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ABSTRACT

Underactuated soft robot hands offer inherent safety and adaptability advantages
over rigid systems, but developing dexterous manipulation skills remains chal-
lenging. While imitation learning shows promise for complex manipulation tasks,
traditional approaches struggle with soft systems due to demonstration collection
challenges and ineffective state representations. We present KineSoft, a frame-
work enabling direct kinesthetic teaching of soft robotic hands by leveraging their
natural compliance as a skill teaching advantage rather than only as a control chal-
lenge. KineSoft makes two key contributions: (1) an internal strain sensing array
providing occlusion-free proprioceptive shape estimation, and (2) a shape-based
imitation learning framework that uses proprioceptive feedback with a low-level
shape-conditioned controller to ground diffusion-based policies. This enables hu-
man demonstrators to physically guide the robot while the system learns to asso-
ciate proprioceptive patterns with successful manipulation strategies. We validate
KineSoft through physical experiments, demonstrating superior shape estimation
accuracy compared to baseline methods, precise shape-trajectory tracking, and
higher task success rates compared to baseline imitation learning approaches. Ki-
neSoft’s results demonstrate that embracing the inherent properties of soft robots
leads to intuitive and robust dexterous manipulation capabilities. Videos and code
will be available upon final decision.

1 INTRODUCTION

Underactuated soft robotic hands offer significant advantages over rigid counterparts, including in-
herent safety through material compliance (Yoo et al., 2025) and robust adaptability to uncertain
object geometries (Bhatt et al., 2022; Homberg et al., 2019; Yao et al., 2024). These properties
make them particularly well-suited for applications requiring close human-robot interaction, such
as assistive robotics, and collaborative manufacturing (Yoo et al., 2025; Firth et al., 2022). How-
ever, imparting dexterous in-hand manipulation skills to soft hands remains challenging. Traditional
methods for soft robot manipulation often rely on hand-crafted primitives (Bhatt et al., 2022; Yao
et al., 2024; Abondance et al., 2020) that necessitate expert operators and limit system adaptability.

Recent advances in imitation learning, particularly frameworks like diffusion policy, have shown
promise in teaching complex manipulation skills (Chi et al., 2023; Memmel et al., 2025; Hu et al.,
2023). These approaches have been successfully applied to various tasks, from long-horizon mobile
manipulation with rigid grippers (Fu et al., 2024) to deformable object manipulation with simple
end-effectors (Yoo et al., 2024a). Unlike reinforcement learning methods that depend on carefully
crafted reward functions and simulation environments (Qi et al., 2025; Wang et al., 2024), imitation
learning requires only demonstration trajectories of successful task execution. However, collect-
ing such demonstrations for soft hands presents challenges: traditional demonstration collection
methods generally do not apply to underactuated soft systems with virtually infinite degrees of free-
dom. Conventional teleoperation interfaces (Qin et al., 2023), designed for rigid anthropomorphic
hands, fail to capture the unique capabilities and constraints of underactuated soft end-effectors,
which often lack an intuitive mapping to rigid human hand joints. Additionally, standard robot state
representations for rigid robots in imitation learning frameworks (Ze et al., 2024), such as rigid
transformation poses, struggle to provide meaningful state information when applied to continu-
ously deforming structures. Despite recent advancements in expressive state representation learning
for soft robots (Wang et al., 2023; Yoo et al., 2023; 2024b), these have not yet been applied to skill
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Figure 1: KineSoft is a framework for learning from kinesthetic demonstration, enabling free-
shaped soft end-effectors to perform dexterous in-hand manipulation. Three key components are:
1) proprioceptive model for high-fidelity shape estimation, 2) diffusion-based imitation learning for
predicting the changes in shape and end-effector poses, and 3) shape-conditioned controller that al-
lows the soft hand to track given shape trajectories.

learning frameworks for in-hand manipulation. These limitations have restricted the application of
imitation learning to soft robotic manipulation.

