
Under review as a conference paper at ICLR 2024

RECURSIVE NEURAL ORDINARY DIFFERENTIAL
EQUATIONS FOR PARTIALLY OBSERVED SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying spatiotemporal dynamics is a difficult task, especially in scenarios
where latent states are partially observed and/or represent physical quantities. In
this context, first-principle ordinary differential equation (ODE) systems are often
designed to describe the system’s dynamics. In this work, we address the problem
of learning parts of the spatiotemporal dynamics with neural networks when only
partial information about the system’s state is available. Taking inspiration from
recursive state estimation and Neural ODEs, we outline a general framework in
which complex dynamics generated by differential equations with distinguishable
states can be learned in a principled way. We demonstrate the performance of the
proposed approach leveraging both numerical simulations and a real dataset ex-
tracted from an electro-mechanical positioning system. We show how the under-
lying equations fit into our formalism and demonstrate the improved performance
of the proposed method when compared with standard baselines.

1 INTRODUCTION

Ordinary differential equations (ODEs) are used to describe the state evolution of many complex
physical systems in engineering, biology, and other fields of natural sciences. Traditionally, first-
principle notions are leveraged in designing ODEs as a form to impose physical meaning and in-
terpretability (Psichogios & Ungar, 1992) of latent states. A major issue, however, is the inherent
complexity of real-world problems for which even carefully designed ODE systems cannot account
for all aspects of the true underlying physical phenomenon (Karniadakis et al., 2021). Moreover,
we often require prediction of systems whose dynamics are not fully understood or are partially
unknown (Imbiriba et al., 2022).

In this context, Neural ODEs (NODEs) (Chen et al., 2018) emerged as a powerful tool for learn-
ing complex correlations directly from the data, where residual neural networks (NNs) are used to
parameterize the hidden ODEs’ states. Extensions of NODE were developed to improve learning
speed (Xia et al., 2021; Massaroli et al., 2021) and learning longtime dependencies in irregularly
sampled time series(Xia et al., 2021). A major challenge in learning NODEs arises when latent
states of interest contribute indirectly to the observations. This is the case when an unobserved
state (in the sense that it is not measured) influences an observed state. In this scenario, NODE’s
standard solutions, which are optimized using the adjoint method (Boltyanskiy et al., 1962), are
compromised. Furthermore, NODE systems may have infinitely many solutions since parameters
and unobserved states are estimated jointly. As a consequence, even when the model is capable of
fitting the data, unobserved states cannot be accurately inferred without incorporating some kind
of prior information in the model (Demirkaya et al., 2021). Recently, new hybrid strategies have
focused on mixing first-principle models and NODEs to constrain the solution space and obtain
meaningful estimations of missing states (Imbiriba et al., 2022; Demirkaya et al., 2021; Ghanem
et al., 2021). Despite the lack of a clear formalization, in these works the authors were imposing
some kind of distinguishability among states by adding known parts of the dynamics, resulting in
hybrid first-principle data-driven models. Nevertheless, these works focus on state estimation using
data-driven components to improve or augment existing dynamics but fail to learn global models
and do not scale for large parameterized models.

In this paper, we propose a sequential optimization approach that at each time step solves an alternat-
ing optimization problem for learning system dynamics under partially observed states, when states

1



Under review as a conference paper at ICLR 2024

are distinguishable. The approach focuses on learning unknown dynamics from data where the state
related to the unknown dynamics is unobserved. Since the dynamics is unknown, we assume it is
described by parametric models such as NNs. The proposed solution leverages the relationship be-
tween many recursive state-space estimation procedures and Newton’s method (Humpherys et al.,
2012) to develop an efficient recursive NODE learning approach capable of sequentially learning
states and model parameters. The benefit of the sequential strategy is twofold: (1) reduce the need
for accurate initial conditions during training; (2) avoids simultaneous estimation of all states, mak-
ing second-order optimization methods feasible. Furthermore, the proposed approach exploits the
distinguishable property of states by designing an alternating optimization strategy with respect to
states and parameters. The result is an interconnected sequential optimization procedure, where at
each step model parameters and data are used to estimate latent states, and corrected latent states
are used to update the model parameters in the current optimization step. Such alternating opti-
mization approach improves the optimization of system parameters since it estimates unobserved
hidden states and uses them in learning system parameters. In the case of RNODE, it also prevents
vanishing gradients. Moreover, we define distinguishable latent variables and test the proposed Re-
cursive NODE (RNODE) in hybrid scenarios where NNs replace parts of the ODE systems such that
the distinguishability of latent variables is kept. Finally, as a side effect of the recursive paradigm
adopted the proposed strategy can assimilate data and estimate initial conditions by leveraging its
sequential state estimation framework over past data.

2 RELATED WORK

2.1 PARTIAL OBSERVATION

In the context of data-driven ODE designs, most learning frameworks assume that all states are ob-
served in the sense that they are directly measured. This assumption does not reflect many real-world
scenarios where a subset of the states are unobserved. GP-SSM is a well-established approach used
for dynamic systems identification (McHutchon et al., 2015; Ialongo et al., 2019). GP-SSM can be
adapted by introducing a recognition model that maps outputs to latent states to solve the problem of
partial measurements (Eleftheriadis et al., 2017). Nevertheless, these methods do not scale well with
large datasets and are limited to small trajectories(Doerr et al., 2018). Indeed, (Doerr et al., 2018)
minimizes this problem by using stochastic gradient ELBO optimization on minibatches. How-
ever, GP-SSM-based methods avoid learning the vector field describing the latent states and instead
directly learn a mapping from a history of past inputs and observations to the next observation.

Similar approaches to the recognition models have been used for Bayesian extensions of NODEs,
where the NODE describes the dynamics of the latent state while the distribution of the initial latent
variable given the observations and vice versa are approximated by encoder and decoder networks
(Yildiz et al., 2019; Norcliffe et al., 2021). The encoder network, which links observations to latent
state by a deterministic mapping or by approximating the conditional distribution, can also be a Re-
current Neural Network (RNN) (Rubanova et al., 2019; Kim et al., 2021; De Brouwer et al., 2019),
or an autoencoder (Bakarji et al., 2023). Despite focusing on mapping observations to latent states
with neural networks and autoencoders, these works were not demonstrated to learn parameterized
models under partial observations. Moreover, this parameterized line of work of mapping observa-
tion to latent states suffers from undistinguishability problem since several latent inputs could lead
to the same observation. Recently, sparse approaches such as (Bakarji et al., 2022) merged encoder
networks to identify a parsimonious transformation of the hidden dynamics of partially observed
latent states. Moreover, Nonlinear Observers and recognition models were combined with NODEs
to learn dynamic model parameters from partial observations while enforcing physical knowledge in
the latent space (Buisson-Fenet et al., 2022). Differently from the aforementioned methods, in this
work, we propose a recursive alternating approach that uses alternating Newton updates to optimize
a quadratic cost function with respect to states and model parameters. Furthermore, the proposed
strategy provides a systematic way to estimate initial conditions from historical data.

2.2 SECOND ORDER NEWTON METHOD

Despite the efficiency and popularity of many stochastic gradient descent methods (Robbins &
Monro, 1951; Duchi et al., 2011; Hinton et al., 2012; Kingma & Ba, 2014) for optimizing NNs, great
efforts have been devoted to exploiting second-order Newton methods where Hessian information is

2



Under review as a conference paper at ICLR 2024

used, providing faster convergence (Martens & Grosse, 2015; Botev et al., 2017; Gower et al., 2016;
Mokhtari & Ribeiro, 2014). When training neural networks, computing the inverse of the Hessian
matrix can be extremely expensive (Goldfarb et al., 2020) or even intractable. To mitigate this issue,
Quasi-Newton methods have been proposed to approximate the Hessian pre-conditioner matrix such
as Shampoo algorithm (Gupta et al., 2018), which was extended in (Anil et al., 2020) to simplify
blocks of the Hessian, and in (Gupta et al., 2018) to be used in variational inference second-order
approaches (Peirson et al., 2022). Similarly, works in (Goldfarb et al., 2020; Byrd et al., 2016) fo-
cused on developing stochastic quasi-Newton algorithms for problems with large amounts of data. It
was shown that recursive the extended Kalman filter can be viewed as Gauss-Newton method (Bell,
1994; Bertsekas, 1996). Moreover, Newton’s method was used to derive recursive estimators for
prediction and smoothing (Humpherys et al., 2012). In this paper, we develop a recursive Newton
method that mitigates the problem of partial observations of latent states.

