
Exact Expressive Power of Transformers with Padding

William Merrill∗
Allen Institute for AI
willm@allenai.org

Ashish Sabharwal
Allen Institute for AI

ashishs@allenai.org

Abstract

Chain of thought is a natural inference-time method for increasing the computa-
tional power of transformer-based large language models (LLMs), but comes at
the cost of sequential decoding. Are there more efficient alternatives to expand a
transformer’s expressive power without adding parameters? We consider transform-
ers with padding tokens as a form of parallelizable test-time compute. We show
that averaging-hard-attention, masked-pre-norm transformers with polynomial
padding recognize precisely the class FO-uniform TC0 of extremely parallelizable
problems. While the TC0 upper bound was known, proving a matching lower
bound had been elusive. Further, our novel analysis reveals the precise expanded
power of padded transformers when coupled with another form of inference-time
compute, namely dynamically increasing depth via looping. Our core technical
contribution is to show how padding helps bring the notions of complete problems
and reductions, which have been a cornerstone of classical complexity theory, to
the formal study of transformers. Armed with this new tool, we prove that padded
transformers with O(logd n) looping on inputs of length n recognize exactly the
class FO-uniform TCd of moderately parallelizable problems. Thus, padding and
looping together systematically expand transformers’ expressive power: with poly-
logarithmic looping, polynomially padded transformers recognize precisely the
class FO-uniform NC, the best that could be expected without losing parallelism
(unless NC = P). Our results thus motivate further exploration of padding and
looping as parallelizable alternatives to chain of thought for test-time compute.

1 Introduction

Due to the computational limitations of transformers (Merrill and Sabharwal, 2023a; Strobl et al.,
2024; Chiang, 2025), solving complex reasoning problems requires extending their computational
power at inference time, typically by allowing models to generate long chains of thought (CoT)
before their outputs (Wei et al., 2022; Nye et al., 2022). Theoretical work has shown how CoT
expands the expressive power of transformers to sequential problems outside the class TC0 of highly
parallelizable problems, but it also sacrifices parallelism (Merrill and Sabharwal, 2023b; Li et al.,
2024), making inference slow. Are there alternative inference-time compute approaches that increase
expressive power while preserving parallelism?

One method for parallelizable inference-time compute with LLMs is using padding tokens rather
than CoT. Padding can be understood as restricted CoT where the tokens on the chain are restricted to
some “blank” symbol rather than tokens generated by the LLM. Since all the input tokens are known
in advance, padding is more parallelizable than CoT. There have been some attempts to make padding
practical with mixed results (Goyal et al., 2024; Pfau et al., 2024), but it is not fully understood.
Specifically, while it is known that padded transformers remain in TC0, it has been open and elusive
whether they can solve all problems in TC0 or even the smaller class AC0 (Pfau et al., 2024).

∗Work partially conducted as a PhD student at New York University.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

FO+M2

TC0

AHAT0
∗

Mix Barrington et al.

Lemma 2

M
errill and

Sabharw
al

Theorem 1

TCd, d ≥ 1

AHATd
∗

FO ⊆ AHAT0
∗

L ⊆ AHAT1
∗

Theorem 2

Lem
m

a
6

Lemma 2

Lemma 4

Lemma 5

Figure 1: Summary of core results: exact characterizations of the expressive power of O(logd n)-
depth looped AHATs with padding, for d ≥ 0. Theorem 1 shows that AHAT0

∗ = FO-uniform TC0.
Theorem 2 extends this to show that, for d ≥ 0, AHATd

∗ = FO-uniform TCd. In the process
of obtaining these results, we also found the novel circuit complexity result that, for any d ≥ 1,
FO-uniform TCd = L-uniform TCd Theorem 3. Thus, for d ≥ 1, AHATd

∗ = L-uniform TCd.

Our first contribution is exactly characterizing the expressive power of transformers2 with polynomial
padding as FO-uniform TC0, answering an open question (Pfau et al., 2024). The result emerges
through a finer-grained analysis of transformers in terms of string logics (Merrill and Sabharwal,
2023c; Chiang et al., 2023; Yang et al., 2024; Yang and Chiang, 2024). Thinking in terms of logic,
we show that nk padding tokens give transformers enough “storage space” to resolve any first-
order majority logic formula over k variables. This suffices to capture all of FO-uniform TC0 (Mix
Barrington et al., 1990), giving an exact characterization of the expressive power of such transformers.

This first result, however, does not clarify whether padded transformers can be minimally extended
to gain expressivity beyond TC0. To address this, we consider the combination of padding with
looping, i.e., repeating a block of layers dynamically as a function of input length, also referred to as
universal transformers (Dehghani et al., 2019; Giannou et al., 2023). This can be understood as a
form of inference-time compute where padding controls the computation width and looping controls
the computation depth—crucially, without adding any parameters. If the number of repetitions is
minimal (e.g., sublinear) in sequence length, this transformer model remains highly parallelizable
relative to CoT (Merrill and Sabharwal, 2025).

Extending this result, we show that, for d ≥ 1, transformers with polynomial padding and O(logd n)

looping recognize exactly FO-uniform TCd. Thus log or polylog-looped transformers can solve many
problems outside TC0 under standard complexity conjectures, including boolean formula evaluation,
iterated matrix multiplication, graph connectivity, and context-free language recognition. It also
follows that polylog-looped padded transformers converge in expressive power to FO-uniform NC,
the ceiling that could be expected while preserving parallelism under standard complexity conjectures.

Our first result about the expressive power of fixed-depth padded transformers provides crucial insight
for our extended results about looped padded transformers (cf. Figure 1), by allowing, for the first
time, the use of familiar tools of reductions and complete problems from classical complexity theory
in the analysis of transformers. First, the ability to express TC0 implies that padded transformers
can implement FO reductions. We then scaffold the ability to implement FO reductions to show
that transformers can also implement L reductions, via known results about transformers’ ability
to implement graph connectivity, an NL-complete problem under FO reductions. We then use this
to show that O(logd n) looping recognizes exactly FO-uniform TCd, via the “wide” TCd circuit
evaluation problem, which we prove to be complete for this class under L reductions.

Finally, we prove a novel circuit complexity result that FO-uniform TCd = L-uniform TCd for any
d ≥ 1. This was obtained in our analysis of looped transformers with d ≥ 1. Besides being potentially
of independent interest in circuit complexity, this allows us to see that, for d ≥ 1, O(logd n) looping
allows recognizing not just FO-uniform TCd but also L-uniform TCd (because they are the same).

Overall, our results provide an exact characterization of the expressive power of padded fixed-
depth transformers as TC0, answering an open question (Pfau et al., 2024). Further, we exactly

2Our formal model, detailed in Section 2, assumes a fully uniform transformer with fixed parameters, fixed
width, logarithmic or polynomial precision (showing their equivalence in this setting), masked pre-norm, and
causal masking (Theorem 1 also applies to unmasked transformers, showing their equivalence under padding).

2

characterize the expressive power of polylog-looped padded transformers, which reveals that padding
and looping dramatically extend the expressive power of transformers under standard complexity
conjectures. We take these results to motivate empirical investigation of padding and looping as
forms of inference-time compute that are more parallelizable than standard CoT.

2 Preliminaries

2.1 Averaging-Hard-Attention Transformers

Following previous work, we analyze a model of transformers that is slightly idealized compared
to standard soft-attention transformers. Specifically, we analyze transformers with averaging hard
attention (AHAT; also called “saturated” by Merrill et al., 2022) and masked pre-norm (Merrill and
Sabharwal, 2023b). AHAT attention heads only attend to the values that maximize the attention score;
in the case of ties, the head returns a uniform average of all values with tied scores. Masked pre-norm
means that the transformer can apply a linear projection before pre-norm at the beginning of each
sublayer, which is useful for reading individual values from the residual stream without interference
from other values. Overall, we believe these idealizations are minimal changes that make it easier to
implement algorithmic constructions that generalize to any sequence length.

More formally, we define the transformer sublayers in this AHAT model following Merrill and
Sabharwal (2025). Each sublayer uses masked pre-norm (Xiong et al., 2020; Merrill and Sabharwal,
2023b), reading input zi = layer_norm(Mhi), where hi is the previous sublayer output, M is some
matrix, and layer-norm can be standard layer-norm (Ba et al., 2016) or RMS norm (Zhang and
Sennrich, 2019). The sublayer outputs δ1, . . . , δn, and the residual stream is updated as h′

i = hi + δi.
Definition 1 (Self-attention sublayer). The self-attention sublayer is parameterized by a mask
m ∈ Qm, output projection matrix W : Qm → Qm, and, for 1 ≤ k ≤ h, query, key, and value
matrices Qk,Kk,Vk, each of which is a projection from Qm to Qm/h.

Given input zi, the self-attention sublayer computes queries qi = Qkzi, keys ki = Kkzi, and values
vi = Vkzi. Next, these values are used to compute the attention head outputs:

ai,k = lim
τ→0

c∑
j=1

exp(1/τ · q⊤
i,kkj,k)

Zi,k
· vj,k, where Zi,k =

c∑
j=1

exp
(
1/τ · q⊤

i,kkj,k

)
.

We can set c = i to define causally masked attention and c = n for unmasked attention. Averaging
hard attention is formalized by taking the low-temperature limit (τ → 0), which causes all probability
mass to be concentrated on the tokens that maximize the attention score. In practice, transformers
can approximate this by learning a temperature close to zero; for a fixed sequence length, this
approximation will hold, but for longer strings it will break down. Finally, the output of the self-
attention sublayer is computed by aggregating the head outputs via δi = W · concat(ai,1, . . . ,ai,h).
Definition 2 (Feedforward sublayer). The feedforward sublayer at layer ℓ is parameterized by a mask
m ∈ Qm and projections W : Qm → Qw and U : Qw → Qm.

A feedforward layer computes a local update to the residual stream via δi = U · ReLU(Wzi).

A transformer defines a function Σ∗ → Σ or Σ∗ → {0, 1} if we add a linear head to the final layer
and take its argmax as the output. We say that a transformer T : Σ→ {0, 1} recognizes a language L
(with beginning-of-sequence token $) if, for any w ∈ Σ∗, T ($w) = 1 if and only if w ∈ L.

