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Abstract

Previous studies have proved that cross-lingual001
knowledge distillation can significantly im-002
prove the performance of pre-trained mod-003
els for cross-lingual similarity matching tasks.004
However, the student model needs to be large005
in this operation. Otherwise, its performance006
will drop sharply, thus making it impractical007
to be deployed to memory-limited devices. To008
address this issue, we delve into cross-lingual009
knowledge distillation and propose a multi-010
stage distillation framework for constructing a011
small-size but high-performance cross-lingual012
model. In our framework, contrastive learning,013
bottleneck, and parameter recurrent strategies014
are delicately combined to prevent performance015
from being compromised during the compres-016
sion process. The experimental results demon-017
strate that our method can compress the size of018
XLM-R and MiniLM by more than 50%, while019
the performance is only reduced by about 1%.020

1 Introduction021

On the internet, it is widespread to store texts in022

dozens of languages in one system. Cross-lingual023

similar text matching in multilingual systems is a024

great challenge for many scenarios, e.g., search en-025

gines, recommendation systems, question-answer026

robots, etc. (Cer et al., 2017; Hardalov et al., 2020;027

Asai et al., 2021).028

In the monolingual scenario, benefiting from029

the robust performance of the pre-trained language030

models (PLMs) (e.g., BERT (Devlin et al., 2019),031

RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020),032

etc.), significant success has been achieved in text-033

similarity matching tasks. For example, Reimers034

and Gurevych (2019) proposed the SBERT model035

trained with similar text pairs and achieved the036

state-of-the-art performance in the supervised sim-037

ilarity matching. In unsupervised scenarios, Gao038

et al. (2021) proposed the SimCSE model, which039

was trained on Wiki corpus through contrastive040

learning task.041
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Figure 1: Evaluation results of XLM-R with different
number of encoder layers on the STS2017 monolingual
task and the STS2017-extend cross-lingual task, using
SBERT-paraphrases for knowledge distillation.

Drawing on the success in the monolingual sce- 042

nario, researchers began to introduce pre-training 043

technology into cross-lingual scenarios and pro- 044

posed a series of multilingual pre-trained models, 045

e.g., mBERT (Devlin et al., 2019), XLM (Conneau 046

and Lample, 2019), XLM-R (Conneau et al., 2020), 047

etc. Due to the vector collapse issue (Li et al., 048

2020), the performances of these cross-lingual 049

models on similarity matching tasks are still not sat- 050

isfactory. Reimers and Gurevych (2020) injected 051

the similarity matching ability of SBERT into the 052

cross-lingual model through knowledge distillation, 053

which alleviated the collapse issue and improved 054

the performance of cross-lingual matching tasks. 055

Although the cross-lingual matching tasks have 056

achieved positive results, the existing cross-lingual 057

models are huge and challenging to be deployed in 058

devices with limited memory. We try to distill the 059

SBERT model into an XLM-R with fewer layers 060

following Reimers and Gurevych (2020). How- 061

ever, as shown in Figure 1, the performance will 062

be significantly reduced as the number of layers 063

decreases. This phenomenon indicates that cross- 064

lingual capabilities are highly dependent on the 065

model size, and simply compressing the number of 066

layers will bring a serious performance loss. 067
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In this work, we propose a multi-stage distilla-068