We present KineSoft, a hierarchical framework that enables direct kinesthetic teaching of soft robotic
hands. Our key insight is that soft robots’ natural compliance is an advantage for teaching rather than
just a control challenge. This compliance allows human demonstrators to physically guide the soft
robot fingers through desired movements, enabling intuitive demonstration collection that naturally
accounts for the system’s mechanical properties without fighting against kinematic constraints. As
shown in Figure 1, KineSoft is composed of three key components. First, the proprioceptive system
achieves state-of-the-art shape estimation using internal strain sensing arrays and a model trained
on large simulated data of the robot’s high-dimensional configurations. These sensors provide rich
proprioceptive feedback while preserving the hand’s natural compliance, allowing KineSoft to cap-
ture detailed information about the hand’s deformation state during manipulation tasks in real time.
Next, we train an imitation policy on these shape trajectories and use it to generate deformation tra-
jectories during rollout. Finally, KineSoft’s low-level shape-conditioned controller then tracks these
desired shapes. Experiments demonstrate that KineSoft achieves accurate shape state estimation,
precise trajectory tracking through the shape-conditioned controller, and superior performance in
learned manipulation tasks through these shape-based representations.

In summary, this paper provides the following contributions: i) KineSoft, a framework for learning
from kinesthetic demonstrations for soft robot hands that enables dexterous in-hand manipulation, ii)
a state-of-the-art proprioceptive shape estimation approach using strain sensing integrated with soft
robot hands that enables precise tracking of finger deformations during contact-rich tasks, iii) shape-
conditioned controller for tracking the generated deformation trajectories and performing dexterous
manipulation tasks, and iv) simulated dataset and trained model for state estimation and control,
which we demonstrate can be readily deployed to open-source soft robot hands, such as the MOE
platform (Yoo et al., 2025).

2 RELATED WORK

Learning for in-hand dexterity. Recent advances in reinforcement learning have driven signifi-
cant progress in rigid robot in-hand dexterity (Wang et al., 2024; Qi et al., 2025; Yao et al., 2024;
Andrychowicz et al., 2020). However, these approaches face challenges in real-world deployment
due to difficulty in creating resettable training environments. To mitigate these issues, many meth-
ods transfer policies trained in simulation to the real world, which has shown success with rigid
robots with fine tuning in the real world (Qi et al., 2025; Wang et al., 2024) but remains less ap-
plicable for soft robots due to the complexities involved in modeling deformable materials, forward
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Figure 2: Simulated and real-world setup. A: Simulated robot workspace and sample of simulated
strain signals. B: Real-world robot setup with the projected patterns to improve ground-truth shape
observations for evaluation and calibration.

kinematics, and contact dynamics (Della Santina et al., 2023). Despite recent interest in leveraging
reinforcement learning for soft robot arm control and trajectory tracking (Thuruthel et al., 2018;
Schegg et al., 2023; Bhagat et al., 2019), difficulty in modeling simultaneous contact and soft robot
body deformation dynamics have hindered their application to soft robot dexterous manipulation.

Imitation learning has emerged as a promising alternative for reducing the reliance on explicit
physics simulation environments, enabling robots to acquire manipulation skills efficiently with
real-world data (Johns, 2021; Chi et al., 2023; Ze et al., 2024). In-hand manipulation skills through
imitation learning are typically achievable with anthropomorphic hands that provide an intuitive
mapping between human hand and robot poses (Arunachalam et al., 2023a;b; Wei & Xu, 2024).
However, despite inherent benefits in safety and dexterity through compliance, which soft robot
hands naturally provide, soft robots were subject to some unique challenges—particularly due to the
absence of reliable proprioceptive feedback (Weinberg et al., 2024) and thus the lack of practical
frameworks for collecting demonstrations for soft robots. To the best of our knowledge, KineSoft is
the first framework that effectively leverages passive compliance of the soft robots to collect demon-
strations and enables soft robots to acquire dexterous in-hand manipulation skills.