Precision. In Appendix A, we formalize logarithmic (Merrill and Sabharwal, 2023a) and polynomial
precision (Chiang, 2025) datatypes. All our constructions go through with either datatype, showing
that logarithmic and polynomial-precision looped padded transformer classes are, in fact, identical.

Layer-Norm Hash. Our constructions will use the layer-norm hash representation (Merrill and
Sabharwal, 2023b, 2025) for query-key matching with positive integer values.

Definition 3. Given z ∈ N, its layer-norm hash is the vector ⟨z, 1,−z,−1⟩/
√
2z2 + 2 .

The layer-norm hash is computable within a transformer and satisfies that property that ϕ(i)⊤ ·ϕ(j) =
1 if and only if i = j. This makes it useful for retrieval based on position matching using AHATs.

3

2.2 Padded and Looped AHATs

We assume a looped transformer model as previously defined by Merrill and Sabharwal (2025):
Definition 4 (d(n)-looped transformer). A looped transformer’s layers are partitioned into blocks
⟨A,B,C⟩. On an input of length n, block B is repeated depth-wise d(n) times.

Looped transformers provide a way of dynamically scaling width at test time by looping a block of
layers. In addition, we also consider padding (Pfau et al., 2024) as a simple way to increase width:
Definition 5 (w(n)-padded transformer). On an input of length n, we first append w(n) “blank”
tokens (□ ̸∈ Σ) and then feed this full string through the transformer.

Looping and padding can also be combined, giving us the following language class for transformers:

Definition 6 (Padded and looped transformers). Let d, k ∈ Z≥0. AHATd
k is the class of languages

recognizable by a causally masked looped transformer with masked pre-norm, a beginning-of-
sequence token, no position embedding, O(logd n) depth, and O(nk) padding tokens. Further,
AHATd

∗ =
⋃∞

k=0 AHAT
d
k, AHAT∗

k =
⋃∞

d=0 AHAT
d
k, and AHAT∗

∗ =
⋃∞

d=0 AHAT
d
∗.

AHATd
k uses causal masking with no positional encodings (but with a beginning-of-sequence (BoS)

token $; cf. Merrill and Sabharwal, 2023b). In contrast, some of our constructions will be for
unmasked transformers, which must use position encodings to distinguish positions. We will
write uAHATd

k for the language classes recognizable by unmasked transformers with 1/i position
encodings. We will occasionally consider mixed-masked transformers where some attention heads
use causal masking and others do not. These transformers, which do not need position encodings
since they can compute 1/i with causal heads and the BoS token, will be denoted mAHATd

k.

With some abuse of notation, we will use AHATd
k to denote both the class of languages as defined

above as well as the corresponding class of transformer models, i.e., transformers with O(logd n)
and (nk) padding tokens. The distinction should be clear from the context.

2.3 Circuit Complexity

We define the circuit complexity classes ACd and TCd in the standard way (Arora and Barak, 2009;
Strobl et al., 2024). A circuit family is a mapping C = {Cn}∞n=0 from input lengths n to circuits that
take n inputs. ACd is the class of language that can be recognized by polynomial-size, fixed-depth
circuit families with unbounded-arity AND/OR gates. TCd is the same class but augmented with
unbounded-arity MAJ gates that take a majority vote over their input bits.

It will often be useful to talk about uniform variants of these classes. A X-uniform circuit family
obeys that constraint that circuit Cn for input size n can be “built” from the input string 1n using
computation in X. We will consider two standard notions of uniformity: FO uniformity (which is
equivalent to DLOGTIME uniformity; Mix Barrington et al., 1990) and the weaker L uniformity
(i.e., log-space uniformity). For a circuit class XC, we will write A-uniform XC to denote that class
constrained to circuit families satisfying A uniformity. See Appendix B for formal definitions of each
type of uniformity and Strobl et al. (2024) for further context.

Finally, we will also use the notion of completeness for circuit classes. Informally, an X-complete
problem is a problem in X to which any other problem in X can be mapped via some simple reduction
R. Whether a problem is complete depends on the notion of reduction used. See Definition 9 for a
more formal definition of reductions, which makes completeness fully defined.

2.4 Logic

We define the standard notion first-order logic over strings (FO; cf. Merrill and Sabharwal, 2023c).
FO formulas map strings to boolean values. Its formulas can check for token occurrences at specific
string positions, and it allows quantification over positions in the input string. More formally:
Definition 7. FO contains two types: indices, representing positions in the input string, and formulas,
which evaluate to true or false. For an index or formula x, we write JxKw,v for the evaluation of x
on string w with variable assignments v (a map from names to values). Indices in FO are integers
denoting positions in the input string:

4

1. The constant 1, representing the first token’s position: J1Kw,v = 1.
2. The constant n, representing the last token’s position: JnKw,v = |w|.
3. Symbols (e.g., i, j, k) representing variables ranging over positions 1 to n: JiKw,v = v[i].

Formulas in FO are then constructed as follows:

1. Let Σ be a finite alphabet. For each σ ∈ Σ and any index i, Qσ(i) is a formula that is true
when the i-th input token is σ. That is, JQσ(i)Kw,v = 1 iff wm = σ where m = JiKw,v .

2. For two indices i, j, i = j, i ≤ j, and i ≥ j are formulas with their conventional semantics.
3. For two indices i, j, bit(i, j) is a formula returning the j-th bit of i.
4. For two formulas P,Q, P ∧Q and P ∨Q are formulas with their conventional semantics.
5. For any formula P (which may refer to i or any over variable), the following are formulas:

(a) ∃i.P means setting i to some value m ∈ [1, n] makes P true (more formally,
JP Kw,v|i=m = 1).

(b) ∀i.P means setting i to any value m ∈ [1, n] make ϕ true.

An FO formula P with no free variables is called a sentence and returns a value in {0, 1} for each
input string. The language defined by a sentence is the set of strings mapped to 1. The nesting depth
of an FO formula is the depth of its syntactic tree constructed by the rules above. The number of
distinct variables is the number of different variable names used in P . This can be minimized by
allowing two independent quantifiers in parallel subformulas to use the same variable name.

It is known that the class of languages defined by FO is exactly the circuit complexity class
DLOGTIME-uniform AC0 = FO-uniform AC0 (Mix Barrington et al., 1990). This class captures the
languages recognized by unique hard-attention transformers (Hao et al., 2022; Yang et al., 2024),
but it is not large enough to capture soft-attention transformers (Merrill and Sabharwal, 2023a). To
consider a more expressive logic capable of modeling soft-attention transformers, we can extend FO
with majority quantifiers (Merrill and Sabharwal, 2023c). Specifically, we will define FO+M2 as
FO extended to include a paired majority quantifier:
Definition 8 (Mix Barrington et al., 1990). FO+M2 is FO extended to include the M2 quantifier,
defined as follows: M2(i, j).P (i, j) is true if ϕ(i, j) holds for a majority of pairs of positions
(i, j) ∈ [n]2 in the string.

It is known that FO+M2 defines exactly FO-uniform TC0 (Mix Barrington et al., 1990, Theorem
10.2, which uses paired majority). It is also possible to use majority quantifiers to define addition over
indices, so without loss of generality, we can assume FO+M2 formulas have no addition (unlike
FO formulas). Moreover, it is possible to simulate bit in terms of M2, so we can consider FO+M2

formulas not to contain bit, in contrast to the more standard logic FO+M[bit] that also defines TC0.
This makes FO+M2 a simpler target for our transformer constructions than FO+M[bit].

3 Masked and Unmasked Transformers

Before presenting our main results, we briefly discuss a simple but important relationship between
different kinds of masking that will come in handy. When using a transformer as a recognizer for
formal languages, there is a choice of whether to use an encoder (with no attention masking) or
a decoder (with causal attention masking) to encode the input string. Causally masked (decoder)
models are more standard these days, as well as theoretically more convenient (e.g., no need for
position embedding, as position information can be derived from causal attention), so we take them
as our default model. However, it is sometimes easier to reason about how to solve problems with
unmasked transformers. Fortunately, the following lemma shows we can simulate an unmasked
transformer (encoder) with a causally masked transformer (decoder), if we allow padding tokens
proportional to the transformer depth. This will be useful going forward in several places where we
convert unmasked and mixed-masked constructions to causally masked constructions.
Lemma 1 (Unmasked to Causally Masked). Let E be an unmasked (with position encoding 1/i)
AHAT encoder with depth ℓ ≥ 1. Then there exists a causally masked AHAT decoder D (without any
position encoding) with depth ℓ and with ℓn padding tokens on input length n that is equivalent to E
in the following sense: the final n outputs of D match the original n outputs of E.

Proof. We first observe that the causally masked decoder D can compute 1/i (the position encoding
used in the unmasked encoder E) by attending uniformly with value 1 only for the beginning-of-

5

sequence symbol. To simulate unmasked attention with causally masked attention via padding, the
idea is for D to unroll a sequence of ℓ “blocks” (one for each of the ℓ layers of E) along the padding
length dimension, each of width n. Each block will attend to the previous block in the previous layer
and can thus see all tokens despite causal masking.

To implement the block construction, we first compute ϕ(n). We then use this to compute ϕ(bi),
where bi = ⌊i/n⌋ ∈ [1, ℓ], which represents the block that each token belongs to. We also compute
ϕ(bi − 1) ∈ [0, ℓ − 1] using a head that ignores the beginning-of-sequence token $. Next, we
modify each original head from U to have an additional term in the query/key product. The query
is Cϕ(bi − 1) and the key is ϕ(bj), where C is a large weight. We set C to a fixed large value
(independent of n) such that this term dominates all other terms in the inner product computation at
each token. As a result, the head is constrained over keys in the context where bj = bi − 1, i.e., the
keys from the last block. Within these keys, it computes exactly the same AHAT output as the original
unmasked head. In this way, we are able to simulate an unmasked (or mixed mask) transformer with
a causally masked transformer.

Since causally masked heads of a mixed-masked transformer can be trivially simulated by a causally
masked transformer, Lemma 1 allows us to relate various masking variants (proof in Appendix C):

Proposition 1. Unmasked (with position encoding 1/i or i/n; cf. Lemma 10 in §C) and mixed-
masked padded transformers (i.e., uAHATs and mAHATs) can be simulated by causally masked
transformers (AHATs). Specifically, for any d, k ∈ N, the following holds for the corresponding
problem classes:

1. uAHAT0
k ⊆ mAHAT0

k ⊆ AHAT0
max{k,1}

2. uAHATd
k ⊆ mAHATd

k ⊆ AHATd
1+max{k,1} for d ≥ 1

3. uAHATd
∗ ⊆ mAHATd

∗ ⊆ AHATd
∗.

