RLJ | RLC 2024

SplAgger: Split Aggregation for
Meta-Reinforcement Learning

Jacob Beck
jacob__beck@alumni.brown.edu
Department of Computer Science
University of Oxford

Risto Vuorio
risto.vuorio@keble.ox.ac.uk
Department of Computer Science
University of Oxford

Shimon Whiteson
shimon.whiteson@cs.ox.ac.uk
Department of Computer Science
University of Oxford

Matthew Jackson

jackson@robots.ox.ac.uk

Department of Engineering Science
University of Oxford

Zheng Xiong
zheng.xiong@cs.ox.ac.uk
Department of Computer Science
University of Oxford

Abstract

A core ambition of reinforcement learning (RL) is the creation of agents capable of
rapid learning in novel tasks. Meta-RL aims to achieve this by directly learning such
agents. Black box methods do so by training off-the-shelf sequence models end-to-
end. By contrast, task inference methods explicitly infer a posterior distribution over
the unknown task, typically using distinct objectives and sequence models designed
to enable task inference. Recent work has shown that task inference methods are
not necessary for strong performance. However, it remains unclear whether task
inference sequence models are beneficial even when task inference objectives are not.
In this paper, we present evidence that task inference sequence models are indeed
still beneficial. In particular, we investigate sequence models with permutation
invariant aggregation, which exploit the fact that, due to the Markov property,
the task posterior does not depend on the order of data. We empirically confirm
the advantage of permutation invariant sequence models without the use of task
inference objectives. However, we also find, surprisingly, that there are multiple
conditions under which permutation variance remains useful. Therefore, we propose
SplAgger, which uses both permutation variant and invariant components to achieve
the best of both worlds, outperforming all baselines evaluated on continuous control
and memory environments. Code is provided at https://github.com/jacooba/
hyper.

Introduction

A prevalent method for creating agents that can quickly learn involves teaching them how to learn
quickly. This problem is well studied under the name of meta-reinforcement learning (Beck et al.,
2023a). In meta-RL, an agent learns a reinforcement learning algorithm over a distribution of
reinforcement learning problems, called tasks. In order to condition on data from new tasks, the
agent can use a generic sequence model, such as a recurrent neural network (RNN), trained end-
to-end (Duan et al., 2016; Wang et al., 2016). These methods are referred to as black-box methods

(Beck et al., 2023a).

https://github.com/jacooba/hyper
https://github.com/jacooba/hyper

RLJ | RLC 2024

By contrast, a distinct category of research focuses on methods specialized for meta-RL. These
methods typically infer an explicit posterior over tasks, given data collected from a new task. To do
S0, they generally use distinct objectives and distinct sequence models, designed to enable inference
of the unknown task. In particular, it is common to use sequence models that are invariant to the
order of their inputs, which we refer to as permutation invariant aggregation. Due to the Markov
property, the true posterior over tasks does not depend on this order. Collectively, these methods
are referred to as task-inference methods (Beck et al., 2023a).

While many task inference methods have been developed for meta-RL, recent work has shown black-
box methods to be more effective in practice (Ni et al., 2022; Beck et al., 2023b). However, these
results focus primarily on demonstrating the superiority of the end-to-end objective used in black-
box methods over the task-inference objective, and do not investigate the effect of the particular
sequence model. This leaves an open question: When using an end-to-end objective, is it still worth
using permutation invariant sequence models?

In this paper, we answer in the affirmative. We show that permutation invariant sequence models
still confer an advantage in a number of domains, even when trained end-to-end. However, we also
find, surprisingly, that there are domains where dependence on the permutation remains useful.
Specifically, we find sequence models with a permutation variant component to be less sensitive to
choices in the permutation invariant component, and we find permutation variance useful when there
exist permutation variant suboptimal policies. We extensively investigate the conditions under which
each type of sequence model is useful, conduct analysis to support our conclusions, and propose
a simple sequence model, called Split Aggregator, or SplAgger, adapted and simplified from the
literature on partial observability (Beck et al., 2020). SplAgger, depicted in Figure lc, uses both
permutation invariant and permutation variant components to achieve the best of both worlds and
high returns in all domains evaluated.

2 Related Work

End-to-End Meta-RL The problem setting defined by meta-RL can be viewed as a particular
type of partially observable Markov decision process (POMDP) (Beck et al., 2023a). From the theory
of POMDPs, we know that the optimal policy for POMDPs, and thus meta-RL, can be represented
as an arbitrary function of history (Subramanian et al., 2022). Inspired by this, one category of
meta-RL methods, called black-box methods, train general purpose sequence models end-to-end on
the meta-RL objective (Duan et al., 2016; Wang et al., 2016; Ni et al., 2022; Team et al., 2023; Beck
et al., 2023b). Recently, it has been shown that these methods are a strong baseline in meta-RL (Ni
et al., 2022). Moreover, if hypernetworks (Ha et al., 2017) are used, these methods have superior
performance to task inference methods (Beck et al., 2023b). We build off of these results in our
paper, using end-to-end trained hypernetworks, following the methods in Beck et al. (2022; 2023b).
However, in contrast to these papers, we provide strong evidence that specialised sequence models,
still trained end-to-end, can provide a strong advantage.

Sequence Models in Meta-RL Task-inference methods explicitly attempt to infer a posterior
distribution over the identify of the task (Beck et al., 2023a). Following directly from the Markov
property, it can be shown that this posterior does not depend on the order of the data on which the
agent conditions. While generic sequence models, such as RNNs, may model permutation invariance,
they must learn to do so. In order to incorporate this inductive bias directly, methods generally
modify the sequence model to be permutation invariant (Rakelly et al., 2019; Galashov et al., 2019;
Raileanu et al., 2020; Wang & van Hoof, 2022; Imagawa et al., 2022). One popular method, called
probabilistic embeddings for actor-critic RL, or PEARL (Rakelly et al., 2019), incorporates permu-
tation invariance into the probability density function of a stochastic latent variable summarizing
history. Specifically, the density function, modelled as a product over individual transitions in the
data, is permutation invariant. We compare to this style of aggregation in our experiments. Another
approach uses commutative operators applied across the data (Imagawa et al., 2022; Wang & van
Hoof, 2022; Galashov et al., 2019). Generally, these can be viewed as (conditional) Neural Processes

RLJ | RLC 2024

(CNP) (Garnelo et al., 2018b;a), and so we compare to this style of aggregation as well. Yet another
approach uses attention, self-attention, or transformers (Mishra et al., 2018; Fortunato et al., 2019;
Nguyen & Grover, 2022). Attention is inherently permutation invariant. Still, attention is com-
putationally expensive: whereas both commutative aggregation and recurrent networks use O(1)
memory and compute per timestep, attention generally requires O(t2) memory and compute per
timestep t, for autoregressive inference. While fast approximations of attention exist (Katharopou-
los et al., 2020), the computational requirements are significantly larger. Additionally, our limited
experimentation shows they have difficulty learning on our domains (see Appendix F for details).
Thus, we limit our solutions to constant memory and compute, in line with sequence models designed
to quickly handle long contexts (Garnelo et al., 2018b; Beck et al., 2020). Finally, we compare to
Aggregated Memory for RL, or AMRL (Beck et al., 2020). While AMRL was originally proposed
as a method for POMDPs, it was evaluated in meta-RL problem settings. Our method proposes a
simplification to AMRL that is vital in practice. Details of AMRL are covered in Section 4.

