of Great Wall.

Figure 4: Qualitative comparison with SOTA methods on Text-to-SVG task. We compare the propose method
with SOTA Text-to-SVG methods on both icons and illustrations. For simple Icons, baseline methods often
produce either overly abstract shapes (OmniSVG, GPT-4o) or noisy results with redundant paths (SVGDreamer,
VectorFusion). Our LayerVec consistently generates semantically accurate and structurally clear vector graphics
across both domains.

SVGDreamer Gemini2.5-Pro LayerVec

Text Prompt A dog chasing a red ball on the grass.

Figure 5: Comparision on structure of output.
Optimization-based methods like SVGDreamer achieve
visual complexity but decompose into a redundant
"path soup". LLM-based methods like Gemini achieve
object separation at the cost of extreme simplification.
LayerVec is unique in its ability to produce an output
that is both aesthetically rich and structurally sound.

Change the style of Pikachu to pixel-art.

Add a baseball cap on the character.

Replace the seagull with a boy

LayerVec GPT-4o Gemini2.5-Pro Qwen-VL-32B

Figure 6: Comparison of LayerVec and other meth-
ods on multimodal-to-SVG tasks. Our method
demonstrates superior performance in both instruc-
tion alignment and visual similarity, while uniquely
providing a deconstructed, layered output for subse-
quent editing.

and illustrations, while also attaining the highest Aesthetic and HPS scores, indicating both visual
quality and human preference. Crucially, it is the only method to obtain consistently high LCC values,
demonstrating that its decomposed layers are semantically pure and structurally coherent—direct
evidence that the generated SVGs are not only visually appealing but also truly editable.

Tab. 2 further evaluates the multimodal-to-SVG task across five editing categories. LLM-based
baselines struggle to generate code for complex illustrations, leading to incomplete or oversimplified
edits and low SF/SC scores. By contrast,LayerVec consistently outperforms all baselines, confirming
its effectiveness for multimodal-to-SVG synthesis.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison for Text-to-SVG tasks. Bold and underline indicate the best and second-best
results, respectively. Optimization-based methods cannot be evaluated on LCC due to their entangled paths
without meaningful layer separation.

Evaluation Dataset Methods Model Type CLIP Aesthetic HPS LCC

MMSVG-Icon

LayerTracer Optim-Based 0.2970 3.8101 0.1776 N/A
Vectorfusion Optim-Based 0.3041 4.1832 0.1885 N/A
SVGDreamer Optim-Based 0.2926 4.2740 0.2004 N/A
NeuralSVG Optim-Based 0.3008 3.9062 0.1982 N/A
Gemini2.5-Pro LLM-Based 0.3312 4.3207 0.1993 0.2302
Deepseek-V3.1 LLM-Based 0.3213 3.9153 0.1948 0.2568
Qwen2.5-VL-32b-Instruct LLM-Based 0.2732 3.5886 0.1914 0.2200
GPT-4o LLM-Based 0.3021 3.5684 0.1848 0.2543
OmniSVG LLM-Based 0.2194 3.1293 0.1739 N/A
LayerVec this work 0.3218 4.3836 0.2018 0.3035

MMSVG-Illustration

LayerTracer Optim-Based 0.2748 3.6502 0.1776 N/A
Vectorfusion Optim-Based 0.3082 4.1079 0.1817 N/A
SVGDreamer Optim-Based 0.3407 4.4293 0.2060 N/A
NeuralSVG Optim-Based 0.3411 3.5886 0.1915 N/A
Gemini2.5-Pro LLM-Based 0.3329 4.0372 0.2119 0.2546
Deepseek-V3.1 LLM-Based 0.3188 3.5886 0.1946 0.2414
Qwen2.5-VL-32b-Instruct LLM-Based 0.2877 3.7664 0.1819 0.2301
GPT-4o LLM-Based 0.3076 3.5625 0.1883 0.2419
OmniSVG LLM-Based 0.2029 3.0156 0.1643 N/A
LayerVec this work 0.3445 4.5872 0.2187 0.3169

Table 2: Multimodal-to-SVG results on MUV-Bench. LayerVec excels in both Semantic Fidelity (SF) and
Structural Coherence (SC).

