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Abstract001

Mobile GUI agents have attracted tremendous002
research participation recently. Traditional003
approaches to mobile agent training rely on004
centralized data collection, leading to high cost005
and limited scalability. Distributed training006
utilizing federated learning offers an alternative007
by harnessing real-world user data, providing008
scalability and reducing costs. However,009
pivotal challenges, including the absence of010
standardized benchmarks, hinder progress011
in this field. To tackle the challenges, we012
introduce FedMABench, the first benchmark013
for federated training and evaluation of014
mobile GUI agents, specifically designed015
for heterogeneous scenarios. FedMABench016
features 6 datasets with 30+ subsets, 8017
federated algorithms, 10+ base models, and018
over 800 apps across 5 categories, providing019
a comprehensive framework for evaluating020
mobile agents across diverse environments.021
Through extensive experiments, we uncover022
several key insights: federated algorithms023
consistently outperform local training; the024
distribution of specific apps plays a crucial role025
in heterogeneity; and, even apps from distinct026
categories can exhibit correlations during027
training. FedMABench is publicly available at:028
https://anonymous.4open.science/r/FedMABench.029

1 Introduction030

Recent advances in Vision-Language Models031

(VLMs) (Wang et al., 2021; Jin et al., 2021; Zhou032

et al., 2022) have significantly propelled the evolu-033

tion of Graphical User Interface (GUI) agents (Bai034

et al., 2024; Wang et al., 2024c,a). GUI agents on035

mobile phones, known as Mobile Agents, are ca-036

pable of automating complex tasks, thereby signif-037

icantly reducing human workload. Mobile agents038

have demonstrated promising potential across a039

wide range of applications (Liu et al., 2024).040

The traditional approach for mobile agents041

largely depends on centralized data collection and042

training (Hong et al., 2023; Dorka et al., 2024;043
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Figure 1: Overview of FedMABench. Our datasets
cover 877 apps across five categories (bottom right),
and the experiments (top right) demonstrate the varying
performance of methods under diverse distributions.

Chen and Li, 2024), which, although effective, 044

leads to several challenges such as high costs and 045

limited scalability (Sun et al., 2024). Meanwhile, 046

the frequent use of mobile phones by users world- 047

wide naturally generates valuable supervisory infor- 048

mation, which serves as a rich data source for train- 049

ing mobile agents. However, this wealth of high- 050

quality data remains underutilized, as it cannot be 051

publicly shared due to privacy concerns (Xiong 052

et al., 2025). Therefore, data from real-world mo- 053

bile users must be utilized in a distributed manner, 054

where each client locally collects and trains on its 055

own data without direct data transmission. 056

Continuing to improve the quality and cover- 057

age of mobile agents necessitates the development 058

of distributed data collection and training (Wang 059

et al., 2025). Distributed training mobile agents on 060

user data offers two key advantages: (1) In consid- 061

eration of the billions of phone users worldwide, 062

collecting data directly from real-world users en- 063

ables unprecedented scalability. (2) The data col- 064

lection and annotation costs can be significantly 065

reduced, as user data is an incidental by-product 066

of daily phone usage. Additionally, privacy con- 067
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cerns surrounding the collection of personal data068

can be effectively mitigated through the application069

of Federated Learning (FL) (McMahan et al., 2017;070

Kuang et al., 2023; Wang et al., 2024e), which en-071

sures that sensitive information remains decentral-072

ized, thus fostering greater user trust and ensuring073

compliance with privacy regulations.074

Despite the promising potential of training mo-075

bile GUI agents on distributed user data via076

FL, a critical challenge persists: the absence of077

standardized benchmarks for federated mobile078

agents, which impedes comparisons and advance-079

ments in this field. In this context, (1) without di-080

verse and heterogeneous datasets, research efforts081

cannot effectively address the issue of heterogene-082

ity, which is crucial to utilizing distributed phone083

usage trajectories. (2) Without an efficient and uni-084

fied framework, future research may give rise to085

varied training and evaluation protocols, complicat-086

ing re-implementations and heightening the risk of087

unfair comparisons.088

To address these challenges, we introduce089

FedMABench, the first benchmark specifically de-090

signed for federated training and evaluation of mo-091

bile GUI agents, with three key features: (1) Com-092

prehensiveness: FedMABench provides a compre-093

hensive framework that integrates eight federated094

algorithms and supports over ten base models. The095

evaluation metrics include two performance indi-096

cators for both high-level and low-level training,097

establishing a solid foundation for future research098

and development. (2) Diversity: FedMABench099

includes thousands of tasks, spanning over 800100

apps across five categories from two distinct data101

sources, yielding substantial diversity. (3) Het-102

erogeneity: FedMABench puts strong emphasize103

on heterogeneous scenarios to promote further re-104

search. We incorporate 30+ datasets derived from105

the original Android Control and Android in the106

Wild datasets (Rawles et al., 2023; Li et al., 2024b),107

carefully curated to ensure fair and standardized108

training and evaluation setups.109

Specifically, our datasets address three typical110

types of heterogeneity, reflecting the diverse mobile111

usage patterns and preferences of users worldwide:112

(1) App Category Distribution: Each app cate-113

gory addresses a specific type of user need. Since114

mobile phone usage varies based on users’ different115

needs, the distribution of app categories becomes116

inherently heterogeneous. (2) Specific App Prefer-117

ence: Users exhibit varying preferences for specific118

apps even with the same function. We construct119

two series of datasets: one focusing on underlying 120

the differences between apps by selecting the top 121

five apps for experiments and the other expanding 122

the scope with more clients and apps for further 123

validation. (3) Two-Level Sample Counts: Mo- 124

bile agent datasets comprise different number of 125

episodes, where differences in users’ tasks and us- 126

age patterns lead to additional variations in the 127

number of steps required to complete each episode. 128

Based on FedMABench, we conduct an exhaus- 129

tive empirical study to explore federated mobile 130

GUI agents in diverse scenarios, offering new in- 131

sights into this area. Through extensive experi- 132

ments, we make several key observations: (1) FL 133

algorithms consistently outperform local training, 134

providing strong motivation for users to collabo- 135

rate; (2) The distribution of specific apps is more 136

fundamental to represent heterogeneity than app 137

categories; (3) Even apps from distinct categories 138

can exhibit correlations during training. 139

In summary, our contributions are: 140

1. We propose FedMABench, the first benchmark 141

for federated training and evaluation of mo- 142

bile agents, which is both research-friendly 143

and comprehensive, integrating eight federated 144

algorithms and supporting 10+ base models. 145

2. We release 6 datasets with 30+ subsets, specifi- 146

cally targeted at three typical types of hetero- 147

geneity across various scenarios, simulating 148

real-world user behavior on diverse apps. 149

3. We conduct extensive experiments to thor- 150

oughly investigate the training of federated 151

mobile agents on distributed data with diverse 152

distributions, revealing insightful discoveries. 153

2 Related Work 154

2.1 Conventional Centralized Mobile Agents 155

The emergence of VLMs (Zhang et al., 2024b) 156

has revolutionized phone automation by facilitat- 157

ing more adaptive, contextually aware, and intel- 158

ligent interactions with mobile devices (Liu et al., 159

2025). The evolution of mobile agents has under- 160

gone several pivotal advancements, with modern 161

models exhibiting enhanced capabilities in process- 162

ing multi-modal information, discerning user inten- 163

tions, and autonomously performing intricate user 164

tasks (Zhang et al., 2024d; Nong et al., 2024). 165

Datasets. Acquiring training trajectories for mo- 166

bile agents presents considerable challenges. The 167

research community has invested tremendous ef- 168

forts into constructing high-quality datasets for mo- 169

bile agents (Rawles et al., 2023; Zhou et al., 2024; 170
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Dataset Name Distribution Characteristic N. Subsets N. Clients N. Apps N. Episodes N. Steps

Basic-AC Homogeneous 14 10-70 877 7,000+700 47055+4648
Basic-AitW Homogeneous 5 10-50 - 5,000+500 39394+4447
Step-Episode Two-Level Sample Counts 4 10 293 1,000+100 6685+635
Category-Level App Category Distribution 6 5 52 1,000+100 7127+703
App-Level Specific App Preference 4 5 5 750+100 4456+574
ScaleApp Specific App Preference 3 30 30 2,500+250 15700+1691

Table 1: Summary of the six dataset series in FedMABench. N. denotes "the number of". The training set and
evaluation set are combined by "+". Our datasets span a broad spectrum of homogeneity and heterogeneity ,
encompassing a variety of apps across five categories.