4 Fixed-Depth Padded Transformers Recognize Exactly FO-uniform TC0

We are now ready to prove our first main result, namely that padding tokens allow transformers to
simulate FO formulas—with more padding allowing more nesting of variables. Moreover, they can
simulate formulas with the special paired majority quantifiers.

Lemma 2. An FO+M2 formula with k ≥ 1 distinct variables and nesting depth ℓ can be computed
in uAHAT0

k (and hence in AHAT0
k) with (fixed) depth ℓ.

Proof. We will store all nk possible configurations of k variables of the formula using nk padding
tokens, where each token corresponds to a specific configuration of all the variables, which we denote
v (cf. Definition 7). We will present an inductive transformer construction that uses a single layer to
compute the boolean variable of each formula and the integer value of each numerical expression
in FO+M2, assuming the constituent formulas and values were already computed at the previous
layer. Since each FO+M2 formula consists of a fixed number of subformulas and values, we can
accumulate all constituents in the residual stream in order to compute any larger formula.

In more detail, let JxKw,v be the value of a formula or numerical value x on string w under assignment
v, with k total variables. We will identify each variable assignment with an integer v ∈ [nk], so that,
for every P , padding token v stores JP Kw,v in the residual stream with a scalar whose sign indicates a
truth value. For a numerical value i, token v will represent JiKw,v as a small vector ϕ(JiKw,v). where
ϕ is the layer-norm hash (Definition 3). We show how to evaluate each constituent of an FO+M2

formula. As mentioned after Definition 8, addition over indices and bit are subsumed by M2, so we
do not need to simulate them.

1. Constants. To compute the constant 1 or n at each configuration v, we can attend from each v to
the first and last input token and retrieve its position to get ϕ(1) or ϕ(n), where n = |w|.

2. Variables. At each token v, we will compute ϕ(JiKw,v), a representation of the value of variable i
under assignment v. We view the integer v ∈ [nk] as a tuple of k values v[1], . . . , v[k] ∈ [n]. We
have that JiKw,v = v[i]. To get this, we first compute ϕ(v) and then take a “projection” to retrieve
ϕ(v[i]) using quotient and remainder operations (Merrill and Sabharwal, 2025, Lemma 3.1). More

6

formally, we compute ϕ(n) where n = |w|, divide i− 1 times by n, and then take the remainder
mod n to obtain:

ϕ(⌊v/ni−1⌋ mod n) = ϕ(v[i]).

Thus, we conclude that we can compute ϕ(v[i]) = ϕ(JiKw,v) at each token v.

3. Comparisons. Given two numerical values i, j (either variables or constants) already stored at v
as ϕ(JiKw,v), ϕ(JjKw,v), we can simply compare ϕ(JiKw,v)− ϕ(JjKw,v) on some axis and apply
layer-norm to obtain Ji > jKw,v at token v.

4. Token Predicates. Assume we have ϕ(JiKw,v) previously stored at assignment v. We can hard-
attend to retrieve token wm where m = JiKw,v . We then compute JQσ(i)Kw,v by checking whether
wm = σ.

5. Connectives. Assume we have JP Kw,v and JQKw,v previously stored at each assignment token v.
Then we can simply use a feedforward network to compute J¬P Kw,v , JP ∧QKw,v , or JP ∨QKw,v

independently at each v.

6. Standard Quantifiers. Assume we have JP Kw,v stored at each configuration v. Then, at each m,
we want to resolve the quantifier Q over the set {JP Kw,v|i=m}nm=1, where v|i = m denotes v with
i overriden to have value m. We will count c, the number of m such that P v|i=m holds. More
formally, let j1, . . . , jk−1 be the set of variables excluding i. Then we can attend from v over
v′ with query ⟨ϕ(jv1), . . . , ϕ(jvk−1)⟩, key ⟨ϕ(jv′

1), . . . , ϕ(jv
′

k−1)⟩, and value P v′
to retrieve c/n.

Finally, we threshold c/n against 1
2n (for ∃) or 2n−1

2n (for ∀) to resolve JQi.ϕKw,v .

7. Paired Majority Quantifiers. Assume we have JP Kw,v stored at each configuration v. We want
to compute JM(i, j).P Kw,v for any two variables i, j already represented. The idea slightly
generalizes the construction for single-variable quantifiers: we will use attention to count c, the
number of assignments where JP Kw,v|i=m,j=ℓ is true. Formally, let j1, . . . , jk−2 be the set of
variables excluding i, j. Then we can attend from v over v′ with query ⟨ϕ(jv1), . . . , ϕ(jvk−2)⟩, key
⟨ϕ(jv′

1), . . . , ϕ(jv
′

k−2)⟩, and value JP Kw,v′
to retrieve c/n2. Finally, we threshold c/n2 against 1

2

to resolve JM2(i, j).P Kw,v .

In conclusion, we can compute any FO + M2 formula in uAHAT0
k by inductively computing its

constituent formulas and storing their values over k variables using nk padding tokens. The result
extends to AHAT0

k by applying Proposition 1.

Our construction for Lemma 2 somewhat resembles (though is distinct from) a result of Lange (2004,
Corollary 6.8) that any problem in TC0 can be reduced to majority logic via a transformation that
appends some extra tokens to the input. However, their transformation is not padding since it appends
some “non-blank” tokens, and their result also does not clearly apply to transformers.

Combined with previous results about transformers being in FO-uniform TC0, Lemma 2 yields an
exact characterization of constant-depth transformers with padding:

Theorem 1. uAHAT0
∗ = AHAT0

∗ = FO-uniform TC0, i.e., FO[M, bit].

Proof. It is known that AHAT0 ⊆ FO-uniform TC0 (Merrill and Sabharwal, 2023a,c; Chiang,
2025), and this generalizes to transformers with padding tokens (Pfau et al., 2024). We will
show FO-uniform TC0 ⊆ uAHAT0

∗. Mix Barrington et al. (1990, Proposition 10.3) proved that
FO-uniform TC0 is definable by FO formulas with M2 quantifiers: notably, the bit predicate is not
necessary when using M2 quantifiers. Thus, Lemma 2 establishes that FO-uniform TC0 ⊆ uAHAT0

∗.
Finally, from Proposition 1, we have uAHAT0

∗ ⊆ AHAT0
∗. Hence, uAHAT0

∗ = AHAT0
∗ =

FO-uniform TC0.

A technical hurdle to obtaining this characterization in prior work was simulating the bit predicate
in standard definitions of TC0 (Pfau et al., 2024). Our results circumvent this by instead relating
transformers to FO+M2, which is equivalent to standard FO[M, bit] (Mix Barrington et al., 1990).

7

It thus follows from Theorem 1 that padded transformers can also simulate bit as well as all of FO,
which will be useful in the following section for simulating FO reductions.

Lastly, we note that the arguments leading to Theorem 1 work for both logarithmic and polynomial
precision (cf. Appendix A) transformers. This shows that these two levels of precision lead to
identical power for fixed-depth padded transformers.

5 Logd-Looped Padded Transformers Recognize Exactly FO-uniform TCd

The notion of completeness of a problem (or language) for a complexity class under certain types of
reduction has played a key role in computational complexity. Just like it has been useful for reasoning
about the expressivity of resource-bounded standard models of computation (Turing machines, circuit
models, etc.), we show it can also be used to reason about the expressivity of padded transformers.

We begin by formally defining the notion of reductions in terms of predicates or languages (rather
than string-to-string functions). This will make it easier to precisely implement reductions inside
transformers, which produce contextual representations of prefixes of the input string in parallel, in
contrast to the more standard definition of reductions as string-to-string functions.
Definition 9. Let b(i) be the binary encoding of i ∈ N in some alphabet Σ ⊇ {0, 1}. Let R be a class
of languages. We say a transduction f : Σ∗ → Σ∗ is an R reduction if |f(w)| is polynomial in |w|
and the language Rf = {(w, b(i), σ) | f(w)i = σ} is in R.3

Definition 9 recovers the standard notions of FO and L reductions. A transformer can be said to
compute a reduction f if it recognizes the language of triples (w, i, σ) defined above. Since |Σ| is
finite and transformers can equally easily output a ‘token’ in Σ instead of just 0/1, it is in fact more
natural to require the transformer to compute a functional form of this language, namely compute
rf (w, i) defined as f(w)i. Our constructions work under both views, though the latter is often more
natural and efficient. Formally:
Definition 10. We say that a transformer computes an R reduction f if it either recognizes the
language Rf = {(w, i, σ) | f(w)i = σ} in R or computes the function r : Σ× N → Σ defined as
rf (w, i) = f(w)i, where, in either case, i is encoded in binary.

Lemma 3. Let C,R be classes of languages. Let language L be C-complete under R reductions. If
AHATd

∗ transformers can recognize L and compute every R reduction, then C ⊆ AHATd
∗.

Proof Sketch. Consider any language L′ ∈ C. By the assumed completeness of L, there exists an R
reduction f that maps inputs of L′ into inputs of L such that w ∈ L′ if and only if f(w) ∈ L. From
the last precondition of the theorem, there exists a causally masked logd-depth padded transformer
Tf that recognizes the corresponding reduction language Rf or, equivalently, computes the reduction
function rf (cf. Definition 10). We will assume the latter, i.e., that Tf computes rf , though the
construction can also be made to work if Tf checks membership in Rf . Additionally, we also
have from a precondition that there exists a causally masked logd-depth padded transformer TL that
recognizes L.

The idea is to “stack” TL on top of Tf to obtain a logd-depth padded transformer T that recognizes L′.
Intuitively, given an input w, the first set of layers of T will compute f(w) tokenwise, by computing
r(w, i) = f(w)i for every i in parallel. To this end, we will essentially make |f(w)| copies of the
padding tokens needed by Tf and perform the computation of Tf independently for each f(w)i. The
second and final set of layers of T will then check whether the string f(w) produced by the first set
of layers is in L, which will hold if and only if w ∈ L′. See full proof in Appendix C.

Combined with results in prior work, it follows from Lemma 3 (see proof below) that padded
log-depth transformers can recognize any language in NL:

Lemma 4. NL ⊆ AHAT1
∗.