Soft robot dexterity. Soft robot hands excel in grasping and manipulation tasks due to their material
compliance, which allows passive adaptation to diverse object geometries (Rus & Tolley, 2015; Zhou
et al., 2023). This compliance facilitates robust grasping and safe interactions with humans and deli-
cate objects by distributing contact forces across large areas (Abondance et al., 2020; Liu et al., 2024;
Yoo et al., 2025). Recent advancements in soft robotics have aimed to enhance dexterity through in-
novative actuator designs, material improvements, and bio-inspired morphologies (Puhlmann et al.,
2022; Firth et al., 2022). Despite these strides, controlling soft hands remains a significant challenge
due to their complex dynamics and the high-dimensional nature of their deformation spaces (Yasa
et al., 2023). Consequently, learning-based approaches for soft robotic dexterity have primarily fo-
cused on grasping (Gupta et al., 2016), while the development of dexterous in-hand manipulation
skills has been hindered by the lack of intuitive demonstration methods and reliable propriocep-
tive feedback (Weinberg et al., 2024). The unique advantages of soft robot hands in robust in-hand
manipulation stem from their lack of rigid skeletal structures (Pagoli et al., 2021). However, this
absence also introduces challenges, as soft robot kinematics differ significantly from human hand
motions. The KineSoft framework bridges these gaps by integrating novel and accurate shape es-
timation methods with learned imitation policies, enabling efficient skill acquisition for dexterous
manipulation with soft robots.

Soft robot state representation. Proprioceptive shape sensing is critical for enabling dexterous con-
trol in soft robots, particularly for accurate shape tracking and feedback-driven control (Zhou et al.,
2024). Existing works often utilize low degree-of-freedom shape representations such as constant
curvature models (Stella et al., 2023; Yoo et al., 2021) or bending angles (Wall et al., 2017), which
fail to capture the full richness of soft robot deformation states. Toward capturing these complex de-
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A B

Figure 3: Proprioception network. A: Network architecture for mesh shape estimation of the soft
fingers. B: Results of domain alignment iterations where the loss converged after 200 iterations.

formation behaviors of soft robot manipulators, recent approaches based on mechanics models have
employed Cosserat rod models and high-dimensional Frenet–Serret frames, associated with the con-
tinuum cross sections (Liu et al., 2021). However, these approaches are computationally costly to
update and to preserve hard constraints (Liu et al., 2021; 2020). Recent learning-based models have
introduced more expressive representations of soft robot states using point clouds (Wang et al., 2023;
Yoo et al., 2023) and meshes (Yoo et al., 2024b; Tapia et al., 2020). However, these learned represen-
tations have not been connected to policy learning for dexterous manipulation tasks. Addressing this
gap, KineSoft proposes a novel framework that leverages proprioceptive sensing and learned shape
representations, based on vertex displacement fields over meshes, to facilitate dexterous in-hand
manipulation skill learning in soft robots.

3 PROBLEM STATEMENT

We consider the problem of dexterous in-hand manipulation with a soft robotic hand. Let M rep-
resent the true underlying continuous deformation state space of the hand. The hand is actuated
through a set of control inputs U, with the relationship between actuation and deformation being
governed by the hand’s material properties and mechanical design. The problem of learning dexter-
ous manipulation skills consists of key challenges: i) we need an observable surrogate S of the true
deformation state space, ii) we need a reliable mapping between the surrogate space S and the true
deformation state space M, and iii) we need a policy π, which maps the current state to appropri-
ate control actions: π : M × O 7→ U, where O represents additional task-relevant observations.
This presents unique challenges for soft robots compared to rigid systems: the continuous defor-
mation space M is theoretically infinite-dimensional as a continuum, demonstrations must account
for the robot’s inherent compliance, and the mapping between actuation and deformation is highly
nonlinear or difficult to simulate in its entirety (Liu et al., 2021). The objective is to develop a frame-
work that can effectively learn and execute manipulation skills while embracing these fundamental
characteristics of soft robots.