In-Context Learning The methods we investigate in this paper can be seen as performing in-
context learning. Learning that occurs after training and within the activations of a sequence model
is called in-contexrt learning (Brown et al., 2020). Black box and task inference methods both
perform in-context learning. In part due to the popularity of large language models (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022), in-context learning has gained significant traction
recently, including in decision-making applications (Raparthy et al., 2023; Lee et al., 2024) and
reinforcement learning (RL) (Kirsch et al., 2022). While other meta-RL methods exist that do not
use sequence models for in-context learning, such as parameterized policy gradient methods, they
generally require more samples to adapt to novel tasks, including those used in our benchmarks
(Zintgraf et al., 2021; Beck et al., 2023a). In-context learning promises to address the sample
inefficiency still impeding progress in reinforcement learning. Learning to perform in-context RL is
the problem studied in meta-RL.

3 Background

3.1 Problem Setting

We formalize the learning problem as a Markov Decision Processes (MDP) represented by the tuple
(S, A, R, P,7), where S denotes the state space, A the action space, R the reward function, P the
state transition probabilities, and v the discount factor. During each time-step ¢, an agent finds itself
in a state s; € S, observes this state, and chooses an action a; € A. The MDP then transitions to a
new state s;41, following the probability distribution s;41 ~ P(St41]8t,a¢): S x A xS — Ry, and
the agent receives a reward ry = R(sg,a¢): S x A — R. The agent acts to maximize the expected
future discounted reward, R(7) = Z'I"tGT ~try, where T denotes the agent’s trajectory throughout an
episode in the MDP, and v € [0, 1) is a discount factor. The agent’s decisions are guided by a policy
m(als) : § x A — Ry, a learned function mapping states to a probability distribution over actions.

Meta-RL algorithms learn an RL algorithm, f(7), over a distribution of MDPs, or tasks. f(7) maps
from the data, 7, sampled from a single MDP, M ~ p(M), to policy parameters ¢. As in a single
RL task, 7 is a sequence up to time-step ¢ forming a trajectory of states, actions, rewards, and
next states, 7 € (§ x A x R x 8)!. We can see 7 as a trajectory of transitions, 79,71, ..., 74, where
7 is shorthand for the transition, (s, a,rt, st41). Here, 7 may span multiple episodes within a
single MDP, since multiple episodes of interaction may be necessary for learning. Collectively, we
refer to these episodes as a meta-episode, and use the same symbol, 7, to refer to it. The policy,
m(als; ¢ = fo(7)), is parameterized by ¢. f is represented as a sequence model, parameterized by 6,
which we refer to as the meta-parameters.

RLJ | RLC 2024

The objective in meta-RL is to find meta-parameters 6 that maximize the expected sum of the
returns in the meta-episode across a distribution of tasks (MDPs):

argénaXEwa(M) {]ET [R(T) (50 = fo(7)), M”

3.2 Permutation Invariance

Task inference methods in meta-RL explicitly infer a posterior over tasks. In meta-RL, the optimal
policy can be computed from both the current state, sy, and this posterior, P(M|7) (Beck et al.,
2023a). Following Bayes’s rule and the Markov property, this posterior distribution, for a trajectory
of length T', can be written,

P(M|r) o< P(1|M)P(M) // Bayes’s rule
t
= P(M) | | P(at,rt, se41l56, M), // Markov property

t

Il
!

Il
-

with the full proof in Appendix A.

In this expression, the posterior, P(M]|7), does not depend on the order of the transitions, 71, .., 7¢.
While it is possible to learn each factor, P(ay,rs, St41|st, M), as a function of each individual tran-
sition, 74, this form is not particularly amenable to inference, since it requires marginalizing over all
MDPs at test time. Still, it is possible to incorporate the permutation invariant structure into the
sequence model directly.

Generally this is done through the use of a permutation invariant binary operator, €, such as a
mean or a sum (Garnelo et al., 2018b;a; Galashov et al., 2019; Imagawa et al., 2022; Wang & van
Hoof, 2022), applied over the sequence of inputs. For a given sequence of encoded inputs, ej..., e,
we write the resulting aggregated representation, g(ey, ..., e:):

gler,...,er) = e @62 @ @et.

The benefit of using these operators, in addition to permutation invariance, is that the sequence can
be computed recursively, since g(eq,...,e) = g(e1,...,e;—1) @ e;. This means that the sequence at
all points in time can be compressed into O(1) memory and each new timestep can be computed
in O(1) time. Still, as we will demonstrate in practice, permutation invariance can be beneficial in
some environments and detrimental in others.

3.3 AMRL

AMRL, depicted in Figure 1, is a method for POMDPs that combines both permutation variant
and permutation invariant components (Beck et al., 2020). While AMRL uses permutation invariant
aggregators, the encoded inputs to the aggregators themselves are a function of history:

€y = RNNQ(Tl, ...,Tt).

Additionally, the neurons of each encoded input are split in half before aggregation, into e ; /o and
es,2/2- The first half of the neurons are aggregated, while the second half skip the aggregation. The
complete sequence model is defined as

fo(T) = Concatenate(em/Q; 90(61,2/2, ey 6t,2/2))'

Here, the RNN is able to handle short permutation variant sequence, which can then be integrated
without respect to order by the permutation invariant aggregation over longer periods of time. Since
we split the neurons before aggregation, we call this process split aggregation.

RLJ | RLC 2024

(a) Hypernetwork (c) SplAgger

Figure 1: The hypernetwork from Beck et al. (2023b) is depicted in la, the AMRL model from
Beck et al. (2020) is depicted in 1b, and SplAgger is depicted in lc. The angled line indicates a split
connection that divides the neurons in half. The red arrow indicates a modified gradient computation
in the backward pass. A hypernetwork is indicated by h. SplAgger makes use of the hypernetwork
architecture combined with the AMRL sequence model. The hypernetwork architecture is necessary
for performant end-to-end training. Critically, SplAgger also removes the gradient modification from
AMRL which we show to be deleterious to performance.