Zhang et al., 2024c). However, existing approaches171

primarily rely on manual curation, rendering data172

collection both costly and inefficient, and limiting173

scalability (Gao et al., 2024; Li et al., 2024c).174

Benchmarks. Several works have sought to es-175

tablish efficient benchmarks for mobile GUI agents176

(Zhang et al., 2024a; Wang et al., 2024a). Yet,177

none of them is tailored for distributed or federated178

training. While there are benchmarks for feder-179

ated Large Language Models (LLMs) (Ye et al.,180

2024a,b; Wu et al., 2024), they are not applicable181

to mobile agent training. This gap significantly ob-182

structs the advancement of federated mobile agents,183

which offer superior scalability.184

2.2 Towards Distributed Mobile Agents185

Federated Mobile Agent. FedMobileAgent186

(Wang et al., 2025) stands as a pioneering approach187

that proposes distributed training for mobile GUI188

agents using self-sourced data from diverse users.189

It leverages locally deployed VLMs to automati-190

cally annotate user instructions and integrates fed-191

erated learning to collaboratively optimize a global192

mobile agent. The authors also introduce a novel193

form of heterogeneity, elaborated in Section 3.3.2.194

However, the study falls short of further investigat-195

ing more complexities of heterogeneity, or other196

real-world scenarios of diverse user phone usage.197

Challenges. Federated mobile agents face two198

major challenges: (1) To facilitate collaboration199

among a large and diverse set of users with vary-200

ing usage habits, it is essential to address the is-201

sue of heterogeneity (Ye et al., 2023; Qu et al.,202

2022). This heterogeneity manifests in various203

forms, such as differing app usage patterns, indi-204

vidual needs, and app preferences for similar func-205

tionalities. However, these facets of heterogene-206

ity remain largely unexplored, with vast potential207

yet to be uncovered. (2) Currently, no publicly208

available datasets or benchmarks exist for training209

federated mobile agents. And it is non-trivial to210

effectively capture the heterogeneity that is repre-211

sentative of real-world scenarios by directly down- 212

sampling from existing datasets. In this context, 213

FedMABench stands out as the first comprehensive 214

benchmark in the literature, addressing these gaps. 215

3 FedMABench 216

3.1 System Overview 217

FedMABench features a comprehensive frame- 218

work and six datasets emphasizing on heterogene- 219

ity and diversity. As shown in Figure 1 (grey), 220

FedMABench adopts the conventional federated 221

learning protocol and provides an easy-to-use, 222

research-friendly framework that includes eight FL 223

baselines. Specifically, diverse users with hetero- 224

geneous data collaboratively train a global mobile 225

GUI agent on their distributed datasets through four 226

iterative steps: server-to-client model broadcasting, 227

local model training, client-to-server model upload- 228

ing, and global model aggregation. 229

In real-world scenarios, mobile users exhibit di- 230

verse usage habits and preferences, leading to het- 231

erogeneous data distributions which are extremely 232

complex and difficult to quantify. To lay the founda- 233

tion for research on the heterogeneity of distributed 234

data trajectories, we construct two homogeneous 235

datasets and four heterogeneous datasets, address- 236

ing diverse aspects of heterogeneity. A summary 237

of the dataset statistics is presented in Table 1. 238

3.2 Data Collection 239

Data Composition. To train the core VLM of 240

mobile GUI agents, each data episode, denoted 241

as D, comprises multiple steps, each serving as a 242

basic training unit. A step consists of three com- 243

ponents: a task instruction T , a screenshot, and 244

a corresponding action. The data episode is de- 245

fined as: D = {⟨T , ai, si⟩ | i ∈ [1, n]}, where 246

⟨T , ai, si⟩ represents the i-th step, with ai and si 247

denoting the action and screenshot respectively. A 248

data example is attached in Figure 6. 249

Collection. Our datasets are derived from the 250

AndroidControl and Android in the Wild (AitW) 251
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(a) Step-Episode IID
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(b) Step Skew
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(c) Episode Skew
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(d) Both Skew

Figure 2: Distributions of episode and step counts within the Step-Episode Dataset. The four subsets highlight
distinct differences in average steps per episode across clients.

datasets, with two key modifications which are252

labeling and partitioning. Each episode in our253

datasets is annotated with two app-related at-254

tributes: the app name and its corresponding cate-255

gory. Given that the original app and category infor-256

mation is not publicly available in Li et al. (2024b),257

we are compelled to infer these details based on the258

actions performed and the instructions provided.259

We first employ a dual-strategy method, described260

in Appendix C.1, to extract the related app name for261

each episode. Following human heuristics, we then262

categorize the apps into five distinct groups: Shop-263

ping, Traveling, Office, Lives, and Entertainment.264

We employ GPT-4o to automatically assign each265

app a corresponding category. Details regarding266

the categorization is presented in Table 16.267

Subsequently, we partition each constructed268

dataset into multiple subsets to simulate the fed-269

erated learning environment, where each subset270

represents a distinct data distribution. We specifi-271

cally control the variables and ensure that subsets272

are only different in the distribution to provide the273

fairest possible comparison.274

3.3 Datasets Description275

To establish a comprehensive foundation for re-276

search, we construct six datasets in FedMABench,277

emphasizing on different forms of homogeneity or278

heterogeneity. This section provides detailed de-279

scriptions and visualizations of these datasets, with280

additional details available in Appendix C.1.281

3.3.1 Basic-AC and Basic-AitW Datasets282

Initially, we introduce two basic datasets with ho-283

mogeneous distributions, to validate general princi-284

ples and properties of federated mobile agents.285

Description of Basic-AC Dataset. Basic-AC286

is constructed from Li et al. (2024b) based on ho-287

mogeneous distributions, where we disregard the288

app attributes of all episodes. Since all episodes are289

available in this IID setup, we construct six subordi-290

nate datasets with increasing data sizes (200-7,000)291

by random sampling. Additionally, we create five292

subsets, each consisting of episodes from a single 293

category, to provide more focused scenarios. Basic- 294

AC offers diverse situations with varying data sizes 295

and client participation, enabling the exhaustive 296

evaluation of federated mobile agents under IID 297

settings. For each training set, we sample 10% of 298

the training size to form the test set. 299

Description of Basic-AitW Dataset. To estab- 300

lish a comprehensive experimental foundation with 301

multiple sources, we construct another homoge- 302

neous dataset, named Basic-AitW, derived from 303

AitW (Rawles et al., 2023). We sample 1,000 304

episodes from each category to form five subsets. 305

The Basic-AitW dataset offers distinct data charac- 306

teristics compared to Basic-AC, adding further di- 307

versity for benchmarking federated mobile agents. 308

3.3.2 Step-Episode Dataset 309

Step-Episode Two-Level Heterogeneity. As 310

pointed out in FedMobileAgent (Wang et al., 2025), 311

the distributed user data for training mobile GUI 312

agents exhibits heterogeneity at two levels: step 313

counts and episode counts, due to variances in 314

users’ app usage habits. Unlike traditional fed- 315

erated learning tasks, such as image classification 316

or sentiment analysis, the datasets for training fed- 317

erated mobile agents are characterized by two types 318

of quantity measurements: one based on episode 319

counts and the other based on step counts. As usage 320

habits vary across different users, these two types 321

of measurements do not necessarily align, leading 322

to a unique form of heterogeneity that cannot be 323

adequately captured by the conventional "sample 324

count" perspective. Therefore we refer to this het- 325

erogeneity as "step-episode two-level". 326

Description & Visualization. To evaluate fed- 327

erated mobile agents under step-episode two-level 328

heterogeneity, we design four subsets based on a 329

common data pool split among clients using differ- 330

ent partition rules. To reduce other heterogeneity 331

factors like app usage, we randomly sample from 332

the pool to create the Step-Episode Dataset. The 333
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(a) Category-App IID (b) Category Skew (c) Category Half-Skew