Task Models
LayerVec GPT-4o Qwen2.5 Gemini2.5

Semantic Fidelity (SF) / Structural Coherence (SC)

Object Addition 5.95 / 6.78 1.88 / 3.03 0.91 / 3.50 2.54 / 3.42
Object Removal 3.72 / 6.34 1.99 / 1.95 1.22 / 1.46 3.67 / 4.21
Bkg. Change 6.25 / 6.47 3.22 / 2.72 1.38 / 3.14 3.59 / 2.48
Style Transfer 5.28 / 6.69 2.85 / 3.97 1.04 / 2.32 4.51 / 4.02
Motion Change 5.13 / 6.23 2.15 / 3.32 0.85 / 2.94 2.25 / 4.85

Layer-wise CLIP Consistency (LCC)
Object Addition 0.2852 0.2428 0.2329 0.2358
Object Removal 0.2915 0.2523 0.2311 0.2399
Bkg. Change 0.2922 0.2551 0.2186 0.2376
Style Transfer 0.2973 0.2413 0.2108 0.2494
Motion Change 0.3029 0.2431 0.2177 0.2393

4.4 USER STUDIES

We conducted a user study with 50 design enthusiasts, comparing LayerVec against strong baselines.
The results can be seen in App. C. Our method was consistently preferred across three key criteria.
For aesthetic quality, over 70% of votes favored our outputs. For both text alignment (in text-to-SVG)
and edit instruction alignment (in multimodal-to-SVG), LayerVec was rated as the best or comparable
to the best baselines, demonstrating superior semantic consistency and controllability. The study
validates that LayerVec produces more visually pleasing, faithful, and practically editable SVGs.

4.5 EVALUATION STUDY

In this section, we analyze the core components of our LayerVec framework to validate its design
and demonstrate its robustness. We first conduct a detailed ablation study to prove the necessity of
each stage in our pipeline, and then we conduct experiments to verify the framework’s generalization
capabilities across different backbone models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation and Generalization of the LayerVec framework. Our framework is applied to two distinct
UMMs (OmniGen2 and BAGEL). It consistently and significantly outperforms both naïve synthesis and a strong
post-hoc vectorization baseline (VTracer), proving both its efficacy and model-agnostic generalizability.

Base Model Framework SF SC LCC

OmniGen2
Naïve Prompting 1.20 1.36 0.18
Synthesis + VTracer 5.37 6.22 N/A
+ LayerVec (Ours) 5.41 6.31 0.29

BAGEL-7B
Naïve Prompting 1.43 2.31 0.22
Synthesis + VTracer 8.14 9.03 N/A
+ LayerVec (Ours) 8.39 9.12 0.31

Efficacy of the Dual-Stage Pipeline. To validate our dual-stage design, we first perform an
ablation study focusing on our primary backbone, OmniGen2. As detailed in Tab. 3, we compare
our full framework against two strong baselines: (1) Naïve Prompting, which ablates Stage 1 by
directly generating SVG code, and (2) Synthesis + VTracer, which ablates Stage 2 by replacing our
deconstruction with a non-semantic vectorizer.

The results clearly show that each stage is indispensable. Naïve Prompting fails to create meaningful
structures, evidenced by a dismal LCC score of 0.18. This confirms that Stage 1’s raster guidance is
essential for semantic coherence. Synthesis + VTracer, while visually faithful (high SC score), is
structurally inadequate, yielding an inapplicable LCC (N/A) as it cannot produce semantic layers.
Only our complete LayerVec pipeline excels on both visual and structural metrics, proving the
necessity of its unique design.

Generalization Across Backbones. To demonstrate that the benefits of LayerVec are not specific to
a single model architecture, we test its generalization capability. We apply the exact same framework
and baselines to a different powerful UMM, BAGEL-7B (Deng et al., 2025).

As shown in Tab. 3, the performance gains are remarkably consistent. On BAGEL-7B, LayerVec
again significantly outperforms both Naïve Prompting and Synthesis + VTracer, especially on the
crucial LCC metric (0.31 vs 0.22 and N/A). This consistent superiority across two distinct backbones
proves that LayerVec is a robust, model-agnostic framework for generating editable vector graphics.

5 APPLICATIONS OF LAYERVEC

Our LayerVec unlocks significant practical applications across various domains of digital content
creation by transforming static raster assets into dynamic, structured vector graphics. As demonstrated
throughout our experiments, a user can provide any pixel-based image—be it a photograph, a sketch,
or a previously generated AI artwork—along with a simple textual instruction, and LayerVec will
produce a high-fidelity, semantically layered, and fully editable SVG. This capability streamlines
creative workflows in graphic design, iconography, and digital illustration, enabling rapid prototyping,
asset recomposition, and non-destructive editing in a manner previously impossible with monolithic
raster inputs. We present a diverse gallery of additional application examples in App. B.