Additionally, AMRL modfies each Jacobian, defig/z\n, when computing the chain rule in the backward
pass. Specifically, it overwrites the true J acobian with the identity matrix, I. This is called passing
the gradient straight through, or an ST gradient modification. Since the sum aggregator actually has
I as the true Jacobian, this can be seen as replacing the gradient with that of a sum. For the average
and max aggregators, the Jacobian is already similar to I. Specifically, the average has a Jacobian
that is I/t, and the max has an expected Jacobian that is I /¢, under mild assumptions. Thus, the
modification can be seen as a rescaling of the gradient that does not diminish with time. Beck et al.
(2020) hypothesize that the ST modification has no negative impacts while also preventing gradient
decay.

4 SplAgger

Here we present our model, Split Aggregator, or SplAgger. As motivation, we first present a preview
of our experimental results. In Figure 2, we experiment with the permutation invariant model using
a point-wise maximum aggregator, as suggested in AMRL, and a permutation variant model, the
RNN. Permutation variance improves performance on the some domains (Figure 2a), but decreases
performance on others (Figure 2b). Moreover, when we add the ST gradient modification, perfor-
mance decreases severely. These result motivate the need for our model, SplAgger, which achieves
the highest returns in both domains.

SplAgger uses the same split aggregation as in AMRL, but without the ST gradient modification.
Simplifying AMRL by removing this gradient modification is key to its performance. While the
ST modification does prevent one type of gradient decay, permutation invariant aggregators already
address the relevant type of gradient decay. Moreover, the ST aggregator causes both the explosion
of other gradients and a severe decrease in performance. We show that this is the case in Sections
5 and 6, motivating the need for SplAgger. Additionally, SplAgger uses a different architecture for
the policy than in AMRL. Recent results show that the hypernetwork (Ha et al., 2017) architecture
is critical in unlocking the performance of end-to-end objectives and enabling black box methods
to outperform task inference methods (Beck et al., 2023b). Thus, the main idea behind SplAgger
is to add AMRL to hypernetworks trained end-to-end but remove the ST gradient modification.
SplAgger is the combination of these components and is depicted in Figure lc.

RLJ | RLC 2024

25
20 20
S 15
2 SplAgger =
Q - 9}
< 10 Maxd x 10
Max-ST 5
—— RNN
0 0
0 5 10 15 20 0 10 20 30 40 50
Frames (M) Frames (M)
(a) MC-LS (b) Planning Game

Figure 2: A preview of later results. The permutation invariance of the max aggregator improves
returns relative the RNN on the MC-LS environment (Beck et al., 2020), but decreases returns on
the Planning Game (Ritter et al., 2021). Additionally, the ST gradient decreases the returns of the
max aggregation. These results motivate SplAgger, which achieves the highest returns. (Results
are reported with a 68% confidence interval, computed through bootstrapping with 1,000 iterations
across three seeds, consistent with all plots presented.)

5 Experiments

In this section we evaluate SplAgger on several domains. First, we evaluate on two standard meta-RL
benchmarks in Section 5.1, to make sure that the aggregation method does not harm performance
on environments without large demands on the sequence models. Second, we evaluate on two prior
meta-RL benchmarks designed to test sequence models in mazes in Section 5.2. We additionally
evaluate on three environments design to systematically test different components of SplAgger in
Section 5.3.

On the four primary benchmark environments, we compare to four baselines. Hyperparamter tuning
is detailed in Appendix B. Since prior results demonstrate the need for hypernetworks when train-
ing end-to-end (Beck et al., 2023b), all baselines have been evaluated using hypernetworks, with
design choices detailed in Appendix B. We additionally present negative results on a novel initializa-
tion method in Appendix E. The baselines evaluated primarily differ in their choice of aggregation
function, g, and encoding of inputs, e;. The baselines are described below.

RNN. The RNN baseline can be written f(7) = e, = RNN(7, ..., 7). Here there is no aggregation
function, g, and the baseline uses a standard gated recurrent unit (Cho et al., 2014), as in Zintgraf
et al. (2021) and Beck et al. (2023b).

CNP. The conditional neural process (CNP) consists of permutation invariant aggregation without
any additional components (Garnelo et al., 2018a). Specifically, f(7) = g(e1,...,e:). Here, e; is a
linear encoding of 7:. We use the mean operator for g, as suggested by Garnelo et al. (2018a).

AMRL. AMRL (Beck et al., 2020) uses an RNN to encode e; in addition to permutation invariant
aggregation, and is described in Section 3. For AMRL, we use the pointwise maximum aggregator
in our experiments, both to match the aggregator used in SplAgger, and because that aggregator
was found to be strongest by Beck et al. (2020).

PEARL. The PEARL baseline uses the aggregation method from the PEARL algorithm (Rakelly
et al., 2019), which incorporates permutation invariance into the probability density function of a
stochastic latent variable summarizing history. The density function is modelled as a product over
individual transitions in the data. We can write this as f(7) = g(e1,...,er) =2 ~ « HZlT N(z;pu =
€t,1/2 0} = diag(et,2/2)), where e; is a linear encoding of 7; and « is a normalizing constant. To

RLJ | RLC 2024

Observations

‘ e e Position Goal
8 .

a e Actions oN
Q2020 i

00 10
n 01

S0% | 0N | 70%

on on of
(b) T-LS (c) T-Maze (d) T-Maze
(a) Planning Game (T-Maze) Agreement Latent

Figure 3: Depictions of the Planning Game, T-LS, T-Maze Agreement, and T-Maze Latent environ-
ments used in Sections 5.2 and 5.3.

compare the effects of aggregation in isolation, our PEARL baseline only implements the aggregation
method used in PEARL, and leaves the rest of the algorithmic choices the same as in SplAgger.
Additional design choices and hyperparameters for PEARL are presented in Appendices B and C.

5.1 MuJoCo Benchmarks

The first two environments for benchmarking are variants of MuJoCo proposed by Zintgraf et al.
(2021), and both involve legged locomotion. While these environments have no great demands on
memory, they are common meta-RL benchmarks (Humplik et al., 2019; Rakelly et al., 2019; Zintgraf
et al., 2021; Beck et al., 2022; 2023b) that enable us to evaluate what effect SplAgger has on standard
RL tasks. See Appendix H for details on the environments.

Results are shown in Figure 4. SplAgger achieves the greatest return, though the improvement is
modest. Training the PEARL baseline on this domain is unstable and PEARL receives significantly
lower returns. On Walker, we see similar performance across all methods. Overall, SplAgger achieves
similar or greater returns compared to other baselines. This demonstrates that our method, designed
to improve environments with difficult demands on memory, also does not decrease performance on
domains with limited memory requirements.

5.2 Memory Benchmarks

We additionally conduct tests on two environments, T-LS and MC-LS, proposed by Beck et al.
(2020). Both of these environments were designed to test long-term memory, and the latter has
been used previously in meta-RL (Beck et al., 2023b). The T-LS environment is depicted in Figure
3b. The MC-LS environment is designed to challenge an agent’s long-term memory based on visual
cues from Minecraft. Environment details can be found in Appendix H.

