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ABSTRACT

Current large language model (LLM) development treats task-solving and
preference-alignment as separate challenges, optimizing first for objective cor-
rectness, then for alignment to aggregated human preferences. This paradigm
fails in human-facing applications where solving a problem correctly is insuffi-
cient if the response mismatches the user’s needs. This challenge intensifies in
just-in-time scenarios where no prior user interaction history exists due to cold-
start conditions or privacy constraints. LLMs need to identify what they don’t
know about user preferences, strategically elicit preference values through ques-
tioning, then adapt their reasoning processes and responses accordingly—a com-
plicated chain of cognitive processes which we term personalized reasoning. We
introduce PREFDISCO, an evaluation methodology that transforms static bench-
marks into interactive personalization tasks using psychologically-grounded per-
sonas with sparse preferences. Our framework creates scenarios where identical
questions require different reasoning chains depending on user context, as optimal
explanation approaches vary by individual expertise and preferences while main-
taining factual accuracy. Evaluation of 21 frontier models across 10 tasks reveals
29.0% of naive personalization attempts produce worse preference alignment than
generic responses, yet generic responses also fail to serve individual user needs
effectively. These findings suggest personalized reasoning requires dedicated de-
velopment rather than emerging naturally from general language understanding
improvements. PREFDISCO establishes personalized reasoning as a measurable
research frontier and reveals fundamental limitations in current LLMs’ interac-
tive capabilities, providing a foundation for developing systems that can adapt to
individual users in education, healthcare, and technical domains where personal-
ization is critical.

Are you comfortable with medical terms?

Do you prefer empathetic support?

I know a little bit.

…
I’m sorry this boy is still in pain—that sounds really tough for him. Since his wrist hurts 

where those thumb tendons are, the best first step is a wrist X-ray to check for a 
possible fracture. To learn more, this site explain wrist injuries clearly: 🔗Mayo Clinic…

Answer: A: Radiograph of the 
wrist

Explanation: The clinical 
presentation suggests a possible 
scaphoid fracture (tenderness in 
the anatomical snuffbox area). 
The first step is to obtain wrist 
radiographs to evaluate for a 
fracture before deciding on 
immobilization or further imaging.

❌ Confusing medical jargon

❌ Feels cold and clinical

❌ No resources provided

👍 Implicitly expresses urgency

✅ Used simple language with minimal medical jargon

✅ Expressed sympathy and understanding, I feel understood

✅ Provided clear, trustworthy link for further reading

✅ Clearly stated the next best step without delay

X
Scenario:

“A 14-year-old boy presents to 
the emergency department with 

hand pain after falling…”

Elicited Preferences

“A 14-year-old boy presents to the emergency 
department with hand pain after falling from his 
skateboard one day ago. He reports that he lost 
his balance while attempting a new trick and fell 

on his outstretched hands…”

Alice’s context-specific attributes: 
• Comfort w/ medical terminology: 2 (w=0.5)

• Need for empathy: 4 (w=0.3)

• Additional online resources: 5 (w=0.1)

• Urgency of situation: 4 (w=0.04)

• …

Yes, that would help.

Next Action“A 14-year-old boy presents to 
the emergency department with 

hand pain after falling…” ∅ Elicit: comfort w/ 
medical terminology

• Comfort w/ medical 
terminology: 2

Elicit: need for 
empathy

• Comfort w/ medical 
terminology: 2


• Need for empathy: 4
Elicit: urgency of 
situation

…

Generic Task-Oriented Response Personalized Reasoning

Figure 1: Personalized reasoning in a medical scenario. Current LLMs provide generic responses
without considering the user (left); a model with personalized reasoning capabilities incorporates
discovered preferences to provide responses that is both correct and aligned to the user (right).
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1 INTRODUCTION

Current large language model (LLM) development treats task-solving and preference alignment
as sequential challenges: models are first optimized for objective correctness through instruction
tuning or reinforcement learning (Longpre et al., 2023), then aligned to aggregated human prefer-
ences through reinforcement learning from human feedback (Ouyang et al., 2022). This paradigm
fundamentally misaligns with human-AI interaction, where the task and the individual user are in-
separable. For instance, a medical explanation benefits from clinical analogies for one trainee while
another requires formal definitions, requiring different cognitive approaches to answer the same
problem. When models provide identical responses regardless of user context, they fail to serve
individual needs despite achieving high benchmark performance. This challenge intensifies in cold-
start scenarios where no prior user interaction history exists due to privacy constraints or new user
onboarding, requiring “just-in-time personalization” capabilities that current systems lack. More-
over, users often cannot articulate their specific needs or provide effective feedback about response
misalignment (Liu et al., 2025), necessitating that LLMs proactively elicit this information rather
than placing the cognitive burden on users.