3 MODEL AND BACKGROUND

In this section, we describe our modeling assumptions, discuss the distinguishability of latent states,
and present the time evolution of the resulting generative model.

3.1 MODEL

In this work, we focus on stochastic differential equations (SDE) as defined in (Øksendal &
Øksendal, 2003) to describe the evolution of system parameters θ(t) ∈ P ⊂ Rdθ , latent states
x(t) ∈ X ⊂ Rdx , and observations (or measurements) y(t) ∈ Y ⊂ Rdy . The joint process can be
described as:

θ̇(t) = g(θ(t)) + ν̇(t)

ẋ(t) = f(x(t), θ(t), u(t)) + ϵ̇(t)

y(t) = h(x(t)) + ζ(t)

(1)

where ν(t), ϵ(t) and ζ(t) are Wiener processes. u(t) ∈ U ⊂ Rdu is a vector of external inputs, and
the functions g : P → P , f : X × P × U , and h : X → Y describe the system parameters, latent
and observation processes, respectively. To describe the evolution of system parameters θ(t) and
latent states x(t) we consider the process in equation 1 to be first-order Markov process evolving
over time t.

The partial observation problem: Ideally, states x(t) would be directly observed, and thus appear
as an element in y(t). In practice, some of these states could influence y(t) only indirectly by acting
on other measurable states. That is when classical training fails. In this work, we are interested in
learning the unknown dynamics governing unobserved states. Note that this scenario poses further
challenges over the estimation process since the recovery of latent states can be compromised.

3.2 DISTINGUISHABILITY OF NONLINEAR SYSTEMS

The task of recovering latent states x(t) from a sequence of observations and inputs DN
∆
=

{u(0), y(0), . . . , u(N − 1), y(N − 1)} rests on our ability to distinguish two observations h(x(ta))
and h(x(tb)) from one another.

Definition 3.1 We say that a pair of latent variables x(ta) and x(tb) are distinguishable with respect
to a control sequence u(t) ∈ U ⊂ Rdu if

h(x(ta)) ̸= h(x(tb)) ∀x(ta)̸=x(tb) (2)

Otherwise, we say that the pair is indistinguishable with respect to u(t).

If under a control input u(t), h(x(ta)) = h(x(tb), then the state estimator cannot identify the true
state x since it can assume the true state to be x(ta) when it’s x(tb) and vice versa. Since our
procedure relies on finding latent states x(t) given a control input u(t) and observation y(t) and
uses it to identify the ODE system, by estimating the model parameters θ(t), estimating the wrong
state x(t) will result in finding the wrong model parameters, hence training will fail. A way to
impose state distinguishability is to incorporate prior knowledge regarding the relationship of states
focusing on achieving the properties stated in Definition 3.1.

3



Under review as a conference paper at ICLR 2024

3.3 GENERATIVE MODEL

In the continuous model presented in (1), a continuous-time description for the latent processes is
assumed even though the observations are recorded at discrete time points. The time evolution of the
states x(t) can therefore be expressed as time integration of (1) using an off-the-shelf ODE solver:

x(ti) = x(ti−1) +

∫ ti

ti−1

f(x(t), u(t), θ(t))dt+

∫ ti

ti−1

∂ϵ(t)

∂t
dt

= ODESolve(f, x(ti−1), u(ti−1), θ(ti−1), ti−1, ti) + ϵ(t)

(3)

we define

fo(x(ti−1), u(ti−1), θ(ti−1)) = ODESolve(f, x(ti−1), u(ti−1), θ(ti−1), ti−1, ti) + ϵ(t) (4)

and
go(θ(ti−1)) = ODESolve(g, θ(ti−1), ti−1, ti), θ(ti−1) + ν(t) . (5)

Based on the continuous model presented in (1) we present the time evolution of the latent states by
the following generative model:

θ(ti) = go(θ(ti−1)) + ν(t)

x(ti) = fo(x(ti−1), u(ti−1), θ(ti−1)) + ϵ(t)

y(ti) = h(x(ti)) + ζ(t) .

(6)

Figure 1: The generative model (left panel), and one step of RNODE (right panel).

4 METHOD

Recursive Neural Ordinary Differential Equations (RNODE) finds the model parameters θ(t) and
latent states x(t) given a dataset D ≜ {u(t0), y(t0), . . . , u(tN−1), y(tN−1)} of discrete observations
and control inputs when x(t) is partially observed. Inspired by previous work describing the link
between second-order Newton’s method and the Kalman filter (Humpherys et al., 2012), the cost
function L is updated and solved sequentially to find latent states x(t) and model parameters θ(t) in
one unified framework. RNODE assumes model distinguishability which implies that latent states
x(t) are recoverable from observations y(t). In this context, we break the optimization steps into
two concerning optimization with respect to x(t) and θ(t).

4.1 SEQUENTIAL NEWTON DERIVATION

We denote by ΘN = [θ(t0), . . . , θ(tN )] and XN = [x(t0), . . . , x(tN )] to be the set of latent states
sampled at t0, t1, . . . , tN . To train the model, we optimize (ΘN , XN ) to minimize a quadratic cost
function starting from initial {x(t0), θ(t0)} using a collection of combined observation and input
sequences D where the cost function is defined as:

LN (ΘN , XN ) =
1

2

N∑
i=1

∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1
x

+ ∥y(ti)− h(x(ti))∥2R−1
y

+ ∥θ(ti)− go(θ(ti−1))∥2Q−1
θ

.

(7)

4



Under review as a conference paper at ICLR 2024

where Qx, Ry and Qθ are known positive definite matrices, and ∥a− b∥2A−1 = (a− b)TA−1(a− b).
As the Hessian’s inverse is in general intractable, finding optimal solution (Θ∗

N , X∗
N ) using the

second order Newton method over the whole data set of size N is unfeasible. For this reason,
we resort to a sequential strategy by introducing a modified quadratic function Li(Θi, Xi). Let us
re-write the cost function at time ti as:

Li(Θi, Xi) = Li−1(Θi−1, Xi−1) +
1

2
∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1

x

+
1

2
∥y(ti)− h(x(ti))∥2R−1

y
+

1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

(8)

where Li−1(Θi−1, Xi−1) and Li(Θi, Xi) are the cost functions at times ti−1 and ti, respectively;
Θi = [θ(t0), . . . , θ(ti)] and Xi = [x(t0), . . . , x(ti)]. In the sequential optimization paradigm, Θi−1

and Xi−1 are assumed known and at the i-th optimization step is performed only with respect to
{θ(ti), x(ti)}. When {θ(ti), x(ti)} are determined jointly such as in (Humpherys et al., 2012), the
optimization process will suffer from vanishing gradients under partial observations. However, if
x(ti) is distinguishable, we can circumvent the vanishing gradient problem by first optimizing with
respect to x(ti) and then θ(ti). This will allow us to circumvent the partial observability problem and
enable the use of an estimate of the unobserved state in training. To do so, we break the optimization
function (8) into four alternating optimization procedures aiming at finding x̂(ti) and then finding
θ̂(ti) that minimizes (8) given x̂(ti). Let us begin by defining two intermediate optimization
functions Lx

i|i−1 and Lθ
i|i−1 in (9) and (10) respectively as follows:

Lx
i|i−1(Θi, Xi) = Li−1(Θi−1, Xi−1) +

1

2
∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1

x

+
1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

(9)

and
Lθ
i|i−1(Θi, Xi−1) = Li−1(Θi−1, Xi−1) +

1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

. (10)

We proceed by optimizing (9) for x(ti) and (10) for θ(ti), yielding the respective solutions below:

θ̂(ti|ti−1) = go(θ̂(ti−1))

x̂(ti|ti−1) = fo(x̂(ti−1), θ̂(ti−1)) .
(11)

Next, we define the two optimization functions responsible for the update steps for states and pa-
rameters. Specifically, we define Lx

i as:

