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ABSTRACT

Domain Generalizable ReID task has garnered much attention in recent years,
as a more challenging task but more closely aligned with practical applications.
Mixture-of-experts (MoE) based methods has been studied for DG ReID to exploit
the discrepancies and inherent correlations between diverse domains. However,
most of DG ReID methods, including MoE-based methods, have to full fine-tune
the large amount of parameters of backbones, classifier heads and experts. And in
the set of DG ReID, the number of person IDs is particularly large which results
in that parameters of classifier heads increases sharply. And make it difficult for
MoE-based method to scale up to larger vision models. For this motivation, we
propose a novel MoE-based DG ReID method, named mixture of domain adapters
(MoDA), to mitigate the issues mentioned above. We apply Adapter-tuning and
CLIP to DG ReID in a parameter-efficient way. Extensive experiments verify that
MoDA achieves competitive end even better results with state-of-the-art methods
with much fewer tunable parameters.

1 INTRODUCTION

Person re-identification (ReID) has emerged as a pivotal research area in computer vision. De-
spite the existence of numerous studies in this task, it is still attracting significant attention and
garnering considerable importance. There have been many works that can get great performance
on ReID benchmarks in a conventional scenario. Based on the differences of backbone networks,
these methods can be roughly classified into two categories: CNN-based and ViT-based. However,
when these methods are confronted with a completely unseen domain, the performance drops sig-
nificantly. This phenomenon is commonly attributed to domain shift and domain conflict. To tackle
this problem, some domain adaptation (DA) and domain generalization (DG) ReID methods are
proposed. DA methods usually can access a part of target domain data. And then they try to adapt
the model already trained with source domain data to the target domain. When it comes to domain
generalization, the task becomes even more difficult. The model can only use images from source
domains to optimize and is not allowed to access any target domain image during the training time.
By means of such a task definition, to enhance model’s generalization ability and robustness when
facing out-of-distribution data.

Given these reasons above, the DG ReID task has garnered much attention in recent years, as a more
challenging task but more closely aligned with practical applications. Convential ReID methods
usually train and test on the same domain. However, in the context of DG ReID, the training and
testing of models are performed on diverse domains, which are respectively referred to as the source
domain and target domain. Many prior DG ReID methods Song et al. (2019) Zhao et al. (2020) only
utilize one individual model and train the model on a hybrid dataset consists of all samples from
different source domains. And the model is directly used to test on unseen target domains. These
methods achieve good performance by extracting domain-invariant features. However, they disre-
gard the discrepancies and inherent correlations between diverse domains, which may provide more
discriminative and complementary information to help generalize better. For this reason, mixture-
of-experts (MoE) based methods has been studied for DG ReID. A common practice of MoE-based
methods is to train domain-specific expert network on each source domain. Then they integrate mul-
tiple experts by calculating the relevance of the test sample and source domains to get one aggregated
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Figure 1: Difference between prior MoE-based DG ReID methods and our more parameter-efficient
method. Left shows that prior MoE-based DG method need to optimize the whole model including
the backbone and experts, parameters of which usually increase linearly with the increasing of the
number of person IDs. And right shows that in our method, only adapters need to be optimized and
the number of the parameters is not related with the person IDs.

feature. The existing MoE-based DG ReID methods get better performance but have the following
issue: the number of model’s parameters scales linearly with the number of source domains due to
the increase of the number of experts as shown in Figure 1. This makes it difficult for MoE-based
methods to scale up to larger vision models such as Vision Transformer (ViT). Although there are
some methods try to minimize the number of expert parameters, there are still a large amount of
trainable parameters need to be updated. This is because the backbone and classifier heads con-
tribute the most parameters in actual. Especially under the DG ReID setting where the number of
person IDs is particularly large, the number of parameters of linear classifier heads significantly lin-
early increases. While, these MoE-based methods always need many classifier heads, at least one
for each source domain, to optimize the model.

For this motivation, we propose our method, named mixture of domain adapters (MoDA), to mitigate
the issues mentioned above. Adapter Houlsby et al. (2019) and the most popular vision-language
pretrained model CLIP Radford et al. (2021) are applied in our method. Adapter is a bottleneck
module used for parameter-efficient fine-tuning (PEFT) and will be used as domain-specific experts
in MoDA. CLIP is a powerful pretrained model which aligns texts and images in one feature space.
Moreover, the contrastive losses that CLIP uses can provide similar discriminitive guidance of op-
timization to cross-entropy loss, which means it can substitute the ID loss of ReID to reduce the
classifier heads’ parameters partly. Some works Vidit et al. (2023) with the image encoder of CLIP
have already shown good performance in other computer vision DG tasks. As Figure2 shows, differ-
ent from CNN-based methods, the adapters are inserted in each block. Thus, the backbone+expert
heads structure of prior MoE methods is not compatible for MoDA. Due to this reason, we propose
a blcok-aware voting network to make MoE can be used for this kind of model which consists of
blocks. It enables the model integrate expert adapters in a more fine-grained way by generating
aggregation weight for each block, shown in Figure 2(d).