(d) Category Non-Uniform (e) App Random (f) App Skew

Figure 3: Distributions of the top 10 apps across five clients in Category-Level. The top two apps from each of the
five categories are selected. Our six subsets exhibit diverse patterns across clients.

four subsets are as follows: (1) Step-Episode IID:334

All clients have identical step counts and episode335

counts. (2) Episode Skew: Clients share similar to-336

tal step counts, but exhibit skewed episode counts.337

(3) Step Skew: All clients have the same episode338

count, but distinct total step counts. (4) Both Skew:339

Both episode and step counts are heterogeneous340

across clients. As shown in Figure 2, the four sub-341

sets yield distinct step and episode counts, offering342

valuable signals for evaluating mobile agents under343

diverse data distributions.344

3.3.3 Category-Level Dataset345

App Category Heterogeneity. In real-world user346

phone usage, the users have various app using347

habits. As showcased in Figure 1 (grey), some348

users such as "User 1", use mobile phones mostly349

for shopping and traveling needs, while others such350

as "User 2" may often utilize phones for office351

needs. Such using habits and needs result in hetero-352

geneous training data for federated mobile agents353

as the category distributions differ among users.354

Description & Visualization. To investigate355

how mobile agents using classic FL methods per-356

form, we sample 1,000 episodes from Basic-AC to357

form the Category-Level Dataset which consists of358

5 categories with 52 apps. To control and monitor359

the influence of different apps, we select only those360

apps with a large number of episodes for research361

efficiency. The sub-datasets are as follows: (1)362

IID: Each app is evenly allocated across all five363

clients, meaning each client has the same number364

of episodes for every app and app category. (2)365

Category Skew: The distribution of app categories366

is highly skewed, as each client possesses only one367

unique category. (3) Category Half-Skew: Similar368

Supported Base Models
Qwen: Qwen2-VL-2B/7B-Instruct, Qwen-VL-Chat
Intern: InternVL2-1B/2B/4B/8B
DeepSeek: DeepSeekVL2, DeepSeekVL2-tiny/small
OpenAI: GPT-4o, GPT-4o-mini, GPT-4-Vision

Integrated FL Algorithms
FedAvg, FedProx, SCAFFOLD, FedAvgM,
FedAdam, FedYogi, FedAdagrad, FedMobileAgent

Table 2: Supported base models and FL algorithms.

to Category Skewed, each client has access to two 369

categories, with an even distribution over the two 370

seen categories. (4) Category Non-Uniform: All 371

clients have seen all five categories, but the distri- 372

bution of categories varies across clients. (5) App 373

Skew: Each client has five categories of apps, but 374

within each category, a particular app is only seen 375

by one client. In other words, the category distri- 376

bution is IID across clients, but the specific apps 377

within each category are completely different. (6) 378

App Random: Each app is only seen by one client, 379

with apps randomly assigned to clients. Figure 3 380

highlights the notable distinctions between subsets. 381

3.3.4 App-Level and ScaleApp Datasets 382

To evaluate on the app-level heterogeneity instead 383

of categories, we build a concise dataset called 384

App-Level targeted at 5 apps, and another dataset 385

ScaleApp with scaled app and client numbers. 386

App Name Heterogeneity. In real life, mobile 387

phone users exhibit distinct preferences for specific 388

apps, even among those that serve similar functions. 389

Therefore, this form of heterogeneity cannot be 390

measured from the perspective of app categories, 391

but rather by app names. As showcased in Figure 1, 392

"User K" prefers Amazon over eBay for purchasing 393

products and Epic over Steam for gaming, resulting 394
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(a) App IID (b) App Skew (c) App Half-Skew (d) Non-Uniform
Figure 4: Distributions of the five apps across App-Level. Our subsets reveal distinct differences in the heterogeneity
of app usage. Note that the numbers represent episode counts, and the episodes are identical for all subsets.

Algorithm
Basic-AC Basic-AitW

High-Level Low-Level General Install G-Apps Single WebShopping Avg.Step Acc Step Acc Episode Acc

Zero-Shot 27.24 52.13 6 15.90 5.20 15.08 28.38 11.41 15.19
Central 55.59 80.47 27 35.04 54.50 46.65 55.46 39.82 46.29
Local 0 37.64 70.87 20 35.21 52.47 36.03 45.41 32.04 40.23
FedAvg 50.87 78.90 33 36.56 51.84 38.27 54.59 33.59 42.97

Table 3: Experiments on the Basic-AC and Basic-AitW Datasets. FedAvg consistently surpasses Local Learning,
validating the effectiveness of training mobile agents on distributed user data. Local 0 denotes the 0-th client.

in heterogeneity in the specific apps used.395

Description of App-Level Dataset. We con-396

struct a series of datasets aimed at capturing this397

diversity in apps. To make the distinction more ap-398

parent and straightforward for research comparison,399

we select five apps with the highest usage frequen-400

cies: Amazon, Clock, eBay, Flipkart, and Gmail.401

Given the limitations in available data samples for402

each individual app, we sample 150 episodes for403

each app. Subsequently, we create four represen-404

tative subsets following similar insights to those405

described in Section 3.3.3: (1) App-IID: All clients406

share the same number of episodes for each app.407

(2) App Skew: Each client has data collected from408

only one specific app. (3) App Half-Skew: Each409

client has access to two apps with an equal distri-410

bution of episodes. (4) App Non-Uniform: All411

clients have seen all five apps but with varying412

distributions of data. To facilitate comprehensive413

research, we provide a test dataset with an equal414

number of episodes for each of the five apps.415

3.4 Framework Description416

FedMABench integrates eight typical federated417

learning algorithms and supports more than ten418

base models. Our supported models and imple-419

mented methods are summarized in Table 2. In420

addition, we establish an end-to-end pipeline that421

offers two training paradigms: high-level and low-422

level training, each can be evaluated using two423

metrics: step-level accuracy and episode-level ac-424

curacy. In this framework, a low-level instruction425

refers to a fine-grained, atomic command that corre-426

sponds to a single execution step, while a high-level 427

instruction encapsulates the overarching task goal. 428

Compared to high-level training, low-level training 429

provides the agent with additional guidance in the 430

form of explicit subgoals as input at each step. 431

We build our framework based on the well- 432

known repository ms-swift (Zhao et al., 2024). 433

It is important to note that incorporating federated 434

learning support is non-trivial, as we decompose 435

the training pipeline and successfully integrate fed- 436

erated training in a concise manner, which facili- 437

tates the easy reproduction of other algorithms. 438

4 Experiments 439

4.1 Basic Setups (Details in Appendix C) 440

Base Model. We employ Qwen2-VL-7B-Instruct 441

(Wang et al., 2024b) as the base model for most 442

of our experiments. We use Low-Rank Adaptation 443

(LoRA) (Hu et al., 2021) for efficient fine-tuning 444

as the resources are limited on mobile phones. 445

Training Configuration. We train every model 446

for 10 rounds and sample 10% the total dataset at 447

each round. In most settings, we randomly sam- 448

ple 3 clients to participate each round to simulate 449

real-world scenarios where users are occasionally 450

offline (Jiang et al., 2024). 451

Metrics. We adopt a two-tier evaluation: Step 452

Accuracy measures precision at the action level 453

by checking if the predicted response matches the 454

ground truth based on TF-IDF similarity. Episode 455

Accuracy evaluates task execution success, requir- 456

ing all steps in an episode to be correct. 457
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Algorithm IID Episode Step Both Avg.

Qwen2-VL-7B 27.24 27.24
GPT-4o 42.52 42.52
Central 55.59 55.59

Local 0 37.64 33.39 29.13 46.77 36.73
FedAvg 43.78 40.63 40.63 40.81 41.46
FedProx 42.36 41.10 40.16 40.16 40.95
FedAvgM 42.00 41.57 41.10 40.47 41.29
FedYogi 42.05 41.10 41.26 42.05 41.62
FedAdagrad 43.31 41.42 41.10 41.26 41.77
SCAFFOLD 41.73 41.42 41.26 39.84 41.06
FedMobileAgent 42.68 41.89 41.26 46.53 43.09

Table 4: Experiments with multiple baselines on the
Step-Episode Dataset. In this setting, FedMobileAgent
achieves best performance on average and outperforms
GPT-4o, one of the SOTA VLMs.