6 CONCLUSION

We introduce LayerVec, the first framework to successfully generate editable, layered Scalable Vector
Graphics from multimodal prompts, bridging a critical gap between automated content creation and
professional design workflows. Our key innovation is a dual-stage pipeline that first synthesizes a
high-fidelity raster guidance and then employs an MLLM-driven iterative process to deconstruct it
into semantically coherent vector layers. To properly evaluate this new paradigm, we contributed a
comprehensive benchmark, MUV-Bench, and a novel metric, LCC, which for the first time provides
an automated assessment of structural editability of Vector Graphics. Our extensive experiments
demonstrate that LayerVec not only significantly outperforms state-of-the-art baselines in producing
visually superior and structurally sound SVGs but also exhibits robust generalization across different
UMM backbones. We believe this work lays a foundational stone for a new generation of more
practical and intuitive vector graphics synthesis tools in practical workflows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENT

We have developed our framework in accordance with the ICLR Code of Ethics. Our training data
and the newly introduced MUV-Bench are derived from publicly available sources with permissive
licenses, and we have made efforts to filter for personally identifiable or offensive content.

REPRODUCIBILITY STATEMENT

The pretrained models of OmniGen2 and BAGEL-7B used in our experiments are publicly available.

To ensure reproducibility, we will also release our code, lora-weights, and the MUV-Bench dataset
upon publication. We provide detailed descriptions of our model architectures, tuning procedures,
and hyperparameter settings in the Appendix. Additionally, we include scripts for data preprocessing
and prompts engineering details.

REFERENCES

Chengyu Bai, Jintao Chen, Xiang Bai, Yilong Chen, Qi She, Ming Lu, and Shanghang Zhang.
Uniedit-i: Training-free image editing for unified vlm via iterative understanding, editing and
verifying, 2025a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025b.
URL https://arxiv.org/abs/2502.13923.

Black-Forest-Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg:
A hierarchical generative network for vector graphics animation. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 16351–16361. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf.

Chameleon. Chameleon: Mixed-modal early-fusion foundation models, 2025. URL https:
//arxiv.org/abs/2405.09818.

DeepSeek-AI. Deepseek v3.1. https://chat.deepseek.com/, 2025.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu,
Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified multimodal
pretraining. arXiv preprint arXiv:2505.14683, 2025.

Kevin Frans, L. B. Soros, and Olaf Witkowski. Clipdraw: Exploring text-to-drawing synthesis
through language-image encoders, 2021. URL https://arxiv.org/abs/2106.14843.

Kevin Frans, Lisa Soros, and Olaf Witkowski. Clipdraw: Exploring text-to-drawing synthesis through
language-image encoders. In Advances in Neural Information Processing Systems (NIPS), 2022.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding
Instruction-based Image Editing via Multimodal Large Language Models. In International Confer-
ence on Learning Representations (ICLR), 2024.

Google. Gemini 2.5 pro. https://deepmind.google/models/gemini/pro/, 2025.

David Ha and Douglas Eck. A neural representation of sketch drawings. In International Conference
on Learning Representations (ICLR), 2018.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

10

https://arxiv.org/abs/2502.13923
https://github.com/black-forest-labs/flux
https://proceedings.neurips.cc/paper_files/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/bcf9d6bd14a2095866ce8c950b702341-Paper.pdf
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2405.09818
https://chat.deepseek.com/
https://arxiv.org/abs/2106.14843
https://deepmind.google/models/gemini/pro/
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1911–1920, 2023.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Conference on
Computer Vision and Pattern Recognition 2023, 2023.

Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
Honghao Fu, Chunrui Han, Guopeng Li, Yuang Peng, Quan Sun, Jingwei Wu, Yan Cai, Zheng
Ge, Ranchen Ming, Lei Xia, Xianfang Zeng, Yibo Zhu, Binxing Jiao, Xiangyu Zhang, Gang Yu,
and Daxin Jiang. Step1x-edit: A practical framework for general image editing. arXiv preprint
arXiv:2504.17761, 2025.

Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou. Ace++:
Instruction-based image creation and editing via context-aware content filling, 2025.

Piotr Mirowski, Dylan Banarse, Mateusz Malinowski, Simon Osindero, and Chrisantha Fernando.
Clip-clop: Clip-guided collage and photomontage. In Proceedings of the Thirteenth International
Conference on Computational Creativity, 2022.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, and Alec Radford et al. Gpt-4o system card, 2024.
URL https://arxiv.org/abs/2410.21276.

Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or. Neuralsvg: An
implicit representation for text-to-vector generation, 2025. URL https://arxiv.org/abs/
2501.03992.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2vec: Synthesizing vector
graphics without vector supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7342–7351, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Chris Tsang Sanford Pun. Vtracer. 2020. URL https://www.visioncortex.org/
vtracer-docs.

Yiren Song and Yuxuan Zhang. Clipfont: Text guided vector wordart generation. In 33rd British
Machine Vision Conference 2022, BMVC 2022, London, UK, November 21-24, 2022. BMVA Press,
2022. URL https://bmvc2022.mpi-inf.mpg.de/0543.pdf.

Yiren Song, Danze Chen, and Mike Zheng Shou. Layertracer: Cognitive-aligned layered svg
synthesis via diffusion transformer. 2025. URL https://api.semanticscholar.org/
CorpusID:276094351.

Vikas Thamizharasan, Difan Liu, Shantanu Agarwal, Matthew Fisher, Michael Gharbi, Oliver Wang,
Alec Jacobson, and Evangelos Kalogerakis. Vecfusion: Vector font generation with diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7943–7952, June 2024.

Feiyu Wang, Zhiyuan Zhao, Yuandong Liu, Da Zhang, Junyu Gao, Hao Sun, and Xuelong Li. Svgen:
Interpretable vector graphics generation with large language models, 2025.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024.

Yizhi Wang and Zhouhui Lian. Deepvecfont: Synthesizing high-quality vector fonts via dual-modality
learning. ACM Transactions on Graphics, 40(6), December 2021. doi: 10.1145/3478513.3480488.

11

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2501.03992
https://arxiv.org/abs/2501.03992
https://www.visioncortex.org/vtracer-docs
https://www.visioncortex.org/vtracer-docs
https://bmvc2022.mpi-inf.mpg.de/0543.pdf
https://api.semanticscholar.org/CorpusID:276094351
https://api.semanticscholar.org/CorpusID:276094351

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yizhi Wang, Gu Pu, Wenhan Luo, Pengfei Wang, Yexin ans Xiong, Hongwen Kang, Zhonghao Wang,
and Zhouhui Lian. Aesthetic text logo synthesis via content-aware layout inferring. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
Xie, Xingkai Yu, Chong Ruan, and et al. Janus: Decoupling visual encoding for unified multimodal
understanding and generation. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 12966–12977, 2025a.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo,
Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu. Omnigen2:
Exploration to advanced multimodal generation. arXiv preprint arXiv:2506.18871, 2025b.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-guided vector icon synthesis
with autoregressive transformers, 2023a. URL https://arxiv.org/abs/2304.14400.

Ronghuan Wu, Wanchao Su, and Jing Liao. Chat2svg: Vector graphics generation with large language
models and image diffusion models, 2024. URL https://arxiv.org/abs/2411.16602.

Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Better aligning text-to-image
models with human preference, 2023b.

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 13294–13304, 2025.

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. Svgdreamer: Text
guided svg generation with diffusion model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4546–4555, June 2024.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms to
understand and generate complex vector graphics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 19487–19497, June 2025.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Jiaxu Zhang, Liao Wang, Gang Yu, Xinjun
Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. arXiv
preprint arxiv:2504.06263, 2025.

Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
Imgedit: A unified image editing dataset and benchmark. arXiv preprint arXiv:2505.20275, 2025.

Peiying Zhang, Nanxuan Zhao, and Jing Liao. Style customization of text-to-vector generation with
image diffusion priors, 2025. URL https://arxiv.org/abs/2505.10558.

12

https://arxiv.org/abs/2304.14400
https://arxiv.org/abs/2411.16602
https://arxiv.org/abs/2505.10558

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 3
2.1 Text-Guided SVG generation . 3
2.2 Unified Multimodal models . 3

3 Methodology 3
3.1 Preliminaries . 3
3.2 Raster Guidance generation . 4
3.3 Layered SVG generation via Scene Deconstruction 4

4 Experiments 5
4.1 Experimental Setup . 5
4.2 Qualitative Comparisons . 6
4.3 Quantitative Comparisons . 6
4.4 User Studies . 8
4.5 Evaluation Study . 8

5 Applications of LayerVec 9

6 Conclusion 9

A Use of LLMs 14

B More results and applications of LayerVec 14

C User Study 15

D Details of OmniGen2 15
D.1 Model Architecture . 15
D.2 Key Innovations . 17
D.3 Data Construction and Training Strategy . 17
D.4 Reflection Mechanism . 17

E Algorithm for Iterative Scene Deconstruction 18

F Experimental Details 19
F.1 LoRA Parameters . 19
F.2 Training Configuration . 19
F.3 Model and Data Configuration . 20

G Details of VTracer 20

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LLMS

To enhance the quality of the manuscript, Large Language Models (LLMs) were used as an assistive
tool for language polishing. The role of the LLM was strictly limited to improving spelling, grammar,
and sentence clarity. The final text was reviewed and edited by the authors to ensure it accurately
reflects their original ideas and findings.