In summary, we make the following contributions in our work:

• To the best of our knowledge, our work is the first one to exploit CLIP to DG Person ReID
and also the first one to attempt PEFT methods ,such as adapter, for DG Person ReID.

• We propose a novel DG ReID framework, called Mixture of Domain Adapters (MoDA),
which achieves parameter efficiency while scaling up MoE-based DG Person ReID meth-
ods to a larger vision model. And benefiting from the block-aware design, MoDA can also
help model to mix experts in a more fine-grained way.

• Extensive experiments demonstrate that MoDA has achieved competitive and even better
performances with existing methods in a more parameter-efficient way.

2 RELATED WORKS

Domain Generalizable Person Re-Identification. Most of existing ReID methods suffer from
significant performance degradation when they encounter the problem of domain generalization
(DG). This indicates that the model needs to possess a high generalization ability since it cannot
access any data of target domains. To tackle the domain conflict problem we mentioned above,
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many DG ReID moethods are proposed. DG ReID methods are required to be trained on accessible
source domains and then tested on unseen target domains. The most prior approaches Zhao et al.
(2020) Song et al. (2019) Choi et al. (2020) Jin et al. (2020) are to combine all the source domains
together as a hybrid dataset, then they train the model with the hybrid dataset and directly test
on the target domain. These methods aim to learn a common feature space which works for all
diverse domains. They commonly employ: 1) Disentanglement learning Zhang et al. (2021). 2)
Meta-learning Zhao et al. (2020), which is utilized to simulate the domain generalization scenario
where no target domain data is accessible during test period. They learn domain-invariant features
but tend to overlook domain-specific features and the correlations among them. 3) Normalization-
based methods Jin et al. (2020) Choi et al. (2020), which is to investigate the statistical distribution
discrepancies across different domains, for instance, by minimizing the domain gap through domain
alignment. However, these methods may ignore the discriminative characteristics of each domain
and the interrelations between them.

To address this issue above, the mixture of experts(MoE) paradigm has been introduced to DG Per-
son ReID Dai et al. (2021). The proposed method RaMoE intergrates every domain specific expert’s
feature as one single aggregated feature according to the target domain’s inherent relevance w.r.t.
source domains. Building upon RaMoE, META Xu et al. (2021) integrates normalization-based
techniques by leveraging Instance Normalization (IN) and Batch Normalization (BN) to address the
linear scaling issue of MoE with increasing source domains. It also incorporates a global branch
to combine domain-specific and domain-invariant representations. ACL Zhang et al. (2022) also
integrates the design fashion of MoE into their method. However, the existing methods need to full
fine-tune the whole models with a large amount of parameters including the backbones and experts.
Our method aims to mitigate this issue.

Vision-Language Pre-trained Model. Recently, more and more studies on vision-language pre-
training(VLP) has shown that VLP can significantly improve the performance of many vision tasks
by aligning image features and text features in one common feature space with large-scale multi-
modal data. CLIP Radford et al. (2021) and ALIGN Jia et al. (2021) are good practices, which
utilize both a image encoder and a text encoder. And they use contrastive loss InfoNCE to train
on datasets consists of image-text pairs. Many researchers have started applying CLIP to various
downstream tasks. However, the labels of ReID tasks are indexes, and there are no specific words
to describe the images. Thus, it is hard to adopt the VLP models in ReID in a common way. And
CLIP-ReID Li et al. (2022), which is inspired by prompt-tuning method CoOp Zhou et al. (2021),
is the first study to apply CLIP for ReID tasks.

