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Abstract
Class-imbalanced node classification tasks are
prevalent in real-world scenarios. Due to the un-
even distribution of nodes across different classes,
learning high-quality node representations re-
mains a challenging endeavor. The engineering
of loss functions has shown promising potential
in addressing this issue. It involves the meticu-
lous design of loss functions, utilizing informa-
tion about the quantities of nodes in different cat-
egories and the network’s topology to learn unbi-
ased node representations. However, the design
of these loss functions heavily relies on human
expert knowledge and exhibits limited adaptabil-
ity to specific target tasks. In this paper, we in-
troduce a high-performance, flexible, and gener-
alizable automated loss function search frame-
work to tackle this challenge. Across 15 combina-
tions of graph neural networks and datasets, our
framework achieves a significant improvement in
performance compared to state-of-the-art meth-
ods. Additionally, we observe that homophily in
graph-structured data significantly contributes to
the transferability of the proposed framework.

1. Introduction
In recent years, the significance of learning qualitative node
representations has grown in the context of accurately clas-
sifying node properties within real-world graphs (Wu et al.,
2021; Xu et al., 2019b; Zhou et al., 2020). The adop-
tion of graph neural networks (GNNs) (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018) for
handling graph-structured data has garnered substantial suc-
cess across various domains. Nevertheless, inherent class
imbalances in natural graphs can introduce a bias toward ma-
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Figure 1: A schematic diagram of the AutoLINC framework
with two main modules. The first module is the Monte Carlo
tree search, which iteratively performs selection, expansion,
simulation, and backpropagation steps to find the optimal
loss function. The second module is the loss function check
strategy. AutoLINC proactively filter out low-quality loss
functions through the loss inspection strategy when evaluat-
ing the loss function.

jor classes, resulting in reduced accuracy for minor classes
when these imbalances are not addressed.

To mitigate the challenges of class-imbalanced node clas-
sification, various methodologies have been explored (Ma
et al., 2023). Notably, engineered loss functions have shown
promise (Chen et al., 2021; Song et al., 2022), offering tai-
lored solutions to combat class imbalance. Recent works
like ReNode (Chen et al., 2021) and TAM (Song et al.,
2022) have integrated graph topology information into their
loss function designs. Another line of research explores the
integration of contrastive learning into the context of class-
imbalanced node classification (Zeng et al., 2023; Qian et al.,
2022). However, these approaches often rely heavily on hu-
man expert knowledge and may exhibit limited adaptability
to specific target tasks.
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To address these challenges, this paper presents an auto-
mated framework for searching loss functions, called Au-
toLINC (AutoLoss for Imbalanced Node Classification).
AutoLINC defines a search space uniquely suited to the
task and leverages the Monte Carlo Tree Search (MCTS)
algorithm to discover effective loss functions. We introduce
both a Basic Check Strategy and an Early Rejection Strat-
egy to expedite the search process. The performance of our
AutoLINC framework is validated through node classifica-
tion experiments involving GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), and GraphSAGE (Hamilton
et al., 2017) (abbreviated as SAGE) in three citation net-
works and two Amazon co-purchase networks. AutoLINC
demonstrates substantial performance improvements when
compared to state-of-the-art (SOTA) loss functions and non-
loss function engineering methods.

The loss function search framework most closely aligned
with AutoLINC’s objectives is Autoloss-Zero (Li et al.,
2022a), based on Regularized Evolution, which purports
to address generic tasks. However, it faces challenges in
direct application to class-imbalanced node classification
problems. AutoLINC has tailored a search space, proxy
tasks, and acceleration strategies specifically attuned to the
complexities of imbalanced node classification problems.
The comparative results against Autoloss-Zero underscore
the strengths of our approach. Our contributions can be
summarized as follows.

1. We introduce an automated loss function search frame-
work with the objective of transcending the limitations
associated with manually crafted loss functions. Au-
toLINC autonomously explores loss functions tailored
to class-imbalanced node classification tasks, resulting
in substantial performance improvements.

2. AutoLINC can be easily extended to other task sce-
narios by simply adjusting the search space and proxy
tasks, making it a versatile framework. In addition to
current Autoloss frameworks, we present a new high-
performance loss function search framework for the
Autoloss domain.

3. Within the AutoLINC framework, we have fashioned a
search space specifically designed for addressing class-
imbalanced node classification issues. Additionally,
we have made refinements to the MCTS algorithm to
expedite the quest for optimal loss functions.

4. We emphasize the noteworthy impact of homophily in
graph-structured data on the adaptability of these loss
functions to a wide range of graph datasets. Further-
more, AutoLINC demonstrates resilient generalization
capabilities across varying class imbalance ratios.

2. Related Work
Class-imbalanced Node Classification. There is currently
a substantial body of work dedicated to addressing the task
of semi-supervised imbalanced node classification (Zhao
et al., 2021a; Park et al., 2022; Liu et al., 2023; Ma et al.,
2023). Recently, the field has seen a resurgence in the ap-
plication of loss function engineering, which has yielded
improved classification performance. ReNode (Chen et al.,
2021), for instance, recalibrates the impact of labeled nodes
based on their proximity to class boundaries. In contrast,
TAM (Song et al., 2022) adapts to the local topology of
individual nodes by dynamically adjusting margins for topo-
logically improbable instances. However, constrained by the
limitations of expert knowledge, the design of loss functions
is often challenging to adequately account for the charac-
teristics of both Graph and GNNs, thereby restricting their
performance.

Loss Function Learning. Automated loss learning aims
to alleviate the considerable human effort and expertise tra-
ditionally required for loss function design. While several
studies (Xu et al., 2019a; Li et al., 2019; Wang et al., 2020;
Liu & Lai, 2020; Li et al., 2021; Gao et al., 2022) have
sought to learn loss functions automatically, they still heav-
ily rely on human expertise in the loss search process, often
initiating their search from existing loss functions. In related
efforts, (Liu et al., 2021; Li et al., 2022a; Raymond et al.,
2023) have employed evolutionary algorithms to search for
loss functions composed of primitive mathematical opera-
tors for various computer vision tasks. In the realm of loss
function learning for recommendation systems, Zhao et al.
(Zhao et al., 2021b) have introduced a framework for discov-
ering an appropriate loss function for specific data examples,
utilizing a set of base loss functions and dynamically adjust-
ing their weights for loss combination. In contrast, Li et al.
(Li et al., 2022b) focus on the generation of entirely new loss
functions rather than combining existing ones. However,
it’s worth noting that, in the context of graph data, there
have been no prior attempts to apply loss function learning,
necessitating the redesign of search spaces and algorithms
to accommodate the unique characteristics of graph data.

3. Preliminary
Notation. Given an graph G = {V,E}, where V =
{v1, · · · , vC} is a set of C nodes, and E is a set of edges.
The node feature matrix is represented as X ∈ RC×d, where
d is the node’s feature dimension. Node labels are denoted
as Y = {y1, · · · , yC |yi ∈ {1, · · · ,K}}, where K is the
number of classes.

Imbalanced Node Classification. The aim of the semi-
supervised class-imbalanced node classification task is to
train a classifier on an imbalanced node set Xtrain, typi-
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cally employing a graph neural network denoted as fθ, to
generate unbiased predictions ŷ for the remaining nodes. In
this context, θ symbolizes the parameters of the GNN.

Definition 3.1. Context-free Grammar (CFG)(Hopcroft
et al., 2006; Kusner et al., 2017) is a formal grammar
characterized by a tuple comprised of 4 elements, namely,
G = (U,Σ, R,O), where U denotes a finite set of non-
terminal nodes, Σ a finite set of terminal nodes, R a fi-
nite set of production rules, each interpreted as a mapping
from a single non-terminal symbol in U to one or multiple
terminal/non-terminal node(s) in (U ∪ Σ)∗ where ∗ repre-
sents the Kleene star operation, and O a single non-terminal
node standing for a start symbol.

4. AutoLINC
4.1. Problem Definition

Given an imbalanced graph dataset, a GNN model, and a
chosen metric, AutoLINC can autonomously search for a
suitable loss function L to train the GNN, enabling the GNN
to achieve competitive performance on the test set.

Definition 4.1. The problem of AutoLoss for imbalanced
node classification can be framed as a nested optimization
problem, given a measure σ:

argmaxL r (L) = σ
(
fθ∗(L) (Xval ) , Yval

)
s.t. θ∗ (L) = argminθ L (fθ (Xtrain ) , Ytrain)

(1)
where r(L) is the reward of loss function L, Xval is the
validation dataset, Yval is the label of the validation dataset,
and Ytrain is the label of the training dataset.