Lx
i (Θi, Xi) = Lx

i|i−1(Θi, Xi) + ∥y(ti)− h(x(ti))∥2R−1
y

(12)

to be optimized with respect to x(ti) by minimizing Lx
i given intermediate values of equation (11)

where:
x̂(ti) = x̂(ti|ti−1)−

[(
∇2Lx

i (Θi, Xi)
)−1

]
i,:
∇Lx

i (Θi, Xi) (13)

The solution to the problem above is given by given by (16). Equivalently, we define the update
optimization function Lθ

i as:

Lθ
i (Θi, Xi) = Lθ

i|i−1(Θi, Xi−1) + ∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1
x

+ ∥y(ti)− h(x(ti))∥2R−1
y

(14)

to be optimized with respect to θ(ti) by minimizing Lθ
i given intermediate values of equation (11)

and (16) as follows:

θ̂(ti) = θ̂(ti|ti−1)−
[(
∇2Lθ

i (Θi, Xi−1)
)−1

]
i,:
∇Lθ

i (Θi, Xi−1) (15)

The resulting optimal variable θ̂(ti) is given by (17). The procedure is repeated until ti = tN . We
present our main result in the following theorem:

5



Under review as a conference paper at ICLR 2024

Theorem 4.1 Given θ̂(ti−1) ∈ Θ̂i−1 and x̂(ti−1) ∈ X̂i−1, and known Pθi−1
∈ Rdθ×dθ and

Pxi−1
∈ Rdx×dx , the recursive equations for computing x̂(ti) and θ̂(ti) that minimize (8) are given

by the following :

x̂(ti) = fo(x̂(ti−1), θ̂(ti−1))−P−
xi
HT

i

(
HiP

−
xi
HT

i +Ry

)−1
[
h
(
fo(x̂(ti−1), θ̂(ti−1))

)
−y(ti)

]
(16)

θ̂(ti) = go(θ̂(ti−1))−Gθi−1
P−
θi
FT
θi−1

[
fo(x̂(ti−1), θ̂(ti−1))− x̂(ti)

]
(17)

with P−
θi

, P−
xi

being intermediate matrices and Pθi
and Pxi

being the lower right blocks of
(∇2Lθ

i )
−1 and (∇2Lx

i )
−1 respectively:

P−
θi

= Pθi−1 − Pθi−1F
T
θi−1

(
Qx + Fθi−1Pθi−1F

T
θi−1

)
Fθi−1Pθi−1

P−
xi

= Fxi−1
Pxi−1

Fxi−1
+Qx

Pxi
= P−

xi
[I +Hi

(
Ry −HiP

−
xi
HT

i

)
HiP

−
xi
]

Pθi = Qθ +Gθi−1
P−
θi
Gθi−1

(18)

with Hi, Fxi−1
, Gθi−1

, and Fθi−1
being the jacobians of the vector fields h, fo and go at

x̂(ti|ti−1), x̂(ti−1) and θ̂(ti−1) :

Hi = ∂h(x̂(ti|ti−1))
∂x̂(ti|ti−1)

, Fxi−1 = ∂fo(x̂(ti−1),θ̂(ti−1))
∂x̂(ti−1)

, Fθi−1 = ∂fo(x̂(ti−1),θ̂(ti−1))

∂θ̂(ti−1)
and Gθi−1 =

∂go(θ̂(ti−1))

∂θ̂(ti−1)
·

The proof of Theorem 4.1 is provided in Appendix A.

As a consequence of Theorem (4.1), x̂(ti) is computed according to (16) using θ̂(ti−1). θ̂(ti) is
computed afterwards according to (17) using x̂(ti) that was previously found in (16). This al-
ternating procedure between x(ti) and θ(ti) is explained in the right panel of Figure 1, which
depicts the four alternate optimization steps performed for each iteration ti. The computational
complexity of RNODE is detailed in Appendix D. An epoch of the RNODE has a complexity
of O(N(d3x + 2d2θdx + 2dθd

2
x)). Under the assumption that dθ ≫ dx the complexity becomes

O(N(2d2θdx + 2dθd
2
x)). During testing, however, the complexity becomes O(dθ) per step if inte-

grating the learned mean vector field.

4.2 OBTAINING INITIAL CONDITION FROM HISTORICAL DATA

Obtaining initial conditions x(t0) during test time is often challenging. However, the proposed
recursive framework can easily provide an estimate of the initial condition if historical data DH ≜
{u(t−N ), y(t−N ), . . . , u(t0), y(t0)} is available as described in equation 58 in Appendix C. Thus,
given the model θ∗ we can exploit the update equation for the states, see (17), to provide x̂(t0).

5 EXPERIMENTS

The performance of RNODE is assessed in comparison to state-of-the-art model learning methods
on several challenging non-linear simulations and real-world datasets. We employed five different
dynamical models to demonstrate the effectiveness of the proposed approach. For each dynamical
model, we assumed that we don’t have parts of the governing dynamics available, and replaced them
with a neural network. In all of our experiments, we assume the latent process to be constant, that
is g(θ(t) = 0, since optimal θ(t)∗ should be constant. Euler integrator is used as the ODE solver
for efficiency and fast computation speed. Since the proposed mechanism rests on determining
unobserved latent states from observed measurements, successful learning of the model relies on the
distinguishability of latent states as defined in Definition (3.1). To ensure that, we assume partial
knowledge of system ODE’s.

As benchmark methods, we compared RNODE with three other well-established techniques for
dynamical machine learning, namely NODE (Chen et al., 2018), RM (Buisson-Fenet et al., 2022)

6



Under review as a conference paper at ICLR 2024

and PR-SSM (Doerr et al., 2018). Currently, no code is available for the model learning frame-
works presented in (Eleftheriadis et al., 2017). Moreover, the available code related to the works
in (McHutchon et al., 2015; Ialongo et al., 2019) could be modified to account for the partial ob-
servation scenario. However, these algorithms become computationally unfeasible for medium and
large datasets (Doerr et al., 2018). For that reason, we were not able to benchmark against these
approaches. We emphasize that modifying the above-mentioned methods to either account for the
ODE structure or make them computationally tractable is out of the scope of this paper. This also
applies to the PRSSM method. Nevertheless, for the sake of providing comparative results, we still
include results using PR-SSM which is computationally more efficient than other Gaussian process-
based models but does not account for the ODE structure.

The benchmark results are summarized in Table 1 which represents normalized Root Mean Square
Error (nRMSE) values for each model and method. In Figs. 2-5 we compare RM, PR-SSM, and
our proposed method. All results were obtained with learned mean vector field integrated over
time. Each subfigure represents the dynamics of a single state and contains ODE solutions for each

method. We computed nRMSE using nRMSE =

√
1
n

∑n
i=1(x(ti)−x̂(ti))2

max(x(t))−min(x(t)) , where x̂(ti) and x(ti) are
the estimated and true states at time ti, respectively, and n is the number of data points.

Table 1: Comparison of nRMSE values for different dynamical models and methods.

Methods Neuron
model

Yeast
Glycolysis

Cart-pole Harmonic
Oscillator

EMPS

RM (Buisson-Fenet et al., 2022) 2.39 · 10−1 6.30 · 10−1 1.06 · 100 2.36 · 10−2 6.20 · 10−1

PR-SSM (Doerr et al., 2018) 4.05 · 10−1 1.59 · 100 1.52 · 100 1.21 · 100 4.05 · 101

NODE (Chen et al., 2018) 7.03 · 101 3.74 · 10−1 2.84 · 10−1 4.65 · 10−1 1.65 · 100

RNODE (Proposed) 1.54·10−1 3.39·10−2 9.41·10−3 5.08·10−3 9.50·10−2

5.1 HODGKIN-HUXLEY NEURON MODEL

0 10 20 30 40

time [ms]

−50

0

50

V
m

[m
V

]

0 10 20 30 40

time [ms]

0.5

1.0

n
g
a
te

0 10 20 30 40

time [ms]

0.0

0.5

1.0

m
g
a
te

0 10 20 30 40

time [ms]

0

1

h
g
a
te

GT

RM

PR-SSM

NODE

RNODE

Figure 2: Learned state trajectories of HH model after training
with RM, PR-SSM, NODE, and RNODE methods. Results
are compared to ground truth ODE system trajectory labeled
as GT. The proposed approach (RNODE) is capable of dis-
cerning the true trajectory for the unobserved state hgate.