Parameter Efficient Fine-tuning. Conventional approaches usually fine-tune all the parameters
(full fine-tuning) of pre-trained models. Due to the significantly increasing overhead of full fine-
tuning VLP models, more and more parameter-efficient fine-tuning (PEFT) methods are proposed.
These methods only fine-tune a small number of parameters and freeze most of them. They aim
to reduce model computation and the number of tunable parameters as much as possible without
sacrificing too much performance or even outperform full fine-tuning. Many methods have been
widely applied in NLP tasks for large language models. Prefix-tuningLi & Liang (2021) and prompt-
tuningLester et al. (2021) utilize soft prompts by appending trainable prefix tokens to the first layer
or every layer, and only fine-tunes these additional tokens during training. LoRAHu et al. (2021)
tries to learn low-rank matrices to approximate parameter updates. Houlsby et al. (2019) inserts
small bottleneck modules named adapters to each layer of the pretrained model and only fine-tune
the adapters during training. Recently, parameter-efficient methods are also studied for computer
vision tasks. Jia et al. (2022) proposes visual prompt tuning for large-scale Transformer models in
vision in a similar to prompt tuning. Lin et al. (2022) adapts a pretrained CLIP image encoder for
action recognition tasks with low computation. And Yang et al. (2023) uses adapters to adapt more
image models to video tasks without full fine-tuning.

Notably, although there are already some researchers that also have studied how to apply MoE
on models with adapters, such as AdaMix Wang et al. (2022) and MixDA Diao et al. (2023), but
they use a stochastically routing way or simply generate weights with MLP to choose and integrate
adapters. While we use a block-aware voting network by calculating the relevance. AdaMix is used
for common NLP tasks and MixDA tries to inject domain knowledge into language models rather
than studying on domain generalization. However, our work is specifically for DG vision task.
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Figure 2: We show the architecture of the Adapter, ViT block with Adapter and our method MoDA
block. The standard achitectures of Adapter and ViT block are shown within (a) and (b), respec-
tively. And in our proposed MoDA block, we set Adapters after the multi-head attention layer to
implement an MoE architecture as (c) shows. An additional block-aware voting network is set to
mix the Adapters. Only the parameters of adapters and the voting network need to be updated during
training.

3 METHOD

3.1 OVERVIEW AND PRELIMINARY

In our work, we adopt a similar two-stages training approach as CLIP-ReID Li et al. (2022) as shown
in Figure 3. In the first training stage, to fully exploit the cross-modal description ability in CLIP,
we utilize both text encoder T and image encoder I of CLIP. Similar to CLIP-ReID, we assign
ID-specific tokens to each person. Specifically, the text descriptions fed into T are designed as “A
photo of a [X]1[X]2[X]3...[X]M person”, where each [X]m is a learnable text token with the same
dimension as word embedding. By optimization of two contrastive losses inspired by CLIP (image-
to-text loss Li2t and modified text-to-image lossLt2i), the trained ID-specific tokens can provide
discriminative information of each ID. And these tokens will be treated as domain prototypes for the
second stage to compute the relevance w.r.t different source domains. Notably, only tokens [X]m
are optimized while the encoders are frozen. The loss Li2t is formulated as, specifically, i denotes
the index of the images within a batch with a batch-size B:

Li2t = −log
exp(⟨Vi, Ti⟩)∑B

a=1 exp(⟨Vi, Ta⟩)
(1)

where Vi and Ti are image feature and text feature produced by I and T , respectively. And ⟨Vi, Ti⟩
represents for inner product to compute similarities. For Lt2i, different images in a batch probably
belong to the same person, so one ID-specific token may have more than one positive image samples.
Therefore, text-to-image loss is modified to:

Lt2i(yi) =
−1

|P (yi)|
∑

p∈P (yi)

log
exp⟨Vp, Tyi⟩∑B

a=1 exp(⟨Va, Tyi
⟩)

(2)

where P (yi) is the set of indices of all positives for Tyi
in the batch.

In the second stage, we propose an MoE model with expert adapters and global adapters, which is to
extract domain-specific features and domain-invariant features, respectively. During training period,
we can only access the datasets from source domains to train the DG model. And the optimized DG
model will be test on unseen target domain directly. We assume there are K source domains, denoted
as D = {Dk}Kk=1. And for the k-th domain, there are Mk Identities and Nk images. Different from
CLIP-ReID, we adopt adapter Houlsby et al. (2019) due to its simplicity and parameter-efficiency
rather than full fine-tuning the ViT. And this also concurrently alleviates the optimization challenge
posed by ViT’s abundant parameters as well as the scalability limitation of MoE-based approaches
on larger models. In addition, adapters also help prevent catastrophic forgetting from insufficient
full fine-tuning which can destroy the generalization of foundation models like CLIP. As Figure
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Figure 3: The framework of Mixture of Domain Adapters(MoDA). For each batch, we randomly
pick one domain to simulate the unseen target domain. And the batch data will be send to 3 branches
to compute responding losses, respectively. As shown in the figure, we choose Domain 1 as the
mimic target domain. The expter branch and global branch is used to optimize the expert adapter and
the global adapter. And the branch(c) is used for the voting network. And in the whole procedure,
only the parameters of the expert adapter, the global adapter and the voting network are tunable.
While all other parameters are frozen.