It is important to note that all ideas, concepts, and the research methodology presented in this paper
were exclusively developed and conducted by the authors. LLMs were utilized as an assistive tool,
with their role strictly limited to improving the linguistic quality and correcting the grammar of the
manuscript. The scientific contributions and findings remain the original work of the authors.

B MORE RESULTS AND APPLICATIONS OF LAYERVEC

The structured layer organization and multimodal editing capabilities of LayerVec make it particularly
well-suited for professional graphic design applications. Unlike traditional raster-based generation
methods that produce unorganized outputs, our framework generates semantically meaningful lay-
ers that align with standard design practices, enabling seamless integration into existing creative
workflows.

For poster design, LayerVec’s ability to decompose complex visual compositions into editable
components (e.g., text layers, background elements, decorative graphics) allows designers to rapidly
iterate on layout arrangements and style variations. The multimodal instruction interface enables
intuitive modifications such as "change the background to a warmer tone while keeping the text
prominent" or "add more visual emphasis to the call-to-action elements."

Fig. 7 illustrates how LayerVec can generate posters with distinct visual themes while maintaining
a coherent structure that allows for easy adjustments. The framework’s semantic layer extraction
ensures that each component can be independently manipulated, facilitating rapid design iterations
and refinements.

A poster of a girl reading a book with a

big caption "Knowledge is power" on the

top.

An image of batman, with a caption

"SUPERHERO" under him.

A portrait of Karl Marx, with a big red

title "Communist" on the top

A light blue water droplet hangs above

stylized, ripples on a water surface,

with caption “Simplicity” below

Figure 7: SVG posters generated by LayerVec.

Similarly, in logo creation, the framework’s semantic layer extraction ensures that individual design
elements (symbols, text, decorative elements) remain independently manipulable, facilitating brand
identity variations and responsive design adaptations. More results of SVG icons generated from
LayerVec can be seen in Fig. 8.

In creative workflows, multimodal inputs can significantly enhance the quality of the generated
outputs. By leveraging both visual and textual information, designers can provide richer context and
more precise instructions, leading to results that better align with their creative vision. This capability
is particularly valuable in iterative design processes, where quick adjustments and refinements are
often necessary. The ability to seamlessly integrate multimodal inputs into the design workflow

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

not only streamlines the creative process but also empowers designers to explore a wider range of
possibilities and achieve higher-quality outcomes(See Fig. 9).

SVG Icons Created by LayerVec

wine glass apple hamburger flower

clock laptop shopping cart document book

nurse engineer calendardogdelivery car

car

camera

flare

ice cream

Figure 8: SVG Icons generated by LayerVec.

C USER STUDY

Fig. 10 shows the result of user study. We conduct a user study across 10 designers with expertise in
graphic design. The study aims to evaluate the usability and effectiveness of LayerVec in real-world
design scenarios.

D DETAILS OF OMNIGEN2

OmniGen2 is a versatile and open-source multimodal generative model designed to provide a unified
solution for a diverse range of generation tasks, including text-to-image synthesis, image editing, and
in-context generation. It builds upon its predecessor, OmniGen (Xiao et al., 2025), by introducing
significant architectural and data-centric innovations to enhance performance and capability. This
section provides a detailed overview of its core components, training methodology, and novel
mechanisms, as described in the original paper.

D.1 MODEL ARCHITECTURE

A key design principle of OmniGen2 is the decoupling of its text and image generation pathways to
preserve the strong, pre-existing capabilities of its foundational Multimodal Large Language Model
(MLLM). Unlike fully unified architectures where parameters are shared, OmniGen2 employs two
distinct transformer-based modules with unshared parameters.

• Multimodal Large Language Model (MLLM): The core of OmniGen2’s understanding
and text generation is a frozen, pre-trained MLLM, specifically initialized from Qwen2.5-
VL-3B. This module processes interleaved sequences of text and image inputs. For image
inputs, it utilizes a Vision Transformer (ViT) to encode visual information into high-level
semantic embeddings. The MLLM is responsible for interpreting user instructions and
generating textual responses autoregressively.