4.2 Experiments on Basic-AC & Basic-AitW458

Setups. The experiments are based on the two ho-459

mogeneous datasets to examine the general proper-460

ties of federated mobile agents. From all available461

subsets we choose those with 1,000 episodes as462

representatives. We evaluated four methodologies463

on behalf of all baselines, using step-level accuracy464

as the primary evaluation metric. For Basic-AC,465

we perform both high-level training and low-level466

training. Since the episode accuracies of high-level467

training are close, we omit them for brevity. For468

Basic-AitW, we experiment on each subset sepa-469

rately and provide the average results as well.470

Results. From Table 3, we draw the follow-471

ing conclusions: (1) Federated learning effectively472

leverages distributed user data, as evidenced by the473

noticeable improvement of FedAvg over local train-474

ing on both the Basic-AC and Basic-AitW Datasets.475

However, the performance of FedAvg still falls476

short of centralized training, which aligns with ex-477

pectations. (2) Federated learning yields varying478

levels of improvement across different subsets of479

Basic-AitW, highlighting the impact of different480

data types and laying the foundation for exploring481

heterogeneity in the following sections.482

4.3 Experiments on Step-Episode Dataset483

Setups. We compare seven baselines and two484

base models on all four subsets: Step-Episode IID,485

Episode Skew, Step Skew and Both Skew (short486

for IID, Episode, Step and Both in Table 4 respec-487

tively). The evaluation dataset is consistent to pro-488

vide straightforward comparison, which is why the489

results are identical for centralized learning and490

base models across subsets. Note that we intention-491

ally evaluate FedMobileAgent with the parameter492

λ set to 7 (around the average steps per episode),493

which is designed to balance the two-level hetero-494

geneity in both step and episode counts. 495

Results. As shown in Table 4, the results in- 496

dicate that: (1) The presence of two-level hetero- 497

geneity in step and episode counts is evident, as 498

there is a clear performance drop when the feder- 499

ated trained mobile agents shift from IID scenarios 500

to other non-IID scenarios. (2) Different federated 501

learning algorithms exhibit distinct behaviors in 502

response to this heterogeneity. Overall, FedMo- 503

bileAgent(Wang et al., 2025), which leverages a 504

weighted aggregation of each client’s total steps 505

and episodes, demonstrates the best performance 506

under these heterogeneous conditions. This ap- 507

proach effectively captures the disparities in data 508

contributions across clients, thereby mitigating the 509

performance drop caused by the two-level sample 510

count heterogeneity. (3) It is surprising at first 511

sight, that Local 0 performs exceptionally well on 512

the Both Skew subset. However, Figure 2 (d) shows 513

that the 0-th client holds a large portion of the total 514

data, which explains its superior performance. 515

4.4 Experiments on Category-Level Dataset 516

Setups. We construct 6 subsets to examine how 517

federated mobile agents behave with heterogeneous 518

app category distributions. Due to page limits, we 519

present 4 subsets in Table 5, with the remaining 520

provided in the Appendix (Table 8 and 9). The red 521

color and blue color represent homogeneous and 522

heterogeneous datasets respectively. We evaluate 523

performance across all five category and report the 524

average accuracy across all test samples. 525

Results. In our constructed hierarchy, het- 526

erogeneity escalates from mild to severe as we 527

progress from Category IID −→ Non-Uniform −→ 528

Half-Skew −→ Skew. However, the general accu- 529

racy results in Table 5 rank as Category IID > Skew 530

> Non-Uniform > Half-Skew, which does not pre- 531

cisely align with the expected heterogeneity levels. 532

These results suggest that: (1) App category het- 533

erogeneity exists and degrades federated learning 534

performance, as nearly all algorithms show a perfor- 535

mance drop when transitioning from homogeneous 536

to heterogeneous scenarios. (2) Despite explicit 537

shifts in category distributions, the results on the 538

Category Skew subset remain statistically compa- 539

rable to those on the Category IID subset. This 540

suggests that category differences lead to domain- 541

invariant representations (i.e., features common 542

across categories, such as temporal usage patterns) 543

which counteract the harmful effects of heterogene- 544

ity. In summary, app category differences are not 545
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Algorithm Shop Travel Office Lives Entertain. Avg. Algorithm Shop Travel Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. Category IID Hetero. Category Skew
Local 0 48.39 45.78 36.89 32.28 45.71 42.25 Local 0 50.81 47.56 46.72 38.58 48.57 46.51
FedAvg 55.65 52.00 52.46 37.80 51.43 50.07 FedAvg 52.42 52.00 48.36 41.73 52.38 49.64
FedProx 53.23 52.44 51.64 38.58 51.43 49.79 FedProx 51.61 52.44 47.54 41.73 49.52 49.08
FedAvgM 54.84 52.89 50.00 38.58 49.52 49.64 FedAvgM 54.84 52.89 48.36 42.52 52.38 50.50
FedYogi 54.84 53.78 52.46 38.58 50.48 50.50 FedYogi 54.03 53.78 48.36 41.73 51.43 50.36

Hetero. Category Half-Skew Hetero. Category Non-Uniform
Local 0 41.13 56.00 36.89 40.16 37.14 44.38 Local 0 38.71 33.78 34.43 34.65 33.33 34.85
FedAvg 46.77 47.11 39.34 36.22 47.62 43.81 FedAvg 50.00 48.89 47.54 40.94 46.67 47.08
FedProx 47.58 49.33 42.62 39.37 46.67 45.66 FedProx 47.94 52.42 50.22 45.90 42.52 46.67
FedAvgM 45.16 48.89 42.62 38.58 45.71 44.81 FedAvgM 48.39 51.56 46.72 43.31 48.57 48.22
FedYogi 43.55 46.22 36.07 34.65 40.00 40.97 FedYogi 46.77 52.00 47.54 43.31 48.57 48.22

Table 5: Experiments on Category-Level. FL algorithms exhibit diverse behaviors with non-IID distributions result in
slightly lower accuracy. Entertain. is short for Entertainment. Colors represent homogeneity and heterogeneity .

Algorithm Amazon Clock Ebay Flipkart Gmail Avg. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

Zero-Shot 29.75 32.38 28.33 30.00 28.12 29.62 Central 54.55 64.76 58.33 61.00 51.56 57.67

Homo. App IID Hetero. App Skew
Local 0 44.63 49.52 41.67 50.00 33.59 43.38 Local 0 56.20 36.19 42.50 44.00 21.09 39.72
Local 1 46.28 57.14 52.50 54.00 39.06 49.30 Local 1 33.06 60.00 38.33 31.00 28.91 37.80
Local 2 54.55 53.33 51.67 51.00 38.28 49.48 Local 2 40.50 17.14 45.00 37.00 20.31 32.06
FedAvg 57.02 53.33 52.50 55.00 46.88 52.79 FedAvg 48.76 53.33 48.33 52.00 42.97 48.78
FedProx 55.37 53.33 55.00 54.00 44.53 52.26 FedProx 48.76 53.33 48.33 54.00 39.84 48.43
FedAvgM 58.68 52.38 54.17 54.00 46.88 53.14 FedAvgM 49.59 53.33 48.33 52.00 39.84 48.26
FedYogi 57.02 54.29 54.17 58.00 48.44 54.18 FedYogi 48.76 54.29 47.50 54.00 43.75 49.30

Hetero. App Half-Skew Hetero. App Non-Uniform
Local 0 52.89 57.14 45.00 40.00 36.72 46.17 Local 0 39.67 58.10 38.33 48.00 46.09 45.64
Local 1 57.02 53.33 50.00 47.00 28.91 46.86 Local 1 52.89 56.19 38.33 47.00 39.84 46.52
Local 2 50.41 40.95 41.67 58.00 28.91 41.64 Local 2 47.11 49.52 45.00 55.00 40.62 47.04
FedAvg 54.55 53.33 45.83 55.00 38.28 48.95 FedAvg 56.20 55.24 45.83 51.00 42.19 49.83
FedProx 56.20 55.24 43.33 55.00 38.28 49.13 FedProx 57.02 55.24 45.83 50.00 38.28 48.95
FedAvgM 54.55 53.33 45.00 54.00 42.19 49.48 FedAvgM 55.37 54.29 45.83 50.00 41.41 49.13
FedYogi 54.55 51.43 44.17 55.00 41.41 48.95 FedYogi 55.37 55.24 46.67 52.00 42.19 50.00