The renowned Hodgkin-Huxley
Neuron Model (HH) (Hodgkin
& Huxley, 1952) is an ODE sys-
tem that describes the membrane
dynamics of action potentials
in neurons, which are electrical
signals used by neurons to com-
municate with each other. The
model has four states: V̇m is
the membrane potential, ngate,
mgate, and hgate are gating vari-
ables controlling the membrane’s
ionic permeability. The equations
governing the ODE system are
provided in Eqs. 46-49 of the Ap-
pendix B.2. We train our recursive
model with the assumption that
Eq. (49) governing dynamics of hgate is unknown and its corresponding state is not observed,
i.e., y(ti) = (Vm(ti), ngate(ti),mgate(ti)). We replace the dynamics describing ḣgate(t) by
a neural network consisting of three layers. The first layer is a 20 units layer followed by
an Exponential Linear Unit (ELU ) activation function, second layer is also a 20 unit layer
followed by a tanh activation function. The last layer consists of 10 units with a sigmoid
activation function. We generate our dataset by applying a constant control input u(ti) to the
HH model described in 46-49 for 50000 time steps with dt = 10−3s and by collecting measure-
ments and inputs D ≜ {u(t0), y(t0), . . . , u(tN−1), y(tN−1)}. We train our model on D with
Px0

= 10−2Idx
, Pθ0 = 102Idθ

Ry = 10−10Idy
, Qx = 10−5Idx

and Qθ = 10−2Idθ
. At the

beginning of each epoch, we solve the problem (58) of the Appendix C to get the initial condition.
Final optimal parameters θ̂(tN ) and initial condition x̂(t0) are saved and collected at the end of

7



Under review as a conference paper at ICLR 2024

training. Fig. 2 depicts the dynamics of the system θ̂(tN ) generated according to the generative
model described in Eq (3) starting from initial condition x̂(t0). The lower right panel demonstrates
the superiority of the proposed model at learning hgate.

0 20000 40000

Time step

0

100

V
m

[m
V

]

0 20000 40000

Time step

0.0

0.5

1.0

n
g
a
te

0 20000 40000

Time step

0.0

0.5

1.0

m
g
a
te

0 20000 40000

Time step

0.0

0.5

1.0

h
g
a
te

GT

RNODE

Figure 3: RNODE results for unknown initial condition. Ini-
tial conditions x̂(t100) were learned using the first 100 sam-
ples.

To demonstrate the robustness of
RNODE to different dynamical
regimes and showcase its capability
of estimating accurate initial condi-
tions, we perform an additional ex-
periment. For this, we generate data
DT with N = 50, 000 samples us-
ing the HH model with different ini-
tial conditions from the ones used
during training. From this data,
we reserve the first 100 samples for
learning the initial condition before
performing integration for the re-
maining 49, 900 samples. Then, us-
ing the learned model θ̂(tN ) and the procedure described in Section 4.2 we obtained the initial
condition x̂(t100) and obtained the RNODE solution. Figure 3 shows the evolution of the RNODE
attesting to its capability of both estimating accurate initial conditions and generalization to other
dynamical regimes.

5.2 CART-POLE SYSTEM

0 1 2 3 4

time [s]

−5

0

5

z

0 1 2 3 4

time [s]

−5

0ż

0 1 2 3 4

time [s]

−2.5

0.0

φ

0 1 2 3 4

time [s]

−5

0

5
φ̇

GT

RM

PR-SSM

NODE

RNODE

Figure 4: Learned state trajectories of the cart-pole system
after training RM, PR-SSM, NODE, and RNODE methods.
Results are compared to ground truth ODE system trajectory
labeled as GT. We showed that the proposed approach (RN-
ODE) is capable of discerning the true trajectory for the un-
observed states ż and ϕ̇.

We demonstrate the efficacy of the
proposed RNODE in learning the
non-linear dynamics of the cart-
pole system. The system is com-
posed of a cart running on a track,
with a freely swinging pendulum at-
tached to it. The state of the system
consists of the cart’s position and
velocity, and the pendulum’s angle
and angular velocity, while a con-
trol input u can be applied to the
cart. We used the LQR (Prasad
et al., 2011) algorithm to learn a
feedback controller that swings the
pendulum and balances it in the in-
verted position in the middle of the
track. The equations governing the ODE system are provided in Eqs (54)-(57) of the Appendix B.5.

We train our recursive model with the assumption that we don’t know the equation corresponding to
ϕ̇ governing dynamics of the cart-pole’s angular rate. Therefore, we replace Eqs. (55) and (57) with a
two-layer neural network with tanh activation function on each layer. We don’t measure cart-pole’s
velocity ż(ti) and angular rate ϕ̇(ti), i.e., y(ti) = [z(ti), ϕ(ti)]. We generate our dataset by applying
LQR balancing controller to the cart-pole described in Eqs (54)-(57) for 5000 time steps with dt =
10−3s and by collecting measurements and inputs D ≜ {u(t0), y(t0), . . . , u(tN−1), y(tN−1)}. We
train our model on D with Px0 = 10−2Idx , Pθ0 = 102Idθ

Ry = 10−10Idy , Qx = 10−5Idx and
Qθ = 10−2Idθ

. At the beginning of each epoch, we solve problem (58) of the Appendix C to
get the initial condition. Final optimal parameters θ̂(tN ) and initial condition x̂(t0) are saved and
collected at the end of training We qualitatively assess the performance of our model by feeding
the control sequence stored in D and parameters θ̂(tN ) to the RNODE according to the generative
model described in Eq (3) starting from initial condition x̂(t0).

In Figure 4, we demonstrate the ability of the proposed RNODE to learn the underlying dynamics
of the system partially observed data compared to RM and PR-SSM methods. Table 1 show that
RNODE clearly outperforms the competing algorithms with nRMSE value that is 99.3% , 99.1%

8



Under review as a conference paper at ICLR 2024

and 97.67% smaller than the nRMSEs obtained by PR-SMM, RM, and NODE respectively. Ana-
lyzing the evolution of the latent states depicted in Figure 4, we notice that RNODE provides state
trajectories that match the ground truth (GT) while the other two methods fail to capture the true
trajectory. In fact, PR-SSM presents acceptable trajectories of ż and ż but fails to learn ϕ and ϕ̇
trajectories. On the other hand RM presents acceptable trajectories of ϕ and ϕ̇ but fails to learn
z and ż trajectories. Moreover, the NODE successfully learns the observed ϕ and z trajectories
but fails to learn correct trajectories of the unobserved states ϕ̇ and ż. Both RM and PR-SSM es-
timated state trajectories are much more inaccurate than the one provided by RNODE. The main
reason for this inaccuracy is that trajectory generation is run using a pre-computing control se-
quence U ≜ {u(t0), . . . , u(tN−1))} ∈ D, hence any inaccuracy in the learned dynamics would
cause the trajectories to go way off the ground truth (GT) due to the nonlinearity of the cart-pole
system. This shows the challenging nature of the problem and the proposed approach’s efficiency
in learning challenging nonlinear dynamics. In this context, RNODE’s superior performance is due
to its alternating optimization approach since estimates of unobserved states become available when
optimizing θ. This feature is unavailable in the competing methods.

5.3 ELECTRO-MECHANICAL POSITIONING SYSTEM

0 4 8 12 16

time [s]

−0.5

0.0

q̇ m

0 4 8 12 16

time [s]

−0.25

0.00

0.25

q

GT

RM

PR-SSM

NODE

RNODE

Figure 5: Learned state trajectories
of EMPS after training RM, PR-SSM,
NODE, and RNODE methods. Results
are compared to ground truth ODE sys-
tem trajectory labeled as GT. We showed
that the proposed approach (RNODE) is
capable of discerning the true trajectory
for the unobserved state q̇m.

Here we evaluate the proposed RNODE on real data
from an electro-mechanical positioning system de-
scribed in (Janot et al., 2019). The training Dataset con-
sists of system’s of position, velocity, and control inputs
used. The dataset consists of 24801 data points for each
state and control input with dt = 10−3s. In a simi-
lar fashion to the HH and cart-pole systems, we train
the RNODE using position and control inputs. we re-
place the velocity’s dynamics by a neural network of
two layers of 50 and 20 units respectively followed by
a tanh activation function. Table 1 show that RN-
ODE clearly outperforms the competing algorithms with
nRMSE value that is 99.9% , 84.6% and 94.2% smaller
smaller than the nRMSEs obtained by PR-SMM, RM,
and NODE, respectively. Analyzing the evolution of the
latent states depicted in Figure 5, we notice that RNODE
provides state trajectories that match the ground truth
(GT) while PR-SSM and RM collapse catastrophically.
The NODE learns the period of the hidden q̇m signal but
fails the capture its amplitude. The stiffness of q̇m dynamics plays a role in these results since the
sudden jumps shown in Figure 5 are hard to capture. This again demonstrates the robustness of the
proposed approach.