• Diffusion Transformer: Image generation is handled by a separate diffusion transformer,
which is trained from scratch and comprises approximately 4 billion parameters. This

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Add a cat on the sofa.

Remove the basketball and

change the style to Ghibli

Replace the black arrow

inside with a phone icon

Make the character

appear to be running.

<svg ...>

<g id=“cat" transform="...">
 <path fill="#005CC5" d="..."/>
 <path fill="#E89548" d="..."/>
</g>

<g id=“sofa" transform="...">
 <path fill="#E69305" d="..."/>
 <path fill="#00508B" d="..."/>
</g>
</svg>

<svg ...>

<g id=“man" transform="...">
 <path fill="#1B2A2E" d="..."/>
 <path fill="#F9D59A" d="..."/>
</g>

<g id=“background" transform="...">
 <path fill="#E1271C" d="..."/>
 <path fill="#F1540C" d="..."/>
</g>
</svg>

<svg ...>

<g id=“phone" transform="...">
 <path fill="#FFD700" d="..."/>
 <path fill="#00008B" d="..."/>
</g>

<g id=“hexagon" transform="...">
 <path fill="#90EE90" d="..."/>
 <path fill="#C8926D" d="..."/>
</g>
</svg>

<svg ...>

<g id=“character" transform="...">
 <path fill="#545D9D" d="..."/>
 <path fill="#52609D" d="..."/>
</g>
</svg>

Figure 9: multimodal-to-SVG results generated by LayerVec.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SVGDreamer NeuralSVG OmniSVG Deepseek-V3.1 Gemini2.5-Pro GPT-4o

Aesthetic Quality

Others is better Comparable Ours is better

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SVGDreamer NeuralSVG OmniSVG

Text Alignment

Others is better Comparable Ours is better

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Deepseek-V3.1 Gemini2.5-Pro GPT-4o

Edit Instruction Alignment

Others is better Comparable Ours is better

Figure 10: User studies.

module is conditioned on the hidden states produced by the MLLM in response to a textual
prompt. To explicitly trigger image synthesis, a special token, "<|img|>" , is introduced
into the vocabulary. When the MLLM generates this token, the diffusion process is initiated.

• Dual Image Encoders: OmniGen2 employs a dual-encoder strategy to balance semantic
understanding with high-fidelity generation. While the ViT encoder provides semantic
context to the MLLM, a Variational Autoencoder (VAE) is used to encode input images into
a latent space suitable for the diffusion transformer. Crucially, the VAE-derived features are

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fed directly into the diffusion model and not the MLLM. This design choice prevents the
low-level VAE features from degrading the MLLM’s inherent understanding capabilities
and avoids the architectural complexity of dual-encoding within the MLLM itself.

D.2 KEY INNOVATIONS

Omni-RoPE Positional Embedding. To effectively handle complex tasks like multi-image editing
and in-context learning, OmniGen2 introduces a novel multimodal rotary position embedding named
Omni-RoPE. This 3D positional encoding decomposes position information into three components:

1. Sequence and Modality Identifier (idseq): This component distinguishes between different
modalities and sequences. For text tokens, it functions as a standard 1D positional index.
For image tokens, all tokens belonging to the same image share a constant, unique identifier,
treating the entire image as a single semantic unit.

2. 2D Spatial Height Coordinate (h): The normalized vertical position for each image token.
3. 2D Spatial Width Coordinate (w): The normalized horizontal position for each image

token.

This structure allows the model to unambiguously differentiate between multiple input and output
images via their unique idseq , while the locally computed spatial coordinates (h,w) ensure consistency
and accurate region preservation during editing tasks.

D.3 DATA CONSTRUCTION AND TRAINING STRATEGY

Recognizing the limitations of existing open-source datasets, the authors of OmniGen2 developed
comprehensive data construction pipelines to generate high-quality training data, particularly for
advanced editing and in-context tasks.

• In-Context Data from Videos: To create data for subject-driven generation and editing,
video frames are leveraged. The pipeline identifies a primary subject in a base frame using
an MLLM, segments and tracks it across subsequent frames using GroundingDINO and
SAM2, and then uses inpainting/outpainting models (e.g., FLUX.1-Fill-dev) to generate
novel backgrounds or create editing pairs (e.g., transplanting a subject from a context image
into a target image).