2(a) shows, adapter is a simple bottleneck module with two FC layers and GELU. The subsequent
sections extensively delineates the second stage.

3.2 DOMAIN-SPECIFIC ADAPTERS

As well as the prior MoE-based methods for generalizable ReID, our method assigns an individual
adapter as the domain expert of each source domain, denoted as Ak standing for the domain-specific
adapter of the k-th domain. We aim for each expert to capture characteristics features of its cor-
responding source domain, which are unique but can provide complementary information different
from other domains. Inspired by META Xu et al. (2021), we similarly utilize a global adapter as the
global branch to extract domain-invariant features.

In every ViT block, we set K adapters after the multi-head attention layer as Figure 3 shows.

Expert Adapter. For a k-th domain’s image from the n-th ID, we denote it as xk
n. As Figure 3(a)

shows, for each xk
n, we let it go through ViT blocks with only the corresponding domain adapter Ak

to obtain domain-specific feature F k
x . The computation of each expert block can be written as:

fk′

l = fl−1 +Ak(MA(LN1(fl−1))) (3a)

fk
l = fk′

l +MLP (LN2(f
k′

l )) (3b)
where fl−1 and fl denote the input and output of the l-th ViT block. And only the [CLS] token,
rather than all tokens, of the output of the last layer is treated as the feature F k

x .

Similar to CLIP-ReID, we use the ID-specific text features obtained in the first training stage to
calculate the image-to-text cross-entropy Li2tce with label smoothing:

Li2tce(i) =

Mk∑
k=1

−qklog
exp(⟨Vi, Tk⟩)∑Mk

a=1 exp(⟨Vi, Ta⟩)
(4)

where T are just the ID-specific tokens in the corresponding k-th domain of the current image. No-
tably, we find that with adapters, the usage of ID loss Lid has little influence on model performance.
We speculate the reason might be that the image-to-text loss Li2t and ID loss Lid proposed by CLIP
are inherently both cross-entropy losses, thus can provide approximate constraints and optimization
capabilities. However, the additional classifier head leads to substantially more tunable parameters
under the DG ReID experiments’ configuration. Therefore, to additionally enhance the parameter-
efficiency of our model, we discard the ID loss which is widely used in ReID tasks.

Triplet loss is still employed for expert adapter in our methodology:

Ltriplet = max(dp − dn + α, 0) (5)
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And, the loss for expert adapter is formulated as:

Lexpert = Le
i2tce + Le

triplet (6)

where the superscript e which stands for expert is to distinguish from the losses for global adapter
that will be mentioned below.

Global Adapter. Except for the domain-specific experts, we also maintain an individual global
adapter to learn a common feature space to extract domain-invariant representations. The extracted
features are invariant to source domain shifts and more robust compared to any individual domain
adapter. As Figure3 (b) shows, for each sample x from any domain, we pass it through the global
adapter to obtain global feature F g

x . The computation of each global adapter block is actually the
same as the expert adapter block’s. But we will combine all text features from different domains
together to perform Li2tce. And, the loss for global adapter is formulated as:

Lglobal = Lg
i2tce + Lg

triplet (7)

Notably, during the training process, the parameters of the ViT backbone are frozen and shared
across different adapters, only the adapters’ parameters need to be updated.

3.3 MIXTURE OF DOMAIN ADAPTERS

Now, we have both domain-specific and domain-invariant features, but the target domain is inacces-
sible during DG ReID training. To improve generalization on unseen domains, we propose a novel
MoE-based approach specially for ViT with adapters to integrate domain-specific features and get
aggregated representations which are more robust.

In most existing MoE-based methods, they learn diverse experts for different source domains and
then calculate the relevance between the test image which is from unseen target domains and source
domains. Subsequently, as guided by the relevance, multiple source domain features are mixed to
create a new aggregated feature. In prior CNN-based approaches, the standard voting network needs
to generate query features from backbone feature maps and calculate relevance with prototypes of
different source domains. The domain’s class centers are usually used as its prototypes. However,
this is not compatible for ViT-based models that are composed of blocks. Different from CNN’s
backbone + expert heads structure, in ViT-based methods, to obtain the final features from k experts,
we have to forward the whole ViT model k times. This will sharply increase the computation for
each sample. To mitigate this issue, we propose Mixture of Domain Adapter (MoDA) and a block-
aware voting network to enable the model to mix features from multiple domain-specific experts
at the block level. The kind of block-wise approach, compared to the sample-wise approach, also
makes the model conduct a more fine-grained feature mixing in each block rather than using one
single weight for all blocks.