Results in Figure 5 show that SplAgger achieves the highest sample efficiency on both environments.
The RNN and PEARL are not able to learn the optimal policy within the allotted number of frames.
The reasons for the failure of the RNN are discussed in Section 6, while potential reasons for the
failure of PEARL are analyzed in Appendix D. While CNP is able to learn optimally, it requires
significantly more frames on T-LS. AMRL achieves similar performance. Both AMRL and CNP are
similar to our method, SplAgger. However, AMRL differs in its gradient estimation and CNP differs
in its use of mean aggregator, instead of max, and its lack of an RNN. To fully understand the
contribution of each, we systematically modify these components in isolation, in the next section.

RLJ | RLC 2024

2000 //
1500
1500 Model
S —— SplAgger S
5 PIAgg 5 1000
g 1000 —— PEARL g
AMRL 500
500 —— CNP
0 —— RNN o
0 5 10 15 20 25 0 5 10 15
Frames (M) Frames (M)
(a) Cheetah-Dir (b) Walker

Figure 4: Results on MuJoCo benchmarks. SplAgger achieves the same or better results on both
domains. PEARL achieves significantly lower return on Cheetah-Dir.

5.3 Alternative Aggregation

In this section we introduce modifications of SplAgger, and three new environments designed to
test these modifications. Since the existing baselines differ in their choice of aggregation function,
g, encoding of inputs, e;, and use of the ST gradient modification, we systematically test these
differences here. The most relevant additional baselines are described below, with the rest detailed
in Appendix I.

SplAgger-noSplit removes the split aggregation from SplAgger, but still uses max aggregation and
an RNN to encode e;. Comparing to this method allows us to validate the use of the split aggregation
in SplAgger. SplAgger-noRNN removes the RNN from SplAgger in order to test the effects of
removing permutation variant components. Since this obviates the need for the split connection,
that component is removed as well. Without these components, this method is equivalent to just
computing a maximum over linear encodings of each transition, ,. AMRL-noRNN removes
the RNN and split connection from AMRL. Without these components, this method is equivalent
computing a maximum over linear encodings of each transition, 7, along with the ST gradient
modification. SplAgger-avg replaces the max operator in SplAgger with an average, in order
to test the effects of alternative permutation invariant operators. SplAgger with other operators
(avgmax, softmax, wsoftmax) that interpolate between the average and max are evaluated as well,
with details in Appendix I.

Planning Game. First, we evaluate on the Planning Game Ritter et al. (2021), in order to evaluate
the need for permutation variant components and how to combine them with permutation invariant
components. This environment tests an agents ability to discover and remember multiple pieces
of information required for subsequent navigation. The Planning Game is useful for evaluation
here due to the existence of both a permutation invariant optimal policy and permutation invariant
suboptimal policy. The environment is depicted in Figure 3a and detailed in Appendix H.

On this domain, we evaluate methods that modify how the RNN is combined with the permutation
invariant aggregation. Results in Figure 6a show that SplAgger and RNN learn the fastest in this
domain. Both AMRL and SplAgger without the split connection learn a suboptimal policy. This
demonstrates the detrimental effects of the AMRL gradient modification and the benefit of the
split aggregation, which motivates SplAgger. We also see that AMRL without an RNN fails to
learn any reasonable policy, achieving near zero reward. Since the only difference between this and
SplAgger without an RNN is the use of the ST gradient modification, this shows strong evidence
of the detrimental effects of the gradient modification in AMRL. We analyze the causes in Section
6. While both SplAgger with an RNN and SplAgger without an RNN outperform the sub-optimal
exploration policy eventually, and achieve similar returns ultimately, SplAgger with an RNN learns
faster initially. We discuss this further in Section 6.

RLJ | RLC 2024

15
10 20 Model
= = —— SplAgger
5 5 PIAg9
g . 2 —— PEARL
« < 10 AMRL
—— CNP
0 —— RNN
0
0.0 0.5 1.0 1.5 0 5 10 15 20
Frames (M) Frames (M)
(a) T-LS (b) MC-LS

Figure 5: Results on memory benchmarks. SplAgger achieves the highest returns on both domains,
indicating the fastest learning. The standard RNN is not able to learn on either domain within the
allotted number of frames.

T-Maze Agreement. Second, we evaluate on T-Maze Agreement in order to investigate the
specific permutation invariant operator, . In this environment, the agent receives two binary
signals: one at the beginning of the maze and one in the middle. The agent must open a door
depending on whether the signals agree or disagree. This environment is depicted in Figure 3c.
While the max aggregation can easily identify the support of the state distribution in the data
(Beck et al., 2020), and thus easily identify which signals have been seen in each state, the average
aggregation must learn to adjust the representation of all states to interpret the average. Thus, we
hypothesize that this environment is easier for max aggregation and harder for mean aggregation.

On this domain, we evaluate methods that modify the specific permutation invariant operators.
Results in Figure 6b show that SplAgger achieves the highest returns, demonstrating the superiority
of max aggregation in this environment. While the RNN and average variant of SplAgger are able to
learn, they require more frames, as expected. The avgmax, softmax, and wsoftmax all learn almost
as quickly as SplAgger. Thus, we see that SplAgger is fairly robust to the choice of operator in this
domain, as long as it computes some information about the maximum.

T-Maze Latent. Finally, we evaluate on T-Maze Latent, which also modifies the T-Maze envi-
ronment in order to investigate the specific permutation invariant operator. In this environment, the
agent receives an indicator at every timestep. This indicator is either drawn from {0, 1} with a 50%
chance of 1 or a 70% chance of 1, depending on the task. This environment is depicted in Figure
3d. The average aggregator should quickly reveal the latent variable, as the variance of the mean
decreases, whereas the max aggregator should have a more difficult time counting the occurrence of
indicators in different states. Thus, we hypothesize that this environment should be harder for max
aggregation methods and easier for average aggregation.