tion compression framework to build a small-size069

but high-performance model for cross-lingual simi-070

larity matching tasks. In this framework, we design071

three strategies to avoid semantic loss during com-072

pression, i.e., multilingual contrastive learning, pa-073

rameter recurrent, and embedding bottleneck. Be-074

sides, we respectively explore the performance im-075

pact of reducing the embedding size and encoder076

size. Experimental results demonstrate that our077

method effectively reduces the size of the multilin-078

gual model with minimal semantic loss. We further079

investigate the effectiveness of the three strategies080

through ablation studies. Finally, a series of small-081

size cross-lingual models are released on Github1082

along with their code.083

The main contributions of this paper can be sum-084

marized as follows:085

• We validate that cross-lingual capability re-086

quires a larger model size and explore the se-087

mantic performance impact of shrinking the088

embedding or encoder size.089

• A multi-stage distillation framework is pro-090

posed to compress the size of cross-lingual091

models, where three strategies are combined092

to reduce semantic loss.093

• Extensive experiments examine the effective-094

ness of these three strategies and multi-stages095

used in our framework.096

2 Related work097

2.1 Multilingual models098

Existing multilingual models can be divided into099

two categories, namely Multilingual general model100

and Cross-lingual representation model.101

In the first category, transformer-based pre-102

trained models have been massively adopted in103

multilingual NLP tasks (Huang et al., 2019; Chi104

et al., 2021; Luo et al., 2021; Ouyang et al., 2021).105

mBERT (Devlin et al., 2019) was pre-trained on106

Wikipedia corpus in 104 languages, achieved sig-107

nificant performance in the downstream task. XLM108

(Conneau and Lample, 2019) presented the trans-109

lation language modeling (TLM) objective to im-110

prove the cross-lingual transferability by leveraging111

parallel data. XLM-R (Conneau et al., 2020) was112

built on RoBERTa (Liu et al., 2019) using Com-113

monCrawl Corpus.114

1Will be publicly available once accepted.

In the second category, LASER (Artetxe and 115

Schwenk, 2019a) used an encoder-decoder architec- 116

ture based on a Bi-LSTM network and was trained 117

on the parallel corpus obtained by neural machine 118

translation. Multilingual Universal Sentence En- 119

coder (mUSE) (Chidambaram et al., 2019; Yang 120

et al., 2020) adopted a bi-encoder architecture and 121

was trained with an additional translation ranking 122

task. LaBSE (Feng et al., 2020) turned the pre- 123

trained BERT into a bi-encoder mode and was opti- 124

mized with the objectives of mask language model 125

(MLM) and TLM. Recently, Mao et al. (2021) pre- 126

sented a lightweight bilingual sentence representa- 127

tion method based on the dual-transformer archi- 128

tecture. 129

2.2 Knowledge distillation 130

However, Multilingual models do not necessarily 131

have cross-lingual capabilities, especially in the 132

first category, in which vector spaces of different 133

languages are not aligned. Knowledge distillation 134

(Hinton et al., 2015) used knowledge from a teacher 135

model to guide the training of a student model, 136

which can be used to compress the model and align 137

its vector space at the same time. 138

For model compression, knowledge distillation 139

aimed to transfer knowledge from a large model to 140

a small model. BERT-PKD (Sun et al., 2019) ex- 141

tracted knowledge from both last layer and interme- 142

diate layers at fine-tuning stage. DistilBERT (Sanh 143

et al., 2019) performed distillation at pre-training 144

stage to halve the depth of BERT. TinyBERT (Jiao 145

et al., 2020) distilled knowledge from BERT at 146

both pre-training and fine-tuning stages. Mobile- 147

BERT (Sun et al., 2020) distilled bert into a model 148

with smaller dimensions at each layer. MiniLM 149

(Wang et al., 2021) conducted deep self-attention 150

distillation. 151

Unlike previous works presenting general distil- 152

lation frameworks, we focus on compressing mul- 153

tilingual pre-trained models while aligning their 154

cross-lingual vector spaces. In addition, we take 155

inspiration from Reimers and Gurevych (2020), 156

which successfully aligned the vector space of the 157

multilingual model through cross-lingual knowl- 158

edge distillation (X-KD). Our framework combines 159

the advantages of X-KD for aligning vectors and 160

introduces three strategies and an assistant model 161

to prevent performance from being compromised 162

during compression. 163
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Figure 2: The overview of the model architecture and the multi-stage distillation. It consists of four stages and aims
to obtain a small multilingual student model. For convenience, we take the English SBERT as the teacher model,
XLM-R as the assistant model. < si, ti > is a pair of parallel sentences in two different language. N is the batch
size. MSE is the mean squared error loss function.