As mentioned before, in the first stage, we completely follow CLIP-ReID to generate ID-specific
tokens for each identity. These tokens will be treated as domain-specific prototypes P = {Pk}Kk=1
to describe the characteristics of different source domains.

In the second stage, we adpot episode learning algorithm following Xu et al. (2021) to simulate the
testing scenario where target domains are unseen. For a sample from the k-th domain, we denote
it as xk. We assume xk is the current training sample input to the model. We firstly let it pass
to blocks with the k-th domain-specific adapters Ak, then compute the expert loss Lexpert. And
in this iteration, the k-th domain will be seemed as the unseen target domain, and the remaining
K−1 domains {Di}Ki=1,i̸=k will be seemed as source domains {Ds

i }
K−1
i=1 . Then, xk is passed to the

MoDA blocks only with the remaining K − 1 expert adapters {Ai}Ki=1,i̸=k, as shwon in Figure3(c).

For the l-th MoDA block, we denote the input and output as zl−1 and zl. In each MoDA block, xk

will be fed into LayerNorm and Multi-head attention(MA) first. And we pass the output of MA z′l
to all K − 1 expert adapters concurrently. Then we can get can K − 1 diverse intermediate features
{hi

l}Ki=1,i̸=k with characteristics from different source domains. The [CLS] token of z′l will be used
for the block-aware voting network to generate a block-aware query feature ql. The block-aware
voting network is simply implemented with a MLP architecture and its parameters are shared across
all the MoDA blocks.
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Next, we use the block query feature ql and domain prototypes {Pi}Ki=1,i̸=k to calculate the relevance
w.r.t each source domain. We use inner product (⟨·, ·⟩) to compute similarities here for its simplicity:

ril =
1

Mi

Mi∑
m=1

⟨ql, pm⟩ (8)

where Mi is the number of identities in i-th source domain Ds
i , and pm is the m-th ID-specific

prototypes in Ds
i . According to these K−1 relevance scores, we aggregate the intermediate features

{hi}Ki=1,i̸=k into one single feature. This process can be formulated as:

hagg
l =

K−1∑
i ̸=k

softmax(ril) · hi
l (9)

where softmax(·) is used to normalize the relevance.

And the following computation is exactly the same as the common ViT block with adapters:

z′l = zl−1 + hagg
l (10a)

zl = z′l +MLP (LN2(z
′
l)) (10b)

In addition, we find that treating the global adapter as another domain specific adapter and incorpo-
rating it into the mixture can bring better performance. And the weight of intermediate feature of
global adapter hglobal

l is fixed to 0.5, rather than being generated by the voting network.

Finally, we take the [CLS] token of the last block as the aggregated feature F agg
x of current sample

x.

To optimize the block-aware voting network and MoDA blocks, the following loss functions are
adopted:

(1)Image-to-text cross-entropy loss Li2tce. This part is the same as the optimization of expert
adapters. We desire the aggregated feature F agg

x to retain inherent discriminative capability.

(2)In addition, we expect the aggregated features to be as similar as possible to those derived by
domain expert and stay in close proximity in the feature space. Thus, we set two more loss functions
to impose enhanced constraints: one is a consistency loss Lconsis, inspired by Xu et al. (2021), and
the other one is a L2 loss Lmse which is naive but effective. They can be formulated as:

Lconsis = [α1 + Γ+
agg − Γ+

expert]+ + [α2 + Γ−
agg − Γ−

expert]+ (11)

where α1 and α2 are margins, Γ+
agg and Γ+

expert are hardest positive distances of F agg and F expert

respectively, Γ−
agg and Γ−

expert are hardest negative distances of F agg and F expert respectively, [z]+
equals to max(z, 0) Xu et al. (2021). And the L2 loss is formulated as:

Lmse =
1

2
∥F expert − F agg∥22 (12)

The total loss can be eventually formulated as:

Lagg = Lagg
i2tce + Lconsis + λLmse (13)

L = Lexpert + Lglobal + Lagg (14)

Algorithm 1 in Appendix delineates the overall training procedure. During test time, all K domain
adapters will be used for voting network to produce the aggregated feature. Notably, we find that
different approaches to mix the domain-specific feature and domain-invariant feature lead to varying
performance, which will be discuss about in the ablation study.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION SETTINGS

Datasets. We conduct experiments on several person re-identification benchmarks following exist-
ing works Xu et al. (2021) Zhang et al. (2022): Market1501 Zheng et al. (2015), MSMT17 Wei et al.
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Target # Tunable
Params(M)Method Reference Source PRID GRID VIPeR iLIDs Average