Proof. Let L be the graph connectivity problem, class C be NL, and class R be FO. We will show
that the preconditions of Lemma 3 are met, from which it will follow that NL ⊆ AHAT1

∗. First, graph

3Here f(w)i denotes the i-th token of f(w) if i ≤ |f(w)|, and a special symbol □ ̸∈ Σ otherwise.

8

connectivity is known to be NL-complete under FO reductions (Immerman, 1998). Second, Merrill
and Sabharwal (2025) recently showed that mixed-masked log-depth transformers with cubic padding
can recognize the graph connectivity problem L, i.e., L ∈ mAHAT1

∗. From Proposition 1, it follows
that L ∈ AHAT1

∗. Finally, it follows from Theorem 1 that fixed-depth causally masked transformers
can recognize languages in FO[M, bit], and hence also languages in FO. Such transformers can
therefore compute FO reductions f in the sense of Definition 10, i.e., compute the function rf (w, i)
defined as f(w)i, the i-th bit of f(w). Thus, Lemma 3 applies.

Since L reductions are in NL, we can bootstrap this result to obtain the following stronger result. For
this, we will leverage the notion of reductions and the completeness of the problem of evaluating a
given “wide” logd depth circuit, formalized in Definition 15 (Appendix D).

Lemma 5. For d ≥ 0, FO-uniform TCd ⊆ AHATd
∗.

Proof. We will apply Lemma 3 with the wide-TCd circuit evaluation problem (Appendix D) as L,
FO-uniform TCd as class C, and L as class R. We next argue that the preconditions of Lemma 3 are
met, which will finish the proof. First, Corollary 13.1 (Appendix D.2) shows that logd-depth looped
transformers (without padding) can solve the wide-TCd circuit evaluation problem, i.e., L ∈ AHATd

0.
Second, Corollary 14.2 (Appendix D.3) shows that L is complete for FO-uniform TCd under L
reductions. Finally, Lemma 4 implies that logd-depth transformers for d ≥ 1 can recognize any
language in L, and thus compute any L reduction in the sense of Definition 10. Applying Lemma 3,
we conclude that FO-uniform TCd ⊆ AHATd

∗.

The proof heavily leverages the fact that wide-TCd circuit evaluation TCd-complete, which we
show in Appendix D.1. To our knowledge, formalizing this TCd-complete problem (or, in fact, any
natural TCd-complete problem) is a novel contribution. We next note the following extension of a
known result about fixed-depth transformers. See Appendix C for a proof, which leverages the fact
that recurrent composition of poly-size FO-uniform circuit families remains FO-uniform (Lemma 9,
Appendix B.1):

Lemma 6. For d ≥ 1, AHATd
∗ ⊆ FO-uniform TCd.

Combining Lemmas 5 and 6, we obtain an exact characterization of AHATd
∗ for d ≥ 1:

Theorem 2. For any d ≥ 1, AHATd
∗ = FO-uniform TCd.

Taking the union over all d, we obtain
⋃∞

d=0 AHAT
d
∗ as the class of languages recognized by

polylogarithmic-looped padded transformers. Theorems 1 and 2 imply that this class is the same
as

⋃∞
d=0 FO-uniform TCd, which in turn is the same as the class FO-uniform NC, where NC is the

class of all “parallelizable” languages—those recognized by polylogarithmic depth (and polynomial
size) circuit families. We therefore have:
Corollary 2.1. Polylog-looped poly-padded transformers recognize exactly FO-uniform NC.

As before, we note that the arguments leading to Theorem 2 and Corollary 2.1 work for both
logarithmic and polynomial precision (cf. Appendix A) transformers. This shows that these two
levels of precision lead to identical power for polylog-looped polynomially-padded transformers.

6 Uniformity Collapse for Circuit Classes

Our results on looped transformers involved substantial analysis of uniform polylogarithmic-depth
circuit classes. This analysis led us to prove a novel result about uniform circuit families, which both
slightly strengthens our results about looped transfomers and may be of independent interest.

The result concerns the strength of different uniformity conditions for circuit families, characterizing
conditions under which variants of circuit classes with different uniformity conditions collapse to
express the same class of languages (Proposition 6 in Appendix E). Applying this general result to
(wide) TCd circuits, we show that for d ≥ 1, both NL-uniformity and L-uniformity collapse to the
weaker notion of FO-uniformity for both ACd and TCd circuits:

9

Theorem 3 (Uniformity Collapse). For any d ≥ 1, the following equivalences hold:

FO-uniform ACd = L-uniform ACd = NL-uniform ACd

FO-uniform TCd = L-uniform TCd = NL-uniform TCd.

The key idea, formalized in Appendix E, is to leverage the fact that NL and L themselves are in
FO-uniform ACd for d ≥ 1, and therefore the NL or L machine that builds a circuit family can itself
be simulated in FO-uniform ACd as well. Thus all one needs to do is compose this “circuit building”
circuit family with a “circuit evaluation” circuit family. To this end, we show that functions computed
by FO-uniform circuit families are closed under fixed compositions (Proposition 3).

Theorem 3 implies that, for d ≥ 1, AHATd
∗ recognizes not just FO-uniform TCd but also

L-uniform TCd because these classes are the same.

7 Conclusion

Our results in this work give a precise theoretical understanding of how padding and looping—two
ways to dynamically expand the computational resources of a transformer at inference time—increase
the expressive power of transformers. Padding expands the circuit width of transformers, allowing
them to resolve logical formulas over more variables. As a consequence of this, polynomially
padded transformers can recognize exactly TC0, which was previously known only as an upper
bound (Merrill and Sabharwal, 2023a; Pfau et al., 2024). In contrast, looping increases the depth of
transformers. Applying looping on top of padding, we extended our result to show that logd-depth,
padded transformers recognize exactly TCd. This means that transformers with polynomial padding
and polylogarithmic looping converge to recognizing NC, the largest class of problems that can
be solved with parallel computation. In contrast, transformers with CoT have greater expressive
power under standard complexity conjectures (Merrill and Sabharwal, 2023b), but suffer from slow
sequential decoding. Thus, while looping and padding are not as powerful as CoT, our results suggest
they are quite effective ways to expand transformers’ expressive power while preserving parallelism.

Several interesting open questions remain from this work. On the theoretical side, it would be valuable
to develop a more finegrained characterization of AHATd

k, i.e., looped transformers where the padding
is at most O(nk) for some fixed k. On the empirical side, while looped and padded transformers
have both been explored already to an extent, it would be interesting to see whether these approaches
could be successfully integrated to improve the performance of transformers on hard reasoning tasks.
Further developing these approaches could ultimately lead to inference-time compute methods based
on padding and looping that increase transformers’ expressive power without sacrificing parallelism,
providing a more efficient alternative to CoT for solving moderately parallelizable problems.

Limitations

Practical Concerns for Looped Transformers with Padding. In this paper, we showed looped
transformers with padding are quite expressive. However, the degree to which transformers can learn
to use looped layers is an important open question. In particular, practical details might be important
here, such as an appropriate parameterization where features can be learned in later layers (Dey et al.,
2025). Another practical caveat is that, while padding is efficiently parallelizable, it will extend the
context length, incurring more memory overhead for the forward pass.

Transformer Model. Here we have assumed AHATs here rather than softmax-attention transformers
(SMATs). For any fixed maximum context length, it is possible scale the temperature of SMAT heads
to arbitrarily approximate AHAT heads, but for unbounded context lengths, SMATs may not be able
to simulate AHATs. We thus view the AHAT as mild simplification of the SMAT that abstracts away
issues with soft attention for simulating hard attention over very long contexts. It would also be
interesting to better understand the necessity of the masked pre-norm assumption.

10

Acknowledgments

We appreciate discussions with Selim Jerad, Andy Yang, Michael Cadhilac, and attendees of the
Formal Languages and Neural Networks (FLaNN) seminar. This project was supported by the
National Science Foundation (NSF) through award 1922658 and WM’s NSF Graduate Research
Fellowship. WM was also supported by a Two Sigma PhD Fellowship and the Allen Institute for AI.

References
S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University

Press, USA, 1st edition, 2009. ISBN 0521424267.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization, 2016. URL https://arxiv.org/
abs/1607.06450.

D. Chiang. Transformers in uniform TC0. TMLR, 2025. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ZA7D4nQuQF.

D. Chiang, P. Cholak, and A. Pillay. Tighter bounds on the expressivity of transformer encoders. In
ICML, 2023.

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser. Universal transformers. In ICLR,
2019. URL https://openreview.net/forum?id=HyzdRiR9Y7.

N. Dey, B. C. Zhang, L. Noci, M. Li, B. Bordelon, S. Bergsma, C. Pehlevan, B. Hanin, and
J. Hestness. Don’t be lazy: CompleteP enables compute-efficient deep transformers, 2025. URL
https://arxiv.org/abs/2505.01618.

A. Giannou, S. Rajput, J.-y. Sohn, K. Lee, J. D. Lee, and D. Papailiopoulos. Looped transformers as
programmable computers. In ICML, 2023.

S. Goyal, Z. Ji, A. S. Rawat, A. K. Menon, S. Kumar, and V. Nagarajan. Think before you speak:
Training language models with pause tokens. In ICLR, 2024. URL https://openreview.net/
forum?id=ph04CRkPdC.

Y. Hao, D. Angluin, and R. Frank. Formal language recognition by hard attention transformers:
Perspectives from circuit complexity. TACL, 10:800–810, 2022. doi: 10.1162/tacl_a_00490. URL
https://aclanthology.org/2022.tacl-1.46/.

N. Immerman. Descriptive Complexity. Springer Verlag, 1998.

K.-J. Lange. Some results on majority quantifiers over words. In Conference on Computational
Complexity, page 123–129. IEEE Computer Society, 2004. ISBN 0769521207.

Z. Li, H. Liu, D. Zhou, and T. Ma. Chain of thought empowers transformers to solve inherently serial
problems. In ICLR, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

W. Merrill and A. Sabharwal. The parallelism tradeoff: Limitations of log-precision transformers.
TACL, 11:531–545, 2023a. doi: 10.1162/tacl_a_00562. URL https://aclanthology.org/
2023.tacl-1.31.

W. Merrill and A. Sabharwal. The expressive power of transformers with chain of thought. In
NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023b. URL https:
//openreview.net/forum?id=CDmerQ37Zs.