3 Method164

In this section, we will introduce our method in165

detail. First, we exhibit the model architecture,166

and then introduce the multi-stage distillation strat-167

egy for the model training. An overview of our168

approach is shown in Figure 2.169

3.1 Model architecture170

Given a large-size monolingual model as teacher171

T and a small-size multilingual model as stu-172

dent S, our goal is to transfer semantic similar-173

ity knowledge from T to S and simultaneously174

compress the size of S with m parallel sentences175

P = {< s1, t1 >,< s2, t2 >, · · · < sm, tm >}.176

3.1.1 Teacher model177

In this work, we use SBERT (Reimers and178

Gurevych, 2019) as the teacher model, which has179

been proven to perform well on monolingual se-180

mantic similarity tasks. SBERT adopts a siamese181

network structure to fine-tune a BERT (Devlin182

et al., 2019) encoder, and applies a mean pooling183

operation to its output to derive sentence embed-184

ding.185

3.1.2 Assistant model 186

Mirzadeh et al. (2020) proved that when the gap 187

between the student and teacher is large, the perfor- 188

mance of the student model will decrease. We hope 189

to get a small student model with cross-lingual ca- 190

pabilities, while the teacher is a large monolingual 191

model. To alleviate the gaps, we introduce an as- 192

sistant model A (Mirzadeh et al., 2020), which is a 193

large multilingual model with cross-lingual ability. 194

3.1.3 Student model 195

Inspired by ALBERT (Lan et al., 2020), we design 196

the student model with Parameter Recurrent and 197

Embedding Bottleneck strategy. Since there is no 198

available multilingual ALBERT, we need to design 199

from scratch. 200

Parameter Recurrent. We choose the first M lay- 201

ers of the assistant model as a recurring unit (RU). 202

The role of RU is to initialize the student model 203

with layers from the assistant model. Concretely, 204

the RU is defined as, 205

RU = {Li|i ∈ [1,M ]} , (1) 206

where Li is the ith transformer layer. 207
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Embedding Bottleneck. Multilingual pre-trained208

models usually require a large vocabulary V to209

support more languages, which leads to large em-210

bedding layer parameters. We add a bottleneck211

layer (He et al., 2016; Lan et al., 2020; Sun et al.,212

2020) of size B between embedding layer and hid-213

den layer H . In this way, the embedding layer is214

reduced from O(V ×H) to O(V ×B +B ×H).215

3.2 Multi-stage distillation216

Multi-stage Distillation is the key for enabling the217

small-size student model with cross-lingual match-218

ing ability.219

Stage 1. Teaching assistant220

As the Stage 1 in Figure 2, we use the teacher221

model and parallel corpus to align vector space be-222

tween different languages through the loss function223

in (2), enabling its cross-lingual ability (Reimers224

and Gurevych, 2020).225

ℓstage1 =
1

|N |

N∑
i

[
(hsiT − hsiA)

2 + (hsiT − htiA)
2
]
,

(2)226

where N is the batch size, and si and ti denotes the227

parallel sentences in a mini batch.228

Stage 2. Align student embedding229

As the Stage 2 in Figure 2, we align the embedding230

bottleneck layer with the assistant embedding space231

through the loss function in (3),232

ℓstage2 =
1

|N |

N∑
i

[
(hsiAe − hsiBe)

2 + (htiBe − htiAe)
2
]
,

(3)233

where hsiAe, h
ti
Ae denotes the output of assistant em-234

bedding layer, hsiBe, h
ti
Be denotes the output of em-235

bedding bottleneck layer.236

Stage 3. Teaching student237

In the Stage 3, the student model is trained to im-238

itate the output of the assistant model with loss239

function in (4),240

ℓstage3 =
1

|N |

N∑
i

[
(hsiA − hsiS )