4 METHOD

4.1 MOE SOFT ROBOT END-EFFECTOR

In this work, we leverage the MOE soft robot platform, introduced by yoo2025soft, which comprises
modular finger units that each operate independently. Each finger is actuated by two servo motors,
which apply tension to four tendons, as shown in Figure 3. This modular design provides flexibility,
allowing the fingers to be rearranged into various configurations to suit specific task requirements. In
this study, we examine a three-finger variant of MOE, inspired by research on object controllability
using three-fingered rigid end-effectors (Mason & Salisbury Jr, 1985).
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Building on the original MOE finger design, we present an enhancement by embedding low-cost
conductive elastic rubber directly into the silicone elastomer body of each finger. These sensors
measure deformation by varying their electrical resistance as they stretch, providing real-time pro-
prioceptive feedback. Each finger incorporates four of these sensors, compactly positioned between
the tendons. The sensors are connected to a data acquisition (DAQ) circuit and board capable of
recording resistance readings at approximately 400 Hz. By seamlessly integrating the sensors into
the elastomer during fabrication, we developed a fully deformable and sensorized finger body. The
combined state spaces from all twelve (12) strain sensors provides our estimate S of the soft robot
hand’s true deformation state space M (Section 3).

In contrast to prior works (Tapia et al., 2020; Pannen et al., 2022), which relied on custom sensor
fabrication or specialized materials, our proposed modifications to the MOE design leverage off-
the-shelf conductive rubber, eliminating the need for complex manufacturing processes, enabling
straightforward integration into robotic systems, and enhancing accessibility and scalability across
a wide range of applications. Furthermore, we present a shape estimation model trained on large
simulated soft robot dataset, which can be deployed on sensorized MOE hands through autonomous
domain alignment as discussed in later sections.

4.2 SHAPE ESTIMATION MODEL

The objective of the shape estimation model is to learn a mapping between sensor readings from
embedded strain sensors S and the vertex displacements of the MOE fingers. Each finger contains
four strain sensors arranged between the tendons, giving us n = 12 resistance measurements total
for the three-fingered hand, denoted as R ∈ Rn.

The model learns a function f that maps from sensor resistance readings and initial vertex positions
to displacement vectors. Let Vj,0 ∈ RN×3 denote the initial vertex positions of finger j, where N
is the number of vertices in the mesh. The mapping can be expressed as:

f : (R, {Vj,0}3j=1) 7→ {∆Vj}3j=1

We implement this mapping using a FoldingNet-inspired architecture. The network first encodes
each finger’s four strain measurements into a latent representation zj ∈ R128 through an encoding
function:

zj = henc(Rj)

The decoder then processes each vertex independently by learning a mapping from the concatenated
initial vertex position and latent displacement:

∆vj,i = hdec(v
i
j,0, zj),

where vi
j,0 ∈ R3 is the initial position of vertex i in finger j, and [; ] denotes concatenation. This

vertex-wise processing allows the network to learn local deformation patterns while maintaining
spatial relationships defined by the initial mesh topology. The deformed vertex positions are then
obtained by applying the predicted displacements:

vi
j,t = vi

j,0 +∆vj,i

The FoldingNet decoder architecture enables learning vertex-level deformations while leveraging
the spatial structure of the initial mesh configuration. By predicting displacements rather than ab-
solute positions, the network learns naturally centered and scaled deformations, leading to more
stable training and better generalization. To train the model, we generate a large dataset of de-
formed meshes using SOFA (Simulation Open Framework Architecture) (Westwood et al., 2007).
Our simulation setup uses a tetrahedral finite element mesh of the MOE finger with a Neo-Hookean
hyperelastic material model parameterized by elastic material properties that are randomized at run-
time.

We model the tendon actuation with massless, inextensible cables running through a series of fixed
points within the finger body. Each tendon path is discretized into segments defined by 3D attach-
ment points embedded in the tetrahedral mesh. The cable constraint applies forces to these points to
maintain constant length while allowing sliding, effectively simulating the mechanical behavior of
Bowden cable transmission. The soft body scene is solved with an implicit Euler time integration
scheme and uses a conjugate gradient solver for the system matrices. We generate training data by
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randomly sampling tendon actuation commands within the feasible range and recording the resulting
deformed vertex positions and embedded sensor strains. To simulate rich deformation behaviors in-
cluding contact-like effects, we apply random external forces to the finger surface. These forces are
randomly applied over time with sufficiently large radii to ensure smooth deformations that mimic
natural contact interactions, without requiring explicit and difficult-to-model contacts in the scene.