6 CONCLUSIONS

We proposed a novel recursive learning mechanism for NODE’s to address the challenging task of
learning the complex dynamics of ODE systems with partial observations. Specifically, we con-
structed an alternating optimization procedure using Newton’s method that sequentially finds op-
timal system latent states and model parameters. The resulting framework, RNODE, allows for
efficient learning of missing ODEs when latent states are distinguishable. Different from other com-
peting methods, RNODE optimizes model parameters using latent states instead of observed data,
leading to superior performance under the partial observation setting. Experiments performed with
three complex synthetic systems and one with real data provide evidence that RNODE is capable
of providing adequate solutions in very challenging scenarios, attesting RNODE’s superior perfor-
mance when compared with other state-of-the-art strategies.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Joseph Bakarji, Kathleen Champion, J Nathan Kutz, and Steven L Brunton. Discovering gov-
erning equations from partial measurements with deep delay autoencoders. arXiv preprint
arXiv:2201.05136, 2022.

Joseph Bakarji, Kathleen Champion, J Nathan Kutz, and Steven L Brunton. Discovering governing
equations from partial measurements with deep delay autoencoders. Proceedings of the Royal
Society A, 479(2276):20230422, 2023.

Bradley M Bell. The iterated kalman smoother as a gauss–newton method. SIAM Journal on
Optimization, 4(3):626–636, 1994.

Dimitri P Bertsekas. Incremental least squares methods and the extended kalman filter. SIAM
Journal on Optimization, 6(3):807–822, 1996.

VG Boltyanskiy, Revaz V Gamkrelidze, YEF Mishchenko, and LS Pontryagin. Mathematical theory
of optimal processes. 1962.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Mona Buisson-Fenet, Valery Morgenthaler, Sebastian Trimpe, and Florent Di Meglio. Recognition
models to learn dynamics from partial observations with neural odes. Transactions on Machine
Learning Research, 2022.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing sys-
tems, 32, 2019.

Ahmet Demirkaya, Tales Imbiriba, Kyle Lockwood, Sumientra Rampersad, Elie Alhajjar, Giovanna
Guidoboni, Zachary Danziger, and Deniz Erdogmus. Cubature Kalman filter based training of
hybrid differential equation recurrent neural network physiological dynamic models. 43rd Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, 2021.

Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Tous-
saint, and Trimpe Sebastian. Probabilistic recurrent state-space models. In International confer-
ence on machine learning, pp. 1280–1289. PMLR, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of
gaussian process state space models. Advances in neural information processing systems, 30,
2017.

Paul Ghanem, Yunus Bicer, Deniz Erdogmus, and Alireza Ramezani. Efficient modeling of mor-
phing wing flight using neural networks and cubature rules. arXiv preprint arXiv:2110.01057,
2021.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: Squeezing more cur-
vature out of data. In International Conference on Machine Learning, pp. 1869–1878. PMLR,
2016.

10



Under review as a conference paper at ICLR 2024

G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky, A. Amireskandari, L. Tobe, P. Egan,
I. Januleviciene, and J. Park. Intraocular pressure, blood pressure, and retinal blood flow autoreg-
ulation: a mathematical model to clarify their relationship and clinical relevance. Investigative
Ophthalmology & Visual Science, 55(7):4105–4118, 2014.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Alan Lloyd Hodgkin and Andrew Fielding Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 1952.

Jeffrey Humpherys, Preston Redd, and Jeremy West. A fresh look at the kalman filter. SIAM review,
54(4):801–823, 2012.

Alessandro Davide Ialongo, Mark Van Der Wilk, James Hensman, and Carl Edward Rasmussen.
Overcoming mean-field approximations in recurrent gaussian process models. In International
Conference on Machine Learning, pp. 2931–2940. PMLR, 2019.

T. Imbiriba, A. Demirkaya, J. Dunı́k, O. Straka, D. Erdogmus, and Pau Closas. Hybrid neural
network augmented physics-based models for nonlinear filtering. In 2022 25th International
Conference on Information Fusion (FUSION), pp. 1–6, 2022. doi: 10.23919/FUSION49751.
2022.9841291.

Alexandre Janot, Maxime Gautier, and Mathieu Brunot. Data set and reference models of emps. In
Nonlinear System Identification Benchmarks, 2019.

Kadierdan Kaheman, J. Nathan Kutz, and Steven L. Brunton. Sindy-pi: a robust algorithm for
parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences, 476(2242):20200279, 2020. doi:
10.1098/rspa.2020.0279. URL https://royalsocietypublishing.org/doi/abs/
10.1098/rspa.2020.0279.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent dy-
namics underlying neural population activity via neural differential equations. In International
Conference on Machine Learning, pp. 5551–5561. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Inferring biological net-
works by sparse identification of nonlinear dynamics. IEEE Transactions on Molecular, Biologi-
cal and Multi-Scale Communications, 2(1):52–63, 2016. doi: 10.1109/TMBMC.2016.2633265.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita, and
Hajime Asama. Differentiable multiple shooting layers. Advances in Neural Information Pro-
cessing Systems, 34:16532–16544, 2021.

Andrew James McHutchon et al. Nonlinear modelling and control using Gaussian processes. PhD
thesis, Citeseer, 2015.

Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE Trans-
actions on Signal Processing, 62(23):6089–6104, 2014.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ode processes.
arXiv preprint arXiv:2103.12413, 2021.

11

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0279
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0279


Under review as a conference paper at ICLR 2024

Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.

Abel Peirson, Ehsan Amid, Yatong Chen, Vladimir Feinberg, Manfred K Warmuth, and Rohan Anil.
Fishy: Layerwise fisher approximation for higher-order neural network optimization. In Has it
Trained Yet? NeurIPS 2022 Workshop, 2022.

Lal Bahadur Prasad, Barjeev Tyagi, and Hari Om Gupta. Optimal control of nonlinear inverted
pendulum dynamical system with disturbance input using pid controller & lqr. In 2011 IEEE
International Conference on Control System, Computing and Engineering, pp. 540–545. IEEE,
2011.

Dimitris C Psichogios and Lyle H Ungar. A hybrid neural network-first principles approach to
process modeling. AIChE Journal, 38(10):1499–1511, 1992.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Michael D. Schmidt, Ravishankar Rao Vallabhajosyula, Jerry Jenkins, Jonathan E. Hood, Ab-
hishek S Soni, John P. Wikswo, and Hod Lipson. Automated refinement and inference of an-
alytical models for metabolic networks. Physical Biology, 8:055011, 2011. URL https:
//api.semanticscholar.org/CorpusID:15202886.

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, and Bao Wang.
Heavy ball neural ordinary differential equations. Advances in Neural Information Processing
Systems, 34:18646–18659, 2021.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. Advances in Neural Information Processing Systems, 32,
2019.