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1
DIMN CVPR19 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5 60*
SNR CVPR20 M+D+C2 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.4 57.3 60*

RaMoE CVPR21 +C3+CS 67.3 57.7 54.2 46.8 64.6 56.6 90.2 85.0 69.1 61.5 63*
DMG-Net CVPR21 68.4 60.6 56.6 51.0 60.4 53.9 83.9 79.3 67.3 61.2 60*
QAConv50 ECCV20 62.2 52.3 57.4 48.6 66.3 57.0 81.9 75.0 67.0 58.2 60

M3L CVPR21 64.3 53.1 55.0 44.4 66.2 57.5 81.5 74.0 66.8 57.3 57
MetaBIN CVPR21 M+C2 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5 57

ACL ECCV22 +C3+CS 73.4 63.0 65.7 55.2 75.1 66.4 86.5 81.8 75.2 66.6 57*
META ECCV22 71.7 61.9 60.1 52.4 68.4 61.5 83.5 79.2 70.9 63.8 165
Ours 71.2 61.6 52.3 49.9 73.4 65.4 87.0 82.7 71.3 64.9 19.1

Table 1: Comparison with state-of-the-art methods under protocol-1. All the images in the source
domains are used for training. ”*” indicates that the number of tunable parameters is estimated
based on the classification head parameters under the current protocol, otherwise comes from the
actual results of running code.

M+MS+CS M+CS+C3 MS+CS+C3 # Tunable
Params(M)Setting Method Reference → C3 →MS →M Average

mAP R1 mAP R1 mAP R1 mAP R1
SNR CVPR20 8.9 8.9 6.8 19.9 34.6 62.7 16.8 30.5 50

QAConv50 ECCV20 25.4 24.8 16.4 45.3 63.1 83.7 35.0 51.3 60
M3L CVPR21 34.2 34.4 16.7 37.5 61.5 82.3 37.5 51.4 57

Protocol-2 MetaBIN CVPR21 28.8 28.1 17.8 40.2 57.9 80.1 34.8 49.5 57
ACL ECCV22 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0 57

META ECCV22 36.3 35.1 22.5 49.9 67.5 86.1 42.1 57.0 164
Ours 35.0 34.1 20.5 50.0 58.1 81.0 37.9 55.0 15.5

Table 2: Comparison with state-of-the-art methods under Protocol-2.

(2017), CUHK02 Li & Wang (2013), CUHK03 Li et al. (2014), CUHK-SYSU Xiao et al. (2016),
PRID Hirzer et al. (2011), GRID Loy et al. (2009), VIPeR Gray & Tao (2008), and iLIDs Zheng
et al. (2009). For simplicity, we denote Market1501, MSMT17, CUHK02, CUHK03, CUHK-SYSU
as M, MS, C2, C3, and CS in the following. For CUHK03, we use the ‘labeled’ data and do not use
the DukeMTMC Zheng et al. (2017) due to its privacy issues following Xu et al. (2021) Zhang et al.
(2022).

Evaluation Settings. The mean Average Precision (mAP) and Cumulative Matching Characteristics
(CMC) are used for evaluation. There are three testing protocols following the prior works Xu et al.
(2021) Zhang et al. (2022) Dai et al. (2021) to evaluate the performance extensively.

For protocol-1, model is trained with both the train and test images in M+C2+C3+CS Datasets
and then tested on four small datasets: PRID, GRID, VIPeR and iLIDs, respectively. Following
Zhang et al. (2022) , the results are evaluated on 10 repeated random splits of query and gallery
sets. The average of results will be reported. For protocol-2 and protocol-3 we choose one domain
from M+MS+CS+C3 for testing and the remaining three domains for training. Protocal-2 only uses
the training data of source domains, while protocal-3 uses both training and testing data of source
domains for training.

4.2 IMPLEMENTATION DETAILS

We adopt the image encoder and text encoder of pretrained CLIP model as our backbone. For
the image encoder, we use ViT-B/16, which contains 12 transformer layers with the hidden size of
768 dimensions. The parameters of both the image encoder and the text encoder are frozen. The
block voting network is implemented with a FC1-GELU-LN-FC2 architecture, where FC1 layer
expanding the dimensions of [CLS] token four times and the FC2 layer projects it back to the original
dimension. We resize the person image size to 256 × 128. For data augmentation, we perform
random cropping, random flipping, color jittering, and auto augmentation He et al. (2020) in the
second stage. Similar to prior works Dai et al. (2021) Xu et al. (2021), we also discard random
erasing (REA) which may effect the DG performance. We conduct all the experiments with PyTorch
and the help of codebases: TransReID He et al. (2021) and FastReID He et al. (2020). All the models
are trained on RTX 3080 GPU. And more details of two training stage can be found in Appendix.
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Method
M+MS+CS