Table 6: Experiments on the App-Level Dataset. We provide evaluation results on all five apps. FL algorithms in
skewed app distributions perform significantly lower accuracy compared to IID situations.

the fundamental cause of heterogeneity.546

4.5 Experiments on App-Level Dataset547

Setups. The App-Level Dataset encompasses 5548

apps: Amazon, Clock, Ebay, Flipkart and Gmail.549

We evaluate all 5 apps and report their average per-550

formance across four subsets. The color scheme551

follows the same convention as in Section 4.4. Ad-552

ditionally, we include more results from training on553

the 1-st and 2-nd clients to offer more comparative554

insights and useful findings.555

Results. As shown in Table 6, we conclude the556

following: (1) The presence of app heterogeneity is557

evident, as there is a clear performance drop when558

the model shifts to heterogeneous situations. (2)559

We further observe a positive correlation between560

the severity of app name heterogeneity and per-561

formance degradation, confirming that this form562

of heterogeneity not only exists but critically im-563

pacts model effectiveness in real-world deployment564

contexts. (3) In comparison with the results from565

Category-Level, we find that differences in specific566

app names contribute more significantly to hetero-567

geneity than app categories. (4) Overall, FedYogi 568

(Reddi et al., 2020) outperforms other representa- 569

tive FL algorithms. (5) Notably, we observe that the 570

1-st client in the App Half-Skew subset, which only 571

has access to episodes from Clock and Ebay, outper- 572

forms all FL baselines on Amazon. We hypothesize 573

that there may be underlying relationships between 574

these apps that warrant further exploration. 575

5 Conclusion 576

In this paper, we present FedMABench, the first 577

research-friendly and comprehensive benchmark 578

for federated learning of mobile GUI agents, ac- 579

companied by six diverse datasets encompassing 580

over 30 meticulously designed subsets that capture 581

representative patterns of real-world heterogeneity. 582

Our extensive experiments reveal insightful discov- 583

eries, such as differences in specific app names 584

contribute more significantly to heterogeneity than 585

app categories. Overall, FedMABench bridges the 586

critical gap between theoretical FL research and 587

practical mobile agent applications, laying a solid 588

foundation for future work. 589
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Limitations590

Despite its comprehensive framework and diverse591

datasets, FedMABench still has some limitations.592

One major challenge lies in the trade-off between593

constructing datasets from real user interactions594

and relying on publicly available open-source data.595

Using real user data would provide more realis-596

tic and representative usage patterns, which are597

valuable for academic research. However, it raises598

significant privacy and ethical concerns. In con-599

trast, open-source datasets facilitate direct com-600

parison with existing work and pose no barriers601

to public release, but may lack the authenticity of602

real-world usage. Due to ethical considerations603

and the high cost of acquiring real user data on our604

own, we adopt the latter approach by leveraging the605

AndroidControl and Android in the Wild datasets.606

This strategy inevitably falls short in terms of re-607

alism compared to private user data, although it608

offers a reasonable simulation of actual user trajec-609

tories.610
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A Discussions and Future Directions 875

Previously, we have shown the promising results 876

achieved by training mobile agents via federated 877

learning. However, this is not the end as there are 878

still emerging challenges and interesting directions 879

that are worth exploring in this field in the future. 880

A.1 Federated Algorithms for Heterogeneity 881

of Mobile User Data 882

In FedMABench, we establish the benchmark for 883

evaluating federated mobile agents trained on het- 884

erogeneous user data. Our results in Section 4.4 885

and 4.5 demonstrate that currently no existing fed- 886

erated algorithm can achieve consistently good re- 887

sult when meeting the heterogeneity of diverse app 888

usage. Specifically, FedYogi (Reddi et al., 2020) 889

has noticeable performance drop on the Category 890

Half-Skew subset; FedMobileAgent (Wang et al., 891

2025) has no improvement when the distribution is 892

completely skewed. 893

Recently, there has been some research (Mik- 894

aberidze et al., 2024; Yao et al., 2024; Li et al., 895

2024a) on generative AI and communication opti- 896

mization for heterogeneous mobile clients. How- 897

ever, none of these studies address app heterogene- 898

ity among users. The deployment of federated 899

mobile agents require enhanced performance over 900

diverse data distributions for scalability, which ne- 901

cessitates further research into designing novel FL 902

algorithms to address the heterogeneity of phone 903

usage trajectories. 904

A.2 Privacy Preservation in Federated Mobile 905

Agents 906

Training on user data inevitably raises privacy con- 907

cerns. While federated learning helps mitigate pri- 908
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(a) ScaleApp IID (b) ScaleApp Skew (c) ScaleApp Random

Figure 5: Heatmap distribution of the ScaleApp Dataset. We select top 15 apps for visualization.

vacy leakage by keeping private data on the client909

side and transmitting only LoRA adapters, poten-910

tial privacy issues remain.911

Models with substantial sizes are prone to mem-912

orization of their training data (Yu et al., 2024;913

Wang et al., 2024d). Similar to large LLMs, re-914

cent studies (Caldarella et al., 2024; Samson et al.,915

2024; Jayaraman et al., 2024) reveal that VLMs916

also inadvertently memorize and potentially ex-917

pose sensitive information. Dejavu memorization918

(Jayaraman et al., 2024) proposes a novel measure-919

ment for memorization by quantifying the fraction920

of ground-truth objects in an image that can be921

predicted from its text description in a training922

image-text pair.923

Mobile agents rely on VLMs to perceive the in-924

terface and make decisions. Therefore, training925

directly on user data may lead to leakage of sen-926

sitive information. This issue can be addressed927

by implementing differential privacy (DP), which,928

however, remains underexplored in the context of929

VLMs and mobile agent training.930

A.3 Efficiency and Resources in Federated931

Mobile Agents932

To collaboratively train a global mobile agent on933

distributed user data, each user needs to locally934

train a small-sized VLM and communicate with935

the central server. However, limited computation936

resources and communication channels on mobile937

devices may hinder the feasibility of deployment.938

With the recent advancement of LLMs and dif-939

fusion models and their integration into federated940

learning systems (Zhou et al., 2021), numerous941

approaches have been proposed to alleviate compu-942

tational and communication overheads (Ding and943

Hu, 2024; Raje, 2024; Fang et al., 2025). On the944

other hand, the proliferation of smaller VLMs has 945

significantly enhanced efficiency. For instance, Ap- 946

pVLM (Papoudakis et al., 2025) specifically targets 947

app control tasks with a lightweight architecture, 948

facilitating rapid and cost-efficient inference for 949

real-time execution. 950

A.4 Combination of Reinforcement Learning 951

with Federated Mobile Agents 952

Although our current framework does not yet in- 953

corporate reinforcement learning, we identify it as 954

a promising future direction. In a federated mobile 955

agent setting, user feedback can serve as a criti- 956

cal reward signal, enabling agents to adjust their 957

decision-making policies dynamically. 958

Future work will need to tackle challenges in- 959

herent to integrating reinforcement learning into a 960

federated environment, such as handling heteroge- 961

neous feedback, ensuring robust and stable learning 962

under variable network conditions, and preserving 963

user privacy. We believe that exploring these is- 964

sues will pave the way for more adaptive and user- 965

centric mobile agents, ultimately enhancing both 966

their responsiveness and overall utility. 967

B Additional Experiments 968

B.1 Experiments on ScaleApp Dataset 969

Setups. We construct three subsets of the ScaleApp 970

Dataset to further investigate the heterogeneity of 971

specific app preferences. The distribution of sub- 972

sets are visualized in the heatmaps in Figure 5. We 973

select the top 15 apps to plot as the rest 15 apps 974

have basically the same distribution with the 14-th 975

app. To enhance scalability and increase diversity, 976

we select 30 apps, each with a varying number 977

of episodes, to form a training set consisting of 978
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Hetero. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