W. Merrill and A. Sabharwal. A logic for expressing log-precision transformers. In NeurIPS, 2023c.
URL https://openreview.net/forum?id=uR8TtWCIsr.

W. Merrill and A. Sabharwal. A little depth goes a long way: The expressive power of log-depth
transformers. In NeurIPS, 2025. URL https://openreview.net/forum?id=5pHfYe10iX.

W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold
circuits. TACL, 10:843–856, 2022. doi: 10.1162/tacl_a_00493. URL https://aclanthology.
org/2022.tacl-1.49/.

11

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=ZA7D4nQuQF
https://openreview.net/forum?id=ZA7D4nQuQF
https://openreview.net/forum?id=HyzdRiR9Y7
https://arxiv.org/abs/2505.01618
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://aclanthology.org/2022.tacl-1.46/
https://openreview.net/forum?id=3EWTEy9MTM
https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31
https://openreview.net/forum?id=CDmerQ37Zs
https://openreview.net/forum?id=CDmerQ37Zs
https://openreview.net/forum?id=uR8TtWCIsr
https://openreview.net/forum?id=5pHfYe10iX
https://aclanthology.org/2022.tacl-1.49/
https://aclanthology.org/2022.tacl-1.49/

D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of
Computer and System Sciences, 41(3):274–306, 1990. ISSN 0022-0000. doi: https://doi.org/10.
1016/0022-0000(90)90022-D. URL https://www.sciencedirect.com/science/article/
pii/002200009090022D.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena. Show your work: Scratch-
pads for intermediate computation with language models, 2022. URL https://openreview.
net/forum?id=iedYJm92o0a.

J. Pfau, W. Merrill, and S. R. Bowman. Let’s think dot by dot: Hidden computation in transformer
language models. In COLM, 2024. URL https://openreview.net/forum?id=NikbrdtYvG.

L. Strobl, W. Merrill, G. Weiss, D. Chiang, and D. Angluin. What formal languages can transformers
express? A survey. TACL, 12:543–561, 2024. doi: 10.1162/tacl_a_00663. URL https://
aclanthology.org/2024.tacl-1.30/.

H. Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science & Business
Media, 1999.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou.
Chain of thought prompting elicits reasoning in large language models. In NeurIPS, 2022.

R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T. Liu. On
layer normalization in the transformer architecture. In ICML, 2020. URL https://proceedings.
mlr.press/v119/xiong20b.html.

A. Yang and D. Chiang. Counting like transformers: Compiling temporal counting logic into softmax
transformers. In COLM, 2024. URL https://openreview.net/forum?id=FmhPg4UJ9K.

A. Yang, D. Chiang, and D. Angluin. Masked hard-attention transformers recognize exactly the star-
free languages. In NeurIPS, 2024. URL https://openreview.net/forum?id=FBMsBdH0yz.

B. Zhang and R. Sennrich. Root mean square layer normalization. In NeurIPS, 2019.

12

https://www.sciencedirect.com/science/article/pii/002200009090022D
https://www.sciencedirect.com/science/article/pii/002200009090022D
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=NikbrdtYvG
https://aclanthology.org/2024.tacl-1.30/
https://aclanthology.org/2024.tacl-1.30/
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FBMsBdH0yz

A Datatype Assumptions

We adapt the p-precise datatype model from Merrill and Sabharwal (2025). We encode scalars as
strings in {0, 1}p, where p can be a function of n. If p depends on n, activations, but not models
parameters, can depend on n. A datatype Dp assigns a numerical semantics for each string in {0, 1}p.
For x ∈ R, let [x]Dp

be x rounded into Dp, i.e., the bitstring whose numerical value in Dp is closest
to x (breaking ties in favor of the higher value). We define our datatype Dp to satisfy the following:

Definition 11 (p-Precise Operations). Let f : Rk → R be an operation with p-precision realization
f̃ : Dk

p → Dp. We say f̃ is p-precise if, for any x1, . . . , xk ∈ R exactly representable in Dp,

[f(x1, . . . , xk)]Dp = f̃([x1]Dp , . . . , [xk]Dp).

To apply Definition 11, we view the summation in attention heads as an n-ary operation. We also
view layer-norm as a single operation from Rm → Rm. Lastly, we assume that these operations in
the computation graph are defined in the standard way and are thus computable in TC0 (Merrill and
Sabharwal, 2023a,c).

We consider two natural instantiations of Dp in the main text: log precision, with p = c log n (Merrill
and Sabharwal, 2023a), and polynomial precision, with p = nc (Chiang, 2025), for some fixed c > 0.
All our results go through with either datatype, showing their equivalence for polylogarithmically-
looped polynomially-padded transformers.

B Uniformity of Circuit Classes

To make our arguments rigorous for highly uniform (i.e., FO-uniform) circuit families, it will be
necessary to work with a detailed definition of uniformity. For this, we start with a standard formal
definition of the connection language describing the gates and wires of a circuit family. Here we
allow each circuit to have more than one (numbered) output gates.

Definition 12 (Connection Language; cf. Vollmer, 1999). Define the connection language for a
circuit family C = {Cn}∞n=0 as LC = Lgate ∪ Lwire where

Lgate = {anigkℓ | gate i of Cn is type g, is k-th input gate if k ≥ 0, and is ℓ-th output gate if ℓ ≥ 0}
Lwire = {anij | Cn has a wire i→ j}

and i, j ∈ Z≥0, g is a gate type, and k, ℓ ∈ Z≥−1. Here i, j, k, ℓ are represented using exactly c log n
bits for some fixed c ∈ Z≥1.

We will assume that gates in all circuits are numbered so that there is a block of input gates, followed
by a block of intermediate gates, followed by a block of output gates. Thus, there exist specific gate
thresholds that denote the boundaries for input and output gates.

Definition 13 (Generalized Uniformity). A family of circuits C = {Cn}∞n=0 is A-uniform if LC ∈ A.

When A = L, this generalized uniformity notion is equivalent to the standard definition of uniformity
in terms of being able to serialize Cn as a function of 1n:

Proposition 2. C = {Cn}∞n=0 is L-uniform if and only if 1n 7→ ⟨Cn⟩ is computable in log space.

Proof. To use the connection language notion of uniformity to serialize the circuit with log space, we
simply maintain a counter of our current gate position and edge and call an L oracle for the connection
language to print each gate and wire. In the other direction, we modify the routine that serializes the
circuit to only output gate i or edge i, j, and we use this to recognize LC .

B.1 Uniformity Composition Closures

Our later results about uniform circuit families will rely on the property (formalized below) that
for strong-enough classes A, any fixed composition of A-uniform circuit families is also A-uniform.
Note that any fixed composition of functions can be decomposed into a fixed number of serial and
parallel compositions of two functions, defined as follows:

13

Definition 14 (Function Composition). For functions f, g ∈ {0, 1}∗ → {0, 1}∗, their serial com-
position is the function (g ◦ f)(w) = g(f(w)) and their parallel composition is the function
⟨f, g⟩(w) = f(w) · g(w).

For L-uniform functions, serial and parallel composition clearly preserves L-uniformity, as we can
maintain a counter to reroute inputs and outputs between subcircuits appropriately. The same applies
to any class A containing L. For FO uniform circuit classes, closure under composition requires a bit
more work to justify, as shown in the following two lemmas.

Lemma 7. If functions f and g have polynomial-size FO-uniform circuit families, then so does their
parallel composition ⟨f, g⟩.

Proof. Let Cf = {Cf
n}∞n=0 be an FO-uniform circuit family for f , with connection language Lf =

LCf
∈ FO. Similarly, define Cg, Cg

n, and Lg for g.

We will decide the connection language L⟨f,g⟩ by querying Lf and Lg to build Cf
n and Cg

n in parallel.
Without loss of generality, we assume all gate indices in the input word for a gate query fit into one
of the following three cases: (1) at most the number of gates sf in the circuit Cf

n , (2) larger than sf
but at most sf + sg where sg is the number of gates in Cg

n, or (3) larger than sf + sg but at most
sf + sg + of , where of is the number of output gates of Cf

n . If all gates are at most sf , we simply
query Lf . If all gates are larger than sf but at most sf + sg , we subtract sf from each gate index and
query Lg. Finally, if we are querying new gates from sf + sg < i ≤ sf + sg + of , we design the
connection language to represent identity gates. Importantly, addition and inequality checks can be
performed in FO, and the connection languages Lf and Lg can be queried in FO by construction.

The logic for edge queries in the connection language modifies gate indices according to the same
logic as the gate queries with a few exceptions. First, for an edge (i, j), if i is an input for Cf

n (and
Cg

n) and i = j − sf , we return 1. This ensures that Cf
n and Cg

n both receive the same input. Second,
if i is an output for Cf

n and sf + sg < j ≤ sf + sg + of , we also return 1. This copies over the
outputs of Cf

n so that they appear at the very end of the combined circuit.

Thus, this connection language constructs a circuit family that computes f and g in parallel and
returns their outputs ⟨g(w), f(w)⟩. Without loss of generality, their order can be easily permuted to
obtain the output ⟨f(w), g(w)⟩ of parallel composition. It is clear from the construction that the size
of the resulting circuit family is linear in the sizes of Cf and Cg , and thus polynomial in n.

Lemma 8. If functions f and g have polynomial-size FO-uniform circuit families, then so does their
serial composition g ◦ f .

Proof. Let Cf = {Cf
n}∞n=0 be an FO-uniform circuit family for f , with connection language Lf =

LCf
∈ FO. Similarly, define Cg, Cg

n, and Lg for g.

We will decide the connection language Lg◦f by querying Lf to construct Cf
n , then modifying the

inputs to Lg to build Cg
m on the output of f , which has size m. The cases are the same as for

parallel composition, except for a few changes. First, we build Cg
m instead of Cg

n. Second, when
querying input gates for Cg

m, we add a condition that routes from the outputs of Cf
n rather than its

inputs. Finally, we do not construct additional gates to copy over the outputs from Cf
n . Thus, this

connection language builds a circuit family that computes g on the output of f . Similar to the parallel
composition case, it is clear from the construction that the size of the resulting circuit family is linear
in the sizes of Cf and Cg , and thus polynomial in n.