4.2. Search Space

Input Nodes: We take the model’s output logits ŷ and their
corresponding labels y as input nodes, supplemented with
some constants to enhance the flexibility of the search space.
Moreover, for class-imbalanced problems, we also introduce
the category node count N as an input node.

Table 1: Primitive Operators.

ELEMENT-WISE EXPRESSION ARITY

ADD x+ y 2
MUL x× y 2
NEG −x 1
ABS |x| 1
INV 1/(x+ ϵ) 1
LOG sign(x) • log(|x|+ ϵ) 1
EXP ex 1

TANH tanhx 1
SQUARE x2 1

SQRT sign(x) •
√
|x|+ ϵ 1

AGGREGATIONR EXPRESSION ARITY

MEAN 1
C

∑C
i=1 (xi) 1

Primitive Operators: The primitive operators consist of
element-wise operators and aggregation operator, as shown
in Appendix Table 1. We use only one aggregation operator,
Mean, as the final aggregation.

Solution Expression: Loss functions are fundamentally
mathematical expressions that can be represented in the
form of parse trees using a CFG. In our work, using the
elements we have, U denotes symbols like (D). O corre-
sponds to the output of the loss function (Output, o). Σ is
{y, ŷ, N}. R is our primitive operators, mapping from one
non-terminal node (e.g., o/D) to another node. The parse
tree of each loss function starts from the root node, Output,
and traverses pre-order based on the product rule until all
leaf nodes are represented by symbols from the terminal
node set. As shown in Fig. 1, the loss function is presented
in the form of a parse tree (for clarity, non-terminal node D
is hidden, while the product rules are retained). When an
expression is evaluated, the model’s output ŷ has the same
shape as the one-hot encoded labels y and the number of
categories N . The tree’s output is eventually averaged to
obtain a single value after the leaf nodes input into the loss
function expression tree are calculated.

4.3. Search Algorithm

Unlike the current Autoloss search framework based on
Regularized evolution (Real et al., 2020; 2019), we de-
sign a more capable search algorithm. AutoLINC primar-
ily consists of two parts: 1) MCTS (Coulom, 2006; Sun
et al., 2023), which explores the most promising expressions
through repeated selection, expansion, simulation, and back-
propagation steps; 2) Task evaluation with a loss check strat-
egy, which filters out evaluated, training-unfriendly, poorly
converging, and poor-performing loss functions, speeding
up the evaluation of proxy tasks. AutoLINC’s framework is
illustrated in Fig. 1, and the detailed sections can be found
in Algorithm 1. MCTS repeats the below steps until the
termination conditions are met.

Step 1: Selection - MCTS starts from the root node and
uses the Upper Confidence Bounds applied for Trees (UCT)
selection strategy to choose the next node, repeatedly select-
ing until reaching a leaf node or an expandable node.

UCT (s, a) = Q(s, a) + c
√
ln[W (s)]/W (s, a) (2)

Here, Q(s, a) represents the average reward of taking ac-
tion a ∈ A in state s. Q(s, a) encourages exploitation of
the current best child node. In this paper, our objective is
to determine the optimal expression for the loss function.
To achieve this, we define the maximum simulated result
value as Q(s, a) in state s when taking action a. W (s) is
the number of visits to node s, and W (s, a) is the num-
ber of times action a has been taken in state s. There-
fore,

√
ln[W (s)]/W (s, a) encourages exploration of other
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Table 2: Compared results of AutoLINC with the SOTA loss functions. Values in bold indicate the best performance, while
values underlined indicate the second-best performance. ∗ ± ∗ denotes the mean and standard errors.

GNN
DATASET CORA CITESEER PUBMED AMAZON-COMPUTERS AMAZON-PHOTO
IMBALANCE RATIO:10 BACC F1 BACC F1 BACC F1 BACC F1 BACC F1

GCN

CE 53.89±0.77 49.13±1.20 35.93±0.45 23.58±0.74 61.96±0.51 47.55±1.01 80.99±0.69 72.67±0.48 78.77±1.08 73.17±1.53
RE-WEIGHT 60.91±1.05 59.18±1.31 40.79±1.56 31.95±1.95 67.18±1.20 59.74±2.19 82.82±0.36 73.44±0.43 81.87±0.73 75.04±1.09
PC SOFTMAX 68.15±0.82 67.90±0.91 49.70±1.28 45.24±1.33 70.44±0.62 69.21±0.76 85.10±0.06 75.20±0.17 78.20±0.66 75.41±0.66
BALANCEDSOFTMAX 68.96±0.52 68.67±0.49 53.57±1.44 50.55±1.76 71.00±1.12 69.72±1.18 83.70±0.31 74.48±0.48 81.93±0.95 76.19±1.55
BALANCEDSOFTMAX+TAM 69.17±0.77 69.00±0.73 55.65±1.19 54.06±1.39 72.15±1.08 71.79±1.35 83.47±0.32 74.40±0.50 82.50±0.79 76.25±1.41
RENODE 64.64±1.09 64.00±1.43 42.02±1.39 33.36±1.82 68.58±1.19 62.97±2.51 82.75±0.22 72.96±0.37 81.68±0.75 74.82±1.01

AUTOLINC 70.21±0.67 69.67±0.79 56.56±1.97 56.09±2.06 72.43±1.03 72.42±1.07 83.23±0.23 71.83±0.45 83.06±0.80 76.66±1.18

GAT

CE 49.26±0.97 44.80±1.36 34.34±0.42 21.86±0.35 60.31±0.23 46.41±0.52 66.68±0.88 61.28±0.88 57.36±1.15 51.26±1.03
RE-WEIGHT 67.27±0.67 66.35±0.72 44.73±1.64 39.73±2.19 67.89±1.18 60.83±2.15 73.66±0.65 66.61±0.98 64.06±1.16 58.94±1.25
PC SOFTMAX 64.67±1.02 63.60±1.22 50.50±1.59 45.86±1.94 72.49±0.62 70.97±0.77 72.18±1.16 64.80±1.15 66.49±1.39 62.57±1.75
BALANCEDSOFTMAX 65.92±0.70 65.43±0.82 53.70±1.56 50.31±1.93 71.24±0.84 69.66±0.91 74.88±0.53 68.84±0.86 64.81±1.05 60.09±1.35
BALANCEDSOFTMAX+TAM 66.30±1.01 65.28±1.03 54.14±1.31 51.84±1.63 72.24±0.85 71.96±0.76 75.66±0.62 69.80±1.09 65.88±0.98 61.47±0.99
RENODE 64.19±1.20 64.01±1.42 41.15±1.26 35.45±1.49 68.19±1.46 62.78±2.71 75.17±0.79 67.47±1.04 63.54±1.43 59.27±1.58

AUTOLINC 70.63±1.01 70.16±1.04 58.48±1.57 57.38±1.89 72.57±0.88 72.27±1.02 78.86±0.59 71.73±0.73 74.41±0.69 69.11±0.91

SAGE

CE 51.57±0.54 45.11±0.83 35.34±0.25 22.82±0.38 61.01±0.55 48.03±0.88 68.51±1.52 62.78±1.78 59.74±1.67 51.53±1.96
RE-WEIGHT 55.17±0.88 52.07±1.33 38.53±1.35 30.60±1.91 62.00±0.87 52.05±2.03 72.41±1.05 63.77±0.87 60.28±1.47 52.03±1.74
PC SOFTMAX 65.49±0.65 64.73±0.82 49.54±1.45 45.04±1.82 71.38±0.77 70.52±1.04 75.17±0.54 68.78±0.48 64.04±0.74 58.62±1.09
BALANCEDSOFTMAX 65.38±0.66 65.06±0.76 51.56±1.68 48.60±1.91 69.77±0.70 68.63±0.83 75.76±1.02 68.03±0.74 67.62±1.86 60.96±2.09
BALANCEDSOFTMAX+TAM 66.54±0.49 66.24±0.65 52.46±1.23 49.27±1.72 70.26±0.87 69.94±2.83 78.11±0.77 70.53±0.65 69.45±2.01 62.64±2.17
RENODE 59.36±0.57 57.70±0.48 41.12±1.56 32.61±1.80 64.67±1.21 55.82±2.72 76.25±0.71 69.03±0.56 64.72±1.25 57.16±1.35

AUTOLINC 68.51±1.02 68.49±1.02 56.78±1.27 56.16±1.37 70.97±1.04 70.32±0.96 80.02±0.68 71.19±0.32 72.98±1.53 66.66±1.99

nodes. c is the exploration rate, generally defined empir-
ically for a specific problem. In the selection, expansion,
or simulation process, we limit the maximum number for
selecting product rules from the root node to 10 to avoid
lengthy loss function expressions.