- Zero-Shot 30.68 32.53 39.84 33.33 18.35 32.17
Central 62.50 68.67 61.72 65.38 63.29 63.10

Local 0 50.00 54.22 51.56 55.13 34.18 46.72
Local 1 43.75 51.81 39.06 46.15 34.81 44.83
FedAvg 54.55 60.24 55.47 64.10 47.47 54.35
FedProx 54.55 59.04 55.47 65.38 46.84 54.46
FedAvgM 54.55 59.04 55.47 61.54 46.84 54.76

ScaleApp IID

FedYogi 56.25 61.45 56.25 64.10 48.10 55.12

Local 0 52.27 54.22 53.91 53.85 38.61 49.67
Local 1 21.59 31.33 28.12 28.21 20.25 25.61
FedAvg 59.66 60.24 57.81 57.69 46.84 55.35
FedProx 58.52 60.24 57.81 60.26 49.37 55.59
FedAvgM 60.80 60.24 60.16 62.82 46.84 55.71

ScaleApp Random

FedYogi 59.66 57.83 57.03 60.26 43.04 53.93

Local 0 59.66 39.76 54.69 61.54 26.58 42.46
Local 1 48.30 49.40 48.44 52.56 28.48 41.87
FedAvg 57.39 57.83 55.47 58.97 40.51 52.81
FedProx 57.95 57.83 56.25 57.69 42.41 53.40
FedAvgM 57.95 59.04 58.59 60.26 43.04 54.41

ScaleApp Skew

FedYogi 58.52 57.83 54.69 60.26 43.67 54.29

Table 7: Experiments on the ScaleApp Dataset. Skewed app distribution results in lower average accuracy across
apps. The long tailed apps with few episodes witness a greater decrease in performance.

2,500 episodes. Additionally, we sample 10% of979

the episodes from each app to form the test set.980

Results. From Table 7, we draw the follow-981

ing conclusions: (1) By comparing FedAvg across982

the three subsets, we further confirm the presence983

of app-level heterogeneity, as a clear performance984

drop occurs when the model transitions to more het-985

erogeneous scenarios. (2) Additionally, we observe986

that in heterogeneous settings, apps with a long-987

tailed distribution and fewer episodes experience a988

more significant performance decline compared to989

apps with more abundant data, such as Amazon and990

Ebay. (3) The performance of the 0-th local client991

on Amazon in the ScaleApp Skew subset aligns992

with expectations, as the client has 300 training993

episodes of Amazon data. However, it also per-994

forms exceptionally well on Flipkart, even though995

it has not encountered any Flipkart data during996

training. This remarkable performance suggests997

that there may be shared patterns between Amazon998

and Flipkart, contributing to the unexpected yet999

correlated success.1000

B.2 Supplementary Experiments on1001

Category-Level and App-Level Datasets1002

Setups. The experimental settings as the same with1003

the experiments in Section 4.4 and 4.5. Due to page1004

limits, we present more results with different base-1005

lines and other subsets in this section for reference.1006

We use "FedMA" to denote FedMobileAgent for1007

spacing. The colors represent homogeneity and 1008

heterogeneity. 1009

Results. We draw the following conclusions: 1010

(1) As shown in Table 8, we further substantiate 1011

that training mobile agents using federated learn- 1012

ing yields promising enhancements, as all base- 1013

lines exhibit remarkable progress compared to local 1014

training. (2) From Tables 8 and 5, global aggre- 1015

gation methods based on optimization (FedAdam, 1016

FedAdagrad, and FedYogi) consistently manifest 1017

subpar performance on the Category Half-Skew 1018

subset, but demonstrate exceptional results on the 1019

other subsets. This performance discrepancy re- 1020

mains challenging to explain. (3) By comparing 1021

the FL results on the two subsets, Category Skew 1022

and App Skew, in Tables 9 and 5, we conclude 1023

that FL algorithms generally underperform on the 1024

App Skew subset, which indicates that app name 1025

heterogeneity is more fundamental and severe than 1026

app category heterogeneity. (4) As shown in Tables 1027

10 and 6, the eight baselines exhibit diverse per- 1028

formance across different heterogeneous scenarios. 1029

FedMobileAgent performs averagely, as it is not 1030

specifically designed to handle this type of hetero- 1031

geneity, and it degrades to standard FedAvg when 1032

the app distribution becomes extremely skewed. 1033

(5) As reaffirmed, no current FL algorithm effec- 1034

tively addresses the new heterogeneity introduced 1035

by federated mobile agents, as all FL algorithms 1036

experience a substantial decline from IID to non- 1037
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Algorithm Shopping Traveling Office Lives Entertain. Avg. Algorithm Shopping Traveling Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. Category IID Hetero. Category Skew
Local 0 48.39 45.78 36.89 32.28 45.71 42.25 Local 0 50.81 47.56 46.72 38.58 48.57 46.51
FedAdagrad 54.84 53.78 50.00 39.37 50.48 50.21 FedAdagrad 54.03 52.44 48.36 42.52 51.43 50.07
SCAFFOLD 53.23 52.00 53.28 38.58 50.48 49.79 SCAFFOLD 54.03 52.89 47.54 41.73 51.43 49.93

Hetero. Category Half-Skew Hetero. Category Non-Uniform
Local 0 41.13 56.00 36.89 40.16 37.14 44.38 Local 0 38.71 33.78 34.43 34.65 33.33 34.85
FedAdagrad 47.58 46.22 40.98 35.43 40.95 42.82 FedAdagrad 50.00 52.89 49.18 43.31 48.57 49.36
SCAFFOLD 46.77 48.89 42.62 37.80 42.86 44.52 SCAFFOLD 47.58 52.00 47.54 44.09 48.57 48.51

Table 8: Supplementary experiments on the Category-Level Dataset with more baselines. Colors represent
homogeneity and heterogeneity . FedMA is short for FedMobileAgent (Wang et al., 2025).

Algorithm Shopping Traveling Office Lives Entertain. Avg. Algorithm Shopping Traveling Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. App Random Hetero. App Skew
Local 0 43.55 45.78 35.25 43.31 38.10 41.96 Local 0 44.35 40.44 48.36 29.92 35.24 39.83
FedAvg 50.81 51.56 47.54 44.09 48.57 48.93 FedAvg 50.81 53.78 45.90 33.86 53.33 48.22
FedProx 49.19 49.78 46.72 41.73 49.52 47.65 FedProx 51.61 54.22 47.54 38.58 54.29 49.79
FedAvgM 50.00 54.67 46.72 44.09 52.38 50.21 FedAvgM 52.42 52.00 45.90 37.01 54.29 48.65
FedYogi 53.23 51.56 49.18 46.46 48.57 50.07 FedYogi 50.00 52.89 45.08 35.43 49.52 47.37

Table 9: Supplementary experiments on the two other subsets of Category-Level Dataset: App Random and App
Skew. Compared to the results in Category Skew, App Skew produces more severe heterogeneity. All FL algorithms
demonstrate diverse performances on the two subsets with FedAvgM generally achieves the best results.