We define personalized reasoning as the ability to adapt reasoning processes based on discovered
user preferences. Consider the medical scenario in Figure 1, discovering that the user Alice has
limited medical knowledge and needs emotional support fundamentally changes the appropriate
reasoning strategy the model should take: instead of focusing on justifying clinical diagnosis, the
model needs to reason about how to best satisfy Alice’s needs such as empathy. This goes beyond
surface-level presentation; it requires different reasoning steps, different information prioritization,
and different decision points about what to include or omit. A model with personalized reasoning
capabilities must identify gaps in knowledge about user preferences, strategically elicit preference
values through questioning, and synthesize this information to adapt both their reasoning processes
and response generation.

Existing personalization research inadequately addresses interactive reasoning scenarios. Person-
alization benchmarks such as PersoBench (Afzoon et al., 2024), PrefEval (Zhao et al., 2025), and
PersonaMem (Jiang et al., 2025) focus on content recommendation or dialogue generation with
static user profiles, treating personalization as applying predetermined preferences to fixed outputs
rather than adapting the underlying reasoning approach. Interactive frameworks like MediQ (Li
et al., 2024) demonstrate questioning capabilities but target clinical information-seeking without
personalization objectives. Most critically, no existing work recognizes that effective personaliza-
tion requires different reasoning processes for different users; current approaches assume reasoning
processes remain constant while only presentation varies. We address this conceptual gap by in-
troducing the first evaluation framework requiring models to discover user preferences and adapt
their reasoning processes accordingly, recognizing that the cognitive steps needed to solve problems
should themselves be user-dependent.

We introduce PREFDISCO, an evaluation methodology that transforms existing reasoning bench-
marks into interactive personalization assessments. We generate psychologically-grounded personas
and instantiate sparse preference profiles where only a subset of 20-25 possible attributes (explana-
tion detail, tone, analogies, etc.) are relevant for each persona-task pair. Models must discover these
hidden preferences through strategic questioning within 5 turns, then adapt their responses accord-
ingly. We evaluate both preference discovery accuracy and response alignment using fine-grained
rubrics, comparing against baseline (no personalization) and oracle (known preferences) conditions
across mathematical, scientific, and social reasoning tasks.

Evaluation of 21 frontier models across 10 tasks reveals systematic failures in personalized reason-
ing capabilities. In 29.0% of cases, attempting personalization produces worse preference align-
ment than generic responses. Models exhibit insufficient questioning strategies, asking only 1.42
questions on average despite 5-turn allowances, and fail to identify relevant preference dimensions.
Domain analysis reveals optimization brittleness: mathematical reasoning suffers severe degrada-
tion under personalization constraints (3.5% accuracy loss) while social reasoning maintains robust-
ness (3.1% gain), suggesting fundamental architectural limitations rather than emergent capabilities.
These findings have critical implications for educational applications, where misaligned explana-
tions can impede learning by providing inappropriate cognitive scaffolding, and for healthcare and
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technical support domains where one-size-fits-all responses may lead to misunderstanding of com-
plex procedures or safety-critical information. We make the following contributions:

• We define personalized reasoning as a distinct capability requiring models to discover user prefer-
ences through strategic questioning and adapt their responses accordingly, distinguishing it from
static persona consistency or content recommendation.

• We introduce PREFDISCO, a systematic approach for transforming static benchmarks into inter-
active personalization tasks, bridging the gap between reasoning competence and user adaptation
through fine-grained, sparse preference modeling.

• We reveal fundamental failure modes across 21 frontier models, demonstrating that personalized
reasoning requires dedicated development rather than emerging from general language under-
standing, and identify domain-specific brittleness patterns that inform future research directions.

2 PERSONALIZED REASONING

In this section, we formalize personalized reasoning through a three-part decomposition. Section 2.1
introduces the notion of task-relevant attributes that define the space in which personalization can
occur. Section 2.2 develops the representation of user preferences over these attributes and describes
elicitation as a sequential decision process. Section 2.3 formalizes how models adapt their responses
to the inferred preference profile and how alignment is evaluated jointly with correctness. This
decomposition provides the foundation for the benchmark design discussed later in Section 3.