Step 2: Expansion - Upon reaching an expandable node,
a randomly unvisited child node is chosen for expansion.
After expansion, an evaluation is conducted if a terminal
state is reached. The evaluation results are backtracked to
update the parent node until the root node.

Step 3: Simulation - If the currently expanded node is still
non-terminal, a random selection is made for simulation,
continuously choosing child nodes until a terminal state is
reached. In calculating rewards for loss functions reaching a
terminal state, we use the bAcc calculated on the validation
set as the reward.

Step 4: Backpropagation- Update the visit count and Q
value of the parent node until the root node based on the
simulation results.

4.4. Loss Function Check

Legality Check of the Loss Function: A legitimate loss
function should encompass the GNN’s output logits ŷ and
the corresponding labels y. To ensure the loss function’s
competence in addressing class-imbalanced node classifica-
tion issues, it is imperative that the function accounts for the
class-specific node counts, represented as N . Any loss func-
tions lacking GNN output logits ŷ, labels y, or class-specific
node counts N will not undergo evaluation.

Basic Check Strategy: This strategy encompasses funda-
mental checks, such as detecting invalid Nan values and

ensuring gradient equality. Because loss functions are rep-
resented in the form of expression trees, they may exhibit
symmetrical cases, where different-looking loss function
trees are equivalent. Additionally, distinct loss functions can
sometimes yield equivalent gradients. We maintain records
of the evaluated loss function formulas and their respective
rewards. In the case of equivalent formulas, their rewards
are directly reused.

Early Rejection Strategy: While legality checks ensure
that the evaluated solutions incorporate y, ŷ, N , and equal-
ity checks prevent the redundant evaluation of equivalent
formulas, there remain a significant number of underper-
forming, training-unfriendly loss functions. To address this,
we employ the Early Rejection Strategy to discard poorly
converging and ineffective loss functions. The Early Re-
jection Strategy comprises Monotonicity Checks and Poor-
performance Rejections.

1) Monotonicity Check: As per (Liu et al., 2021), a crucial
criterion during the proxy task’s training is assessing the loss
function’s quality based on its impact on accuracy metrics.
An ideal loss function should exhibit a monotonous increase
in accuracy metrics on the training set as the loss value
decreases. If the loss function’s reduction is not positively
correlated with improved accuracy metrics on the training
set, it is deemed invalid. In such cases, the proxy task is
prematurely terminated to mitigate computational costs.

2) Poor-performance Rejection: Throughout the proxy
task’s training phase, the loss function is considered subop-
timal if the metrics on the validation set significantly lag
behind the performance achieved by the Top loss functions
searched thus far. In such scenarios, the proxy task is con-
cluded early to reduce computational costs.
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Table 3: The comparison results of the loss functions discovered by AutoLINC in Table 11 on datasets with ρ = 5.

GNN
DATASET CORA CITESEER PUBMED AMAZON-COMPUTERS AMAZON-PHOTO
IMBALANCE RATIO:5 BACC F1 BACC F1 BACC F1 BACC F1 BACC F1

GCN

CE 64.19±0.80 64.08±1.08 41.23±0.98 32.82±1.41 65.32±0.84 55.58±1.77 83.80±0.40 76.22±0.37 86.50±0.76 82.72±1.15
RE-WEIGHT 69.74±0.98 70.09±1.00 49.49±1.62 45.45±2.00 71.52±0.91 67.24±1.35 84.34±0.30 77.52±0.34 87.02±0.69 82.64±1.06
PC SOFTMAX 73.36±0.55 73.35±0.57 59.18±1.29 57.85±1.45 73.77±0.64 72.55±0.68 85.49±0.11 78.73±0.23 87.77±0.10 83.99±0.10
BALANCEDSOFTMAX 73.98±0.81 73.61±0.77 60.66±1.08 59.72±1.13 74.67±0.87 73.35±1.03 84.99±0.39 77.48±0.29 87.29±0.66 82.92±0.91
BALANCEDSOFTMAX+TAM 74.02±0.70 74.08±0.67 61.14±1.29 60.41±1.31 74.55±0.82 73.92±0.99 84.88±0.38 77.21±0.22 87.52±0.61 83.21±0.88
RENODE 72.50±0.81 73.11±0.76 53.48±1.55 50.81±1.75 71.86±0.82 67.96±1.17 84.89±0.18 76.98±0.22 87.37±0.71 82.74±1.11

AUTOLINC 75.26±0.54 74.79±0.47 60.64±1.05 60.39±1.01 74.42±0.86 74.61±0.88 84.63±0.37 73.80±0.58 87.03±0.83 81.57±1.28

GAT

CE 57.12±1.15 56.32±1.38 37.76±1.29 28.27±1.95 64.11±0.84 55.76±1.66 73.30±0.81 67.85±1.04 72.05±1.62 67.48±1.60
RE-WEIGHT 72.99±0.88 72.05±1.08 53.72±1.24 51.61±1.52 72.65±0.77 68.80±1.14 76.98±0.58 69.89±0.78 77.68±0.77 73.72±1.21
PC SOFTMAX 72.11±0.57 71.85±0.69 57.86±1.46 55.91±1.71 73.61±0.70 72.37±0.88 75.11±0.75 68.31±1.11 79.85±0.90 75.93±0.80
BALANCEDSOFTMAX 73.04±0.37 72.44±0.43 58.97±1.27 58.20±1.33 74.25±0.63 72.82±0.77 78.21±0.66 71.52±0.74 75.72±0.88 71.54±1.21
BALANCEDSOFTMAX+TAM 73.37±0.67 72.47±0.78 60.26±0.84 59.48±0.87 74.75±0.66 74.09±0.83 79.04±0.89 72.56±1.11 77.52±1.11 73.48±1.48
RENODE 74.12±0.75 74.44±0.77 54.43±1.95 52.82±2.41 72.35±1.05 68.89±1.76 78.84±0.67 71.56±1.01 76.08±1.69 70.89±1.91

AUTOLINC 75.57±0.42 75.24±0.40 63.58±0.76 63.29±0.71 74.51±0.82 74.50±0.79 82.60±0.68 74.39±1.00 79.98±1.02 74.39±1.75

SAGE

CE 58.76±0.85 56.39±1.22 39.18±0.97 30.11±1.56 63.71±0.89 53.82±1.70 80.13±0.55 72.55±0.82 78.11±1.01 72.51±1.50
RE-WEIGHT 65.84±1.13 65.23±1.35 45.60±1.46 40.75±1.95 67.81±0.79 62.56±1.50 81.03±0.54 74.40±0.45 79.09±1.14 72.93±1.71
PC SOFTMAX 71.20±0.96 71.07±1.00 56.82±1.63 55.18±1.82 73.69±0.32 72.87±0.41 82.42±0.36 72.27±0.45 81.77±0.29 77.74±0.27
BALANCEDSOFTMAX 71.05±0.75 71.00±0.91 57.88±1.25 57.00±1.26 73.19±0.30 72.05±0.43 81.35±0.49 74.76±0.48 82.94±1.00 77.93±1.52
BALANCEDSOFTMAX+TAM 71.71±0.58 71.55±0.66 59.55±1.29 58.68±1.27 73.36±0.55 72.46±0.66 82.46±0.32 74.56±0.34 82.74±1.17 77.18±1.68
RENODE 69.30±1.40 69.21±1.44 53.14±1.53 51.05±1.87 68.39±1.09 62.26±2.03 82.41±0.32 73.82±0.71 82.79±0.69 76.90±1.17

AUTOLINC 74.15±0.69 73.80±0.70 61.41±0.85 61.13±0.78 72.59±0.71 72.08±0.74 82.79±0.36 72.96±0.64 82.31±0.95 77.67±1.36

4.5. Framework of AutoLINC

To manage non-terminal nodes within the parsing tree, we
employ a last-in-first-out strategy. The last non-terminal
node placed on the stack, denoted as NT , represents the cur-
rent node. We define the action space A as R and the state
space S as all possible traversals of complete or incomplete
parse trees in ordered sequences. In the current state st =
[a1, a2, · · · , at], the MCTS agent filters out invalid produc-
tion rules for the present non-terminal node. Subsequently,
it selects a valid rule as action at+1. This leads to the expan-
sion of the parse tree with a new terminal or non-terminal
branch, determined by at+1. Concurrently, the agent pro-
gresses to a new state st+1 = [a1, a2, · · · , at, at+1]. The
agent proceeds by removing the current non-terminal sym-
bol from NT and adding any non-terminal nodes, if they
exist, on the right-hand side of the selected rule to the stack.