2 + (htiS − htiA)
2
]
,

(4)241

where hsiA , h
ti
A denotes the output of assistant model,242

hsiS , h
ti
S denotes the output of student model.243

Stage 4. Multilingual contrastive learning 244

After the above three stages, we can get a small 245

multilingual sentence embedding model. How- 246

ever, as shown in Figure 1, when the model size 247

decrease, its cross-lingual performance decreases 248

sharply. Therefore, in this stage, we propose mul- 249

tilingual contrastive learning (MCL) task further 250

to improve the performance of the small student 251

model. 252

Assuming the batch size is N , for a specific trans- 253

lation sentence pair (si, ti) in one batch, the mean- 254

pooled sentence embedding of the student model 255

is (hsiS , h
ti
S ). The MCL task takes parallel sentence 256

pair (hsiS , h
ti
S ) as positive one, and other sentences 257

in the same batch
{
(hsiS , h

tj
S )|j ∈ [1, N ] , j ̸= i

}
as 258

negative samples. Considering that the MCL task 259

needs to be combined with knowledge distillation. 260

Unlike the previous work (Yang et al., 2019; Feng 261

et al., 2020; Mao et al., 2021), the MCL task does 262

not directly apply the temperature-scaled cross- 263

entropy loss function. 264

Here, we introduce the implementation of the 265

MCL task. For each pair of negative examples 266

(si, tj) in the parallel corpus, the MCL task first 267

unifies (si, tj) into the source language (si, sj), 268

then uses the fine-grained distance between hsiT and 269

hsjT in the teacher model to push away the semantic 270

different pair (hsiS , h
tj
S ) in the student model. For 271

positive examples, the MCL task pull semantically 272

similar pair (hsiS , h
ti
S ) together. The MCL task loss 273

is (5), 274

ℓMCL =
1

N2

N∑
i

N∑
j

(
ϕ(hsiT , h

sj
T )− ϕ(hsiS , h

tj
S )

)2
,

(5) 275

where ϕ is the distance function. Following prior 276

work (Yang et al., 2019; Feng et al., 2020), we set 277

ϕ(x, y) = cosine(x, y). we also add the knowl- 278

edge distillation task for multilingual sentence rep- 279

resentation learning. The knowledge distillation 280

loss is defined as, 281

ℓKD =
1

|N |

N∑
i

[
(hsiT − hsiS )

2 + (hsiT − htiS )
2
]
.

(6) 282

In stage 4, the total loss function is added by ℓMCL 283

and ℓKD. 284

ℓstage4 = ℓMCL + ℓKD. (7) 285
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Model AR-AR ES-ES EN-EN Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 50.9 56.7 54.4 54.0 92.20M 85.05M
XLM-R(mean) 25.7 51.8 50.7 42.7 192.40M 85.05M
mBERT-nli-stsb 65.3 83.9 80.2 76.5 92.20M 85.05M
XLM-R-nli-stsb 64.4 83.1 78.2 75.3 192.40M 85.05M
LASER 68.9 79.7 77.6 75.4 23.56M 17.06M
LaBSE 69.1 80.8 79.4 76.4 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 78.8 83.0 82.5 81.4 92.20M 85.05M
XLM-R← SBERT-nli-stsb 79.9 83.5 82.5 82.0 192.40M 85.05M
mBERT← SBERT-paraphrases 79.1 86.5 88.2 84.6 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 77.7 85.8 88.5 84.0 92.20M 46.10M
XLM-R← SBERT-paraphrases 79.6 86.3 88.8 84.6 192.40M 85.05M
MiniLM← SBERT-paraphrases 80.3 84.9 85.4 83.5 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 76.7 84.5 86.6 82.6 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.0 85.5 88.4 84.3 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 79.9 86.8 88.4 85.0 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 72.8 79.3 84.4 78.8 32.05M 5.32M
MiniLM(b = True, bs = 128,|RU | = 12) 79.0 84.4 85.2 82.9 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 79.9 85.3 85.6 83.6 96.21M 5.32M

Table 1: Spearman rank correlation (ρ × 100) between the cosine similarity of sentence representations and the
gold labels for STS 2017 monolingual dataset. b indicates whether to use the Embedding Bottleneck strategy, bs
indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken as
Recurrent Unit, the recurrent times = basic model layers/|RU |.