2.1 IDENTIFYING RELEVANT ATTRIBUTES

Our overarching goal is to enable language models to generate personalized responses that bet-
ter align with a user’s learning needs and preferences, rather than providing generic explanations.
Achieving this requires first identifying and modeling the salient attributes that can shape how an
explanation is delivered. We therefore begin with the assumption that there exists a very large but
finite global set of attributes to which a response can be personalized. We denote these attributes by
Θ = {θ1, . . . , θd}. These attributes may include factors such as the use of analogies, the level of
technical jargon, or the incorporation of visualizations etc. Given a particular user and task, how-
ever, not all attributes are equally important; our focus is on modeling which subset of attributes is
most relevant for delivering personalization in that context.

Fine Grained Preference Modeling. For any given task i, not all attributes in Θ are equally
relevant. Only a small subset F(i) ⊆ Θ matters for personalization in the context of the given task.

The first component of personalized reasoning is thus to infer which attributes matter for a given
user–task pair. For instance, in a physics explanation task, “visualization” and “analogies” may be
salient, while “ethical context” may not be.

2.2 ELICITING PREFERENCE VALUES

Once the model estimates the relevant preference attributes for a problem instance, personalized
reasoning requires incorporating the user. Even within the same task instance, different users may
emphasize different attributes.

Consider a medical explanation task as in Figure 1. Suppose the relevant attributes are empathy
and technical jargon, i.e., F (i) = {empathy, jargon}. One patient may prioritize empathy and plain
language to reduce anxiety, while another may prefer a more technical explanation that uses medical
terminology. Both users share the same set of relevant attributes, but they assign different importance
weights. This illustrates why we need to represent not only a preference value for each attribute but
also a weight capturing its relative significance.

Now consider Alice asking the same medical question in two different contexts. While studying for
an exam, she may prefer high technical jargon, since precise terminology is useful for learning. By
contrast, if Alice faces an emergency medical situation herself, she may prefer low jargon and plain
language, focusing on clarity over technical detail. This shows that preference values themselves
(vj) can shift across instances, even for the same user, and hence preferences should be defined at
the instance level.

3
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We define the preference profile of user p for problem instance i as
Pp,i = {(θj , vj , wj) : θj ∈ F(i)},where:

• θj is a relevant prefernce attribute in F(i),
• vj encodes user p’s preference value for attribute θj (e.g., “high jargon” vs. “low jargon”),
• wj ≥ 0 denotes the relative importance weight, with

∑
θj∈F(i) wj = 1.

The distinction is essential: vj specifies which direction the user prefers along an attribute, while wj

specifies how much that attribute matters relative to others.

Since Pp,i is unobserved, the model must perform preference elicitation. We model elicitation as a
sequential decision process: at each turn t, the model selects an action

at ∈ {ask(θ) | θ ∈ F(i)} ∪ {answer}.
If at = ask(θ), the user provides information about their preference value vθ, and the model refines
its estimate of Pp,i. If at = answer, elicitation terminates, and the model produces a response
conditioned on the inferred profile P̂p,i.

This framing highlights that personalization is not only about knowing what the relevant attributes
are, but also about understanding their relative importance and values and doing so efficiently under
limited interaction.

2.3 ADAPTING RESPONSES AND EVALUATING ALIGNMENT

Once the model has inferred an estimate of the user’s preference profile P̂p,i, it must adapt its
reasoning and outputs accordingly. Personalization involves more than stylistic choices: it requires
shaping explanations along the attributes that the user values most.

For example, in a medical explanation task, if empathy is assigned high weight, the model should
produce a response that foregrounds reassurance and clarity. If technical jargon is highly weighted
instead, the response should lean toward precise terminology, even at the expense of emotional tone.
The same underlying factual answer may therefore be expressed quite differently depending on the
inferred preference profile.

Evaluation of personalized reasoning thus involves two complementary objectives: correctness,
meaning that the answer is objectively valid for the problem instance, and preference alignment,
meaning that the answer respects the user’s weighted preferences.

Preference alignment. For each relevant attribute θj ∈ F (i), we define a grading function
gj(r, vj) ∈ [0, 1],

which measures how well response r satisfies user p’s preference value vj along attribute θj . For
example, gj may quantify whether the amount of jargon in a medical explanation matches the user’s
expressed tolerance. The overall alignment score is then given by

PrefAlign(r,Pp,i) =
∑

θj∈F (i)

wj · gj(r, vj).

Joint objective. High-quality personalized reasoning requires responses that are both objectively
correct and preference-aligned. Formally, for a response r to be successful, we require

Correct(r, i) = 1 and PrefAlign(r,Pp,i) is maximized.

This formulation highlights that personalization is not merely about delivering accurate answers, but
about tailoring those answers to the user’s weighted, instance-specific preferences.