On this domain, as on T-Maze Agreement, we evaluate methods that modify the specific permutation
invariant operators. Results in Figure 6¢ show that, surprisingly, all operators used with SplAgger
learn at approximately the same rate. We hypothesize that here, SplAgger is able to fall back upon
leveraging the RNN. Since the environment was designed to be more difficult for the max operator,
we predict that there may be a difference between the operators when the RNN and skip connection
of SplAgger are not used. To test this hypothesis, we conduct two additional experiments. We test
both SplAgger without an RNN, but still with the default max operator (SplAgger-noRNN), and
SplAgger without an RNN but with the average operator (SplAgger-noRNN-avg). Since the removal
of the RNN obviates the need for the split aggregation, the split aggregation is removed as well.
We see that, as predicted, the method with the average operator performs better than the method
with the max operator, when the RNN and split connection are removed. This demonstrates that

RLJ | RLC 2024

—— SplAgger AMRL

—— SplAgger-avg
SplAgger-avgmax
—— SplAgger-softmax } —— SplAgger-noRNN

—— SplAgger-noRNN

5 —— SplAgger-noSplit
o AMRL-noRNN 0 SplAgger-wsoftmax SplAgger-noRNN-avg
V] 10 20 30 40 50 0 2 4 6 8 10 0.0 0.5 1.0 1.5
Frames (M) Frames (M) Frames (M)
(a) Planning Game (b) T-Maze Agreement (¢) T-Maze Latent

Figure 6: SplAgger achieves returns that are equal to or higher than other methods. The Planning
Game shows the importance of incorporating RNNs, either in isolation or with split aggregation, and
the failure of gradient modification as in AMRL. Combining the RNN and permutation invariant
aggregation, without the split connection (SplAgger-noSplit), decreases performance of each. The T-
Maze Agreement domain shows the max operator to be beneficial, enabling performance even greater
than the RNN when used with SplAgger. The T-Maze Latent environment shows that SplAgger
is able to make the max aggregator performant, even in environments where the computing the
average alone is superior. Note that each legend shows the additional methods introduced for that
experiment, while the legend at the top shows methods from prior experiments.

the combination of the RNN and split aggregation make SplAgger remarkably robust to different
environments, and justifies both our aggregation method and the max operator.

6 Analysis

In this section we analyze different sequential models to gain insights into their performance. We
investigate why RNNs remain useful in some cases, even when permutation invariance should be
sufficient, and why AMRL performs poorly in our experiments. Specifically, we find permutation
variance to be useful when there exist permutation variant suboptimal policies that form a useful
stepping stone for learning optimal policies later. Additionally, we find that both AMRL and
SplAgger prevent certain types of gradient decay, but AMRL also causes other gradients to explode.

6.1 Learning Suboptimal Policies

While sensitivity to permutation is not required to learn optimal policies in meta-RL, we find that
the RNN surprisingly improves sample efficiency on the Planning Game. As discussed in Section
5, the Planning Game has a permutation variant suboptimal policy. This policy re-explores all
states after every goal is reached. To do this, the agent must remember where it is in a sequence of
exploratory actions, and then restart the sequence when a new goal is found. We examine rollouts
to confirm that SplAgger first learns this suboptimal policy. While SplAgger without an RNN can
surpass the suboptimal policy eventually, it also achieves achieves lower returns throughout training
compared to an RNN, since the RNN learns the suboptimal policy faster. Thus, RNNs can achieve
higher returns sooner, when there is a permutation variant suboptimal policy that can act as a
stepping stone for learning the optimal policy. We hypothesize that the reason SplAgger without
an RNN cannot learn the suboptimal policy is that the max aggregation can record that a goal has
been reached, but cannot identify when that goal was reached, or that it was just reached.

To confirm this, we perform an additional experiment, in which the agent receives no observation
of the state, creating partial observability. All it observes is whether it is currently at the goal
state. Hence, there is no way for it to distinguish which MDP it is in, and the problem can no
longer be modelled as a distribution of MDPs. In this case, the observations are not Markov and
permutation invariant aggregation no longer suffices for decision making. Still, the optimal policy

RLJ | RLC 2024

15
g 10 —— SplAgger-noRNN
o] —— RNN
[

5

0

0 2 4 6 8 10
Frames (M)

Figure 7: Here we show results on a modified Planning Game. If no observation is given to the
agent, an RNN is required to learn the proper exploration strategy. This is the same exploration as
required by the easier sub-optimal policy in the original Planning Game.

in this environment requires the same strategy as the suboptimal policy in the Planning Game:
explore every state until the goal is reached. When the agent reaches a goal, the goal location is
reset, and the agent must restart exploration. Figure 7 shows that the RNN is able to learn this
policy, while SplAgger without an RNN is not. This shows how, even in a distribution of MDPs,
where the Markov property holds in each MDP, permutation variance can improve sample efficiency,
due to the presence of non-Markov policies that are suboptimal but faster to learn.

6.2 Gradient Decay

Finally, we investigate the gradients of our sequence models to explain why, in some domains,
SplAgger works, while AMRL (Beck et al., 2020) does not. AMRL demonstrates the benefit of
its gradient modification by measuring the average gradient of the memory with respect to the
encoding of the initial transition, H%”Q. AMRL shows that this quantity decays over time for
normal sequence models, but not for AMRL, due to the gradient modification. AMRL methods
overwrite this gradient to set it equal to the identity.! We depict these gradients at initialization in

Figure 8a, evaluating over three model initializations.

While AMRL prevents gradient decay, it also causes gradient explosion, with respect to the model
parameters, | %Hg. Since the number of inputs grows over time, and the norm of the gradients
for each input does not shrink, the gradients with respect to the parameters grows. We depict this
phenomenon in Figure 8b. For an input, we sample noise uniformly over [—1, 1], and replicate this

sample for every dimension in the input to the sequence model.

From these two gradients, it is not clear why SplAgger performs better than an RNN, so we propose
two alternative metrics for evaluation. In Figure 8c, we plot the gradient of the inputs, over time
(t), holding the output time (T) fixed: ||’jlf7f||2. This value is roughly constant for all models,
except for the RNN. For an RNN;, it grows as t approaches T, implying that, for a fixed output,
the inputs become less sensitive backward in time. In other words, by privileging recent transitions,
the gradients are not permutation invariant. The gradients are not equal for all inputs, for a
given output. In addition to this metric, we can measure the permutation variance directly. In
Figure 8d, we compute the mean difference between encodings of different permutations of inputs at
initialization. We also normalize the encodings, to have unit magnitude first. We see that the RNN
is the most permutation variant, and sequence models without any RNN, such as SplAgger without
an RNN, are the least. Critically, models like SplAgger that perform best are not the most or least
permutation variant, but rather have some components of each.

IBeck et al. (2020) also note that the signal-to-noise ratio can also affect performance. However we can only
recreate this result by setting the bias in all models to zero, and find it less predictive than the gradients regardless.