Additionally, legality check, basic check strategies, and
early rejection are executed, followed by reward calculation
based on the proxy task (Eq. 1). The discovered L and
its associated reward are recorded in M . When the agent
encounters an unvisited node, a series of simulations com-
mence, with the agent randomly selecting the next node
until the parse tree is completed. In a similar manner, the
reward is computed after performing the loss function check
strategy. The highest result from these attempts serves as the
reward for the current simulation phase, backpropagating
from the current unvisited node to the root node. We then
select the top 10 loss functions, denoted as Mtop, from M
and extract the best loss function, L⋆, from Mtop. Note
that the reward is calculated based on the complete task.
Appendix Algorithm 1 describes the detailed procedure of
AutoLINC.

4.6. Proxy Task

To accelerate the search process, rewarding loss function
expressions typically necessitate training graph neural net-
works, a time-intensive endeavor. In evaluating these loss
functions, we employ a lightweight proxy training task.
Given the inherent challenges in partitioning graph data
structures, we curtail the number of training iterations on
real datasets for this proxy task. Subsequently, rewards are
computed based on the validation set’s balanced accuracy.

5. Experiments
We illustrate the effectiveness and adaptability of AutoLINC
by addressing the following key questions:

Q1: Can the loss functions discovered by AutoLINC better
adapt to class-imbalanced node classification tasks than
SOTA alternatives? (see Section 5.2)

Q2: Are the loss functions found by AutoLINC effective
across datasets with varying degrees of class imbalance?
(see Section 5.2)

Q3: Can the loss functions derived from a single GNN and
graph dataset demonstrate effective transferability to other
GNN models and datasets? (see Section 5.3)

Q4: Is AutoLINC superior to SOTA non-loss function en-
gineering methods and loss function search method? (see
Section 5.4 and 5.5)

5.1. Experimental Setup

Datasets We validate AutoLINC on well-known citation net-
works (Yang et al., 2016), comprising three datasets: Cora,
CiteSeer, and PubMed, as well as Amazon’s co-purchase
networks (McAuley et al., 2015), which consist of two
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Table 4: The performance of loss functions A, E, I, J, and K on various combinations of datasets and graph neural networks.

GNN
DATASET CORA CITESEER PUBMED AMAZON-COMPUTERS AMAZON-PHOTO
IMBALANCE RATIO: 10 BACC F1 BACC F1 BACC F1 BACC F1 BACC F1

GCN

BALANCEDSOFTMAX+TAM 69.17±0.77 69.00±0.73 55.65±1.19 54.06±1.39 72.15±1.08 71.79±1.35 83.47±0.32 74.40±0.50 82.50±0.79 76.25±1.41

CORA-GCN(A) 70.21±0.67 69.67±0.79 56.64±2.04 55.82±2.03 71.95±1.12 71.64±1.19 26.82±3.29 17.67±3.12 33.40±3.84 24.00±4.20
CITESEER-GAT(E) 69.86±0.83 68.77±0.74 56.15±2.00 55.56±2.02 71.40±1.49 71.17±1.48 35.42±5.00 21.68±4.72 35.79±4.12 23.91±4.56
PUBMED-SAGE(I) 71.13±0.82 70.47±0.88 58.32±1.56 57.64±1.61 72.66±1.01 72.50±1.18 16.74±1.20 6.48±1.21 27.24±2.20 19.37±2.94

COMPUTERS-GCN(J) 68.41±0.70 67.28±0.66 53.05±1.36 51.06±1.48 68.03±1.02 61.65±1.89 83.23±0.23 71.83±0.45 80.64±0.69 73.80±1.01
PHOTO-GCN(K) 64.50±0.34 63.46±0.34 52.93±0.76 51.82±0.86 67.18±0.80 60.28±1.57 82.36±0.21 70.55±0.38 83.06±0.80 76.66±1.18

GAT

BALANCEDSOFTMAX+TAM 66.30±1.01 65.28±1.03 54.14±1.31 51.84±1.63 72.24±0.85 71.96±0.76 75.66±0.62 69.80±1.09 65.88±0.98 61.47±0.99

CORA-GCN(A) 69.83±0.96 70.05±0.95 58.30±1.39 57.17±1.74 72.80±1.06 71.92±1.29 50.85±7.11 43.45±6.16 59.37±6.79 54.25±6.74
CITESEER-GAT(E) 70.79±0.78 70.63±0.83 58.48±1.57 57.38±1.89 72.50±1.04 71.55±1.03 40.61±7.01 35.02±6.54 55.09±7.59 49.64±7.84
PUBMED-SAGE(I) 71.51±0.69 71.32±0.68 59.11±1.28 58.02±1.43 73.62±0.83 72.98±1.10 20.47±2.01 14.45±2.06 20.62±2.16 16.29±2.82

COMPUTERS-GCN(J) 57.82±1.24 56.47±1.24 44.01±1.27 41.47±1.53 64.25±1.04 56.20±1.83 75.15±0.73 67.50±0.79 59.90±1.66 55.01±1.82
PHOTO-GCN(K) 60.46±0.89 59.04±0.85 45.45±1.35 43.07±1.59 66.78±0.98 61.24±1.46 77.95±0.86 69.21±1.04 71.17±1.59 67.49±1.42

SAGE

BALANCEDSOFTMAX+TAM 66.54±0.49 66.24±0.65 52.46±1.23 49.27±1.72 70.26±0.87 69.94±2.83 78.11±0.77 70.53±0.65 69.45±2.01 62.64±2.17

CORA-GCN(A) 68.46±0.94 68.20±0.89 56.68±1.24 55.92±1.44 70.12±0.98 69.34±1.23 14.83±0.73 5.68±0.73 21.37±1.57 11.95±1.37
CITESEER-GAT(E) 68.21±0.98 68.03±1.01 56.88±1.29 56.04±1.33 70.38±0.94 69.00±1.16 14.71±1.10 5.33±1.10 20.41±1.04 10.41±1.03
PUBMED-SAGE(I) 67.66±0.99 67.20±1.04 56.03±1.42 55.21±1.58 70.97±1.04 70.32±0.96 10.93±0.32 3.80±0.36 18.83±1.06 8.69±0.62

COMPUTERS-GCN(J) 67.80±0.62 66.35±0.61 53.01±1.39 51.05±1.48 67.66±0.85 61.92±1.32 79.89±0.67 71.11±0.41 69.77±1.85 63.20±2.26
PHOTO-GCN(K) 67.47±0.65 66.52±0.61 54.55±1.38 53.13±1.39 66.44±0.67 59.34±1.12 55.88±3.68 47.77±3.88 68.76±1.27 61.79±1.70

Table 5: The comparative results of loss functions A, E, I, J, and K on datasets with a class imbalance ratio of 5.

GNN
DATASET CORA CITESEER PUBMED AMAZON-COMPUTERS AMAZON-PHOTO
IMBALANCE RATIO: 5 BACC F1 BACC F1 BACC F1 BACC F1 BACC F1

GCN

BALANCEDSOFTMAX+TAM 74.02±0.70 74.08±0.67 61.14±1.29 60.41±1.31 74.55±0.82 73.92±0.99 84.88±0.38 77.21±0.22 87.52±0.61 83.21±0.88

CORA-GCN(A) 75.26±0.54 74.79±0.47 62.79±0.97 62.66±0.93 73.61±1.23 73.74±1.36 31.40±4.33 18.99±3.84 45.40±6.47 35.51±7.14
CITESEER-GAT(E) 74.52±0.52 74.27±0.40 63.10±0.82 62.93±0.83 73.36±1.14 73.37±1.26 36.50±4.17 23.23±4.18 35.87±4.20 24.98±3.98
PUBMED-SAGE(I) 75.41±0.38 74.84±0.48 63.04±0.78 62.85±0.75 73.31±0.94 73.26±0.92 14.29±0.68 6.20±0.66 17.73±0.80 10.25±1.28

COMPUTERS-GCN(J) 74.02±0.35 72.88±0.36 59.68±0.88 58.92±0.93 72.08±0.68 68.72±1.05 84.63±0.37 73.80±0.58 87.61±0.75 82.77±1.20
PHOTO-GCN(K) 71.47±0.54 71.21±0.55 59.31±0.96 58.23±1.05 70.18±0.79 65.18±1.30 84.22±0.29 73.63±0.55 87.03±0.83 81.57±1.28

GAT

BALANCEDSOFTMAX+TAM 73.37±0.67 72.47±0.78 60.26±0.84 59.48±0.87 74.75±0.66 74.09±0.83 79.04±0.89 72.56±1.11 77.52±1.11 73.48±1.48