3 PREFDISCO BENCHMARK CONSTRUCTION

PREFDISCO addresses a fundamental gap in personalization evaluation: existing benchmarks as-
sume preferences are either known a priori or inferrable from context, failing to capture the cold-start
scenarios where models must discover user needs through interaction. As illustrated in Figure 2, our
methodology transforms static benchmarks into interactive personalization tasks through four com-
ponents designed to isolate and measure preference discovery capabilities.
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…Universal set 
of preference 
attributes Θ

Given task i

Given user p

…

…

…

…

…
Realistic user 
distribution

Existing static 
benchmarks

Sparse set of context-specific preferences

Technical jargon 
Value: 2

Weight: 0.5
Empathy 
Value: 4

Weight: 0.3
Self-awareness 
Value: 1 
Weight: 0.2

Context-dependent 
Preference 
Instantiation

…

🪩PrefDisco
Attribute-specific 
Rubric Generation

…

Def: … 
1: …, 3: …,   
5: extremely 
technical
Def: … 
1: …, 3: …,   
5: warm.
Def: … 
1: oblivious,  
3: …,  5: …

Realistic User 
Simulation

?

: 4
• Factual 
• Minimalistic 
• Minimize user’s 

cognitive load

Figure 2: PREFDISCO benchmark construction pipeline. The framework transforms static bench-
marks by sampling sparse, context-dependent preference subsets for each user-task pair, generating
attribute-specific evaluation rubrics, and implementing realistic user simulation that requires models
to discover preferences through “just-in-time” strategic questioning in cold-start scenarios.

Psychologically-Grounded Persona Generation. We generate psychologically-grounded per-
sonas rather than arbitrary user archetypes because personality traits systematically influence learn-
ing preferences and communication styles. Personas are conditioned on the International Personality
Item Pool (Goldberg et al., 2006), incorporating demographics, Big Five personality dimensions, and
domain expertise that remain consistent across problem instances.

High-temperature sampling with rejection sampling ensures diverse coverage while preventing over-
representation of common attribute combinations. This consistency enables evaluation of models’
ability to transfer discovered preferences within user sessions—a critical capability for practical
deployment where users interact with systems across multiple tasks.

Context-Dependent Preference Instantiation. Traditional personalization assumes fixed pref-
erence profiles that apply universally across tasks. We reject this approach because psychologi-
cal research demonstrates that individuals prioritize different attributes across contexts. For each
persona-problem pair (p, i), we generate sparse preference profiles Pp,i = {(θj , vj , wj)}θj∈F(i)

where only context-relevant attributes are active. Further, we ground the preference sampling pro-
cess on existing research in education, which states that frequently modeled student characteristics
include knowledge level, misconceptions, cognitive features, affective features, and meta-cognitive
features (Chrysafiadi et al., 2015).

This sparse modeling is essential because it reflects realistic user behavior: the same person may pri-
oritize technical precision in professional settings while favoring accessibility in casual interactions.
We determine relevant attribute subsets F(i) through LLM classification, validated by human anno-
tation on 20 scenarios (2 per task). Each scenario includes 10 relevant and 10 irrelevant attributes,
generating 400 labels per annotator across 3 annotators. Inter-annotator agreement achieved Fleiss
kappa of 0.463 with 61.5% accuracy against majority voting, which is considered moderate agree-
ment especially for subjective tasks (Sap et al., 2017; Budur et al., 2020; Mire et al., 2024). Finally,
importance weights satisfy

∑
θj∈F(i) wj = 1 and reflect persona-specific priorities. LLM-based

semantic deduplication ensures attribute diversity by removing redundant dimensions that would
artificially inflate preference complexity.

Evaluation Rubric Generation. We generate attribute-specific evaluation rubrics gj(r, vj) ∈
{1, . . . , 5} using LLM-based assessment to enable systematic evaluation across 10K scenarios.
These rubrics provide the scalability necessary for comprehensive evaluation across diverse domains
that would be prohibitively expensive with human annotation alone. Importantly, by leveraging the
structured information obtained through our construction, these rubrics enable fine-grained evalua-
tion along specific attributes rather than relying on a single holistic satisfaction score. This reduces
susceptibility to hallucination and bias, since each attribute is judged against an explicit criterion
rather than aggregated into an opaque overall impression.

User Simulation. We implement passive user simulation inspired by (Li et al., 2024) because it
represents the most challenging scenario for preference discovery while minimizing confounding
factors. Passive users provide minimal, factual responses without volunteering information, forcing
models to develop strategic questioning strategies rather than relying on user proactiveness.

5
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This design choice isolates models’ questioning capabilities from user communication style, pro-
viding controlled evaluation conditions. The 5-turn limit reflects realistic attention constraints in
human-AI interaction while providing sufficient opportunity for effective preference discovery, as
demonstrated by our correlation analysis between questioning volume and alignment quality.