4 Experimental results286

4.1 Evaluation setup287

Dataset. The semantic text similarity (STS) task re-288

quires models to assign a semantic similarity score289

between 0 and 5 to a pair of sentences. Follow-290

ing Reimers and Gurevych (2020), we evaluate291

our method on two multilingual STS tasks, i.e.,292

STS2017 (Cer et al., 2017) and STS2017-extend293

(Reimers and Gurevych, 2020), which contain three294

monolingual tasks (EN-EN, AR-AR, ES-ES) and295

six cross-lingual tasks (EN-AR, EN-ES, EN-TR,296

EN-FR, EN-IT, EN-NL).297

Parallel corpus. In stage 1, stage 2 and stage 3,298

we use TED2020 (Reimers and Gurevych, 2020),299

WikiMatrix (Schwenk et al., 2021), Europarl300

(Koehn, 2005) and NewsCommentary (Tiedemann,301

2012) as parallel corpus for training. In stage 4,302

TED2020 is enough for contrastive learning. In this303

way, the student model first learns generalized mul-304

tilingual knowledge and then possesses semantic305

similarity capabilities.306

Metric. Spearman’s rank correlation ρ is re-307

ported in our experiments. Specifically, we first308

compute the cosine similarity score between two309

sentence embeddings, then calculate the Spearman310

rank correlation ρ between the cosine score and the311

golden score.312

4.2 Implementation details 313

Mean pooling is applied to obtain sentence embed- 314

dings, and the max sequence length is set to 128. 315

We use AdamW (Loshchilov and Hutter, 2019) op- 316

timizer with a learning rate of 2e-5 and a warm-up 317

of 0.1. In stage1, stage2, and stage3, the models 318

are trained for 20 epochs with a batch size of 64, 319

while in stage 4, the student model is trained for 320

60 epochs. The mBERT, XLM-R used in this work 321

are base-size model obtained from Huggingface’s 322

transformers package (Wolf et al., 2020), and the 323

MiniLM refers to MiniLM-L12-H3842 324

4.3 Performance comparison 325

We compare the model obtained from our multi- 326

stage distillation with the previous state-of-the- 327

art models, and results are shown in Table 1 and 328

Table 2. In Pre-trained Model, mBERT(mean) 329

and XLM-R(mean) are mean pooled mBERT 330

and XLM-R models. mBERT-nli-stsb and 331

XLM-R-nli-stsb are mBERT and XLM-R 332

fine-tuned on the NLI and STS training sets. 333

LASER and LaBSE are obtained from Artetxe 334

and Schwenk (2019b) and Feng et al. (2020). In 335

Knowledge Distillation, we use the paradigm of 336

Student←Teacher to represent the Student 337

model distilled from the Teacher model. There 338

are two teacher models, i.e., SBERT-nli-stsb 339

2https://huggingface.co/microsoft/Multilingual-MiniLM-
L12-H384
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Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 16.7 33.9 16.0 21.5 33.0 34.0 35.6 27.2 92.20M 85.05M
XLM-R(mean) 17.4 21.3 9.2 10.9 16.6 22.9 26.0 17.8 192.40M 85.05M
mBERT-nli-stsb 30.9 62.2 23.9 45.4 57.8 54.3 54.1 46.9 92.20M 85.05M
XLM-R-nli-stsb 44.0 59.5 42.4 54.7 63.4 59.4 66.0 55.6 192.40M 85.05M
LASER 66.5 64.2 72.0 57.9 69.1 70.8 68.5 67.0 23.56M 17.06M
LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 77.2 78.9 73.2 79.2 78.8 78.9 77.3 77.6 92.20M 85.05M
DistilmBERT← SBERT-nli-stsb 76.1 77.7 71.8 77.6 77.4 76.5 74.7 76.0 92.20M 46.10M
XLM-R← SBERT-nli-stsb 77.8 78.9 74.0 79.7 78.5 78.9 77.7 77.9 192.40M 85.05M
mBERT← SBERT-paraphrases 80.8 83.6 77.9 83.6 84.6 84.6 84.2 82.7 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 79.7 81.7 76.4 82.3 83.2 84.3 83.0 81.5 92.20M 46.10M
XLM-R← SBERT-paraphrases 82.3 84.0 80.9 83.1 84.9 86.3 84.5 83.7 192.40M 85.05M
MiniLM← SBERT-paraphrases 81.3 82.7 74.8 83.2 80.3 82.4 82.2 80.9 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.4 83.6 78.7 83.3 84.2 85.6 84.8 82.8 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 81.1 84.3 79.8 82.6 84.5 84.8 85.4 83.2 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
MiniLM(b = True, bs = 128, |RU | = 12) 79.7 81.0 74.1 81.9 80.1 80.8 80.7 79.8 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 82.3 82.8 76.9 82.1 80.5 82.3 82.4 81.3 96.21M 5.32M