The model is trained using mean squared error (MSE) loss on vertex displacements:

L =
1

3N

3∑
j=1

N∑
i=1

∥∆vj,i −∆v∗
j,i∥2,

where ∆v∗
j,i represents the ground truth displacement for vertex i of mesh finger j. This choice of

loss function provides strong supervision by enforcing explicit vertex-wise correspondence between
predicted and ground truth meshes. Because we leverage simulated data to train the model, we can
exploit the vertex-level correspondences in the meshes unlike prior works that had to rely on chamfer
distance loss over real-world partial observations (Wang et al., 2020), MSE loss ensures that each
vertex learns to track its specific local deformation patterns, enabling precise reconstruction of the
full finger shape.

4.3 SIM-TO-REAL DOMAIN ALIGNMENT

We assume the embedded sensors are perfectly incompressible and isotropic, a common assump-
tion in soft body mechanics for highly elastic rubber, particularly when infused with particle
fillers (Starkova & Aniskevich, 2010). These fillers, like those used in the off-the-shelf conduc-
tive rubbers embedded in MOE, enable the sensors to exhibit changes in resistivity when stretched.
The sensors have a cylindrical shape, so we model the relationship between the cross-sectional area
and the strain in the axial direction for sensor i at time t ≥ 0 with the incompressibility assumption
as:

Li,0Ai,0 = Li,tAi,t, (1)
where Li,0 and Ai,0 are the initial length and cross-sectional area; Li,t and Ai,t are the corresponding
values at time t.

For conductive materials, resistance generally has a linear relationship with strain. The observed
resistance for the sensor indexed at i is given by:

Ri,t = ρi
Li,t

Ai,t
, (2)

where ρi is the conductivity factor, assumed to be constant for sensor i across time. Relating Equa-
tion 1 and Equation 2, we derive: √

Ri,t

Ri,0
− 1 =

Li,t − Li,0

Li,0
. (3)

This relationship is independent of the material conductivity ρi, enabling a direct mapping from
observed resistance to strain. However, in real-world applications, fabrication imperfections, such
as connecting wires to the DAQ boards, can introduce errors into the initial length of the embedded
sensors. These imperfections result in a deviation between the real sensor lengths (LR

i,0, LR
i,t) and

simulated sensor lengths (LS
i,0, LS

i,t):

LR
i,0 = LS

i,0 + ϵi, LR
i,t = LS

i,t + ϵi,

where ϵi is a constant error specific to each sensor i. This error propagates to the strain relationship
as:

LR
i,t − LR

i,0

LR
i,0

=
1

1 + ϵi
LS

i,0

·
LS
i,t − LS

i,0

LS
i,0

(4)

The constant factor 1
1+

ϵi
LS
i,0

can be denoted as κi ∈ κ, representing the constant correction factor for

sensor i. Substituting this into Equation 3, we obtain:√
Ri,t

Ri,0
− 1 = κi

LS
i,t − LS

i,0

LS
i,0

, (5)
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where the observed resistances Ri,t, Ri,0 are measured with the DAQ setup. For the n embedded
sensors, aligning the simulated and observed distributions involves optimizing the constant correc-
tion parameters κ0, κ1, . . . , κn−1. The objective is defined as:

argmin
κ0,...,κn−1

n−1∑
i=0

T−1∑
t=0

(√
Ri,t

Ri,0
− κi

LS
i,t − LS

i,0

LS
i,0

− 1

)2

, (6)

where T is the number of time steps for which resistance data is observed.

Finally, because the corresponding simulated lengths for an observed resistance are not available
(i.e., there is no direct sim-to-real correspondence between the observed resistance values and the
simulated lengths), we instead optimize the correction factors κ0, κ1, . . . , κn−1 by minimizing the
Chamfer distance between the observed points on the fingers and the model’s predicted surface
points. This optimization assumes that there is a unique mapping between the internal strain of the
sensors and the deformation of the soft structure, which is inferred through the observed resistance
values.