Overall, PREFDISCO decomposes personalization into constituent attributes, enabling granular anal-
ysis of model capabilities and failure modes rather than relying on holistic preference ratings that
obscure specific deficiencies.

4 EXPERIMENTS

Our goal is to rigorously evaluate models’ ability for interactive preference discovery: engaging in
dialogue to uncover hidden user requirements and adapt responses accordingly. To this end, our
experiments combine three ingredients. First, we use diverse benchmarks spanning mathematical,
scientific, and social reasoning to ensure domain-agnostic evaluation. Second, we introduce varied
personas that encode heterogeneous user preferences, simulating realistic user variability. Third,
we define controlled evaluation conditions that disentangle raw task ability, preference elicitation
skill, and intrinsic personalization capacity. Together, these components create a challenging and
diagnostic testbed for preference-aware reasoning.

Benchmarks and Models. We apply PREFDISCO to ten benchmarks spanning mathematical, log-
ical, scientific, and social reasoning: MATH-500 (Hendrycks et al., 2021b), LogiQA (Liu et al.,
2020), MascQA (Zaki et al., 2024), ScienceQA (Saikh et al., 2022), MMLU (Hendrycks et al.,
2021a), SimpleQA (Wei et al., 2024), MedQA (Jin et al., 2020), CommonsenseQA (Talmor et al.,
2018), and SocialIQA (Sap et al., 2019). This mix covers tasks with different reasoning demands
(symbolic, factual, commonsense, scientific), ensuring that results do not hinge on a narrow do-
main. We evaluate 21 frontier models (GPT, O-series, Gemini, and Claude variants). Details on
model versions and hyperparameters are provided in Appendix A.

Personas and Rubrics Implementations. We generate 100 diverse personas and randomly sam-
ple 100 problems per benchmark. For each problem, we assign 10 personas (with partial overlaps
across problems), creating 1,000 evaluation scenarios per task and 10,000 total scenarios across all
benchmarks. Each interaction is limited to 5 turns to simulate realistic attention constraints. During
benchmark construction, GPT-4.1, Gemini-2.5-Flash, and Claude-Sonnet-4 are randomly selected
for each API call (persona generation, preference instantiation, or rubric creation) to ensure diversity
and reduce single-model biases. Further details, including prompt templates, sampling distributions,
and illustrative examples of full personas and dialogues, are provided in Appendix A.

Evaluation Conditions. Models are evaluated on the PrefAlign score under three conditions:

• Baseline. Models receive the problem only, with no persona or preference information. This
measures task ability under standard prompting, establishing the reference point for comparisons.

• Discovery. Models are system-prompted to elicit user preferences through multi-turn dialogue
before producing a final answer. This isolates the capability of personalized reasoning: asking
effective questions, inferring which attributes matter, and adapting explanations accordingly.

• Oracle. Models are system-prompted with the full ground-truth preference profile provided up-
front. This removes the uncertainty of discovery and evaluates only how well a model can use
known preferences to personalize its responses.

The baseline establishes task-only performance. The gap between baseline and discovery quantifies
a model’s ability to uncover preferences interactively, while the gap between baseline and oracle
shows its upper bound on personalization quality. Raw oracle scores highlight intrinsic differences
in models’ ability to incorporate preferences once they are known, independent of discovery strategy.

Normalized Preference Alignment. Since raw scores are not directly comparable across mod-
els with different baselines and personalization ceilings, we normalize performance relative to the
baseline and oracle conditions:

NormAlign(rdiscovery,Pp,i) = 100×
PrefAlign(rdiscovery,Pp,i)− PrefAlign(rbaseline,Pp,i)

PrefAlign(roracle,Pp,i)− PrefAlign(rbaseline,Pp,i)
, (1)
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Table 1: Normalized preference alignment scores, calculated by normalizing the preference align-
ment score of the Discovery mode against the lower bound Baseline (no personalization) and upper
bound Oracle (full preference profile provided) conditions. A score of 100.0 means perfect discov-
ery matching oracle performance, 0.0 indicates no improvement over baseline, and negative values
show that attempted personalization produced worse alignment than generic responses. Notably,
29.0% of model–task combinations yield negative scores, revealing that naive preference elicitation
often harms alignment rather than helping.