CORA-GCN(A) 76.08±0.58 75.37±0.55 64.23±0.95 63.84±0.93 73.72±0.88 73.48±0.82 44.93±7.73 38.84±7.07 77.64±6.34 73.06±6.70
CITESEER-GAT(E) 75.34±0.33 74.56±0.48 63.58±0.76 63.29±0.71 73.83±0.90 73.61±0.93 48.14±7.60 41.72±6.72 71.81±7.11 66.25±7.51
PUBMED-SAGE(I) 75.87±0.42 75.34±0.52 63.85±0.88 63.49±0.88 74.82±0.63 74.63±0.83 23.65±1.36 17.06±1.28 24.37±2.25 20.34±2.88

COMPUTERS-GCN(J) 61.75±1.08 60.77±1.26 49.17±0.95 47.93±0.91 69.57±0.88 66.43±1.47 79.78±0.62 72.00±0.88 77.79±0.52 72.63±0.90
PHOTO-GCN(K) 65.27±0.72 64.72±0.82 49.68±1.04 48.31±1.20 71.09±0.62 67.56±0.94 80.71±0.73 72.12±1.18 81.00±0.82 76.61±1.10

SAGE

BALANCEDSOFTMAX+TAM 71.71±0.58 71.55±0.66 59.55±1.29 58.68±1.27 73.36±0.55 72.46±0.66 82.46±0.32 74.56±0.34 82.74±1.17 77.18±1.68

CORA-GCN(A) 72.92±0.58 72.98±0.56 62.16±0.88 61.89±0.86 72.06±0.97 71.62±1.11 15.30±1.07 5.62±0.81 19.86±0.80 10.78±0.85
CITESEER-GAT(E) 74.01±0.67 73.70±0.73 62.16±0.72 61.73±0.72 72.25±0.70 71.83±0.67 13.33±0.65 4.54±0.54 18.80±0.46 9.72±0.83
PUBMED-SAGE(I) 73.93±0.62 73.56±0.67 61.77±0.74 61.25±0.85 72.59±0.71 72.08±0.74 11.69±0.43 4.45±0.55 18.20±0.98 8.02±0.88

COMPUTERS-GCN(J) 73.18±0.51 71.61±0.61 58.03±1.08 57.31±1.10 71.40±0.57 68.70±0.71 82.72±0.36 73.15±0.68 84.43±0.51 79.28±1.18
PHOTO-GCN(K) 72.41±0.57 71.48±0.60 59.74±1.04 58.70±1.03 68.32±0.59 62.93±0.92 73.82±2.41 63.91±2.22 82.68±0.75 78.31±1.23

datasets: Computers and Photo.

Baseline To evaluate the effectiveness of the loss functions
learned by AutoLINC, we compare them with several base-
line methods, including cross-entropy, re-weight (Japkowicz
& Stephen, 2002), balanced softmax (Ren et al., 2020), PC
softmax (Hong et al., 2021), ReNode (Chen et al., 2021),
and TAM (Song et al., 2022). All experiments are conducted
ten times to calculate bAcc and F1 scores.

GNN Settings Prominent GNNs: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), and SAGE (Hamilton
et al., 2017), consist of a 2-layer neural network with a
hidden layer dimension of 256. More details on datasets,
baselines and parameters are shown in Appendix A.

5.2. Comparison with SOTA Loss Functions

The outcomes of AutoLINC and SOTA loss functions are
detailed in Tables 2 and 3. The discovered loss functions A-

O and their convergence trends are presented in Appendix
Table 11 and Appendix Fig. 4, respectively. Our obser-
vations are as follows: 1) AutoLINC consistently demon-
strates significant performance enhancements, with the most
substantial gains seen with GAT and SAGE, while GCN
experiences a more modest improvement. 2) AutoLINC
leads to remarkable performance improvements on datasets
such as Cora, CiteSeer, Amazon-computers, and Amazon-
photo. However, the enhancement on PubMed is moderate,
possibly due to its high degree of topology imbalance.

5.3. Transferability and Convergence

Transferability to Different Imbalance Ratios. We ad-
ditionally examined the transferability of the discovered
loss functions from datasets with an initial imbalance ratio
of ρ = 10 to datasets with ρ = 5, as outlined in Table 3.
Impressively, these loss functions retained their high level
of performance, underlining their robustness in facilitating
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node classification across varying class imbalance ratios.

Transferability across different datasets and GNNs. We
evaluated the transferability of five distinct loss functions,
indicated as A, E, I, J, and K (as listed in Appendix Table
11), in various combinations of data sets and graph neural
networks, as presented in Table 4. Our observations are:
1) Loss functions A, E, and I demonstrate robust transfer-
ability within datasets of the same type (citation networks)
and even surpass other loss functions in certain scenarios.
2) Likewise, J and K exhibit excellent performance when
applied to datasets of the same type (Amazon co-purchase
networks). 3) However, when these loss functions are trans-
ferred to datasets of different types, their transfer perfor-
mance diminishes. Notably, A, E, and I, trained on citation
network datasets, exhibit limited classification performance
on Amazon datasets.

Consequently, we can conclude that homophily in graph-
structured data significantly enhances AutoLINC’s trans-
ferability. Additionally, as detailed in Table 5, as the class
imbalance ratio is reduced to 5, models trained using the
loss functions from Table 11 display enhanced classification
capabilities due to the decreased class imbalance. Simi-
larly, they continue to exhibit superior transfer performance
within datasets of the same type, but their transfer perfor-
mance diminishes. In some instances, they exhibit no trans-
ferability to datasets of different types.

Convergence. In Appendix Fig. 4, we present the aver-
age bAcc curves for the discovered loss functions detailed
in Appendix Table 11. Although the convergence is rela-
tively slow, the final model outperforms other loss functions
in most cases. Additionally, Table 2 illustrates the highly
competitive performance of the best-trained model.

Discussion. We further investigate the potential perfor-
mance enhancements achieved by AutoLINC across various
GNNs. Unlike Eq. 1, we employ the lowest score among
the three scores obtained from GCN, GAT, and SAGE mod-
els for a particular dataset to evaluate the loss function. In
Table 6, we observe: 1) AutoLINC demonstrates superior
performance compared to loss functions discovered within
the scope of a single GNN model; 2) This strategy consis-
tently delivers enhanced classification performance when
compared to state-of-the-art loss functions; 3) However, the
loss functions generated by this approach exhibit reduced
transferability across different GNNs when compared to
loss functions A, E, and I.

Our method requires additional training and evaluation by
training the model on the training set using the learned loss
function and evaluating the model on the validation set to
obtain scores for the loss function. Methods based on loss
functions train the model on the training set, which is similar
to our approach in terms of the use of the training set. Addi-

tionally, the training set under the adopted class imbalance
setting is also small. Our method does not heavily rely on
the training set. The impact on the validation set is that our
proxy task requires evaluating the score of the loss function
on the validation set to guide AutoLINC in searching for the
loss function. If the validation set is too small, it may lead to
the search framework discovering loss functions overfitting
the validation set. To investigate, we conducted experi-
ments to evaluate on smaller validation sets. We used three
different combinations of datasets and networks, namely
Cora-GCN, CiteSeer-GAT, and PubMed-GraphSAGE. The
training and testing sets remained unchanged. The size of
the validation set was set to maintain 5, 10, and 20 nodes per
class. The compared methods were Balanced Softmax and
TAM, and we did not perform any tuning for any method.
Other settings were the same as in Table 2. The experimental
results are presented in Table 8.

If reducing the size of the validation set leads to a decrease
in the performance of node classification, it may be due to
overfitting of the loss function found by our method on the
validation set, or it may be because the selected best model
is not optimal, or due to the deterioration of other model
parameters. This is difficult to analyze. Therefore, the con-
clusions drawn from experiments with different validation
set sizes may not be convincing. However, by comparing
with Balanced Softmax and TAM under the same valida-
tion set size settings, our method still demonstrates good
performance on smaller validation sets. This suggests that
our method does not heavily rely on the validation set.

5.4. Comparison with SOTA Non-loss Function
Engineering Methods

To enhance the generality of the baseline, we have included
comparative experiments with SOTA non-loss function en-
gineering, GraphSMOTE (Zhao et al., 2021a), GraphENS
(Park et al., 2022), and GraphSHA (Li et al., 2023) see Ap-
pendix A for more information). The experimental setting
is the same as in Section 5.2. The results of AutoLINC
derived from Table 2 and 3 are competitive to GraphSHA.
We also combine AutoLINC with GraphSHA to discover
loss functions so as to explore the scalability of AutoLINC.
In Table 7, in comparison to GraphSMOTE, GraphENS and
GraphSHA, AutoLINC combined with GraphSHA demon-
strates advanced performancere across different datasets,
GNN backbones, and class imbalance ratios. This illustrates
the scalability of AutoLINC and the feasibility of overcom-
ing the challenges of class imbalance in node classification
from a loss function standpoint.