Combining Lemmas 7 and 8 along with the fact that any fixed composition of functions can be
decomposed into a fixed number of serial or parallel compositions of two functions at a time, we
obtain that fixed function composition preserves FO-uniformity of circuit families:

Proposition 3 (Composition Preserves FO-Uniformity). Any fixed composition of polynomial-size
FO-uniform circuit families is also polynomial-size and FO-uniform.

Lemma 9 (Recurrent Composition). Let m(n), d(n), and r(n) be functions at most polynomial in
n, with m(n) and r(n) definable as variables in FO given an. Let f : {0, 1}m(n) → {0, 1}m(n)

have a polynomial-size FO-uniform circuit family with depth d(n). Then the function fr(n) (i.e., f

14

called recurrently on itself r(n) times) has an FO-uniform circuit family of polynomial size and depth
d(n) r(n).

Proof. Let Cf = {Cf
n}∞n=0 be a polynomial size FO-uniform circuit family for f , with connection

language Lf . Without loss of generality, we assume the number of gates in Cf
n is 2s(n) for some

integer s(n) (this can always be achieved by padding Cf
n if necessary, in a way that increases size by

at most a factor of 2). Since the circuit family is of polynomial size, s(n) = O(log n) and can be
computed in FO as the smallest j s.t. bit(sf , j) = 1, where sf is the number of gates in Cf

n . We will
construct an FO-uniform circuit family C = {Cn}∞n=0 where Cn consists of f(n) iterations of Cf

n .
By construction, Cn has size at most polynomial and depth d(n) r(n).

The remainder of the proof will justify that C is FO-uniform by defining its connection language LC
in terms of Lf , starting with gate queries. Given a gate query w with index i, we first compute r(n),
which is possible by construction. We then compute S = r(n) · 2s(n) by left shifting r(n) by s(n),
and, if i ≥ S, we reject w. Otherwise, we compute i′ = i mod 2s(n) = bit(i, s(n)), which can be
computed in FO by reading the s(n)-th bit from the start of i in w. We then compute u as a new
query where i is replaced by i′. We then query whether u ∈ Lf . This ensures that Cn repeats all the
gates in Cf

n stacked in r(n) blocks.

Given an edge query w between (i, j), we first compute i′ = i mod 2s(n) and j′ = j mod 2s(n)

as above. Additionally, let qi = ⌊i/2s(n)⌋ and qj = ⌊j/2s(n)⌋. We compute qi and qj in FO by
right-shifting by s(n). If qi = qj , we follow similar logic to the gate case, constructing u by replacing
i with i′ and j with j′. We then query whether u ∈ Lf . This has the effect of constructing all edges
within a block of Cn analogously to those in Cf

n . Additionally, if qi + 1 = qj , i′ ≥ sf −m(n), and
j′ ≤ m(n), we return a 1 for this edge; recall that m(n) is the number of inputs as well as the number
of outputs of f . This has the effect of routing the output of each block as the input for the next block.
Thus, C computes fr(n) and is FO-uniform.

C Omitted Proofs

Proposition 1. Unmasked (with position encoding 1/i or i/n; cf. Lemma 10 in §C) and mixed-
masked padded transformers (i.e., uAHATs and mAHATs) can be simulated by causally masked
transformers (AHATs). Specifically, for any d, k ∈ N, the following holds for the corresponding
problem classes:

1. uAHAT0
k ⊆ mAHAT0

k ⊆ AHAT0
max{k,1}

2. uAHATd
k ⊆ mAHATd

k ⊆ AHATd
1+max{k,1} for d ≥ 1

3. uAHATd
∗ ⊆ mAHATd

∗ ⊆ AHATd
∗.

Proof. As noted in the proof of Lemma 1, the 1/i position encoding used in our unmasked transform-
ers can be computed by causally masked transformers, and hence also by mixed-masked transformers.
Thus, unmasked padded looped transformers with position encoding 1/i constitute a special case
of mixed-masked padded looped transformers, and can thus be trivially simulated by the latter. We
will next describe how to leverage Lemma 1 to convert an unmasked padded looped transformer to
a masked one, on a per-head basis. The construction will leave the computation of masked heads
unchanged, making the approach suitable for converting both unmasked and mixed-masked padded
transformers to masked ones.

Let E be an unmasked looped encoder in uAHATd
k. Then E has depth ℓ = O(logd n) and operates

over n + O(nk) tokens (including original input and padding tokens). By Lemma 1, E can be
simulated by a causally masked decoder D with depth ℓ and with ℓ · (n+O(nk)) new padding tokens
(after the original O(nk) padding tokens used by E). Thus, the total number of padding tokens D
uses is p = O(nk) + ℓ · (n+O(nk)). Since ℓ = O(logd n), this simplifies to p = O(logd(n) · nk′

)

where k′ = max{k, 1}. This is O(nk′
) when d = 0, and O(nk′+1) when d ≥ 1. This finishes the

proof of the first two parts. For the third part, observe that by definition, uAHATd
∗ =

⋃∞
k=0 uAHAT

d
k.

From the above, this in turn is contained in
⋃∞

k=0 AHAT
d
k′+1 ⊆ AHATd

∗, as desired.

15

For the mixed-masking case, the construction in Lemma 1 will preserve the original computation of
causally masked heads if we add an additional term with large negative weight C (fixed w.r.t. n) that
is activated if the index within the block is greater than bi. We set C large enough to dominate all
other terms in the inner product computation at each token. As a result, the head is constrained to only
attend to previous tokens within the block. Applying this modified construction on a case-by-case
basis per head, we can take this proposition to apply equally to transformers with mixed-masking.

The above simulation of unmasked padded looped transformers (with position encoding 1/i) with
mixed-mask transformers can, in fact, be extended even to the case where the unmasked transformer
uses i/n positional encoding:

Lemma 10. There exists a mixed-mask sublayer with one masked head and one unmasked head that
computes ϕ(i/n).

Proof. We use two attention heads, one causally masked and one unmasked, both of which attend
uniformly with value 1 only for the beginning-of-sequence symbol. The first head thus computes 1/i,
while the second head computes 1/n. We can then combine these values to compute ϕ(1/n, 1/i) =
ϕ(i/n).

Lemma 3. Let C,R be classes of languages. Let language L be C-complete under R reductions. If
AHATd

∗ transformers can recognize L and compute every R reduction, then C ⊆ AHATd
∗.

Proof. Consider any language L′ ∈ C. By the assumed completeness of L, there exists an R reduction
f that maps inputs of L′ into inputs of L such that w ∈ L′ if and only if f(w) ∈ L. From the last
precondition of the theorem, there exists a causally masked logd-depth padded transformer Tf that
recognizes the corresponding reduction language Rf or, equivalently, computes the reduction function
rf (cf. Definition 10). We will assume the latter, i.e., that Tf computes rf , though the construction can
also be made to work if Tf checks membership in Rf . Additionally, we also have from a precondition
that there exists a causally masked logd-depth padded transformer TL that recognizes L.

The idea is to “stack” TL on top of Tf to obtain a logd-depth padded transformer T that recognizes L′.
Intuitively, given an input w, the first set of layers of T will compute f(w) tokenwise, by computing
r(w, i) = f(w)i for every i in parallel. To this end, we will essentially make |f(w)| copies of the
padding tokens needed by Tf and perform the computation of Tf independently for each f(w)i. The
second and final set of layers of T will then check whether the string f(w) produced by the first set
of layers is in L, which will hold if and only if w ∈ L′. We next make this idea more concrete.

Compute Reduction. Suppose Tf ∈ AHATd
k and let n = |w|. Then, on input (w, i), where i is

represented in binary, Tf uses O(nk) padding tokens to compute f(w)i, which we upper bound by
nk+1 for sufficiently large n (for small n, we assume Tf instead uses a fixed lookup table (and no
padding). There is a uniform TC0 circuit family that computes bit(i, j) from input ϕ(i), ϕ(j), so, by
Theorem 1, there exists a transformer Tbit that computes bit with nb padding tokens, for some b and
sufficiently large n (again, for smaller n, we assume Tbit uses a fixed lookup table). Since |f(w)| is
bounded by some polynomial nc, we know that any i ≤ |f(w)| takes at most c log n bits to specify,
which we upper bound by c′ = n (since it’s unclear how a transformer would compute log n).

We will construct nc blocks of padding tokens, each of size B = c′nb + nk+1. Block i will first
compute the binary expansion of i in its first c′nb padding tokens using Tbit, and then use the
remaining nk+1 padding tokens to consume (w, i) using Tf and return rf (w, i). At each token t
in block i, we compute ϕ(i) as ϕ(⌊t/B⌋), using the fact that we can compute integer division with
a fixed block of transformer layers (Merrill and Sabharwal, 2025) and having computed B as a
function of n in earlier layers (since it is in TC0). For t′ ≤ c′, token t = t′nb computes ϕ(t′) via
division similarly to ϕ(i) and then bit(i, t′). This recovers the binary representation of i stored across
tokens t = t′nb in block i, for 1 ≤ t′ ≤ c′. Finally, we apply a slightly modified Tf over the block.
Specifically, we add a new term to each attention head so that it only attends over the input tokens
and some tokens within the current block: those satisfying t = t′nb for some 1 ≤ t′ ≤ c′ or t > c′nb:
since c′ = n, these predicates are simple to check. As a result, block i simulates Tf over w with nk

padding. Thus, the final token of block i computes rf (w, i) = f(w)i.

16

Solve Complete Problem. We will use additional layers to check whether f(w) ∈ L′. We are
given that there exists a transformer TL that, on input w′, checks whether w′ ∈ L′. For each attention
head in TL, we add a new term to the attention score that is very negative if that token is not the final
token in some attention block. Thus, each head in TL will only attend over tokens that are final in
some block. We also modify TL so that it uses ϕ(i) in place of the position embedding for token t.
Thus, TL computes whether f(w) ∈ L′, which is equivalent to recognizing whether w ∈ L.

Lemma 6. For d ≥ 1, AHATd
∗ ⊆ FO-uniform TCd.