openai gpt-4o gpt-4.1 o1 o3 o1-mini o3-mini o4-mini
math 4.9 -13.2 16.6 -6.0 -20.9 -10.3 21.9
aime 21.2 1.9 11.9 5.3 -11.9 -7.4 20.5

logiqa 7.7 -29.9 4.2 -50.4 -5.2 -15.4 26.0
mascqa 9.7 -11.6 13.0 -9.0 1.1 -1.5 25.1
medqa -6.6 -26.9 9.6 -5.9 19.1 3.4 23.8

scienceqa 10.7 3.6 7.5 12.8 2.1 -9.2 16.7
mmlu 18.3 -11.3 10.4 -5.8 18.4 -1.3 23.2

simpleqa 14.8 11.8 -12.3 0.1 27.9 -47.7 7.5
commonsenseqa 25.2 5.8 7.3 2.6 7.6 -0.4 16.0

socialiqa 21.2 11.6 7.1 3.8 4.8 -0.1 17.4

gemini 1.5-flash 1.5-pro 2.0-flash-lite 2.0-flash 2.5-flash-lite 2.5-flash 2.5-pro
math 20.7 19.8 -5.5 17.5 12.5 -10.9 -13.5
aime 28.7 28.9 28.9 40.3 27.5 25.8 14.9

logiqa 23.5 16.0 -3.0 -0.9 9.4 -38.1 -0.3
mascqa 27.2 31.1 5.2 -4.9 20.3 -0.6 10.4
medqa 6.7 9.5 -7.2 -17.3 18.5 4.6 35.7

scienceqa 22.1 23.9 2.1 6.4 13.8 0.3 17.9
mmlu 27.9 17.6 5.0 4.4 23.8 -8.2 10.3

simpleqa 18.1 19.9 -3.3 7.0 6.4 4.8 8.4
commonsenseqa 24.9 23.6 -7.8 5.4 6.7 -0.7 20.2

socialiqa 27.0 18.9 1.1 10.7 3.9 11.3 29.3

claude sonnet-4 opus-4 3-7-sonnet 3-5-haiku 3-5-sonnet-v2 3-5-sonnet-v1 3-opus
math 2.6 16.9 -2.8 -23.8 -9.6 15.6 7.7
aime 17.1 29.9 0.7 -19.1 -5.5 15.8 -25.4

logiqa -4.1 14.7 -5.9 -5.9 3.6 38.8 19.4
mascqa 1.9 20.2 -6.0 7.5 11.8 26.9 21.3
medqa 8.3 33.0 2.9 4.0 15.1 24.0 9.8

scienceqa -4.6 10.6 -0.1 6.4 -9.2 9.9 0.1
mmlu 1.1 18.6 -9.9 9.3 5.4 26.2 14.2

simpleqa -13.9 2.3 -2.5 16.8 26.6 -10.8 13.4
commonsenseqa -16.1 2.2 -16.6 5.9 -5.8 1.8 24.4

socialiqa 10.5 7.7 1.9 15.8 -6.8 -8.7 26.4

where rdiscovery is the final response produced in discovery mode, rbaseline is the response in baseline
mode, and roracle is the response in oracle mode with the full preference profile provided.

A score of 0 indicates no improvement over baseline, 100 indicates perfect discovery matching
oracle performance, and negative values reflect reduced satisfaction compared to baseline. This
provides a scale-independent measure of discovery quality relative to a model’s own upper bound.

Task Accuracy. We report objective task accuracy using each benchmark’s original evaluation
metric. This acts as a safeguard: personalization should augment user satisfaction without degrading
the correctness of the underlying task. A strong model must therefore achieve both high preference
alignment and high task accuracy.

5 RESULTS

Preference Discovery Performance. Table 1 reveals systematic failures in preference discov-
ery. Of 210 model-task combinations, 61 (29.0%) show negative normalized alignment, meaning
the discovery responses align worse with user preferences than baseline responses that made no
personalization attempt. This suggests that models are prone to over-correction errors, modifying
aspects of their responses that were already acceptable in baseline conditions. Naively attempting
proactive personalization often makes alignment worse than providing generic responses.

Out of the tasks, MATH and LogiQA show the most degradation (10 and 11 out of 21 models per-
form worse when attempting to personalized), while SocialIQA benefit the most from interactive
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Figure 3: Positive correlation (r=0.445) between
question volume and preference alignment. Bet-
ter personalization requires more extensive ques-
tioning. Regression coefficients: Claude=0.117,
OpenAI=0.379, Gemini=0.474.
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Average Score vs Accuracy by Task and Mode
(Colors = Tasks, Shapes = Modes, Aggregated over Models)

Tasks
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Figure 4: More personalization constraints in
context hinder model reasoning abilities. Overall
accuracy: Baseline=0.652, Oracle=0.618, Dis-
covery=0.601. Trade-off is most pronounced in
Math, AIME, and logic tasks.

personalization. Claude Opus 4 shows the most consistent positive performance, while o3-high ex-
hibits extreme variance, indicating significant architectural differences in personalization capability.