The model defines a mapping from the sensor resistance observations to the surface mesh of the
fingers based on the predicted displacements of the vertices. However, in the real-world deployment
of the model as shown in the Figure 2, we do not have access to labeled pairs of real-world resistance
values R and LR:

LUCD =

m−1∑
j=0

∑
pobs∈Pobs

min
v∈Vj,t

∥pobs − v∥2, (7)

where Pobs is the set of observed points on the surface of the fingers from the RGB-D camera feed
and Vj,t are vertices of the predicted surface mesh of finger j defined by Mj,t = f(R,Vj,0). We
compute LUCD(κ) where the correction factors κi are adjusted such that the predicted surface points
align with the observed deformation of the fingers.

The function f is differentiable and thus gradient descent-based optimization is possible here for
locally optimal κ. However, because of the noisy loss landscape and relatively cheap inference cost,
we achieved better performance by optimizing κ with a sample-based evolutionary strategy (Hansen
et al., 2003). By optimizing for the alignment factors κ, the model effectively aligns the observed
resistance-to-strain relationship with the real-world deformation states, ensuring robust sim-to-real
transfer for the shape estimation model.

4.4 SHAPE-CONDITIONED CONTROLLER

The shape-conditioned controller leverages real-time proprioceptive mesh state estimation of the
MOE fingers to track desired shape trajectories. For each finger j, the controller compares the
current estimated vertex positions Vt with desired target positions VD

t generated from the policy
trajectory. The shape residual is calculated over the corresponding vertices of the meshes:

ej,t = VD
t,j −Vt,j

Each finger is actuated by a pair of antagonistic tendons controlled by two servos. The actuation
directions for each servo pair are represented by unit vectors d2j ,d2j+1 ∈ R2 that capture the
primary deformation modes. The servo adjustments δuj,t for each finger are computed by projecting
the shape error onto these actuation directions:

δuj,t = kp
∑
n

enj,t · [d2j ,d2j+1]
T

where kp is a scalar gain and enj,t is the error for vertex n. In deployment, the actions are clipped
to prevent overloading the actuators. This controller runs at 100Hz with the shape estimation at
each step, enabling responsive shape trajectory tracking. By projecting shape errors onto fitted
actuation directions, the controller effectively translates desired deformations into appropriate servo
commands despite the complex relationship between tendon actuation and finger deformation.

7
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A B

Figure 4: Shape estimation and trajectory tracking performance evaluation. We provide each
of the shape estimation models and controllers with kinesthetically deformed shape trajectories.
A: Shape estimation model comparisons with real-world ground-truth data (red points). B: Shape
tracking comparisons with the real-world ground-truth data (red points), references shapes (red),
and achieved shapes (blue).

4.5 IMITATION POLICY

The shape estimation model from Section 4.2 provides proprioceptive feedback through predicted
vertex positions Vt. The wrist-mounted RGB-D camera captures point cloud observations of the
manipulation workspace. Using these complementary sources of state information, we train a diffu-
sion policy to learn manipulation skills via imitation learning.

The policy predicts actions that combine shape deformations and end-effector pose changes:

at = {∆Vt,∆pt}

The state representation combines two different point-based encodings:

st = {hshape(Vt), hpc(Pt),pt},
where hshape processes the predicted vertex positions using MLPs that leverage vertex correspon-
dence, hpc is a DP3 point cloud encoder that processes subsampled RGB-D observations Pt, and pt

is the current end-effector pose.

The diffusion model iteratively denoises a Gaussian distribution into meaningful actions through a
reverse process:

at−1 = µθ(at, st, t) + σtz,

where µθ is a learned denoising model and z ∼ N (0, I).

The trained policy works with the shape-conditioned controller from Section 4.4, which maps the
policy’s deformation predictions to actuator commands. This hierarchical approach enables robust
manipulation by combining learned high-level behaviors with precise low-level tracking.