Proof. Let L be a language in AHATd
∗ and let T be a looped, padded AHAT transformer that, when

unrolled c logd n times for large enough n,4 recognizes whether w ∈ L for any input w with |w| = n.
Let ⟨A,B,C⟩ be the partition of layers of T where A is the set of initial layers, B is the block that’s
repeated c logd n times on inputs of length n, and C is the set of final layers. Each of these itself
is a fixed-depth padded transformer; let’s call these TA, TB , and TC . By prior results (Merrill and
Sabharwal, 2023a,c; Chiang, 2025), there are FO-uniform TC0 circuit families {CA

n }∞n=0, {CB
n }∞n=0,

and {CB
n }∞n=0 that simulate transformers TA, TB , and TC , respectively. Let TR be TB iterated log n

times, and Let T d
R be TB iterated logd n times. We justify that r(n) = ⌈log n⌉ is definable as a

variable in FO given an: compute the index of the last a and then find the greatest bit index that is
1. We now invoke Lemma 9 to show that TR has an FO-uniform TCd circuit family; we can repeat
this process d times to get an FO-uniform TCd circuit family for T d

R. By Lemma 8, there is a also
an FO-uniform TCd circuit family that computes the serial composition of TA, TR, . . . , TR, and TC ,
where . . . accounts for a fixed repetition of TR to account for a constant c on the depth c⌈log n⌉d.
Thus, we conclude that L ∈ FO-uniformTCd.

D Wide-TCd Circuit Evaluation Problem

To formalize the circuit evaluation problem, we will use the following serialized format for repre-
senting a circuit. This format is a simplification of the one used by Merrill and Sabharwal (2023a),
with two main differences: (a) instead of a single threshold gate, we use AND, OR, NOT, and MAJ (the
majority gate), which will simplify the description of the construction; and (b) we do not require the
gates in the serialization to be sorted in any particular order, which makes it easier (and perhaps even
possible) to have a log-space reduction from any L-uniform TCd language to the circuit evaluation
problem in this specific serialization format. The syntax of this circuit format is governed by the
following grammar:

Circuit → Gate∗

Gate → X | Op Arg∗

Op → AND | OR | NOT | MAJ

Arg → &1∗

Semantically, we take the k-th X gate to return the k-th input bit. Other gates retrieve the values of
the gates referred to by their argument pointers and apply the associated logical function. We take
the final gate in the serialization to be the output gate of the circuit. Note that not all strings in this
grammar represent a well-formed circuit, but any valid circuit can be serialized in this format.

As an example, the threshold circuit Majority(x1, x2∨x3,¬x3) stating that at least two of x1, x2∨x3,
and ¬x3 should be true, would be represented as follows:

X X X︸ ︷︷ ︸
input

MAJ &1 &11111 &111111︸ ︷︷ ︸
Majority gate

OR &11 &111︸ ︷︷ ︸
Or gate

NOT &111︸ ︷︷ ︸
Not gate

Note that the non-input gates need not be serialized in this particular order. The following is also an
equally valid serialization of the same formula:

X X X︸ ︷︷ ︸
input

OR &11 &111︸ ︷︷ ︸
Or gate

NOT &111︸ ︷︷ ︸
Not gate

MAJ &1 &1111 &11111︸ ︷︷ ︸
Majority gate

We now formalize the circuit evaluation problem, for any class of circuit families, such as the class
TCd of logd-depth circuit families:

4As before, for small n, we assume T uses a lookup table.

17

Definition 15 (C Circuit Evaluation). Let C be a class of (potentially non-uniform) circuit families.
The C circuit evaluation problem is defined as follows:

• Input: (x, ⟨C⟩) where x ∈ {0, 1}∗ is a string and ⟨C⟩ is the serialization of a circuit C such
that C = C|x| for some circuit family {Cn}∞n=0 ∈ C.

• Output: The value C(x).

For example, the case where C = P/poly yields the generic circuit value problem, which is known to
be P-complete. We focus here to the case of C = TCd, i.e., the TCd circuit evaluation problem. It
is somewhat intuitive that this problem is hard for the class A-uniform TCd as long as A is strong
enough to build circuits; we formalize this later in Lemma 11. However, the TCd circuit evaluation
problem is not necessarily in the class TCd. To see this, suppose to the contrary that there exists an
A-uniform TCd circuit family C = {Cn}∞n=0 that solves the TCd circuit evaluation problem. Then,
for large enough n, each circuit Cn ∈ C has depth upper bounded by c logd n for a fixed c > 0. This c
being fixed is problematic—if one were to try to evaluate on string x a circuit C ′

n from a TCd circuit
family that has depth c′ logd n where c′ > c (that is, invoke circuit evaluation for input (x, ⟨C ′

n⟩)),
the intuitive approach would require a circuit whose depth is larger than that of Cn.

To address this, we now formalize a constrained version of the TCd circuit evaluation problem that
is, in fact, within the class FO-uniform TCd. We achieve this via the wide-TCd circuit evaluation
problem, where the class wide-TCd is defined as follows:

Definition 16 (Wide Circuits). Let wide-TCd ⊆ TCd be the class of circuit families {Cn}∞n=0 such
that there exists some c such that, for large n, the depth of Cn is at most c logd n and, crucially, the
size is at least nc.

That is, wide-TCd enforces that the size (and hence the width) of the circuit is large relative to its
depth. In particular, for every wide-TCd circuit family C, there is a c > 0 such that the circuit Cn has
serialization of size Ω(nc), and depth at most c logd n. Thus the depth of Cn is at most logd N where
N = n + Ω(nc) is the overall size of the input (x, ⟨Cn⟩) to the corresponding circuit evaluation
problem. As we will show later, this allows the wide-TCd circuit evaluation problem to be solved
by a transformer (Corollary 13.1) as well as by an FO-uniform TCd circuit family (Lemma 14)
using precisely logd N iterations (manifested as loops of a transformer or FO-uniform TC0 block,
respectively), irrespective of the C-dependent value of c.

Since it is a class of circuit families, wide-TCd can be constrained by uniformity conditions in the
natural way. With some abuse of notation, we will use wide-TCd to refer to both the class of circuit
families and the complexity class of language classes the circuit families recognize. Interestingly,
this minimum size constraint imposed by wide-TCd does not weaken it as a language class compared
to TCd:

Proposition 4. For any d ≥ 0, non-uniform wide-TCd = non-uniform TCd.

Proof. Every wide-TCd circuit family is, by definition, also a TCd circuit family.

Conversely, suppose L ∈ TCd. Then there is a circuit family {Cn}∞n=0 recognizing L, where the
depth of Cn is at most c logd n for some c and large enough n. Consider a modified circuit family
{C ′

n}∞n=0 where, for each n, C ′
n is a copy of Cn that, if needed, is padded with dummy gates so

that it has size at least nc. This modified circuit family also recognizes L but belongs to wide-TCd,
completing the proof.

In fact, the above equality holds even for uniform variants of these classes:

Proposition 5. For any d ≥ 0 and A ⊇ FO, A-uniform wide-TCd = A-uniform TCd.

Proof. The proof follows that of Proposition 4. Every A-uniform wide-TCd circuit family is, by
definition, also a A-uniform TCd circuit family. Conversely, suppose L ∈ A-uniform wide-TCd.

18

Then, we have a a circuit family C = {Cn}∞n=0 recognizing L, where the depth of each Cn is at most
c logd n for some c and large enough n. By A uniformity, we have the connection language LC ∈ A.
We define a circuit family C′ that is C padded with dummy gates to make the number of gates at
least nc. The connection language LC′ defaults to LC for gates that exist in C and simply returns
a dummy gate for other gate indices up to nc. This additional logic can be implemented in FO, so
LC′ ∈ A ⊇ FO. Thus, the circuit family C′ recognizes L and is A-uniform.

D.1 Hardness of Wide-TCd Circuit Evaluation

Lemma 11. For d ≥ 0, TCd circuit evaluation is hard for L-uniform TCd under L-reductions.

Proof. Given any L ∈ L-uniform TCd, there exists a log-space Turing machine TL that constructs
a circuit family {Cn}∞n=0 that recognizes L. We can construct an L-reduction from L to the TCd

circuit evaluation problem as follows. Given an input x whose membership in L we would like to
check, the reduction first copies x to the output. It then uses the log-space Turing machine TL to
build the circuit C|x| and output it in the above serialized format. We thus have a log-space reduction
from x to (x, ⟨C|x|⟩). We conclude that TCd circuit evaluation is hard for L-uniform TCd under
L-reductions.

Lemma 12. For d ≥ 0, wide-TCd circuit evaluation is hard for L-uniform TCd under L-reductions.

Proof. As in the proof of Lemma 11, we are given L such that there exists a log-space Turing machine
TL that constructs {Cn}∞n=0 recognizing L, where the depth of each Cn is at most c logd n for some
c and large enough n. We can create a modified log-space Turing machine T ′

L that builds {C ′
n}∞n=0

that still recognizes L in depth c logd n but is padded, if needed, with dummy gates so that it has
size at least nc: we do this by keeping a counter for the number of gates and wires produced and
outputting dummy ones until nc is exceeded. We then follow the rest of the proof of Lemma 11 with
T ′
L instead of TL.

D.2 Solving Wide-TCd Circuit Evaluation with Transformers

Lemma 13. There is a mixed-masked looped transformer T that, on input (x, ⟨C⟩) where x ∈ {0, 1}∗
and ⟨C⟩ is the serialization of a depth ℓ circuit with |x| inputs, computes C(x) when unrolled ℓ times.

Proof. We adapt the proof of Merrill and Sabharwal (2023a, Theorem 3), which sketches how
log-depth (unlooped) transformers can implement the TC0 circuit evaluation problem. We construct
a looped transformer that will “attempt” to evaluate every gate: if its arguments have already been
computed, the gate will return {0, 1}, and, if not, it will return undefined (⊥).

Let i be a token index. We say the token wi is a gate token if it is X, AND, OR, NOT, MAJ. We will use
gate token i to store the value vi ∈ {0, 1,⊥} for the gate it represents as a one-hot encoded vector. In
the base case (embedding layer), we initialize vi = ⊥ for every gate token. Using a looped block of
2 layers, we will proceed in a way that propagates the computation of vi at later layers in terms of
previously computed values.

X Gates. In the setup layers at an X token i, we use a causally masked uniform attention head with
value 1[wj = X]. Thus, this head computes ri/i, where ri number of X gates before and including i.
We compute ϕ(ri/i, 1/i) = ϕ(ri) and store it in the residual stream.

In the looped layers, we define an attention head with query ϕ(ri), key ϕ(j), and value wj . This head
thus retrieves input token wrj . We update the gate value to vi ← wrj (viewing both as vectors in the
same space).