Interaction Efficiency and Preference Alignment Tradeoff. Figure 3 reveals why many person-
alization attempts fail. While the positive correlation (r=0.445, p<0.001) demonstrates that exten-
sive questioning improves alignment, most models ask only 1.48 questions on average despite a
maximum allowance of 5 turns. This places the majority of interactions in the low-performance re-
gion where insufficient questioning yields worse alignment than baseline responses, explaining the
29.0% negative performance rate.
The regression coefficients vary dramatically by model family: Gemini (β=0.474), OpenAI
(β=0.379), Claude (β=0.117). Gemini’s higher coefficient indicates more effective question uti-
lization—each additional question yields greater alignment improvement. This suggests current
prompting methods are limited not just in question quantity, but in question quality and strategic
timing. Models that ask better questions achieve more personalization gains.
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Figure 5: Fixed interaction length hinders
preference alignment on math and science
tasks but improves preference alignment on
social reasoning.

Accuracy-Personalization Trade-off. The sys-
tematic accuracy degradation across conditions:
Baseline (65.2%), Oracle (61.8%), Discovery
(60.1%) reveals that personalization imposes fun-
damental cognitive costs (Figure 4). Even without
interaction, the accuracy drop from baseline to ora-
cle indicates these costs stem from processing pref-
erence constraints themselves, not from interactive
discovery failures or overhead. Comparing oracle
and baseline, domain-specific trade-offs show sig-
nificant disparities. Mathematical tasks suffer se-
vere degradation (AIME: 12.1% loss), while so-
cial tasks show minimal impact (CommonsenseQA:
5.4% gain). We conjecture that the task-specific dis-
parity could be due to current state-of-the-art LLMs
being over-optimized for mathematical benchmarks,
rendering them less robust to additional long-tail
contextual constraints during inference.

Question Quality vs. Termination Decision Isolation. Figure 5 isolates question quality from
termination decisions by forcing models to ask a fixed number of questions, revealing that the
domain-specific performance patterns persist regardless of question quantity control. When models
are constrained to ask 2, 4, or 8 questions instead of choosing when to stop, mathematical and sci-
entific reasoning tasks (MATH, MascQA) continue to show degraded performance with increased
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questioning, while social reasoning tasks (CommonsenseQA, SocialIQA) maintain improved per-
formance. This consistency across fixed interaction lengths demonstrates that poor performance in
mathematical domains stems from fundamental incompatibilities in how models process preference
constraints during formal reasoning, rather than from suboptimal termination decisions. The per-
sistence of domain-specific brittleness under controlled questioning conditions suggests that current
architectures struggle with the cognitive overhead of simultaneously maintaining logical precision
and adapting to user preferences, indicating that the observed failures reflect deeper architectural
limitations rather than strategic questioning deficiencies.

6 RELATED WORK

Static Personalization and Evaluation Benchmarks. Several benchmarks evaluate personaliza-
tion in language models but assume known preferences or static consistency rather than interactive
discovery. PersoBench (Afzoon et al., 2024), PrefEval (Zhao et al., 2025), PersonaMem (Jiang et al.,
2025), and PersonaConvBench (Li et al., 2025a) focus on dialogue generation or multi-session pro-
filing without addressing cold-start preference elicitation across reasoning tasks.

User Preference Modeling. Prior work models user preferences through explicit categorization
(Jiang et al., 2023; Zhu et al., 2024; Bose et al., 2024), per-user reward models (Poddar et al., 2024;
Chen et al., 2024; Lee et al., 2024), or fine-grained multi-dimensional approaches (Bose et al., 2025;
Li et al., 2025b). However, these methods do not address which preference attributes are relevant
for specific user-task combinations or how to discover them interactively in cold-start scenarios.

Interactive Preference Elicitation. GATE (Li et al., 2023) and MediQ (Li et al., 2024) demonstrate
interactive questioning for user intent understanding and clinical information-seeking, respectively.
These approaches focus on narrow domains without the reasoning adaptation component central
to personalized reasoning. PREFDISCO uniquely combines interactive preference discovery with
adaptive reasoning across diverse domains, requiring models to modify their cognitive approaches
based on discovered user needs.