→ C3
mAP Rank-1

Mixture of Expert Adapters

w/o Global Adapter 28.6 28.6
w/o Expert Adapters 29.2 28.9
w/o Voting Network 28.9 29.0
MoDA 29.6 29.8

Mixture of Experts and Global

w/o Global Adapter 31.8 31.9
w/o Expert Adapters 31.9 31.9
w/o Voting Network 30.7 32.1
MoDA 33.6 34.1

Table 3: The ablation study of effectiveness of adapters, different mixture methods and voting net-
work on one of the protocol-2 experiments.

4.3 COMPARISONS TO THE STATE-OF-THE-ARTS

Comparison under Protocol-1. We compare our method with previous DG-ReID methods under
Protocol-1, which are tested on four small datasets (PRID, GRID, VIPeR, and iLIDs). As shown
in Table 1, our method could achieve competitive even better results with the SOTA methods in a
more parameter-efficient way by fine-tuning much fewer parameters. And on average our method
outperforms most SOTA methods.

Comparison under Protocol-2 and Protocol-3. We also compare our method with other methods
under protocol-2 and protocol-3, as shown in Table 2 The table of results under protocol-3 can be
found in the Appendix.

4.4 ABLATION STUDY

The effectiveness of adapters and different mixture methods. As shown in Table5, we find
that fusing the intermediate features from the global adapter and mixture of expert adapters within
each block, which produces representations containing both domain-specific and domain-invariant
characteristics, can lead to considerable performance gains compared to directly concatenating the
features from both in the last layer. We also show the effectiveness of the adapters in Table 5.

The effectiveness of block voting network. We also show the effectiveness of block-aware voting
network in the Table 3. We take the summation average when w/o voting network. Here, the weight
of each expert adapter is set to 1/3.

The number of voting blocks. Considering that the first few layers of ViT may not have extracted
semantically rich features yet, we conduct ablation studies to test which layer to start voting from
works best. The results show that benefiting from the block-aware design, MoDA can also help
model to mix experts in a more fine-grained way by generating block-aware weight of aggregation.
The results can be found in Appendix.

The effectiveness of loss functions. We also do the ablation study about the effectiveness of loss
functions. The results can be found in Appendix.

5 CONCLUSION

In this work, we propose a novel MoE-based DG ReID method, named mixture of domain adapters
(MoDA). We apply Adapter-tuning and CLIP to DG ReID in a parameter-efficient way. It also
alleviates the linear increase of parameters with more person IDs in DG ReID models, especially
MoE-based ones, by exploiting CLIP’s contrastive loss with Adapters. Extensive experiments verify
that MoDA achieves competitive end even better results with state-of-the-art methods with much
fewer tunable parameters.
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A APPENDIX

A.1 TRAINING PROCEDURE OF MODA

For the first training stage, we use the Adam optimizer with a learning rate initialized at 3.5× 10−4

and decayed by a cosine schedule. We train the learnable ID-specific tokens for 60 epochs and adopt
the warmup strategy in the first 5 epochs. Notably, we use no augmentation in this stage. And the
number of tokens [X]m is set to 4 following CLIP-ReID.

For the second training stage, the batch size is set to 64, including 16 identities and 4 images per
identity. We use the Adam optimizer with a learning rate initialized at 3× 10−4. We train the model
for 60 epochs and adopt warmip strategy in the first epochs. And the learning rate is decayed by 0.1
at the 30th and 50th epochs. Only the adapters are optimized in this stage. The weight λ of Lmse in
Lagg is set to 0.1. The margins α1, α2 in Lconsis are both set to 0.1.

The following algorithm shows the whole training procedure of our method.

Algorithm 1 Training Procedure of MoDA
Require: Training samples from source domains.
Ensure: A set of ID-specific tokens; Trained domain-specific adapters, global adapter and block-

aware voting network.
1: The first stage:
2: for epoch = 1 to max epoch stage1 do
3: Optimize tokens [X]m for each ID by Lstage1.
4: end for
5: The second stage:
6: Froze all parameters except for adapters and block-aware voting network.
7: for epoch = 1 to max epoch stage2 do
8: for iter = 1 to max iter do
9: Sample the k-th domain Dk to simulate unseen target domain.