RLJ | RLC 2024

200
£ Model £ Model
Z 06 —— SplAgger Z 5o ~— SlAgger
& —— SplAgger-noRNN & —— SplAgger-noRNN
B o4 AMRL 3 AMRL
o —— RNN ¢ 100 RNN
2 o}
a 2
£02 2 50
S s
< 0.0 < —
0 20 40 60 80 100 0 20 40 60 80 100
Step Step
(a) Gradient w.r.t. Initial Transition Over Time (b) Gradient w.r.t. Parameters
IS 8 —— SplAgger
g 107 \ﬁ E 08 —— splAgger-noRNN
- o AMRL
c -7 =
g 10 5% —— RrnN
3 Model - RRTRRURIEY) VYV Yy PO
o —— SplAgger = 0.4
2 107" —— SplAgger-noRNN 5
5 10 PlIAgger-no >
g ., AMRL £ 02
= 10 = o
b RNN 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Step Step
(c) Final Gradient w.r.t. All Transitions (d) Encoding Permutation Difference

Figure 8: An empirical analysis of gradients in SplAgger, AMRL, and RNNs. In 8a we see that the
gradient of the output of the sequence model with respect to the initial input decreases over time.
AMRL modifies the gradients to prevent this, but at the cost of exploding gradients with respect to
the parameters, depicted in 8b. We find that poor performance of the RNN is rather due to earlier
inputs having a smaller gradient, when considering the final output of the sequence model. depicted
in 8c. Finally, models that are the least permutation variant do not necessarily perform better; the
highest performing model, SplAgger, has an intermediate difference, but has components that are
both permutation variant and permutation invariant. This is shown in 8d.

7 Conclusion

In this paper we have shown how permutation invariance can be critical when learning to reinforce-
ment learn. We have, for the first time, confirmed this advantage even without the use of task
inference objectives. Surprisingly, we also demonstrate that permutation variance can still be useful,
both to learn sub-optimal non-Markovian policies early on, and to make the sequence model more
robust to the choice of specific aggregation function. Using these insights, we presented SplAgger,
making use of split aggregation to achieve the best of both methods. Moreover, we have shown that
in several domains, popular existing methods fail, and discussed reasons for the failure of each. We
analyzed how the gradient modification in AMRL causes gradients with respect to the parameters
to explode, and measure different types of gradient decay and permutation variance in RNNs.

References

Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, and Katja Hofmann.
Amrl: Aggregated memory for reinforcement learning. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Bk17bREtDr.

https://openreview.net/forum?id=Bkl7bREtDr

RLJ | RLC 2024

Jacob Beck, Matthew Jackson, Risto Vuorio, and Shimon Whiteson. Hypernetworks in meta-
reinforcement learning. CoRL, 2022.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023a.

Jacob Beck, Risto Vuorio, Zheng Xiong, and Shimon Whiteson. Recurrent hypernetworks are surpris-
ingly strong in meta-rl. In Thirty-seventh Conference on Neural Information Processing Systems,
2023b. URL https://openreview.net/forum?id=pefAAzu8an.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. EMNLP, 2014.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. R1%: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adria Puigdomeénech Badia, Gavin
Buttimore, Charlie Deck, Joel Z. Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. NeurlPS, 2019.

Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim, Marta Garnelo, David Saxton, Pushmeet
Kohli, S. M. Ali Eslami, and Yee Whye Teh. Meta-learning surrogate models for sequential
decision making, 2019.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1704-1713, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Neural processes. ICML, 2018b.

https://openreview.net/forum?id=pefAAzu8an

RLJ | RLC 2024

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In International Conference on Learning
Representation (ICLR), 2017.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv, 2019.

Takahisa Imagawa, Takuya Hiraoka, and Yoshimasa Tsuruoka. Off-policy meta-reinforcement learn-
ing with belief-based task inference. IEEE Access, 10:49494-49507, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. ICML, 2020.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv, 2022.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=B1DmUzWAW.

Kevin P. Murphy. Conjugate bayesian analysis of the gaussian distribution. Technical report, 2007.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling, 2022.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free RL can be
a strong baseline for many POMDPs. In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Roberta Raileanu, Max Goldstein, Arthur Szlam, and Rob Fergus. Fast adaptation via policy-
dynamics value functions. ICML, 2020.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331-5340. PMLR, 2019.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu.
Generalization to new sequential decision making tasks with in-context learning. NeurIPS 2023
Workshop on Foundation Models for Decision Making, 2023.

Samuel Ritter, Ryan Faulkner, Laurent Sartran, Adam Santoro, Matthew Botvinick, and David
Raposo. Rapid task-solving in novel environments. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=F-mvpFpn_0q.

Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate information
state for approximate planning and reinforcement learning in partially observed systems. The
Journal of Machine Learning Research, 23(1):483-565, 2022.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=F-mvpFpn_0q

RLJ | RLC 2024

Qi Wang and Herke van Hoof. Learning expressive meta-representations with mixture of expert neu-
ral processes. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=ju38DG3sbgs.

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin

Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via
meta-learning. Journal of Machine Learning Research, 22(289):1-39, 2021.

Appendix

A Posterior Factorization

Below we include a proof of the factorization of the task posterior, as claimed in the main body.
P(M]r)
P(r|M)P(M)

= G // Bayes’s Rule

P(r|M)P(M)
= P(71, 72, .., 77| M)P(M)

M) H P(Tt|7—177—27 "'7Tt717M)
= PWM) | | P(rt|st, M) // Markov Property
= P(M) P(s¢,ae,1¢, 8141156, M)

= P(M) P(as,r¢, 504156, M)

B Hyperparameter Tuning

15
PEARL-kI1 '4:
—— PEARL-kI1 T e re
10 PEARL-kIp0O1 1500 pEARL-kIpO1 T
PEARL-kIp0001 —— PEARL-kip0001

PEARL-kIP000001 o 1000 PEARL-kIp000001

PEARL-kIO %Q PEARLZKIO

L —— Softmax-tpl
500
0 \W v 0 ' —— wSoftmax-tl
wSoftmax-tpl
-5 o

5 —— Softmax-tl

Return
Return
Retu rn

0.0 0.5 1.0 1.5 V] 5 10 15 0.0 0.5 1.0 1.5
Frames (M) Frames (M) Frames (M)
(a) T-LS (b) Walker (c) T-LS

Figure 9: Tuning the KL-divergence weight on PEARL, in 9a and 9b, and tuning the softmax
temperatures in Figure 9c. For PEARL, the chosen weight, 175, achieved the highest returns. Using
a weight of 0 achieved a similar final returns, suggesting the stochastic latent was not particularly
useful in our experiments. We chose 176 as it achieved the greatest average return throughout
training, on both environments. For the softmax aggregators, 0.1 was the best initialization for the
temperature.

https://openreview.net/forum?id=ju38DG3sbg6
https://openreview.net/forum?id=ju38DG3sbg6

RLJ | RLC 2024

We tune each baseline over five learning rates for the policy, [3e-3, le-3, 3e-4, le-4, 3e-5], for three
seeds. (Results are reported with a 68% confidence interval, computed through bootstrapping with
1,000 iterations across three seeds, consistent with all plots presented.) Of the models evaluated,
PEARL, and aggregators with the softmax aggregation, each require an additional hyperparameter.
PEARL require a weight on objective penalizing the KL-divergence to the prior. We tune this
weight on the T-LS and Walker environments, with a weight of 1~6 performing the best. In Figures
9a and 9b, we display these results. Additionally, for softmax aggregators, we tuned the initial
temperature of the softmax function. The temperature is learnable, however changes very slowly,
and so is sensitive to initialization. This temperature was tuned between 1.0 and 0.1 on T-LS, with
0.1 performing the best. Note that we tuned the aggregators without using an RNN or SplAgger.
This is depicted in Figure 9c.