A PROOF OF THEOREM 1

Given a training dataset DN ≜ {d(0), . . . ,d(N−1)} with d(i) = {y(ti), u(ti)}, determine an op-
timal solution (x∗(ti), θ

∗(ti)) starting from known (x(t0), θ(t0), y(ti)) by solving the following
mathematical optimization function:

LN (ΘN , XN ) =
1

N

N∑
i=1

∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1
x

+ ∥y(ti)− h(x(ti))∥2R−1
y

+ ∥θ(ti)− go(θ(ti−1))∥2Q−1
θ

(19)

Determining optimal solution (Θ∗
N , X∗

N ) using the second order Newton method over the whole
data set of size N is computationally expensive. To solve this problem, we update the optimization
function (19) as follows:

Li(Θi, Xi) = Li−1(Θi−1, Xi−1) +
1

2
∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1

x

+
1

2
∥y(ti)− h(x(ti))∥2R−1

y
+

1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

= Lx
i|i−1(Θi, Xi) +

1

2
∥y(ti)− h(x(ti))∥2R−1

y

= Lθ
i|i−1(Θi, Xi−1) +

1

2
∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1

x

+
1

2
∥y(ti)− h(x(ti))∥2R−1

y

(20)

12

https://api.semanticscholar.org/CorpusID:15202886
https://api.semanticscholar.org/CorpusID:15202886


Under review as a conference paper at ICLR 2024

We start by minimizing the following equation with respect to x:

Lx
i|i−1(Θi, Xi) = Li−1(Θi−1, Xi−1) +

1

2
∥x(ti)− fo(x(ti−1), u(ti−1), θ(ti−1))∥2Q−1

x

+
1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

(21)

Fxi−1
= ∂fo(x(ti−1),u(ti−1),θ(ti−1))

∂x(ti−1)

we define the matrix Lx = [0dx×dx , . . . , 0dx×dx , Idx×dx ] where L is of dimensions dx × ((i− 1)×
dx))

by taking the gradient of equation (21) with respect to Xi we obtain:

∇Lx
i|i−1(Xi,Θi) =

[
∇Li−1(Xi−1,Θi−1) + LT

xF
T
xi−1

Q−1
x [x(ti)− fo(x(ti−1), θ(ti−1)]

Q−1
x [x(ti)− fo(x(ti−1)), θ(ti−1)]

]
(22)

To minimize (21), we define the estimate X̂i|i−1 of Xi to be the minimizer of (21). by setting
∇Lx

i|i−1(Xi,Θi) to zero we get the following:

X̂i|i−1 =

[
X̂i−1

fo(x̂(ti−1), θ̂(ti−1))

]
(23)

with x̂(ti|ti−1) = fo(x̂(ti−1), θ̂(ti−1))

then, we proceed to minimize the following equation with respect to Θi:

Lθ
i|i−1(Θi, Xi−1) = Li−1(Θi−1, Xi−1) +

1

2
∥θ(ti)− go(θ(ti−1))∥2Q−1

θ

(24)

Lθ = [0dθ×dθ
, . . . , 0dθ×dθ

, Idθ×dθ
] where Lθ is of dimensions dθ × ((i− 1)× dθ))

we take the gradient of equation (24) with respect to Θi we obtain:

∇Lθ
i|i−1(Θi, Xi−1) =

[∇Lθ
i−1(Θi, Xi−1)− LT

θ G
T
θi−1

Q−1
θ [θ(ti)− go(θ(ti−1))]

Q−1
θ [θ(ti)− go(θ(ti−1))]

]
(25)

with Gθi−1 = ∂go(θ(ti−1))
∂θ(ti−1)

To minimize (24), we define the estimate Θ̂i|i−1 of Θi to be the minimizer of (24). by setting
∇Lθ

i|i−1(Θi, Xi−1) to zero we get the following:

Θ̂i|i−1 =

[
Θ̂i−1

go(θ̂(ti−1))

]
(26)

the second step in the second order Newton method is to calculate the Hessian of Lx
i|i−1(Θi, Xi):

∇2Lx
i|i−1(Θi, Xi) =

[
∇2Lx

i−1(Θi−1, Xi−1) +O(i) LT
xF

T
xi−1

Q−1
x

Q−1
x Fxi−1

Lx Q−1
x

]
(27)

where

O(i) = −∂2f(x(ti−1), θ(ti−1)))

∂2Xi−1
Q−1 [x(ti)− f(x(ti−1), θ(ti))] + LT

xFxi−1
Q−1

x Fxi−1
Lx

when Xi = X̂i|i−1 it follows that O(i) = LT
xF

T
xi−1

Q−1
x Fxi−1

Lx. using Lemma B.3 in Humpherys
et al. (2012), the lower block P−

xi
of ∇2Lx

i|i−1(Θi, Xi) is calculated as follows:

13



Under review as a conference paper at ICLR 2024

P−
xi

= Q−1
x + FT

xi−1
Pxi−1Fxi−1 (28)

we continue to minimize

Lx
i (Xi,Θi) = Lx

i|i−1(Xi,Θi) +
1

2
∥y(ti)− h(x(ti))∥2R−1

y
(29)

we denote

Hi =

[
0, 0, . . . ,

∂h(x(ti)

∂x(ti)

]
. and by Hi =

∂h(x(ti))
∂x(ti)

by taking the gradient of equation (29) we obtain:

∇Lx
i (Xi,Θi) = ∇Lx

i|i−1(Xi,Θi) +HiR
−1
y (y(ti)− h(x(ti)))

The hessian of (29) becomes:

∇2Lx
i (Xi,Θi) = ∇2Lx

i|i−1(Xi,Θi) +
∂2Hi

∂2Xi
R−1

y (y(ti)− h(x(ti))) +HiR
−1
y Hi (30)

setting Xi = X̂i|i−1 =⇒ ∇Lx
i (Xi,Θi) = 0 therefore:

∇Lx
i (Xi,Θi) =

[
0

H
i
R−1

y (yi − hi(x̂(ti|ti−1))

]
(31)

The hessian hence becomes:

∇2Lx
i (Xi,Θi) = ∇2Lx

i|i−1(Xi,Θi) +HiR
−1
y Hi (32)

then according to the Newton method, we can update our estimate of xi as follows:

X̂i = X̂i|i−1 −
(
∇2Lx

i

)−1 ∇Lx
i (33)

let Px be the bottom right block of
(
∇2Lx

i

)−1
, therefore

Pxi =P−
xi

+ P−
xi
Hi

(
Ry −HiP

−
xi
HT

i

)
HiP

−
xi

=
(
(P−

xi
)−1 +HT

i R
−1
y Hi

)−1 (34)

by taking the bottom row of the newton equation (33) we get

x̂(ti) = x̂(ti|ti−1)−
[(
∇2Lx

i (Θi, Xi)
)−1

]
i,:
∇Lx

i (Θi, Xi)

= x̂(ti|ti−1)− PxiHiR
−1
y (h(x̂(ti|ti−1))− y(ti))

= x̂(ti|ti−1)−Kx
i (h(x̂(ti|ti−1))− y(ti))

(35)

where rowi corresponds to the ith row of matrix
(
∇2Lx

i (Θi, Xi)
)−1

and

Kx
i = Pxi

HiR
−1
y

= P−
xi
HT

i

(
HiP

−
xi
HT

i +Ry

)−1 (36)

In a similar fashion we proceed to minimize

Lθ
i (Θi, Xi) = Lθ

i|i−1(Θi, Xi−1) +
1

2
∥x(ti)− fo(x(ti−1), u(ti), θ(ti))∥2Q−1

x

+
1

2
∥y(ti)− h(x(ti))∥2R−1

y

(37)

14



Under review as a conference paper at ICLR 2024

∇Lθ
i (Xi,Θi) =

[∇Li|i−1(Xi−1,Θi−1) + LT
θ F

T
θi−1

Q−1
x [xi − f(x(ti−1), θ(ti−1)]

Q−1
θ [θ(ti)− go(θ(ti−1))]

]
(38)

where Fθi−1
= ∂fo(x(ti−1),u(ti−1),θ(ti−1))

∂θ(ti−1)

at Θi = Θ̂i|i−1 ,

∇Lθ
i (Xi,Θi) =

[
LT
θ G

T
θi−1

Q−1
x [xi − f(x(ti−1), θ(ti−1)]

0

]
(39)

Similarly, the hessian of (29) is:

∇2Lθ
i (Θi, Xi) =

[∇2Lθ
i−1(Θi−1, Xi−1) + Z(i) LT

θ F
T
θi−1

Q−1
θ

Q−1
θ Fθi−1Lθ Q−1

θ

]
(40)

where Z(i) = ∂2fo(x(ti−1),u(ti−1),θ(ti−1))
∂2θ(ti−1)

Q−1
x [xi − f(x(ti−1))] + LT

θ Fθi−1Q
−1
x Fθi−1Lθ +

LT
θ Gθi−1

Q−1
θ Gθi−1

Lθ by ignoring second order terms we obtain: Z(i) = LT
θ Fθi−1

Q−1
x Fθi−1

Lθ +

LT
θ Gθi−1

Q−1
θ Gθi−1

Lθ

Then according to the newton second order method, we can update our estimate of Θi as follows:

Θ̂i = Θ̂i|i−1 −
(
∇2Lθ

i

)−1 ∇Lθ
i (41)

let Pθ be the bottom right block of
(
∇2Jθ

i

)−1
, therefore

Pθi =Qθ +Gθi−1

[
Pθi−1

− Pθi−1
FT
θi−1

(
Qx + Fθi−1

Pθi−1
FT
θi−1

)
Fθi−1

Pθi−1

]
Gθi−1

=Qθ +Gθi−1P
−
θ Gθi−1

(42)

where
P−
θi

= Pθi−1
− Pθi−1

FT
θi−1

(
Qx + Fθi−1

Pθi−1
FT
θi−1

)
Fθi−1

Pθi−1

by taking the bottom of the newton equation (33) we get

θ̂(ti) = θ̂(ti|ti−1)−
[(
∇2Lθ

i (Θi, Xi−1)
)−1

]
i,:
∇Lθ

i (Θi, Xi−1)

= θ̂(ti|ti−1) +Kθ
i

(
x̂(ti)− f(x̂(ti), θ̂(ti)

) (43)

with
Kθ

i = Gθi−1P
−
θi
FT
θi−1

(44)

B MODELS AND FURTHER EXPERIMENTS

B.1 YEAST GLYCOLYSIS MODEL

Yeast glycolysis Model is a metabolic network that explains the process of breaking down glu-
cose to extract energy in the cells. This model has been tackled by similar works in the field
(Kaheman et al., 2020), (Mangan et al., 2016), and (Schmidt et al., 2011). It has seven states:
x = [x1 x2 x3 x4 x5 x6 x7]

T , and ODEs for these states are given from Eq (45), (Man-
gan et al., 2016).

15



Under review as a conference paper at ICLR 2024

ẋ1 = c1 +
c2x1x6

1 + c3x4
6

,

ẋ2 =
d1x1x6

1 + d2x4
6

+ d3x2 − d4x2x7,

ẋ3 = e1x2 + e2x3 + e3x2x7 + e4x3x6,

ẋ4 = f1x3 + f2x4 + f3x5 + f4x3x6 + f5x4x7,

ẋ5 = g1x4 + g2x5,

ẋ6 = h3x3 + h5x6 + h4x3x6 +
h1x1x6

1 + h2x4
6

,

ẋ7 = j1x2 + j2x2x7 + j3x4x7

(45)

0 1 2 3 4

time [s]

0

1

x
1

0 1 2 3 4

time [s]

−0.5

2.4

x
2

0 1 2 3 4

time [s]

0.0

0.7

x
3

0 1 2 3 4

time [s]

−0.5

0.5

x
4

0 1 2 3 4

time [s]

0.0

0.3

x
5

0 1 2 3 4

time [s]

0.0

1.3

x
6

0 1 2 3 4

time [s]

−0.7

0.4
x

7

GT

RM

PR-SSM

NODE

RNODE

Figure 6: Learned state trajectories of yeast glycolysis model after training with the RM, PR-SSM,
NODE, and RNODE methods. Results are compared to ground truth ODE system trajectory labeled
as GT. We showed that the proposed approach (RNODE) is capable of discerning the true trajectory
for the unobserved state x4.

In this scenario, we assumed the dynamics of state ẋ4 in equation 45 to be unknown and x4 un-
observed. We used the proposed RNODE and competing algorithms to learn NN-based dynam-
ics. Specifically, we replaced ẋ4 with a two-layer neural network with tanh activation function
on each layer. We generate a dataset with 5000 time steps, dt = 10−3s and by collecting
measurements D ≜ {y(t0), . . . , y(tN−1)}. For the RNODE the hyper-parameters were set to
Px0

= 10−2Idx
, Pθ0 = 102Idθ

Ry = 10−10Idy
, Qx = 10−5Idx

and Qθ = 10−2Idθ
. At the

beginning of each epoch, we solve problem (58) of the Appendix C to get the initial condition. Final
optimal parameters θ̂(tN ) and initial condition x̂(t0) are saved and collected at the end of training.

We assess the performance of RNODE by setting the model parameters to θ̂(tN ) and perform inte-
gration following the model described in equation 3 starting from initial condition x̂(t0). In Figure
6, we demonstrate the ability of the proposed RNODE to learn the underlying dynamics of the
partially observed system compared to RM, PR-SSM and NODE methods. Table 1, shows that RN-
ODE clearly outperforms the competing algorithms with nRMSE 99.3% , 99.1% and 90.4% smaller
than the nRMSEs obtained by PR-SMM, RM, and NODE respectively. Analyzing the evolution of
the latent states depicted in Figure 6, we notice that RNODE provides state trajectories that match
the ground truth (GT). PR-SSM fails to capture the dynamics of the system, while RM and NODE
presents acceptable trajectories of most of the states except for the unobserved dynamics of ẋ4, and
the observed dynamics of ẋ5.

Moreover, both RM and NODE state trajectories are much more inaccurate than the one provided
by RNODE. This shows the challenging nature of the problem and the proposed approach’s effi-
ciency in learning challenging nonlinear dynamics using estimates of the unobserved states, which
is unavailable to the other methods.

16



Under review as a conference paper at ICLR 2024

B.2 HODGKIN-HUXLEY NEURON MODEL

For the HH model, we refer to the (Hodgkin & Huxley, 1952) and use the following ODE system.
The ODE system has four states: Vm, ngate, mgate, and hgate. Ie is the external current input,
which is set to 10 if the neuron is firing, and 0 otherwise. For all models, we simulate the dynamics
of the HH model with a time step of 0.01 ms and integrate using Euler integration.

V̇m = Ie − 36n4
gate(Vm + 77)− 120m3

gatehgate(Vm − 50)− 0.3(Vm + 54.4) (46)

ṅgate =0.01(Vm + 55)

[
1− exp

(
−Vm + 55

10

)]−1

(1− ngate)− 0.125 exp

(
−Vm + 65

80

)
ngate

(47)

ṁgate =0.1(Vm + 40)

[
1− exp

(
−Vm + 40

10

)]−1

(1−mgate)− 4 exp

(
−Vm + 65

18

)
mgate

(48)

ḣgate =0.07 exp

(
−Vm + 65

20

)
(1− hgate)−

[
1 + exp

(
−Vm + 35

10

)]−1

hgate (49)

B.3 RETINAL CIRCULATION MODEL

The retinal circulation model describes the internal pressures of five compartments in the retina
(Guidoboni et al., 2014). The model has four states: P1, P2, P4, and P5. The relation between
these states is summarized in Eqs. (50)-(53). In our experiments, we don’t measure P5 and set
y = (P1, P2, P4) then train RM, PR-SSM, and RNODE to approximate the ODE trajectories. In
Fig. 7, we visualize the state trajectories for all states and demonstrate that RNODE outperforms
PR-SSM and RM at estimating state trajectories, RNODE model successfully captures the dynamics
of the unmeasured P5 state.

Ṗ1 =
Pin − P1

C1(Rin +R1a)
− P1 − P2

C1(R1b +R1c +R1d +R2a)
(50)

Ṗ2 =
P1 − P2

C2(R1b +R1c +R1d +R2a)
− P2 − P4

C2(R2b +R3a +R3b +R4a)
(51)

Ṗ4 =
P2 − P4

C4(R2b +R3a +R3b +R4a)
− P4 − P5

C4(R4b +R5a +R5b +R5c)
(52)

Ṗ5 =
P4 − P5

C5(R4b +R5a +R5b +R5c)
− P5 − Pout

C5(R5d +Rout)
(53)

Rin, R1a, R1b, R2a, R2b, R3a, R3b, R5c, R5d, and Rout are fixed resistances. R4a, R4b, R5a, and
R5b depend on states. C1−5 are the constant capacitance values. Pin is time-varying input, and Pout

is constant output which is set to 14.

The numerical results for the retinal circulation model experiments are summarized in Table 1 and
visual results are presented in Figure 7. Both results show that RNODE clearly outperforms the
competing algorithms with nRMSE value that is 94.3% and 28.8% smaller than the nRMSEs ob-
tained by PR-SMM and RM, respectively. Analyzing the evolution of the latent states depicted in
Figure 7, we notice that RNODE provides state trajectories that match the ground truth (GT) more
closely when compared with PR-SSM and RM. Similar to PR-SSM results for the HH, HO, and
EMPS models, PR-SSM again presents very poor state trajectories indicating that the model was
not capable of learning the underlying ODE function accurately. nRMSE value for the RM is com-
parable to RNODE, however, the lower right panel of the Fig. 7 pinpoints that RNODE excels in
learning the unobserved state P5.