Table 2: Spearman rank correlation (ρ× 100) between the cosine similarity of sentence representations and the gold
labels for STS 2017-extend cross-lingual dataset. b indicates whether to use Embedding Bottleneck strategy, bs
indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken as
Recurrent Unit, the recurrent times = basic model layers/|RU |.

and SBERT-paraphrases, which are released340

by UKPLab3. The former is fine-tuned on the En-341

glish NLI and STS training sets, and the latter is342

trained on more than 50 million English paraphrase343

pairs. The student models include mBERT, XLM-344

R, DistilmBERT (Sanh et al., 2019) and MiniLM345

(Wang et al., 2021).346

Table 1 and Table 2 show the evaluation results347

on monolingual and multilingual STS task, respec-348

tively. For the XLM-R, our method compresses349

the embedding size by 83.2% with 0.3% worse350

monolingual performance and 0.9% worse cross-351

lingual performance, compresses the encoder size352

by 75% with slightly higher (0.4%) monolingual353

performance and 0.5% worse cross-lingual perfor-354

mance. When compressing the embedding layer355

and the encoder simultaneously, the model size is356

reduced by 80.6%, its monolingual performance357

drop by 2% and cross-lingual performance drop by358

4%, but it still outperforms the pre-trained models.359

For comparison with other distillation methods,360

MiniLM← SBERT-paraphrases is taken as a strong361

baseline. Our framework can further compress362

its embedding size by 66.7% with 0.6% worse in363

monolingual performance and 1.1% worse in cross-364

lingual performance. Its encoder size is further365

compressed by 75% with slightly higher monolin-366

gual (0.1%) and cross-lingual (0.4%) performance.367

3https://github.com/UKPLab/sentence-transformers

Model AR-AR ES-ES EN-EN Avg.

ours 76.7 84.5 86.6 82.6
w/o MCL 76.4 83.9 86.8 82.3
w/o Rec. 67.4 80.1 86.6 78.0
w/o MCL+Rec. 67.9 79.3 86.6 77.9

Table 3: Results of ablation studies on STS-2017 mono-
lingual task

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
w/o MCL 75.9 79.7 73.2 79.9 80.4 80.4 80.5 78.5
w/o Rec. 69.1 73.4 66.5 70.2 73.7 73.0 75.9 71.7
w/o MCL+Rec. 67.8 73.6 66.4 68.5 72.8 71.8 75.2 70.9

Table 4: Results of ablation studies on STS2017-extend
cross-lingual task

In addition, our compressed XLM-R(b = True, 368

bs = 128, |RU | = 12) achieves higher monolin- 369

gual(0.8%) and cross-lingual(1.9%) performance 370

with the same model size. 371

4.4 Ablation study 372

Among the three key strategies, multilingual con- 373

trastive learning (MCL) and parameter recurrent 374

(Rec.) are two crucial mechanisms to improve 375

model performance. The bottleneck is used to com- 376

press the model. In this section, ablation studies is 377

performed to investigate the effects of MCL and 378

Rec.. The effects of the bottleneck will be dis- 379

cussed in section 4.7. 380
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Figure 3: Performance of XLM-R (b=True, bs=128,
|RU | = 3) after each training epoch on EN-AR, EN-ES,
EN-FR, EN-TR tasks with different contrastive learning
settings.