5 EXPERIMENTS

5.1 SHAPE ESTIMATION FIDELITY

We evaluated the proposed shape estimation model against two baseline methods from the
literature: constant curvature model (Della Santina et al., 2020; Yoo et al., 2021), a com-
mon analytical approach for soft robot shape representation, and DeepSoRo (Wang et al.,
2020), a learning-based point cloud reconstruction method. Additionally, we demonstrate
that our soft body mechanics-based mapping between observed resistance values and sim-
ulated strains, as outlined in Section 4.2, substantially improves upon a naively calibrated
linear mapping while using the same domain alignment approach proposed in Section 4.3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task Progression

D
em

on
st

ra
tio

n

U
ns

cr
ew

in
g 

C
ap

 

Fa
br

ic
 S

in
gu

la
tio

n 

K
in

eS
of

t R
ol

lo
ut

D
em

on
st

ra
tio

n
K

in
eS

of
t R

ol
lo

ut

Tr
ai

ni
ng

 a
nd

 T
es

tin
g 

Sp
at

ia
l D

is
tr

ib
ut

io
n

K
in

eS
of

t R
ol

lo
ut

Sh
ap

e 
Tr

aj
ec

to
ry

U
nl

id
di

ng
 C

on
ta

in
er

D
em

on
st

ra
tio

n
K

in
eS

of
t R

ol
lo

ut

Task Progression

Task Progression

D
em

on
st

ra
tio

n

Tw
is

tin
g 

B
ut

to
n

K
in

eS
of

t R
ol

lo
ut

U
nl

id
di

ng
 C

on
ta

in
er

 
(U

ns
up

po
rt

ed
) 

D
em

on
st

ra
tio

n
K

in
eS

of
t R

ol
lo

ut

Task Progression

Figure 5: Tasks and KineSoft Rollout.

Method Shape Error [mm]

PneuFlex Sensor 3.70± 1.36
DeepSoRo 3.27± 1.05
KineSoft (naive) 4.91± 2.85
KineSoft (model) 1.92± 0.39

Table 1: Shape Estimation Fidelity

We performed evaluations using observed point
clouds generated by the physical setup shown in
Figure 2, using the unidirectional Chamfer dis-
tance metric as outlined in Equation 7. The quan-
titative results are outlined in Table 1 and visu-
alized in Figure 4. Our model-based approach
achieved a shape estimation error of 1.92 mm,
representing a 41.3% improvement over the best
baseline method (DeepSoRo) and a 60.9% improvement over the linear variant of our approach.

5.2 SHAPE-CONDITIONED CONTROLLER PERFORMANCE

We evaluated our shape-conditioned controller against a strain-tracking baseline that directly uses
sensor readings for control, as commonly implemented in prior soft robot manipulation works (Bhatt
et al., 2022; Sieler & Brock, 2023). For evaluation, we collected reference trajectories through kines-
thetic teaching, where a demonstrator physically deformed the fingers into desired configurations.
During execution, the controllers had to track these trajectories using tendon actuation.

This evaluation specifically highlights a fundamental challenge in soft robot imitation: the sensor
signals generated during kinesthetic demonstration (when fingers are manually deformed) differ
significantly from those produced during autonomous execution (when tendons are actuated). The
strain-tracking baseline, which attempts to directly match these sensor readings, struggles with this
demonstration-execution gap, achieving 6.20 mm tracking error. In contrast, our shape-conditioned
controller bridges this gap by tracking the geometric shape itself rather than the underlying sensor
signals, achieving 3.29 mm error, which is a 47% improvement.
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Method Representation Error (mm)

Strain-tracking Strain 6.20± 2.39

KineSoft Mesh 3.29± 0.91

Table 2: Shape Tracking Error Comparison

Figure 3 visualizes this performance difference.
While both controllers receive reference tra-
jectories collected through kinesthetic teach-
ing, the shape-conditioned controller success-
fully reproduces the demonstrated shapes using
tendon actuation, even though the sensor sig-
nals during execution differ from those during
the demonstration. The strain-tracking baseline
exhibits larger errors because it attempts to match sensor readings that are different between demon-
stration and execution modes.