7 DISCUSSION AND FUTURE WORK

We introduce personalized reasoning as a fundamental capability for human-facing AI systems,
requiring models to adapt their cognitive processes based on discovered user preferences rather
than merely personalizing response presentation. Our evaluation reveals systematic failures across
frontier models: 29.0% of personalization attempts perform worse than generic responses, with
mathematical reasoning showing universal degradation while social reasoning maintains robustness.
These domain-specific patterns persist even when controlling for question quantity, indicating that
current architectures face fundamental incompatibilities between preference processing and formal
reasoning rather than strategic questioning deficiencies.

PREFDISCO establishes personalized reasoning as a measurable research frontier through a scalable
evaluation methodology that transforms any static benchmark into an interactive personalization
assessment. Unlike existing approaches that assume known preferences or evaluate static consis-
tency, our framework operationalizes both preference discovery and reasoning adaptation in realis-
tic cold-start scenarios. The methodology’s generalizability across diverse task domains provides a
systematic foundation for evaluating and developing adaptive AI systems.

Our findings reveal critical limitations in current language models. The positive correlation be-
tween questioning volume and alignment quality demonstrates that extensive interaction improves
personalization, yet models ask only 1.48 questions on average despite 5-turn allowances. More im-
portantly, the persistent accuracy degradation under personalization constraints indicates cognitive
costs in processing user preferences simultaneously with task solving. This suggests that person-
alized reasoning requires dedicated research efforts rather than emerging from general language
understanding improvements.

Future research directions include analyzing attribute-specific alignment patterns to identify model
biases, leveraging the multi-dimensional reward structure for reinforcement learning, and investigat-
ing cross-task preference transfer. The framework provides a technical foundation for developing
AI systems that can adapt to individual users in education, healthcare, and technical domains where
personalized interaction is critical for effective deployment.

9
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LIMITATIONS

Our evaluation focuses on beneficial personalization scenarios and does not address potential neg-
ative aspects of personalization. We do not study over-personalization, where excessive adaptation
to user preferences may reduce response quality or lead to information bubbles. Additionally, our
framework does not evaluate sycophantic behavior, where models might prioritize agreement with
user preferences over factual accuracy or helpful feedback.

Our simulated user interactions, while psychologically grounded, may not capture the full com-
plexity of real human preference expression. The framework currently evaluates communication
preferences rather than content preferences, and does not address preference evolution or conflicting
preferences across different contexts.

ETHICS STATEMENT

Personalization capabilities raise important ethical considerations. While our work aims to improve
user experience through better preference alignment, these same capabilities could potentially be
misused for manipulation or to reinforce harmful biases. Our framework evaluates technical capa-
bilities without addressing the broader question of when and how personalization should be applied.

Future deployments of personalization systems should include safeguards against over-
personalization, mechanisms to maintain factual accuracy despite user preferences, and transparency
about how user preferences are discovered and applied. Our evaluation framework could be extended
to assess these safety considerations alongside personalization effectiveness.
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A EVALUATION DETAILS

Model Configurations We evaluate 21 frontier language models across three major families with
consistent hyperparameters (temperature=0.7, reasoning effort=high):

OpenAI models: gpt-4o, gpt-4.1, o1, o3, o1-mini, o3-mini, o4-mini

Google models: gemini-1.5-flash, gemini-1.5-pro, gemini-2.0-flash-lite, gemini-2.0-flash, gemini-
2.5-flash-lite, gemini-2.5-flash, gemini-2.5-pro

Anthropic models: claude-sonnet-4, claude-opus-4, claude-3.7-sonnet, claude-3.5-haiku, claude-
3.5-sonnet-v2, claude-3.5-sonnet-v1, claude-3-opus

Benchmark Selection We apply PREFDISCO to ten diverse benchmarks spanning mathemati-
cal reasoning (MATH-500, AIME), logical reasoning (LogiQA), scientific reasoning (MascQA,
ScienceQA, MedQA), general knowledge (MMLU, SimpleQA), and social reasoning (Common-
senseQA, SocialIQA). This coverage demonstrates domain-agnostic applicability across formal and
informal reasoning tasks.

Experimental Protocol Each benchmark is transformed using 100 diverse personas randomly
sampled from our psychologically-grounded persona library. We evaluate 100 problems per bench-
mark, with each problem assigned to 10 personas (with partial overlaps), creating 1,000 evaluation
scenarios per task and 10,000 total scenarios. Each interaction is limited to 5 conversational turns to
simulate realistic attention constraints.

Models are evaluated under three conditions: (1) Baseline Mode provides standard responses without
persona or preference information; (2) Discovery Mode requires interactive preference elicitation
through conversation; (3) Oracle Mode supplies complete preference profiles upfront. This design
isolates interactive discovery capabilities from general personalization abilities while establishing
performance bounds.
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