10: Domain-specific Adapter:
11: Optimize domain-specific adapter Ak by Lexpert

12: Global Adapter:
13: Optimize global adapter Ag by Lglobal

14: Block-aware Voting Network:
15: Mixture of remaining K − 1 expert adapters and global adapter to produce aggregated

feature F agg

16: Optimize block-aware voting network by Lagg

17: end for
18: end for

A.2 DATASETS AND EVALUATION PROTOCOLS DETAILS

We conduct experiments on 9 public ReID mentioned in the main text of the paper. The details of
these datasets are illustrated in Table 4. And in Table 5 we show the details of the three evaluation
protocols adopted in our experiments.

Datasets # IDs # Images # Cameras
Market1501(M) 1501 32,217 6
MSMT17(MS) 4101 126,441 15
CUHK02(C2) 1816 7,264 10
CUHK03(C3) 1467 14,096 2
CUHK-SYSU(CS) 11934 34,574 1
PRID 749 949 2
GRID 1025 1275 8
VIPeR 632 1264 2
iLIDs 300 4515 2

Table 4: The details of datasets.

12



Under review as a conference paper at ICLR 2024

M+MS+CS M+CS+C3 MS+CS+C3 # Tunable
Params(M)Setting Method Reference → C3 →MS →M Average

mAP R1 mAP R1 mAP R1 mAP R1
SNR CVPRJin et al. (2020) 17.5 17.1 7.7 22.0 52.4 77.8 25.9 39.0 50

QAConv50 ECCVLiao & Shao (2019) 32.9 33.3 17.6 46.6 66.5 85.0 39.0 55.0 60
M3L CVPRZhao et al. (2020) 35.7 36.5 17.4 38.6 62.4 82.7 38.5 52.6 57

Protocol-3 MetaBIN CVPRChoi et al. (2020) 43.0 43.1 18.8 41.2 67.2 84.5 43.0 56.3 57
ACL ECCVZhang et al. (2022) 49.4 50.1 21.7 47.3 76.8 90.6 49.3 62.7 57

META ECCV Xu et al. (2021) 47.1 46.2 24.4 52.1 76.5 90.5 49.3 62.9 164
Ours 37.7 38.1 23.7 51.5 65.0 84.4 42.1 58 15.5

Table 6: Comparison with state-of-the-art methods under Protocol-3.

Protocols Traning sets Testing sets

Protocol-1 Full-(M+C2+C3+CS) PRID,GRID,
VIPeR,iLIDs

Protocol-2
M+MS+CS C3
M+CS+C3 MS

MS+CS+C3 M

Protocol-3
Full-(M+MS+CS) C3
Full-(M+CS+C3) MS

Full-(MS+CS+C3) M

Table 5: The details of evaluation protocols.

A.3 COMPARISON UNDER PROTOCOL-3

We also compare our method with other methods under protocol-3, as shown in Table6.

A.4 ABLATION STUDY

The number of voting blocks. Considering that the first few layers of ViT may not have extracted
semantically rich features yet, we conduct ablation studies to test which layer to start voting from
works best. The results are shown in the Table7. The results show that starting block-aware voting
from the 4th layer works best. And before that the weight of each adapter is identical.

# Voting Blocks
M+MS+CS

→ C3
mAP Rank-1

1 31.2 32.6
4 33.6 34.1
6 32.2 32.9

10 30.8 31.8
12 30.8 32.0

Table 7: Ablation study on the numbers of voting blocks.

The effectiveness of loss functions. We also do the ablation study about the effectiveness of loss
functions. The results are shown in Table8. Experimental results show that applying triplet loss on
the aggregated features hurts performance. The last three rows indicate that adding ID loss LID and
classification heads, and fine-tuning the heads lead to only marginal gains but substantially more
tunable parameters. And simply adding ID loss LID and classification heads without fine-tuning the
heads leads to inferior performance.

A.5 REFERENCES OF THE SOTA METHODS

Due to paper length limitations, the references of the SOTA methods are not cited in the original
text, but are now marked in the Table6.
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Loss Functions M+C3+CS-
MS #Tunable

ParamsLagg Lexpert/ Lglobal

Lconsis Lmse Li2tce Ltriplet Ltriplet Li2tce LID mAP Rank-1
- ✓ ✓ - ✓ ✓ - 19.3 48.8 15.5
✓ ✓ ✓ ✓ ✓ ✓ - 18.8 45.3 15.5
✓ ✓ ✓ - ✓ ✓ ✓ 20.6 50.3 38.1(Tune the classifier heads)
✓ ✓ ✓ - ✓ ✓ ✓ 20.1 49.2 15.5(Froze the classifier heads)
✓ ✓ ✓ - ✓ ✓ - 20.5 50.0 15.5

Table 8: Ablation study on the effectiveness of loss functions.
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