The improved shape tracking performance of KineSoft’s shape-conditioned controller stems from
its ability to abstract away the differences in how deformations are achieved (manual guidance vs.
tendon actuation) by focusing on the resulting geometric configurations. This shape-based abstrac-
tion provides a consistent representation across demonstration and execution, enabling functionally
successful reproduction of demonstrated skills.

5.3 IN-HAND MANIPULATION TASK PERFORMANCE

We evaluated KineSoft on in-hand manipulation tasks requiring precise finger control and in-hand
dexterity:

Cap Unscrewing: MOE makes contact with a bottle cap that is screwed on. Then it must coordinate
the three fingers to rotate the cap sufficiently to unscrew it then raise it up. The task is considered
successful if the initially screwed on container is detached from the bottle.

Container Unlidding: MOE initially grasps an empty container that has a closed hinged snap top
lid. It must then lift up the container then move the fingers to the right positions and flip the lid open.
To apply sufficient force on the lid, two of the MOE fingers must hold the container’s body while
one of the fingers pries open the lid. The task is considered successful if the container lid is open in
MOE’s grasp.

For each task, we collected 50 successful demonstrations through kinesthetic teaching, where an
expert demonstrator physically guided the fingers through the required motions. This kinesthetic
teaching approach highlights a key advantage of our framework: while humans can intuitively
demonstrate complex manipulations by directly deforming the soft fingers, these demonstrated con-
figurations must ultimately be achieved through tendon actuation during autonomous execution.
This creates a gap, as the sensor signals during human demonstration (direct finger deformation)
differ substantially from those during autonomous execution (tendon actuation). KineSoft bridges
this gap by focusing on reproducing the demonstrated shapes rather than matching the sensor signals
directly.

Task Policy Success Rate

Cap Unscrewing Strain-Matching 0/5
KineSoft 5/5

Container Unlidding Strain-Matching 0/5
KineSoft 4/5

Table 3: Task Performance Across Different Policies

As shown in Table 3, KineSoft
achieved a 100% success rate (5/5
trials) on the unscrewing task com-
pared to 0/5 for the strain-matching
baseline. The baseline policy failed
primarily because it attempted to re-
produce sensor signals from demon-
stration that were either impossible
to achieve through tendon actuation
alone or not grounded to the function-
ally correct robot states to perform
the task. In contrast, KineSoft’s shape-based approach successfully translated the demonstrated
trajectories into executable tendon commands that produced the desired finger configurations.

These results demonstrate that by focusing on tracking demonstrated shapes rather than raw sensor
signals, KineSoft effectively bridges the gap between human demonstration and autonomous execu-
tion. The shape estimation model provides a consistent representation across both modes, while the
shape-conditioned controller reliably reproduces the demonstrated behaviors despite the gap in how
deformations are achieved.
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6 CONCLUSION AND LESSONS

This paper presents KineSoft, a framework for learning dexterous manipulation skills with soft robot
hands that embraces, rather than fights against, their inherent compliance. The key insight of our
work is recognizing that while this compliance enables intuitive kinesthetic teaching, it creates a
fundamental gap between demonstration and execution, where the deformations and sensor signals
during human demonstration differ substantially from those during autonomous execution through
tendon actuation.

KineSoft addresses this challenge through a hierarchical approach. A shape estimation model pro-
vides consistent geometric representations across demonstration and execution modes while a do-
main alignment method enables robust transfer of simulation-trained models to real hardware and a
shape-conditioned controller reliably tracks the policy’s generated deformation trajectories despite
the different underlying actuation mechanisms. Then, a high-level imitation policy learns to gen-
erate target vertex deformations from demonstrations, capturing the intended manipulation strategy
in geometric grounding. Our experimental results demonstrate that this shape-based hierarchical
approach enables more effective skill transfer than methods that attempt to directly match sensor
signals or joint configurations. This work suggests that successful imitation learning for dexterous
soft robots requires careful consideration of how demonstration and execution modes differ, and
appropriate intermediate representations to bridge this gap.
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