17



Under review as a conference paper at ICLR 2024

0 2 4 6 8 10

time [s]

30

40

50

P
1
[m
m
H
g

]
0 2 4 6 8 10

time [s]

30

40

P
2
[m
m
H
g

]

0 2 4 6 8 10

time [s]

15

20

P
4
[m
m
H
g

]

0 2 4 6 8 10

time [s]

0

10

20

P
5
[m
m
H
g

]

GT

RM

PR-SSM

RNODE

Figure 7: Estimated state trajectories of Retinal circulation model after training RM, PR-SSM, and
RNODE methods. Results are compared to ground truth ODE system trajectory labeled as GT. We
showed that the proposed approach (RNODE) is capable of discerning the true trajectory for the
unobserved state P5.

B.4 HARMONIC OSCILLATOR

The harmonic oscillator has two states, representing position and velocity, where z is the position
and ż is the velocity: x = [z ż]

T . u is the input vector which is set to zero for a free harmonic
oscillator: u = [0]. ω is the unknown angular frequency. State equations can be written in matrix
form as follows:

ẋ =

[
0 1

−ω2 0

]
x+

[
0
1

]
u

Here, the matrix
[

0 1
−ω2 0

]
is the state transition matrix and it represents the system’s dynamics.

Throughout the experiments, we only observed position state x1, hence, our output equation is:
y = [1 0]x. We simulated the ODE system using Euler integration and we used a time step of 1
ms.

The numerical results for the HO experiments are summarized in Table 1 while the correspond-
ing visual results can be found in Figure 8. Both results clearly demonstrate RNODE’s superior
performance against PR-SSM and NODE, and Table 1 shows a modest advantage over RM. RN-
ODE achieved notably smaller nRMSE. Indeed, the nRMSE achieved using RNODE is 99%, 78%
and 98% smaller than the nRMSEs obtained by PR-SMM, RM and NODE respectively. Analyzing
the evolution of the states in Figure 8, we notice that PR-SSM failed to learn the underlying ODE
function accurately and that NODE failed to learn the period of the signal.

0 4 8 12 16

time [s]

−2.5

0.0

2.5

z

0 4 8 12 16

time [s]

0

5

10

ż

GT

RM

PR-SSM

NODE

RNODE

Figure 8: Estimated state trajectories of harmonic oscillator after training RM, PR-SSM, NODE,
and RNODE methods. Results are compared to ground truth ODE system trajectory labeled as GT.
We showed that the proposed approach (RNODE) is capable of discerning the true trajectory for the
unobserved state ż.

18



Under review as a conference paper at ICLR 2024

Figure 9 depicts the learned ODE vector field (left) and true vector field (right). We can observe that
RNODE was capable to learn resonably well the true ODE function.

Figure 9: Learned ODE NN (left) and true ODE x (right) vector fields of the Harmonic Oscillator
model after training with the RNODE method. We showed that the proposed approach (RNODE) is
capable of learning the true vector field.

B.5 CART-POLE SYSTEM

The cart-pole system is a classic problem in control theory and it models the movement of a cart
along an axis, and this cart has a pole attached to it and this pole can pivot freely. States of the ODE
system can be defined as: x =

[
z ż ϕ ϕ̇

]T
. We linearize the system at x =

[
z ż ϕ ϕ̇

]T
=

[0 0 0 0]
T and use LQR controller (Prasad et al., 2011) to calculate the input u that swings the

pendulum and balances it in the inverted position in the middle of the track.

ż =ż (54)

z̈ =
−m · l · sin(ϕ) · ϕ̇+ u+m · g · cos(ϕ) · sin(ϕ)

M +m−m · cos(ϕ)2 (55)

ϕ̇ =ϕ̇ (56)

ϕ̈ =
−m · l · cos(ϕ) · sin(ϕ) · ϕ̇2 + u · cos(ϕ) +m · g · sin(ϕ) +M · g · sin(ϕ)

l · (M +m−m · cos(ϕ)2) (57)

In these matrices: M is the mass of the cart, m is the mass of the pole, l is the length from the cart’s
center to the pole’s center of mass, lc is the length from the cart’s center to the pivot point, and g is
the acceleration due to gravity.

C INITIAL CONDITION RECONSTRUCTION DURING TRAINING

Given a model θ and a dataset D ≜ {u(t0), y(t0), . . . , u(tN−1), y(tN−1)} , training the model
requires determining an appropriate initial state x(t0) at the beginning of each epoch. A way to get
x(t0) is to solve the following state-reconstruction problem:

min
x(t0|t−1)

∥y(t0)− h(x̂(t0))∥2R−1
y

(58)

In this case, Problem 58 can provide a suitable value for x̂(t0|t−1) for the new epoch based on the
last vector θ(tN−1) learned, that is used in 58 and as the initial condition θ(t0|t−1) for the new
epoch. We remark that when RNODE is run on Ne epochs and P−

x0
is set equal to the value P−

xN

from the previous epoch. x(t0) is computed next according to equation (16).

D COMPLEXITY ANALYSIS

To calculate the complexity of RNODE’s training procedure, first, we need to calculate the complex-
ity of each Jacobian. Since we are using automatic differentiation to calculate them, the complexity

19



Under review as a conference paper at ICLR 2024

of getting Fxi−1
, Gθi−1

, and Fθi−1
is O(d2x),O(d2θ) and O(dθdx), respectively. However, the com-

plexity of Gθi−1
could be removed if g(θ(ti)) = 0 since Gθi−1

= I in that case. Note that this is the
case in our experiments.

Assuming nx ≈ ny , the complexity of calculating P−
θi

, P−
xi

, Pxi and Pθi are O(2d2θdx+dx+(2d2x+

1)dθ), O(2d3x + dx), O(4d3x + 2dx) and O(dθ), respectively.

Moreover, the complexity of computing x̂(ti) is O(2d3x + d2x), and the complexity of θ̂(ti) is
O(dθ(dx + 1)).

Since the Jacobians are differentiated once, and then evaluated at each time step, the complexity of
one epoch performed over N samples becomes:

O(dxdθ) +O(d2θ) +O(d2x) +N [O(2d2θdx + (2d2x + 1)dθ) +O(2d3x + dx) +O(4d3x + 2dx)

+O(dθ) +O(2d3x + d2x) +O(dθ(dx + 1))]
(59)

which simplifies to
O(N(d3x + d2θdx + d2xdθ)). (60)

Finally, assuming dθ ≫ dx, the total cost of each training epoch can be simplified as:

O(N(2d2θdx + 2dθd
2
x)) . (61)

It is clear that the main source of complexity would be dθ. Thus, RNODE may scale badly to
very higher-dimensional neural network architectures. However, fast approximations of Newton’s
method exist, as pointed out by the reviewer, such as Shampoo. Although merging Shampoo with
our proposed approach could reduce the computational burden, we will analyze this hypothesis in
future works.

Test-time complexity: Although in our experiments we just integrated the learned mean vector
field, RNODE can be employed in different ways depending on the availability of data (data assimi-
lation). RNODE can be also used in an online learning paradigm where learning and estimation are
continuously performed. Thus, the computational complexity per time-step in these scenarios be-
comes O(dθ), O(d3x), and O(d3x+d2θdx+d2xdθ), for mean vector field integration, data assimilation,
and continuously assimilation and adaptation, respectively.

20


	Introduction
	Related Work
	Partial Observation
	Second order Newton method

	Model and Background
	Model
	Distinguishability of nonlinear systems
	Generative model

	Method
	Sequential Newton Derivation
	Obtaining initial condition from historical data

	Experiments
	Hodgkin-Huxley Neuron Model
	Cart-pole System
	Electro-mechanical positioning system

	Conclusions
	Proof of Theorem 1
	Models and further experiments
	Yeast Glycolysis Model
	Hodgkin-Huxley Neuron Model
	Retinal Circulation Model
	Harmonic Oscillator
	Cart-Pole System

	Initial Condition Reconstruction During Training 
	Complexity analysis