IID app distributions, which highlights the need for1038

further advancements in this area.1039

B.3 Comparison of Base Models1040

Setups. Built upon ms-swift, FedMABench sup-1041

ports over ten base VLMs and has the potential1042

to accommodate more in the future. We select1043

five models as representatives, encompassing both1044

open-ended and closed-ended models from three1045

distinct model families. Since closed-ended mod-1046

els cannot be fine-tuned, we provide zero-shot re-1047

sults for them. For open-ended models, we fine-1048

tune them on the App IID subset of the App-Level1049

Dataset as a representative case.1050

Results. As shown in Table 11, we draw the fol-1051

lowing conclusions: (1) Training on different mod-1052

els yields diverse performance results. (2) Overall,1053

the performance of open-ended models shows a1054

strong positive correlation with their model size.1055

(3) Through federated training on distributed data,1056

even smaller VLMs like Qwen2-VL-2B-Instruct1057

can achieve performance on par with SOTA closed-1058

ended models such as GPT-4o.1059

B.4 Ablation on Dataset Size1060

Setups. We conduct experiments on the Basic-AC1061

Dataset with incrementally increasing data sizes1062

to investigate the impact of dataset size on per-1063

formance, and to examine whether scaling laws 1064

hold in the context of federated learning for mobile 1065

agent training. To control experimental conditions, 1066

we fix the number of clients at 10 and evaluate the 1067

mobile agents after 10 communication rounds. No- 1068

tably, in the FedAvg implementation, 30% of par- 1069

ticipating clients are randomly sampled per round, 1070

leading to a smaller number of sample iterations 1071

compared to centralized training. 1072

Results. As shown in Table 12, we draw the 1073

following conclusions: (1) Performance improve- 1074

ments exhibit a strong positive correlation with 1075

dataset scale across all training paradigms, validat- 1076

ing the effectiveness of federated learning for scal- 1077

able mobile agent training. Specifically, FedAvg 1078

demonstrates incremental gains from 31.18% to 1079

53.54% as data availability increases. (2) FedAvg 1080

shows diminishing returns as the data size reaches 1081

a certain threshold, still leaving a gap relative to 1082

centralized training. Enhancing the performance of 1083

federated trained mobile agents necessitates further 1084

efforts into this area. 1085

B.5 Ablation on Clients Number 1086

Setups. We investigate federated learning dynam- 1087

ics under varying client number while maintaining 1088

a fixed budget of 100 episodes per client. Mobile 1089
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Algorithm Amazon Clock Ebay Flipkart Gmail Avg. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

Zero-Shot 29.75 32.38 28.33 30.00 28.12 29.62 Central 54.55 64.76 58.33 61.00 51.56 57.67

Homo. App IID Hetero. App Skew
Local 0 44.63 49.52 41.67 50.00 33.59 43.38 Local 0 56.20 36.19 42.50 44.00 21.09 39.72
FedAdagrad 56.20 54.29 54.17 58.00 50.00 54.36 FedAdagrad 45.45 54.29 50.83 55.00 46.88 50.17
SCAFFOLD 56.20 54.29 55.00 53.00 47.66 53.14 SCAFFOLD 48.76 54.29 52.50 52.00 44.53 50.17
FedMA 58.68 53.33 53.33 55.00 48.44 53.66 FedMA 47.93 53.33 48.33 54.00 41.41 48.61

Hetero. App Half-Skew Hetero. App Non-Uniform
Local 0 52.89 57.14 45.00 40.00 36.72 46.17 Local 0 39.67 58.10 38.33 48.00 46.09 45.64
FedAdagrad 54.55 54.29 43.33 55.00 42.19 49.48 FedAdagrad 56.20 54.29 46.67 50.00 40.62 49.30
SCAFFOLD 54.55 53.33 43.33 54.00 40.62 48.78 SCAFFOLD 55.37 53.33 45.83 50.00 40.62 48.78
FedMA 55.37 53.33 45.83 55.00 41.41 49.83 FedMA 55.37 55.24 45.83 52.00 41.41 49.65

Table 10: Supplementary Experiments on the App-Level Dataset. We provide additional evaluation results with four
other baselines. The total eight baselines yield diverse performance in different heterogeneous scenarios.

Base Model Amazon Clock Ebay Flipkart Gmail Avg.

Algorithm Zero-Shot
GPT-4o 40.50 48.57 43.33 45.00 38.28 42.86
GPT-4o-mini 26.45 33.33 30.83 30.00 35.16 31.18

Algorithm FedAvg
Qwen2-VL-2B 47.11 46.67 35.83 38.00 39.84 41.46
Qwen2-VL-7B 57.02 53.33 52.50 55.00 46.88 52.79
InternVL2-1B 28.93 40.00 27.50 28.00 35.16 31.88
InternVL2-2B 34.71 41.90 30.00 28.00 32.03 33.28

Table 11: Comparison of different base models on the
App IID subset. We choose five models as representa-
tives including both open-ended and closed-ended mod-
els.

agents are evaluated after 100 training rounds with1090

a controlled participation scheme: each round acti-1091

vates 10% of available clients.1092

Results. As shown in Table 13, we conclude that:1093

(1) As reiterated, model performance demonstrates1094

strong positive correlation with client population1095

size, validating federated learning’s effectiveness1096

for scalable distributed training. (2) A particularly1097

significant performance leap (51.81% → 56.06%1098

step accuracy) occurs when scaling from 10 to 301099

clients, suggesting critical mass benefits in collabo-1100

rative learning.1101

B.6 Ablation on Clients Participation1102

Setups. We analyze the impact of client participa-1103

tion rates while keeping the total client population1104

constant and maintaining a fixed global data vol-1105

ume. Specifically, we use the subset of Basic-AC1106

with 3,000 episodes, partitioned across 30 clients.1107

The system is evaluated after 100 training rounds1108

with varying numbers of clients sampled per round,1109

ranging from 1 to 30 participants.1110

Results. As shown in Table 14, we draw the1111

following conclusions: (1) Cross-referencing with1112

Table 13 reveals an emergent pattern: under equiv-1113

Algorithm 200 500 1000 3000 5000 7000

Zero-Shot 27.24
Central 43.94 42.36 55.59 56.38 59.69 62.05

Local 0 17.80 28.35 37.64 44.25 47.40 52.44
FedAvg 31.18 36.54 43.78 50.39 51.50 53.54

Table 12: Experiments on dataset sizes. Performance
improvements exhibit strong positive correlation with
dataset scale for all training paradigms.

Client Number 10 30 50 70
Client Sample 1 3 5 7

FedAvg 51.81 56.06 57.17 57.48

Table 13: Experiments with different client numbers.
Each client is allocated 100 episodes. As more clients
are involved, the dataset scale increases. Performance
improvements show a positive correlation with the num-
ber of clients, consistent with the results in Table 12.

alent total data budgets, increasing client participa- 1114

tion enhances model performance. This suggests 1115

distributed learning benefits stem not merely from 1116

data accumulation, but crucially from diversified 1117

experiential sampling across heterogeneous clients. 1118

(2) Moderate participation rates, with 3 clients sam- 1119

pled per round, achieve performance comparable 1120

to maximum participation. This phenomenon can 1121

be attributed to the fact that as the number of partic- 1122

ipating clients increases, heterogeneity also rises, 1123

which may degrade overall performance despite 1124

the higher training cost. 1125

C Data & Experiment Details 1126

C.1 Dataset Details 1127

We provide detailed descriptions of our datasets 1128

and the data collection process in this section, in- 1129

cluding examples and statistics. 1130
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Client Number 30 30 30 30 30 30
Client Sample 1 3 5 10 15 30

FedAvg 41.10 45.35 44.72 44.09 43.94 45.67

Table 14: Experiments with varying client participation
rates, with the dataset and its partition kept constant for
controlled comparison. A moderate number of clients
per round achieves comparable performance to full par-
ticipation.

Open the Zoho Meet app , view the scheduled meetings. 
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Figure 6: A data episode example for training mobile
agents.

Data Episode Example. To provide a clearer1131

understanding of the structure of our dataset and1132

the composition of a data episode, we present a1133

sample as an example in this section. As shown in1134

Figure 6, each episode consists of: (1) A high-level1135

instruction, which is a natural language sentence1136

describing the task to be accomplished; (2) A se-1137

quence of low-level instructions, detailing the fine-1138

grained tasks required for the current screenshot;1139

(3) A series of screenshots taken from the start to1140

the end of the task; and (4) A corresponding list of1141

actions, matching the number of screenshots, indi-1142

cating what the user does to progress to the next1143

screenshot. All actions belong to an action space1144

containing 7-9 options. We adopt the action spaces1145

defined in (Rawles et al., 2023; Li et al., 2024b;1146

Wang et al., 2025).1147

Dual-Strategy App Name Extraction. For each1148

episode from the original dataset of Android Con-1149

trol, we implement a dual-strategy approach for1150

application name extraction based on the "open 1151

app" action and regular expression matching. 1152

As demonstrated in the following code snippet, 1153

if the actions include the the "open app" action, 1154

the application name is directly retrieved from the 1155

dedicated app_name field, followed by sanitized 1156

string processing. 1157

for episode in all_episodes: 1158
// Load the task information for the current episode 1159
data = load("task_info.json") 1160
// Check if ’open_app ’ in the actions of this episode 1161
if "open_app" in data["action_type"]: 1162