XLM-R(b=True, bs=128, |RU | = 3) is selected381

as the basic model. We consider three different382

settings: 1) training without MCL task. 2) training383

without parameter recurrent. 3) training without384

both. The monolingual results and multilingual385

results are presented in Table 3 and Table 4..386

It can be observed that: 1) without MCL task, the387

model performs poorer on the cross-lingual tasks.388

2) without parameter sharing, the model performs389

poorer on all datasets. 3) MCL task can signifi-390

cantly improve the cross-lingual performance on391

EN-AR, EN-ES, EN-FR, EN-NL. It can be con-392

cluded that both MCL task and parameter recurrent393

play a key role in our method.394

4.5 Effect of contrastive learning395

To investigate the effects of contrastive learning in396

stage 4, we select XLM-R(b=True, bs=128, |RU |397

= 3), modify the original objective in (5) into three398

different settings, namely, Bool, CE and w/o CL.399

In the Bool setting, the soft label in (5) is re-400

Settings EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

Ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
Bool 77.0↓ 80.5↑ 73.5↓ 79.8↓ 80.3↓ 80.7↑ 81.2 79.0↓
CE 76.6↓ 79.9↑ 74.3↑ 80.0↓ 80.8↓ 80.6↑ 80.7↓ 78.9↓
w/o CL 75.9↓ 79.7↓ 73.2↓ 79.9↓ 80.4↓ 80.4↑ 80.5↓ 78.5↓

Table 5: Evaluation results of XLM-R (b = True, bs =
128, |RU | = 3) on the STS2017-extend cross-lingual
task with different contrastive learning settings.

Settings Avg. (Monolingual) Avg. (Cross-lingual)

Single-stage
Random Initialize 78.1 71.1

+ Pre-Distillation 79.0 73.8

Multi-stage
stage 1 + 2 48.4 20.8
stage 1 + 2 + 3 75.2 70.6
stage 1 + 2 + 3 + 4 82.6 79.4

Table 6: Comparison of using different stage settings
on monolingual and multilingual STS task. XLM-R is
the basic model. The first three layers from XLM-R are
taken as a Recurrent Unit, bottleneck hidden size is 128.

placed with hard label (0 or 1), as (8), 401

ℓBool =
1

N2

N∑
i

N∑
j

(
δ(hsiT , h

sj
T )− ϕ(hsiS , h

tj
S )

)2
,

(8) 402

where δ(x, y) = 1, if x = y, otherwise 0. 403

In the CE setting, the objective in (5) is replaced 404

with temperature-scaled cross-entropy, as (9), 405

ℓCE = −
N∑
i

N∑
j

ϕT log
eϕS/τ∑N
k=1 e

ϕS/τ
, (9) 406

where ϕT = cos(hsiT , h
sj
T ), ϕS = cos(hsiS , h

tj
S ), 407

τ = 0.05 is a hyperparameter called temperature. 408

In the w/o CL setting, the contrastive learning is 409

removed in Stage 4. 410

Table 5 presents the model performance of cross- 411

lingual semantic similarity task with different set- 412

tings. It can be observed that all the above training 413

objectives can improve the model performance on 414

the cross-lingual task, compared with the w/o CL 415

settings. Model trained with (8) and (9) underper- 416

form that trained with (5), especially on EN-AR, 417

EN-ES, EN-FR, EN-NL task. 418

We plot the convergence process of different set- 419

tings in Figure 3. On EN-AR, EN-ES, EN-FR tasks, 420

our setting outperform other settings. It is worth 421

mentioning that on the EN-TR task, our setting 422

underperform the CE setting according to Table 5. 423

However, our setting reaches the same level as CE 424

setting during the 30 to 40 epoch. 425
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Model Monolingual Avg. Cross-lingual Avg. Embedding size Encoder size

Teacher model=SBERT-paraphrases, Student model=XLM-R, |RU | = 3
b = True, bs = 128 82.6 79.4 32.49M 21.26M
b = True, bs = 256 82.8 80.6 64.59M 21.26M
b = False 85.0 83.2 192.40M 21.26M

Teacher model=SBERT-paraphrases, Student model=XLM-R, b = True, bs = 128
|RU | = 3 82.6 79.4 32.49M 21.26M
|RU | = 6 83.4 81.1 32.49M 42.52M
|RU | = 12 84.3 82.8 32.49M 85.05M