• High-Quality Image Editing Data: To overcome instruction-image misalignment in exist-
ing datasets, OmniGen2’s data pipeline starts with high-quality images, applies a powerful
inpainting model to randomly fill a masked region, and then uses a strong MLLM (Qwen2.5-
VL) to generate a precise editing instruction that describes the transformation between the
original and inpainted images. This ensures high fidelity and accurate instruction-following
supervision.

The training process is staged. The MLLM’s parameters are largely kept frozen to preserve its under-
standing capabilities. The diffusion model is first trained from scratch on text-to-image generation
and subsequently trained on a mixed-task objective including editing and in-context data.

D.4 REFLECTION MECHANISM

OmniGen2 introduces a reflection mechanism to incorporate reasoning and self-correction into the
image generation process. This is facilitated by a curated reflection dataset.

1. The model first generates an image based on an initial user instruction.
2. A powerful external MLLM (e.g., Doubao-1.5-pro) then assesses the generated image

against the instruction.
3. If deficiencies are found (e.g., incorrect object count, color, or composition), the MLLM

generates a textual "reflection" that identifies the error and proposes a specific modification.
4. This sequence—(instruction, initial image, reflection text, corrected image)—forms a multi-

turn training sample.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By fine-tuning on this data, OmniGen2 learns to generate reflective text and iteratively refine its
image outputs, improving its instruction-following and reasoning abilities. All model parameters are
unfrozen during this phase of training.

E ALGORITHM FOR ITERATIVE SCENE DECONSTRUCTION

This section provides a detailed, step-by-step walkthrough of our Iterative Scene Deconstruction
workflow, as described in Section Sec. 3.3 of the main paper. We use the prompt "an astronaut riding
a horse on the moon" as a running example to illustrate the process.

Step 1: Scene Planning and Z-Order Inference. The process begins with the MLLM,Mplan,
analyzing the user prompt PT and the initial synthesized raster image I0. It is tasked with both
identifying the key semantic entities and inferring their occlusion hierarchy. The MLLM employs
chain-of-thought reasoning to output an ordered list of entities, O, representing the scene’s structure
from foreground to background.

The resulting plan, O = ("astronaut", "horse", "moon"), now dictates the sequence for the decon-
struction loop. The initial image state is set to Ii−1 ← I0.

Step 2: Iteration 1 - Extracting the "astronaut" Layer. The loop begins with the top-most entity,
o1 = "astronaut". First, the MLLM, acting as a visual grounderMdetect, localizes the astronaut in the
current image I0 to produce a bounding box B1. This box is then used to prompt a segmentation model
S to yield a precise mask m1. The raster layer l̂1 is then extracted via element-wise multiplication:
l̂1 = I0 ⊙m1.

Step 3: Iteration 1 - Inpainting for Occlusion. To prepare for the next iteration, the background
occluded by the astronaut must be synthesized. The MLLM, now in an "art director" role, generates
a context-aware inpainting prompt P (1)

inp based on the remaining entities in the plan, O[2 :] =

("horse", "moon"). Our controllable synthesis engine Dinp is then invoked to fill the region defined
by mask m1.

The output of this step, I1, is a new, high-fidelity image depicting a complete horse on the moon, with
no trace of the astronaut. This image now serves as the input for the next iteration, Ii−1 ← I1.

Step 4: Subsequent Iterations and Final Composition. The process repeats for the next entity,
o2 = "horse". The layer l̂2 is extracted from the image I1 (which already has a complete horse),
and the background is then inpainted to remove the horse, leaving only the complete moon surface
as the final image state, I2. This final state becomes the background layer, l̂bg = I2. The final
set of deconstructed raster layers, L̂ = {l̂1, l̂2, l̂bg}, now contains a complete, non-overlapping
representation of the entire scene. Each of these layers is then independently vectorized and composed
to form the final, editable SVG document.

In summary, 1 outlines the complete algorithm for Iterative Scene Deconstruction, detailing how each
step builds upon the previous one to achieve a structured, layered representation of complex visual
scenes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Iterative Deconstruction

1: Input: Image I0, Prompt PT

2: O ←Mplan(PT , I0)

3: Ii−1 ← I0 ; L̂ ← ∅
4: for i = 1 to |O| do
5: oi ← O[i]
6: mi ← (S ◦Mdetect)(Ii−1, oi)

7: l̂i ← Ii−1 ⊙mi

8: L̂ ← L̂ ∪ {l̂i}
9: if i < |O| then

10: P
(i)
inp ←Mplan(O[i+ 1 :])

11: Ii ← Dinp(Ii−1,mi, P
(i)
inp)

12: Ii−1 ← Ii
13: end if
14: end for
15: l̂bg ← I|O|

16: return L̂ ∪ {l̂bg}

F EXPERIMENTAL DETAILS

F.1 LORA PARAMETERS

To specialize our foundational model for the vector graphics domain, we employed a lightweight
LoRA fine-tuning strategy. The experiment was conducted on a single NVIDIA L40 GPU with 40GB
of memory.