5.5. AutoLINC v.s. Autoloss-Zero

We demonstrate the advantages of AutoLINC over Autoloss-
Zero (Li et al., 2022a). AutolossZero-A adopts the original
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Table 6: The performance of AutoLINC trained on three GNNs. Here, ρ = 10. AutoLINC-Cora: (tanh(−((1/N × (−y) +
ŷ)))2; AutoLINC-CiteSeer: (ŷ + ((1/N × (−y)) + ŷ))2; AutoLINC-PubMed: N × ŷ4 + (− (ŷ × y)).

GNN
DATASET CORA CITESEER PUBMED
IMBALANCE RATIO: 10 BACC F1 BACC F1 BACC F1

GCN

BALANCEDSOFTMAX+TAM 69.17±0.77 69.00±0.73 55.65±1.19 54.06±1.39 72.15±1.08 71.79±1.35
AUTOLINC-CORA 69.63±0.77 68.95±0.79 57.52±1.76 57.14±1.82 71.82±1.20 71.27±1.41
AUTOLINC-CITESEER 69.55±0.60 69.06±0.61 57.78±1.63 57.10±1.71 72.09±1.54 71.29±1.60
AUTOLINC-PUBMED 69.07±0.61 69.23±0.51 55.48±1.81 54.91±1.81 73.37±1.03 72.11±1.43

GAT

BALANCEDSOFTMAX+TAM 66.30±1.01 65.28±1.03 54.14±1.31 51.84±1.63 72.24±0.85 71.96±0.76
AUTOLINC-CORA 70.55±0.96 69.97±1.02 58.31±1.61 57.40±1.64 72.23±1.09 70.98±1.26
AUTOLINC-CITESEER 70.13±0.82 69.89±0.98 59.15±1.43 58.11±1.65 72.22±1.19 71.72±1.41
AUTOLINC-PUBMED 71.41±0.62 71.66±0.67 58.51±1.45 57.21±1.75 73.00±0.96 71.80±1.12

SAGE

BALANCEDSOFTMAX+TAM 66.54±0.49 66.24±0.65 52.46±1.23 49.27±1.72 69.64±0.93 70.26±0.87
AUTOLINC-CORA 68.73±0.92 68.72±0.89 56.34±1.40 55.10±1.65 69.68±0.90 68.76±1.15
AUTOLINC-CITESEER 68.47±0.99 68.43±1.02 56.54±1.14 55.45±1.36 69.98±0.96 69.31±1.17
AUTOLINC-PUBMED 67.27±0.71 67.29±0.70 54.76±1.60 53.66±1.88 71.50±0.67 70.42±1.04

Table 7: Comparison with SOTA non-loss function engineering methods.

GNN
DATASET CORA CITESEER PUBMED
IMBALANCE RATIO 5 10 5 10 5 10

BACC F1 BACC F1 BACC F1 BACC F1 BACC F1 BACC F1

GCN

GRAPHSMOTE 69.53±0.85 69.17±1.02 65.01±0.95 64.40±1.08 50.50±0.71 47.16±0.98 41.75±1.45 36.71±2.16 67.83±0.73 65.53±1.21 64.90±1.04 61.65±1.95
GRAPHENS 75.68±0.39 75.51±0.57 70.03±0.83 69.98±0.89 62.81±0.82 62.25±0.86 54.32±1.53 51.53±2.20 75.09±0.66 73.92±0.91 72.59±1.27 70.44±1.63
GRAPHSHA 76.69±0.32 76.45±0.36 73.37±0.60 73.09±0.65 62.50±1.69 61.81±1.82 56.42±1.88 52.97±2.26 75.40±0.64 73.81±0.69 72.35±0.98 69.66±1.37
AUTOLINC 75.26±0.54 74.79±0.47 70.21±0.67 69.67±0.79 60.64±1.05 60.39±1.01 56.56±1.97 56.09±2.06 74.42±0.86 74.61±0.88 72.43±1.03 72.42±1.07
AUTOLINC(GRAPHSHA) 76.88±0.43 76.24±0.40 73.75±0.77 72.93±0.86 63.10±1.31 62.59±1.39 58.57±1.88 56.68±2.25 75.27±0.58 74.53±0.65 73.32±1.10 72.74±0.91

GAT

GRAPHSMOTE 71.84±0.55 71.44±0.55 68.93±0.86 68.16±0.97 60.66±1.04 59.73±1.43 53.94±2.59 52.52±3.14 69.96±1.27 67.11±1.72 67.93±0.90 63.28±1.58
GRAPHENS 75.18±0.68 74.39±0.68 70.02±0.94 68.99±1.00 58.94±1.63 57.79±1.82 52.13±1.56 48.54±2.07 74.10±0.80 72.85±1.04 71.22±1.04 68.22±1.39
GRAPHSHA 73.07±0.21 73.40±0.33 68.16±1.00 68.31±1.14 60.47±1.87 58.95±2.33 53.64±2.61 48.84±3.22 74.00±0.92 72.56±1.11 71.56±1.16 68.33±1.65
AUTOLINC 75.57±0.42 75.24±0.40 70.63±1.01 70.16±1.04 63.58±0.76 63.29±0.71 58.48±1.57 57.38±1.89 74.51±0.82 74.50±0.79 72.57±0.88 72.27±1.02
AUTOLINC(GRAPHSHA) 75.85±0.55 75.76±0.58 71.97±0.74 71.57±0.76 61.97±1.21 61.44±1.26 57.26±1.74 55.07±2.11 74.86±0.54 74.22±0.71 73.71±0.87 72.60±0.87

SAGE

GRAPHSMOTE 63.64±1.03 63.12±1.19 58.53±1.01 56.59±1.35 51.93±1.22 50.39±1.33 44.52±2.00 40.15±2.66 72.02±0.32 69.50±0.65 68.42±0.88 62.97±1.23
GRAPHENS 72.35±0.53 72.39±0.70 66.58±0.74 66.35±0.83 61.11±0.77 60.63±0.77 53.91±1.24 52.23±1.51 72.90±0.62 72.59±0.69 71.34±0.79 69.56±0.96
GRAPHSHA 75.74±0.44 75.24±0.54 72.47±0.52 71.91±0.60 62.09±1.53 61.81±1.57 57.01±1.85 53.95±2.31 74.48±0.53 73.91±0.62 72.84±0.81 70.79±1.19
AUTOLINC 74.15±0.69 73.80±0.70 68.51±1.02 68.49±1.02 61.41±0.85 61.13±0.78 56.78±1.27 56.16±1.37 72.59±0.71 72.08±0.74 70.97±1.04 70.32±0.96
AUTOLINC(GRAPHSHA) 76.76±0.53 76.07±0.47 73.50±0.69 72.72±0.83 61.09±1.56 59.88±1.94 57.03±1.80 53.86±2.27 75.44±0.38 75.11±0.31 73.29±1.12 72.37±1.29

Table 8: Experimental results under different sizes of validation set. Here, we set it to 5, 10, and 20 nodes per class.

DATASETS METHODS 5 10 20
& GNNS BACC F1 BACC F1 BACC F1

CORA-GCN
BALANCEDSOFTMAX 67.48±1.04 66.20±1.28 68.96±0.55 68.67±0.52 68.96±0.55 68.73±0.51
BALANCEDSOFTMAX+TAM 66.98±1.41 65.88±1.55 67.48±1.40 66.37±1.59 68.76±0.91 68.73±1.02
AUTOLINC 68.65±1.26 67.33±1.13 69.08±0.87 67.80±0.71 69.51±0.97 67.30±1.07

CITESEER-GAT
BALANCEDSOFTMAX 51.18±1.82 47.73±2.57 51.08±1.32 48.84±1.79 53.70±1.64 50.31±2.03
BALANCEDSOFTMAX+TAM 51.00±1.49 47.98±2.31 51.70±1.69 48.48±2.37 53.51±1.64 51.99±1.83
AUTOLINC 54.46±2.27 53.18±2.47 54.69±2.43 53.32±2.76 55.39±2.24 53.61±2.71

PUBMED-SAGE
BALANCEDSOFTMAX 68.98±0.76 65.57±1.21 69.09±0.74 66.78±1.16 69.77±0.73 68.63±0.87
BALANCEDSOFTMAX+TAM 69.26±0.91 66.89±1.38 69.99±0.71 68.53±1.03 69.23±0.65 69.10±0.73
AUTOLINC 67.54 ± 0.83 65.78 ± 1.26 69.58±0.79 67.81±1.34 70.14±0.47 68.20±1.02

search space of AutolossZero, modified to accommodate
graph data by excluding some inapplicable primitive opera-
tors. Correspondingly, its loss function rejection strategies
and proxy task align with AutoLINC to ensure fairness.
AutolossZero-B is a variant that introduces the parameter
N into the loss functions within its search space, while the
rest remains unchanged. Under the same time constraints
(1 hour CPU time), experimental results are presented in
Table 9. With the exception of differences in the search
method and a search depth set to 4, all other aspects remain
consistent with our AutoLINC method. AutoLINC achieves
better performance than Autoloss-Zero. This is attributed to
AutoLINC’s inclination to discover structurally simple trees
in proxy tasks, whereas AutolossZero tends to find complex
loss functions. In the task of node classification, structurally

simple trees are more likely to exhibit good performance in
overall task evaluation.