Teacher model=SBERT-paraphrases, Student model=MiniLM, |RU | = 3
b = True, bs = 128 78.8 71.8 32.05M 5.32M
b = True, bs = 256 79.5 72.8 64.10M 5.32M
b = False 83.6 81.3 96.21M 5.32M

Teacher model=SBERT-paraphrases, Student model=MiniLM, b = True, bs = 128
|RU | = 3 78.8 71.8 32.05M 5.32M
|RU | = 6 81.5 76.1 32.05M 10.64M
|RU | = 12 82.9 79.8 32.05M 21.29M

Table 7: The performance of STS monolingual and cross-lingual task based on XLM-R(b=True, bs=128, |RU | = 3)
and MiniLM(b=True, bs=128, |RU | = 3), We evaluated the effect of increasing bs or |RU |.

4.6 Effect of multi-stages426

To verify the effectiveness of multi-stages, we427

shows the performance comparison of using dif-428

ferent stage settings in Table 6. In the Single-stage429

setting, we first initialize the shrunk student model430

in two ways: (1) Random Initialize: Adding the un-431

trained embedding bottleneck layers to the student432

model. (2) Pre-Distillation: The student model433

with bottleneck layer is initialized by distillation434

using XLM-R and the same corpus as section 4.1.435

Then we follow Reimers and Gurevych (2020) to436

align vector space between different languages. In437

the Multi-stage setting, the performance of the stu-438

dent model is reported after each stage.439

As shown in Table 6, the Multi-stage setting out-440

performs the single-stage one, indicating that our441

multi-stage framework with an assistant model is442

effective. Adding stage3 and stage4 further im-443

proves the student model performance, suggesting444

that multi-stage training are necessary.445

4.7 Effect of bottleneck and recurrent unit446

In this section, we study the impact of embedding447

bottleneck and recurrent unit strategies on multilin-448

gual semantic learning. We consider three settings449

for each strategy, as shown in Table 7.450

First, we found that both XLM-R and MiniLM451

perform better as the bottleneck hidden size bs in-452

creases. The performance is best when the entire453

embedding layer is retained, The MiniLM(b=False)454

can outperform its original model in Table 1 and455

Table 2. But the benefit of increasing bs is not ob-456

vious unless the entire embedding layer is retained.457

Second, by increasing the number of recurrent458

unit layers |RU |, XLM-R and MiniLM have been459

steadily improved on these two tasks. The increase 460

in model size caused by the |RU | is less than the 461

bs. For example, the performance of MiniLM on 462

cross-lingual tasks increased by 8%, while its size 463

only increased by 15.9M. 464

Finally, it can be observed that when us- 465

ing the bottleneck layer (b=True), the model 466

performance will increase steadily as |RU | in- 467

creases. The smaller the encoder hidden size, the 468

more significant effect caused by |RU | increasing 469

(∆MiniLM>∆XLM-R). However, the increase of 470

bs can not improve performance significantly but 471

make the embedding size larger. Therefore, an ef- 472

fective way to compress the multilingual model is 473

reducing bs while increasing |RU |. In this way, we 474

shrink XLM-R by 58%, MiniLM by 55%, with less 475

than 1.1% performance degradation. 476

5 Conclusion 477

In this work, we realize that the cross-lingual simi- 478

larity matching task requires a large model size. To 479

obtain a small-size model with cross-lingual match- 480

ing ability, we propose a multi-stage distillation 481

framework. Knowledge distillation and contrastive 482

learning are combined in order to compress model 483

with less semantic performance loss. 484

Our experiments demonstrate promising STS re- 485

sults with three monolingual and six cross-lingual 486

pairs, covering eight languages. The empirical re- 487

sults show that our framework can shrink XLM-R 488

or MiniLM by more than 50%. In contrast, the 489

performance is only reduced by less than 0.6% on 490

monolingual and 1.1% on cross-lingual tasks. If 491

we slack the tolerated loss performance in 4%, the 492

size of XLM-R can be reduced by 80%. 493
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