F.2 TRAINING CONFIGURATION

The fine-tuning process was conducted with a focus on efficiency and stability. We used a global batch
size of 1, with a learning rate of 1× 10−4 and the timm_constant_with_warmup scheduler.
Gradient accumulation and checkpointing were enabled to manage memory usage. The training
was performed using bf16 mixed precision for a total of 8,000 steps. Key training parameters are
summarized in Tab. 4.

Table 4: Key training and optimizer hyperparameters for LoRA fine-tuning.

Parameter Value
General Training
Max Training Steps 8000
Global Batch Size 1
Gradient Accumulation Steps 1
Mixed Precision bf16
Gradient Checkpointing Enabled

Optimizer (Adam)
Learning Rate (lr) 1× 10−4

LR Scheduler timm_constant_with_warmup
Warmup Steps 500
Adam β1 / β2 0.9 / 0.95
Weight Decay 0.01
Max Grad Norm 1.0

LoRA Specific
LoRA Rank (lora_rank) 8
LoRA Dropout 0.0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F.3 MODEL AND DATA CONFIGURATION

Our framework is built upon pre-trained components. The VAE was initialized from FLUX.1-dev,
and the text encoder from Qwen2.5-VL-3B-Instruct. The main model architecture was based
on our pre-trained OmniGen2. Tab. 5 details the core architectural hyperparameters of the Diffusion
Transformer that was fine-tuned. For data handling, input images were processed with a maximum
resolution of 1024× 1024 pixels, and a dropout probability of 0.5 was applied to reference images to
improve robustness.

Table 5: Model architecture and data processing hyperparameters.

Parameter Value
Pre-trained Components
VAE Model FLUX.1-dev
Text Encoder Qwen2.5-VL-3B-Instruct
Base Model OmniGen2

Diffusion Transformer Architecture
Hidden Size 2520
Number of Layers 32
Attention Heads 21
Patch Size 2
Input Channels 16

Data Processing
Maximum Text Tokens 888
Max Output Pixels 1024× 1024
Reference Image Dropout 0.5

G DETAILS OF VTRACER

VTracer is a raster-to-vector conversion algorithm developed by Vision Cortex. Its pipeline consists
of three major stages: path generation, path simplification, and curve fitting. This design balances
high fidelity with compact vector representations, making it suitable for large-scale or high-resolution
image processing. In this section we briefly summarize the algorithmic details.

PATH GENERATION

The raster image is first decomposed into clusters of pixels with identical labels. For each cluster, a
boundary walker traverses the edges of pixels to form polygonal paths. Consecutive steps in the same
direction are merged to reduce redundancy.

PATH SIMPLIFICATION

Two strategies are employed to reduce the staircase-like artifacts inherent in raster boundaries:

• Staircase Removal: Each middle point on a three-point segment is evaluated by the signed
area of the corresponding triangle. If the area indicates collinearity, the middle point is
removed.

• Error-Penalized Simplification: For a subpath, its approximation by a straight line is
accepted only if the accumulated distance penalty of intermediate points is below a threshold.

CURVE FITTING AND SMOOTHING

The simplified polygon is then smoothed by a modified 4-point subdivision scheme. Special handling
is applied at corner points (detected by angle thresholds) to preserve sharp features. The subdivided
path is segmented at splice points, determined either by inflection detection or accumulated angular
deviation, before Bezier curves are fitted to each segment.

20

	Introduction
	Related Work
	Text-Guided SVG generation
	Unified Multimodal models

	Methodology
	Preliminaries
	Raster Guidance generation
	Layered SVG generation via Scene Deconstruction

	Experiments
	Experimental Setup
	Qualitative Comparisons
	Quantitative Comparisons
	User Studies
	Evaluation Study

	Applications of LayerVec
	Conclusion
	Use of LLMs
	More results and applications of LayerVec
	User Study
	Details of OmniGen2
	Model Architecture
	Key Innovations
	Data Construction and Training Strategy
	Reflection Mechanism

	Algorithm for Iterative Scene Deconstruction
	Experimental Details
	LoRA Parameters
	Training Configuration
	Model and Data Configuration

	Details of VTracer