5.6. Ablation Study

The ablation studies were conducted on Cora using the GCN
model, with a total of 10 trials. In Figure 2, we showcase
the contrasting impacts of the Basic Check Strategy and
the Early Rejection Strategy, both essential components
of our approach. The Basic Check strategy consistently
outperforms the Naive approach within the same number
of evaluations, thus expediting the search process. The
adaptability of the rejection threshold, which aligns with
the Top 10, ensures that as the search progresses, only loss
functions that converge rapidly and demonstrate superior
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Table 9: The comparative results of loss functions searched by different frameworks.

GNN
DATASET CORA CITESEER PUBMED
IMBALANCE RATIO:10 BACC F1 BACC F1 BACC F1

GCN
AUTOLOSS-ZERO-A 55.57±1.02 54.71±1.08 39.63±1.07 33.02±1.74 65.79±1.61 57.17±3.43
AUTOLOSS-ZERO-B 62.64±0.89 61.58±1.21 55.73±1.67 54.29±1.94 72.41±1.08 71.71±1.19
AUTOLINC(1 HOUR) 70.60±0.62 69.13±0.53 56.63±1.97 55.98±2.05 72.90±0.71 72.56±0.86

GAT
AUTOLOSS-ZERO-A 63.07±0.84 60.13±0.89 46.44±0.99 41.05±1.47 69.43±1.19 65.85±2.48
AUTOLOSS-ZERO-B 68.03±0.49 67.67±0.53 55.61±1.24 55.50±1.12 65.82±1.77 64.65±1.57
AUTOLINC(1 HOUR) 71.34±0.90 71.16±0.91 57.78±1.62 57.19±1.76 63.69±1.69 62.65±2.27

SAGE
AUTOLOSS-ZERO-A 55.34±0.32 51.30±0.56 43.66±0.77 36.78±1.21 65.80±1.82 64.71±1.94
AUTOLOSS-ZERO-B 68.68±0.86 68.37±0.87 42.63±1.63 37.83±1.91 72.46±0.60 70.49±0.88
AUTOLINC(1 HOUR) 68.92±0.82 67.99±0.90 56.59±1.41 55.56±1.53 71.08±0.88 70.02±0.96

performance are retained.
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Figure 2: This figure illustrates the average scores of the Top
10 loss metrics during the search process. Naive represents
MCTS without the proposed strategies.

Further insight into the efficiency of AutoLINC is provided
in Table 10, which details the number of valid loss functions
explored within a 12-hour timeframe. The integration of
the Basic Check Strategy accelerates the search process
by nearly 6-fold, while the addition of the Early Rejection
Strategy enhances search efficiency by almost 8-fold. These
findings underscore the substantial improvements in the
search efficiency of AutoLINC due to the incorporation of
these two loss-checking strategies.

Table 10: AutoLINC explores the number of valid loss func-
tions within 12 hours using different strategy combinations.

BASIC CHECK EARLY REJECTION NO. LOSS SPEED-UP
STRATEGY STRATEGY FUNCTIONS

% % 8.3× 104 1×
! % 4.8× 105 5.7×
! ! 6.5× 105 7.8×

Time In Figure 3, AutoLINC exhibits the highest time con-
sumption among the compared methods. However, this
time consumption is justified by the ratio of performance
gain achieved. Additionally, the discovered loss functions

demonstrate a degree of transferability, suggesting the po-
tential for addressing the problem with reduced time costs.

100 101 102 103 104 105

Time(s)

Cross Entropy
Reweight

PC Softmax
Balanced Softmax

TAM(BS)
ReNode

GraphSmote
GraphENS
GraphSHA
AutoLINC

AutoLINC(GraphSHA)

Figure 3: The runtime on GCN across PubMed datasets
using 10 random seeds.

6. Conclusions
This paper introduces an automatic loss function search
framework with high performance and generalization capa-
bilities for addressing class-imbalanced node classification
problems. Compared to SOTA loss functions, the functions
discovered within this framework demonstrate significant
improvements in classification performance, affirming the
effectiveness of the proposed framework. We also find that
the loss functions discovered based on a single GNN and
dataset exhibit transferability to homogeneous datasets. Cru-
cially, they compete favorably with SOTA loss functions.
Furthermore, we observe that loss functions discovered un-
der high class-imbalance ratios generalize well to scenarios
with lower class-imbalance ratios, highlighting the adapt-
ability of our proposed approach. Finally, we validate that
the employed Basic Check and Early Rejection Strategies
can accelerate the operation of the search algorithm. Further
research is warranted to design an Autoloss framework with
transferability on heterogeneous graph.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
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Algorithm 1 AutoLINC
Input: Grammar G = (U,Σ, R,O), node feature matrix X , node label Y , GNN model fθ , measure σ, number of trails P , number of
episode EP , number of simulation B, tmax

Output: Optimal loss function L⋆

Initialize M = ∅
for p← 1, P do

for e← 1, EP do
Selection: Initialize s0 = ∅, t = 0, NT = [O]
while st expandable and t < tmax do

at+1 ← argmaxa∈A UCT (st, a)
Obtain st+1, NT after at+1; t← t+ 1

end while
Expansion: Randomly take an unvisited path with a Obtain st+1, NT after a; t← t+ 1
if NT = ∅ then

Validate the Legitimacy of L and check L via the Loss Check Strategy
Train the proxy task with L
r ← σ(fθ(Xval, Yval))
Record L, r in M , Backpropagate and finish the episode

end if
Simulation: Fix the state st and NT Initialize r = 0
for b← 1, B do

while st non-terminal and t < tmax do
a← Random(A)
Obtain st+1, NT after at+1; t← t+ 1

end while
if NT = ∅ then

Validate the Legitimacy of L and check
L via the Loss Check Strategy
Train the proxy task with L
r ← σ(fθ(Xval, Yval))
Record L, r in M

end if
end for
Backpropagate: Back-update parent nodes based on simulation results all the way back to the root node

end for
end for
Get the top-10 loss functions Mtop from M based on reward
Initialize best = 0, L∗ = ∅
for l← 1, 10 do
L ←Mtop(l)
Train the complete task with L
r ← σ(fθ(Xval, Yval))
if r > best then

best← r;
L⋆ ← L

end if
end for

A. Experimental Setup
Datasets We validate AutoLINC on well-known citation networks (Yang et al., 2016), comprising three datasets: Cora,
CiteSeer, and PubMed, as well as Amazon’s co-purchase networks (McAuley et al., 2015), which consist of two datasets:
Computers and Photo. In the case of citation networks, we employ training, validation, and testing set splits as described in
(Yang et al., 2016). For Amazon networks, the data set is divided into five distinct partitions using five different random
seeds, following the methodology in (Chen et al., 2021). A label ratio of 0.01 is maintained. To generate class-imbalanced
datasets, we adopt the step imbalance method as detailed in (Park et al., 2022; Zhao et al., 2021a). The minority class
contains an equal number of instances, denoted as n, while the majority class consists of n× ρ instances, where ρ represents
the class imbalance ratio. For this experiment, we set ρ to 5 or 10.

Baseline To evaluate the effectiveness of the loss functions learned by AutoLINC, we compare them with several baseline
methods, including cross-entropy, re-weight (Japkowicz & Stephen, 2002), balanced softmax (Ren et al., 2020), PC softmax
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Table 11: The searched loss functions, represented in the table, exemplify their effectiveness. For instance, the entry
labeled ID A showcases the evaluation of node classification accuracy using GCN on the Cora training set, highlighting the
high-performance loss function discovered by AutoLINC. Here, ρ = 10.