Other Gates. In the setup layers, each argument token i attends with causally masked uniform
attention with value 1[wj = &] to compute ai, the number of arguments to its left (including it).
Each & token attends with query ϕ(ai), key ϕ(aj), and value 1[wj = &], which returns 1/(1 + zi),
where zi is the number of 1’s following & token i. We compute and store ϕ(zi + 1) in the residual
stream. We compute gi similarly to ai, the number of gate tokens to left of token i (also inclusive).

19

In the first looped layer, each & token i attends with query ϕ(zi + 1), key ϕ(gj), and value vj . Thus,
the argument token i retrieves vzi+1, the value at gate zi + 1. In the second looped layer, gate token
i attends with query ϕ(gi), key ϕ(gj), and value vzj+1. This, it returns the vector 1

|Ai|
∑

j∈Ai
vj ,

where Ai is the set of gates that are arguments of gate i. From this vector, we can apply projections
to recover T , the fraction of j ∈ Aj with vj = 1, as well as U , the fraction of j ∈ Ai with vj = ⊥.
If U > 0, we set vi ← ⊥. Otherwise, we set vi by thresholding T against some threshold k
based on the gate type (T ≥ 1 for AND, T > 0 for OR, and T ≥ 1/2 for MAJ). In effect, this sets
vi ← G({vj}j∈Aj

), where G is the gate type.

Thus, the looped layers either keep vi as ⊥ or correctly update it to its true value. Furthermore, the
number of looping steps until vi is updated is exactly the depth of node i. Thus, a circuit C of depth ℓ
can be fully evaluated by looping the depth-2 block ℓ times.

Corollary 13.1. For d ≥ 0, wide-TCd circuit evaluation is in mAHATd
0, and hence in AHATd

1.

Proof. We are given input (x, ⟨Cn⟩), where Cn comes from some wide-TCd circuit family {Cn}∞n=0

with depth at most c logd n and size at least nc, where c is a constant specific to the circuit family. If
we unroll the transformer from Lemma 13 to depth c logd n, we can solve wide-TCd circuit evaluation
problem for large enough n (w.l.o.g. we can solve small-n examples via table lookup).

We next justify that a mixed-masked mAHATd transformer will unroll at least c logd n times for large
enough n. This transformer will unroll exactly logd N times, where N = n + |⟨Cn⟩| is the total
input length for a circuit evaluation instance. Since the size of Cn is at least nc, we have that N ≥ nc.
Thus, our mAHATd

0 transformer unrolls the following number of times:

logd N ≥ logd nc = cd logd n ≥ c logd n.

Thus, our transformer will unroll a sufficient number of times to solve the wide-TCd circuit evaluation
problem. It follows that this problem is in mAHATd

0.

Finally, we conclude via Proposition 1 that this mixed-masked transformer can be converted to a
corresponding causally masked padded transformer, placing the problem also in AHATd

1.

D.3 Solving Wide-TCd Circuit Evaluation with FO-Uniform Circuits

It is immediate that the looped transformer in Corollary 13.1 can be simulated in L-uniform TCd.
Moreover, since Lemma 6 shows looped padded transformers can be simulated by FO-uniform
polylog-depth threshold circuit families, we obtain:

Lemma 14. For d ≥ 0, wide-TCd circuit evaluation is in FO-uniform TCd.

Combined with Lemma 12, this implies the following completeness results for wide-TCd circuit
evaluation:
Corollary 14.1. For d ≥ 0, wide-TCd circuit evaluation is complete for L-uniform TCd under L
reductions.
Corollary 14.2. For d ≥ 0, wide-TCd circuit evaluation is complete for FO-uniform TCd under L
reductions.

E Uniformity Collapse for Circuit Classes

In general, for classes A,B such that A ⊆ B, B-uniformity often leads to larger classes of languages
than A-uniformity, as we have more resources to construct a circuit. However, as the following
lemma shows, this is not always the case:
Proposition 6 (Uniformity Collapse). Consider classes A,B of functions and a class XC of polyno-
mial size circuit families such that:

1. A ⊆ B ⊆ A-uniform XC;

2. XC circuit evaluation is in A-uniform XC;

20

3. A-uniform XC circuit families are closed under fixed compositions (cf. Appendix B.1).

Then B-uniformity does not strengthen A-uniformity, i.e., A-uniform XC = B-uniform XC.

Proof. Since A ⊆ B, we trivially have A-uniform XC ⊆ B-uniform XC. The rest of the proof will
focus on the other direction, showing that any language L ∈ B-uniform XC is also in A-uniform XC.

By the definition of B-uniform XC, there exists a function f ∈ B that constructs an XC circuit
family {Cf

n}n≥0 that recognizes L. Specifically, f(1n) = Cf
n where Cf

n is an XC circuit that checks
membership in L over all strings w of size n: for w ∈ {0, 1}n, Cf

n(w) = 1 iff w ∈ L. The key
insight is the following: while {Cf

n}n≥0 is not necessarily an A-uniform XC circuit family, we can
build Cf

n on demand using a different, A-uniform XC circuit family {Cg
n}n≥0, by leveraging the first

precondition of the lemma, specifically that B ⊆ A-uniform XC. We will then leverage the second
precondition to construct another A-uniform XC circuit family {Ch

n,m}n,m≥0 that evaluates the built
circuit Cf

n on the input string w. We will then use the third precondition to compose these two circuit
families in order to obtain the final A-uniform XC circuit family {CL

n }n≥0 that recognizes L.

Building Cf
n: Since f ∈ B, by the first precondition of the lemma, f is also in A-uniform XC. We

can thus simulate f using an A-uniform XC circuit family. More concretely, there exists a function
g ∈ A that, for any n ≥ 0, maps input 1n to an XC circuit Cg

n that does what f does, i.e., Cg
n on input

1n constructs the circuit Cf
n . Thus, we have g(1n) = Cg

n and Cg
n(1

n) = Cf
n .

Evaluating Cf
n on w: By the second precondition of the proposition, there exists a function h ∈ A

that, for any n,m ≥ 0, maps input (1n, 1m) to an XC circuit Ch
n,m that evaluates any XC circuit Cn

of size m over any input string w of size n, i.e., h(1n, 1m) = Ch
n,m and Ch

n,m(Cn, w) = Cn(w) for
|w| = n.

Composing builder and evaluator circuits: Now we are ready to construct an A-uniform XC
circuit family {CL

n }n≥0 that recognizes L. This circuit family, on input w of length n, computes
the following composition of the circuit builder family {Cg

n}n≥0 and the circuit evaluator family
{Ch

n,m}n,m≥0:
CL

n (w) = Ch
n,m(Cg

n(1
n), w) (1)

where n = |w| and m = |Cf
n |. We first observe that this composite circuit does, in fact, recognize L.

That’s because for any input string w of length n:

CL
n (w) = Ch

n,m(Cg
n(1

n), w)

= Ch
n,m(Cf

n , w)

= Cf
n(w)

which, by definition, is 1 if and only if w ∈ L. Thus, CL recognizes L.

Lastly, by the third assumption of this proposition, the circuit family {CL
n }n≥0, being a fixed

composition of A-uniform circuit families {Ch
n,m}n,m≥0, {Cg

n}n≥0, and the identify function (for
constructing the second argument w of Ch

n,m), is also A-uniform.

Proposition 6 may appear surprising on the surface level, but it has a quite intuitive interpretation:
weaker uniformity provably cannot increase a circuit class that is sufficiently expressive. This has an
interesting implication for polylog-depth circuit classes: FO and L-uniform TCd collapse for d ≥ 1:

Theorem 3 (Uniformity Collapse). For any d ≥ 1, the following equivalences hold:

FO-uniform ACd = L-uniform ACd = NL-uniform ACd

FO-uniform TCd = L-uniform TCd = NL-uniform TCd.

Proof. We state the proof for TCd, but everything generalizes for ACd as well. By construction, the
following containments hold:

FO-uniform TCd ⊆ L-uniform TCd ⊆ NL-uniform TCd.

21

We will show that NL-uniform TCd ⊆ FO-uniform TCd using Proposition 6, with A = FO, B =
NL, and XC = wide-TCd.5 With A = FO, the third precondition of Proposition 6 follows from
Proposition 3. We next argue that its first two preconditions are also met:

1. Since d ≥ 1 and NL is known to be in FO-uniform AC1, which is contained in
FO-uniform TC1, we have NL ⊆ FO-uniform TCd = FO-uniform wide-TCd, where the
final equality comes from Proposition 5. Thus, the first precondition is satisfied.

2. From Lemma 14, we also have that wide-TCd evaluation is in FO-uniform TCd, which by
Proposition 5 equals FO-uniform wide-TCd. Thus, the second precondition is also satisfied.

We conclude by Proposition 6 that

NL-uniform TCd ⊆ FO-uniform wide-TCd = FO-uniform TCd.

Thus, for d ≥ 1, FO-uniform, L-uniform, and NL-uniform TCd collapse to the same class of
languages.

Notably, the proof of Theorem 3 does not go through in the case of TC0 since it is not known (and
not believed) that L and NL are in TC0.

5This can be proven analogously for ACd and wide-ACd.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main two results proved in Theorem 1 and Theorem 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Lack of empirical support is acknowledged and simplifications made to
transformer architecture acknowledged in Section 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

23

Justification: All theorems are numbered, cross-referenced, and given full proofs. Relevant
definitions are given in Section 2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: No experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No exceptional circumstances.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is foundational, focusing on general theoretical understanding of
the computational power of transformers.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No artifacts used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No artifacts released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Preliminaries
	Averaging-Hard-Attention Transformers
	Padded and Looped AHATs
	Circuit Complexity
	Logic

	Masked and Unmasked Transformers
	Fixed-Depth Padded Transformers Recognize Exactly FO-Uniform TC0
	Looped Padded Transformers Recognize Exactly FO-Uniform TCd
	Uniformity Collapse for Circuit Classes
	Conclusion
	Datatype Assumptions
	Uniformity of Circuit Classes
	Uniformity Composition Closures

	Omitted Proofs
	Wide-TCd Circuit Evaluation Problem
	Hardness of TCd Circuit Evaluation
	Solving Wide-TCd Circuit Evaluation with Transformers
	Solving Wide-TCd Circuit Evaluation with FO-Uniform Circuits

	Uniformity Collapse for Circuit Classes