For all other hyperparameters, we default to those in Beck et al. (2023b), with two exceptions. First,
on the Planning Game, we it necessary to set the exploration bonus in the objective to zero in order
to learn any systematic exploration. Second, Beck et al. (2023b) projected the output of the RNN
down to size 10 or 32, and then to size 10 or 25, depending on the environment, using a linear layer,
before being passed to the hypernetwork. For consistency, we leave this size as 24 and 25 for all
models and all experiments.

C PEARL Design Choices and Additional Experiments

15

2000 1500
10 1500
1000

Return
Return
Return

1000

5 o
SplAgger —— SplAgger 500 —— SplAgger
— PEARL 500 — PEARL — PEARL

o PEARL-vari o PEARL-vari o PEARL-vari
0.0 0.5 1.0 1.5 0 5 10 15 20 25 0 5 10 15
Frames (M) Frames (M) Frames (M)
(a) T-LS (b) Cheetah-Dir (c) Walker

Figure 10: PEARL using the VariBad-stlye supervized reconstruction from Zintgraf et al. (2021)
to train the sequence model (PEARL-vari). PEARL-vari, increases returns slightly on T-LS and
Cheetah-Dir, but remains lower than SplAgger.

In addition to the experiments with PEARL in the main body, we present a preliminary findings
here. Out of all baselines, PEARL is the only method that requires a stochastic latent variable. In
the original paper, the stochastic latent variable is sampled once per episode. However, this type
of exploration requires multiple episodes for exploration, and will necessarily fail on multiple of our
benchmarks. Instead, we consider two alternatives. In the experiments presented in the main body of
the paper, we sample the stochastic latent at every state, and here, and here we additionally present
experiments that use the self-supervision provided by reconstructing rewards and transitions to train
the stochastic latent, as in Zintgraf et al. (2021). We use the default hyperparameters presented by
Zintgraf et al. (2021). While the results here are incomplete, and the model is still far inferior to
SplAgger, we did find some improvement, as shown in Figure 10.

D Analysis of PEARL Aggregation Failure

Here, we investigate why PEARL’s aggregation performs worse than SplAgger, and hypothesize that
the poor performance has due to with modelling assumptions regarding the variance of its latent
variable. Unlike other methods, PEARL’s aggregation method requires the use of a stochastic latent
variable. We observe that the variance of the aggregator decreases rapidly over time. In Figure 11a

RLJ | RLC 2024

1754 1 1 1 1 1
o) I N
1 ! 1 1 ! ! i i
150 i i i i 121 ! ! 1 1
1 1 1 1 ! ! H H
1 1 1 1 ! ! H H
125 ! | ! ! 101 l l i i
° i | i i oV ! ' ! !
H ! H H = 1 1 1 1
2 [| [[c i i 1 I
© 100 | | | | © o5 i i | |
2 i i H H = % ! ! ! !
g : | : : g | | | |
o~ 0754 1 1 1 1 = 06 | | | |
= 1 I 1 1 = | | 1 1
] | | | |] ! ! ! !
-~) 1]] = 1 1]]
© os0 ! ! ! 1 O 04 ! | | i
| i ! i i ! ! ! !
1 1 1 1 1 ! ! 1 1
025 :L | : : : 02 : : | |
: 1 1 1 1 1 B 1 1 1 1
! 1 ! 1 1 ; ' 1 1
i i i i i . ; | i
0.00 | } - - — 004 1 1 T T 1
| i T T H i i i 4 \
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 330 400
env steps env steps
(a) PEARL Latent Variance (b) PEARL Latent Variance
(Initialization) (Trained)

Figure 11: In 11a, we see that the variance of PEARL decreases rapidly to zero at initialization. In
11b, we see the same phenomenon, but when PEARL is fully trained.

and Figure 11b, we can see that both at initialization and after training, the variance decreases
rapidly to zero. Looking at the probability density function (PDF), we can see why.

Specifically, PEARL uses a product of Gaussians,

t=T

g0(2|7) oc [T N (25 (), diag(o7 (1)),

t=1

which has a closed form for the joint mean and covariance. From Bayesian conjugate analysis, we
know that the product of Gaussian PDFs is itself a Gaussian (Murphy, 2007). The new Gaussian,
qo(2|T) = N(z; 1/, diag(c’)), has a new mean, p’, which itself is a weighted average of each individual
e The respective weights are 1/07, and the variance is W Since the denominator in the
variance of PEARL grows monotonically, the variance must drop H{onotonically. In fact, assuming
the variances are approximately equivalent at initialization, then the variance should decrease like

1/t.

The fact that the variances decreases over time could create problems for learning. For example,
if the agent were to collect contradictory evidence about the latent, then the variance of the true
posterior would increase. Well our domains do not present contradictory evidence, many transitions
in our domains are uninformative, and so the sequence model would still need to learn to counteract
the decreasing variance, which may hinder learning. Future work could experiment with removing
the latent variable from PEARL, which would be equivalent to the weighted average aggregator
presented in Section G, or producing the variance of the latent variable using a different permutation
invariant function. Note that this pathology only applies to the aggregation method used in PEARL,
and may not be the most important factor to consider in the off-policy setting in which the PEARL
method originally evaluates (Rakelly et al., 2019).

E LSTM Invariant Initialization

Finally, we experiment with using a sequence model that is initialized to be permutation invariant,
but that can easily learn to be permutation variant. In order to do this, we use a long short-term
memory unit (LSTM) (Hochreiter & Schmidhuber, 1997), and adjust the initialization of the gates.
Specifically, we adjust the gates to compute a summation, before being normalized for the output.
First, we set the weights of the input and forget gates to zero. Then, we adjust the bias of the input
and forget gates to gate outputs of 1 — ¢, for ¢ = 0.0001. This forces all inputs to be fully added to

RLJ | RLC 2024

25 15
20
€15 g 1o ==
: : e
— Invini
¢ 10 & s
5 —— SplAgger
— Invinit
V] V]
0 10 20 30 40 50 0 2 4 6 8 10
Frames (M) Frames (M)
(a) Planning Game (b) T-Maze Agreement

Figure 12: Here we evaluate an LSTM model initialized to be permutation invariant. The returns
are far lower than SplAgger.

the running sum and not forgotten. We additionally we set any weight connected emanating from
the recurrent state, in the cell and output gates, to zero. This forces there to be do dependence
on past states. We use an LSTM instead of a GRU so that the input gate is not forced to be the
compliment of the forget gate. Results were not encouraging, and are depicted in Figure 12.