ID Dataset GNN Discovered Loss Function

A Cora GCN exp(tanh2
(

1
N
× (−y) + ŷ

)
)

B CiteSeer GCN (− (N × ŷ) + y)2

C PubMed GCN ŷ +
(

1
N
× (−y) + ŷ

)2
D Cora GAT

(
− tanh

(
1
N
× (−y) + ŷ

))2
E CiteSeer GAT

(
tanh (−ŷ) + tanh (y)× 1

N

)2
F PubMed GAT

(
exp( 1

N
× (−y)× 2) + ŷ

)2
G Cora SAGE tanh2

(
tanh

(
1
N
× (−y) + ŷ

))
H CiteSeer SAGE

(
ŷ +

(
− 1

log(tanh(y))+N

))2

I PubMed SAGE (− (tanh (y) + ŷ × (−N)))× ŷ

J Amazon-computers GCN
(
(ŷ +N) + log

(
log

(
1√
y

)))2

K Amazon-photo GCN
(
ŷ +

√√
N × log2 (y)

)2

L Amazon-computers GAT log
(
(y + (−ŷ))2 + log (N)

)
M Amazon-photo GAT

∣∣−y +
(
ŷ + tanh2 (N)

)∣∣
N Amazon-computers SAGE

(
ŷ +

(
N + log

(
log

(
1√
y

))))2

O Amazon-photo SAGE ŷ × (ŷ + (N + log (− log (y))))

(Hong et al., 2021), ReNode (Chen et al., 2021), and TAM (Song et al., 2022). Cross-entropy and re-weight serve as
fundamental baseline approaches, while balanced softmax and PC softmax are designed to address long-tail issues in
computer vision. On the other hand, ReNode and TAM are specifically tailored to tackle imbalanced node classification
problems. For ReNode, we enhance it by combining it with the focal loss, with a focal hyperparameter set to 2.0, and topology
imbalance bounds set to 0.5 and 1.5. In the case of TAM, we carefully select parameters based on the average of accuracy
and F1 score from the recommended settings in its original paper. These parameters include the Anomalous Connectivity
Margin term coefficients ({0.25, 0.5, 1.5, 2.5}), the Anomalous Distribution-aware Margin ({0.125, 0.25, 0.5}), and the
minimum temperature of class-wise temperature ({0.8, 1.2}). For GraphSMOTE, we choose the GraphSMOTEO version
which is without pretraining, as it shows excellent performance among multiple versions. For GraphENS, we set the feature
masking hyperparameter k at 0.01 and the temperature τ at 2. For GraphSHA, we keep the default setting in the code.

Experimental Settings To address the sparsity of the search space and the tendency for simulated formulas to exceed
depth limits and include nonterminal nodes, we employ a larger number of simulations, specifically 100. We consider the
maximum value simulated during these 100 simulations as the reward score for the state. In the context of citation network
datasets, one trial comprises 100,000 episodes, and we conduct a single trial. For the Amazon co-purchase network, one
trial involves 200,000 episodes, and we perform 10 trials. In the case of citation networks, all experiments are conducted ten
times to calculate bAcc and F1 scores, while for the Amazon networks, each partition is executed three times. It’s important
to note that all experiments in this paper are performed using a single NVIDIA GeForce RTX 3090 GPU.

GNN Settings We perform experiments utilizing three prominent GNN models: GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2018), and SAGE (Hamilton et al., 2017). All three GNNs consist of a 2-layer neural network with
a hidden layer dimension of 256. Other hyperparameters align with those detailed in (Song et al., 2022). This includes
employing the Adam (Kingma & Ba, 2014) optimizer, training the model for 2000 epochs, and selecting the optimal model
parameters based on the average accuracy and F1 scores on the validation set. The initial learning rate is configured at 0.1
and undergoes halving when there is no improvement in the validation set loss for 100 consecutive generations. Additionally,
weight decay is set to 0.0005 and is applied to all learnable parameters except for the last convolutional layer.
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Table 12: The searched loss functions by AutoLINC combined with GraphSHA. The evaluation results of these loss
functions are presented in Table 7.

Frame Dataset GNN Discovered Loss Function

AUTOLINC(GraphSHA) Cora GCN ŷ × ((ŷ − y)×N + ŷ)
AUTOLINC(GraphSHA) CiteSeer GCN (y −N × ŷ3)2

AUTOLINC(GraphSHA) PubMed GCN ŷ + 1
exp(N×ŷ×y)

AUTOLINC(GraphSHA) Cora GAT N + (y +
√
−ŷ)2

AUTOLINC(GraphSHA) CiteSeer GAT N × (y − ŷ)4

AUTOLINC(GraphSHA) PubMed GAT ŷ + y × exp(N × |ŷ|2)
AUTOLINC(GraphSHA) Cora SAGE N × |ŷ − tanh(ŷ + y)|
AUTOLINC(GraphSHA) CiteSeer SAGE N × tanh2(tanh(y2 − ŷ))

AUTOLINC(GraphSHA) PubMed SAGE |ŷ|
N×

√
ŷ+y

Table 13: The searched loss functions by AutolossZero and AutoLINC. The evaluation results of these loss functions are
presented in Table 9.

Frame Dataset GNN Discovered Loss Function

AUTOLOSS-ZERO-A Cora GCN ((ŷ + log y)× (tanh 1 + ŷ + y))2

AUTOLOSS-ZERO-A CiteSeer GCN tanh (tanh (−ŷ)) + tanh
√
ŷ + y

AUTOLOSS-ZERO-A PubMed GCN |1 + y| × (ŷ − y)× ŷ8

AUTOLOSS-ZERO-A Cora GAT tanh
(√

ŷ + y
)
+ (|ŷ| × exp(y))2

AUTOLOSS-ZERO-A CiteSeer GAT ((y2−y)×(−y×√
y)×log(log(1)))

exp

AUTOLOSS-ZERO-A PubMed GAT ((y + 1)× ŷ)2 +
(
exp+

√
y
)

AUTOLOSS-ZERO-A Cora SAGE
((
tanh ŷ + ŷ2

)
− 2× y

)2
AUTOLOSS-ZERO-A CiteSeer SAGE

(
y +
√
ŷ + y + exp

√
−ŷ

)
AUTOLOSS-ZERO-A PubMed SAGE |y × ŷ − 2|
AUTOLOSS-ZERO-B Cora GCN

(
exp(y)× ŷ2 + tanh ŷ

)
× (y × |N |+ y +N + ŷ)

AUTOLOSS-ZERO-B CiteSeer GCN tanh((−y + ŷ)× (N + 2× ŷ))
AUTOLOSS-ZERO-B PubMed GCN −√y × (tanh ŷ + ŷ) + (logN +N)× ŷ2

AUTOLOSS-ZERO-B Cora GAT (tanh(exp(ŷ)) + 2× y × ŷ)× (N + y + ŷ)× ŷ

AUTOLOSS-ZERO-B CiteSeer GAT
√
ŷ +N × tanh ŷ + ŷ2 × y ×

√
N

AUTOLOSS-ZERO-B PubMed GAT 1

N×tanh ŷ+ŷ+ 1
y

AUTOLOSS-ZERO-B Cora SAGE 2× ŷ × (tanh(N × ŷ)− y + tanh ŷ)

AUTOLOSS-ZERO-B CiteSeer SAGE |ŷ|+ ŷ + (y + ŷ)× y × ŷ + 2×N ×
√

exp(ŷ)
AUTOLOSS-ZERO-B PubMed SAGE ŷ4 × tanh ŷ ×N − tanh(y × ŷ)
AUTOLINC(1 HOUR) Cora GCN (tanh(N × ŷ)− y)2

AUTOLINC(1 HOUR) CiteSeer GCN (y −N × ŷ)2

AUTOLINC(1 HOUR) PubMed GCN N × ŷ2 − y × ŷ
AUTOLINC(1 HOUR) Cora GAT

√
ŷ × (ŷ − y

N
)

AUTOLINC(1 HOUR) CiteSeer GAT ŷ2 − y×ŷ
N

AUTOLINC(1 HOUR) PubMed GAT exp(−ŷ × (y +N))× y
AUTOLINC(1 HOUR) Cora SAGE (tanh(N × ŷ) +

√
−y)2

AUTOLINC(1 HOUR) CiteSeer SAGE N × ŷ2 − y × ŷ
AUTOLINC(1 HOUR) PubMed SAGE N × ŷ2 − y × ŷ
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Figure 4: The convergence of loss function discovered in Table 11.
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Figure 5: The runtime on GCN across three citation network datasets using 10 random seeds.
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