F Transformer Results

15
- 10
5 —— SplAgger
] —— Transformer
< 5

0

0.0 0.5 1.0 1.5
Frames (M)

Figure 13: The transformer model fails to learn and is significantly outperformed by SplAgger on
the T-LS domain.

As discussed in the main body, attention is inherently permutation invariant. Thus, transformers
without positional encodings are an obvious fit for this problem setting. However, Attention is
computationally expensive: whereas both commutative aggregation and recurrent networks use O(1)
memory and compute per timestep, attention generally requires O(t2) memory and compute per
timestep t. We therefore consider it appropriate to limit our solutions to constant memory and
compute, in line with sequence models designed to quickly handle long contexts (Garnelo et al.,
2018b; Beck et al., 2020). Still, the runtime was not entirely prohibitive on one experiment: T-LS.
Thus, we did run a Transformer model on T-LS, with results depicted in Figure 13. The results
show that the transformer did not learn in the allotted number of frames, and was significantly

outperformed by SplAgger.

RLJ | RLC 2024

G Additional Weighted Average Aggregation Results

—— SplAgger

—— SplAgger-avg
SplAgger-avgmax

—— SplAgger-softmax

—— SplAgger-wsoftmax

—— RNN

—— SplAgger-wavg

0 2 4 6 8 10
Frames (M)

Figure 14: The weighted average aggregator (wavg) performs worse than many others, including the
default, max, on T-Maze Agreement.

In addition to the softmax aggregator, which computes a weighted softmax of the inputs, we exper-
imented with a weighted average aggregator that does not use softmax. The weights and aggregates
are still predicted separately for each input, as with wsoftmax aggregator, resulting in half the num-
ber of neurons output as are input. We chose to evaluate this aggregator as it more closely resembles
the aggregator in PEARL. In fact, it is the same aggregation method if PEARL always output zero
variance, and thus did not train a stochastic latent variable. Our results, shown in figure 14 show
this aggregation method to learn slightly faster than the average aggregator, but less stable. It also
performed worse than max, softmax, and wsoftmax.

H Environment Details

Cheetah-Dir. In Cheetah-Dir Zintgraf et al. (2021), the agent outputs six different torques in
order to control a cheetah robot. The agent is rewarded for its velocity in either the forward or
reverse direction, depending on the sampled task, and receives a penalty for the magnitude of the
torques. The agent receives a 17-dimensional observation consisting of the position, angle, and
velocity of each body part. Here, the agent has one episode during which it can adapt to the task.

Walker. In Walker Zintgraf et al. (2021), the agent outputs six different torques in order to control
a two-legged torso morphology. The agent receives 17-dimensional observations and receives a reward
for running only in the forward direction. The tasks are defined by random samples of 65 different
physics coefficients, such as body mass and friction, which collectively define the task. Here, the
agent has two episodes during which it can adapt to the task.

T-LS. In the T-LS environment Beck et al. (2020), the agent inhabits a T-shaped maze, called a
T-Maze. The agent is shown a signal and then deterministically stepped down a corridor of length
100. At the end of the corridor, that agent opens one of two doors. If the door matches the signal,
then the agent receives a reward of 4, and if not, it receives a penalty of -3. In between the start and
end of the corridor, observations are augmented by a Bernoulli random variable. The agent adapts
across four sequential episodes, which together constitute a single meta-episode.

MC-LS. The MC-LS environment Beck et al. (2020) is designed to challenge an agent’s long-
term memory based on visual cues from Minecraft. The task involves navigating a sequence of 16
rooms. In each room, the agent must choose to go either left or right around a central column.
This decision is based on the column’s material: diamond or iron. Discrete actions allow for a finite

RLJ | RLC 2024

set of observations. When the agent makes a decision in line with the observed material, it earns
a reward of 0.1. The final decision at the end of the sequence is dictated by a color signal (red or
green) presented at the beginning, which specifies the task. As in the T-Maze, the agent receives
a high reward (4) for a correct final action and a significant penalty (-3) for an incorrect one. The
agent adapts across two sequential episodes, which together constitute a single meta-episode.

Planning Game. The Planning Game, which is adapted from Ritter et al. (2021). In the Planning
Game (Ritter et al., 2021), the agent inhabits a 3 x 3 grid that wraps around each side. In this
grid, the agent must navigate to a goal. The goal location, observed by the agent, changes multiple
times during a single episode. The MDP is not defined by the goal location, shown to the agent,
but rather by a changing transition function. The state in each cell of the grid changes in each task.
A task is thus defined by a permutation of the 9 states. For instance, while the agent may be in
the bottom right of the grid in two different tasks, it observes a different state there in each task.
The states themselves are encoded by one-hot encodings. The agent must explore each state once to
learn where each state is on the grid. Once it has seen each state, then it can immediately interpret
the given goal instruction. Without knowing the state locations, there is a suboptimal policy that
does not require remembering each state, namely, re-exploring the entire grid every time a goal is
reached. Note the grid size in our experiments is 3 x 3, rather than the original 4 x 4, to decrease
the total number of frames required for training.

I Additional Baselines

SplAgger-noRNN-avg. This method replaces the max operator in SplAgger with an average
and removes the RNN. Since removal of the RNN obviates the need for split aggregation, split
aggregation is removed as well. This is equivalent to just computing a mean operation over linear
encodings of each transition, 7.

SplAgger-avgmax. This method replaces the max operator in SplAgger with an average and a
max operator. The avgmax aggregator averages half of the neurons and computes a maximum over
the other half. This aggregation is evaluated as a way to use both the average and max aggregation.

SplAgger-softmax. This method replaces the max operator in SplAgger with a softmax operator.
The softmax aggregator computes an average over the inputs where the weights are determined by
the softmax of the aggregates themselves. In order to aggregate online, in O(1) memory, we store
both the sum of the weighted aggregates, i.e., n = epexp(eg/n)+...+esexp(et/n), and the sum of the
weights seen so far, i.e., d = exp(eg/n)+...+exp(e:/n), where 7 is a learnable temperature parameter.
The output is then the quotient of the weighted aggregates and the weights, n/d. This aggregator
interpolates between the average and max. The initialization of the temperature is important, as it
defines the interpolation, and is set to 0.1. Tuning information is available in Appendix B.

SplAgger-wsoftmax. This method replaces the max operator in SplAgger with a different soft-
max operator. This aggregator is the same as softmax, but the weights are predicted separately
from the weighted encodings. Half of the input neurons are aggregated, and the other half are used
to compute the logits for the softmax weights. An additional version of this aggregator without the
softmax is investigated in Appendix G.