// Direct extraction with sanitization 1163
app_name = data["app_name"]. replace("\ufeff", "") 1164

else: 1165
// Use semantic pattern matching 1166

1167
pattern = re.compile( 1168

r’\bthe\s+(\w+(?:\s+\w+)?)\s+app\b’, 1169
re.IGNORECASE 1170

) 1171
match = pattern.search(data["goal"]) 1172
if match exists: 1173

app_name = match.group (1) 1174
else: 1175

// Skip episodes where extraction fails 1176
continue 1177

Otherwise, if the actions of this episode do not 1178

contain the "open app" action, which indicates that 1179

explicit application identifiers are absent, we at- 1180

tempt to extract potential app name from the goal 1181

field (i.e., instructions) . This is achieved through a 1182

regular expression designed to identify the phrase 1183

"the [app] app" using semantic pattern match- 1184

ing. 1185

Episodes failing both extraction strategies were 1186

systematically excluded to ensure data valid- 1187

ity. This dual-strategy filtering process ultimately 1188

yielded 8,400 qualified episodes containing unam- 1189

biguous application identifiers, forming the core 1190

dataset for subsequent construction and analysis. 1191

Dataset Statistics. In this part, we provide a 1192

detailed enumeration of the specific apps included 1193

in each dataset, along with the exact number of 1194

instances for each app. 1195

(1) Basic-AC Dataset: The Basic-AC Dataset 1196

encompasses comprehensive categories and apps. 1197

Detailed statistical information can be found in Ta- 1198

ble 16. (2) Category-Level Dataset: The Basic 1199

Dataset comprises a total of 52 apps that are or- 1200

ganized into several categories. In the shopping 1201

category, there are 10 apps: Amazon, eBay, Flip- 1202

kart, Adidas, Nike, Decathlon, Etsy, Puma, Temu, 1203

and Snapdeal, with each app contributing 20 in- 1204

stances for a total of 200. The travelling cate- 1205

gory includes 10 apps, namely Google Maps, Ex- 1206

pedia, Omio, Booking.com, Citymapper, Trainline, 1207

Kayak, Cruisemapper, MakeMyTrip, and Agoda, 1208

where each app again provides 20 instances to 1209
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Dataset Subset Category N. Client N. Episode N. Step

Basic-AC

c10n200 all 10 200 7454
c10n500 All 10 500 20198

c10n1000 All 10 1000 40112
c10n3000 All 10 3000 120512
c10n5000 All 10 5000 201434
c10n7000 All 10 7000 282332
c30n3000 All 30 3000 120512
c50n5000 All 50 5000 201434
c70n7000 All 70 7000 282332
Shopping Shopping 10 2252 79292
Travelling Travelling 10 788 47918

Office Office 10 1974 76910
Lives Lives 10 1136 46070

Entertainment Entertainment 10 850 32150

Table 15: Composition details of the 14 subsets in the Basic-AC Dataset. ’N.’ denotes the number of instances, and
’Category’ refers to the covered categories within each subset.

reach a sum of 200. The office category follows the1210

same pattern with 10 apps: Gmail, Clock, Google1211

Drive, Google Docs, Calendar, Google Keep, Con-1212

tacts, Reminder, Recorder, and Voice Recorder,1213

each adding 20 data points for a total of 200. The1214

lives category also consists of 10 apps: Kitchen1215

Stories, Home Workout, Sidechef, Yummly, Blos-1216

som, Plantum, Simple Habit, Leafsnap, Medito,1217

and Insight Timer, each contributing 20 instances1218

to make up another 200. In contrast, the enter-1219

tainment category is slightly different, comprising1220

12 apps. Eight of these apps, which are YouTube,1221

Vimeo, Artsy, Sketchbook, Messenger, Pinterest,1222

Flipboard, and SoundCloud, each provide 20 in-1223

stances, while the remaining four apps, namely1224

Snapchat, SmartNews, The Hindu, and CNN, con-1225

tribute 10 instances each, together totaling 200.1226

Basic-AC Specifics. We construct 14 subsets1227

in Basic-AC, a detailed description of which is1228

provided in Table 15. The table specifies three key1229

parameters for each subset: number of participating1230

clients, total episodes, and total steps. Subsets 1-91231

represent cross-category aggregations with varying1232

scales, while subsets 10-14 correspond to category-1233

specific partitions.1234

C.2 Training Details1235

General Parameters. Our implementation lever-1236

ages the Swift library (Zhao et al., 2024) with1237

parameter-efficient fine-tuning. The LoRA config-1238

uration employs a rank of 8 with an alpha scaling1239

factor of 32, incorporating dropout regularization1240

of 0.05 to prevent overfitting. We set the maximum1241

sequence length to 4,096. We set the batch size1242

to 1 and the gradient accumulation step to 4. The1243

learning rate is kept fixed at 5e-5.1244

Hardware Configuration. The training is con- 1245

ducted on two NVIDIA GeForce RTX 3090 GPUs 1246

utilizing CUDA version 12.4. Under this hard- 1247

ware configuration, the training process achieves a 1248

throughput of approximately 2 minutes per training 1249

round per client when processing 10 episodes. 1250

Federated Algorithms. The framework imple- 1251

ments adaptive hyperparameter defaults for vari- 1252

ous federated algorithms: FedYogi (Reddi et al., 1253

2020) employs momentum factors (β1 = 0.9, β2 = 1254

0.999) with learning rate η = 10−3 and stabi- 1255

lization constant τ = 10−6. FedAvgM (Hsu 1256

et al., 2019) uses 0.9/0.1 ratio for historical/cur- 1257

rent model interpolation. FedProx (Li et al., 2020) 1258

applies proximal regularization with µ = 0.2 1259

through ||w − wt||2 penalty terms. SCAFFOLD 1260

(Karimireddy et al., 2020) configurations maintain 1261

server learning rate ηs = 1.0 with client momen- 1262

tum compensation, while FedAdam and FedAda- 1263

grad (Reddi et al., 2020) share base parameters 1264

(β1 = 0.9, β2 = 0.999) with adaptive learning rate 1265

scaling. All algorithms expose tunable coefficients 1266

through the framework’s unified parameter inter- 1267

face. 1268
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App Num App Num App Num App Num App Num App Num

Shopping
amazon 302 ebay 225 flipkart 151 adidas 83 decathlon 82 etsy 76
nike 64 temu 64 puma 59 shopsy 53 snapdeal 52 ikea 47
shopclues 43 ubuy 40 banggood 38 industrybuy. 37 myntra 37 tata cliq 37
zara 37 jiomart 33 dhgate 32 blinkit 30 moglix 30 bigbasket 26
asos 25 joom 20 tata neu 20 dmart ready 19 ajio 17 hardware sh. 17
nnnow 17 pepperfry 17 edmunds 15 houzz 13 footshop 12 hamleys 12
limeroad 12 rapidbox 12 mywarehouse 11 nykaaman 11 toys ’r’ us 11 yalla toys 11
coolblue 10 freshtohome 10 lazada 10 mega

hardwa.
10 shoppers st. 10 barakat 9

cartrade 8 furlenco 8 nykaafashion 8 autoscout24 7 lovelocal 7 cars24 6
carwale 6 nykaa 6 olx india 6 spinny 6 toyspoint 6 woodenstreet 6
dookanti 5 uniqlo 5 urbanic 5 albertsons 4 hardware sh. 4 jd 4
louis vuitt. 4 max fashion 4 nature’s ba. 4 pdffiller 4 sports dire. 4 true value 4
urban outfi. 4 zalando 4 1800 flowers 3 abercrombie 3 adani one 3 bechdo 3
bewakoof 3 carguru 3 dunzo 3 globalsourc. 3 homzmart 3 igp 3
khelmart 3 nykaa fashi. 3 peter engla. 3 pizza max 3 reliance di. 3 shoptime 3
spencers 3 sportsuncle 3 westside 3 cardekho 2 colourpop c. 2 coop 2
ferns n pet. 2 flower aura 2 funeasylearn 2 furniture o. 2 instashop 2 jaquar 2
louis phili. 2 love local 2 m&s india 2 magzter 2 massimo

dut.
2 milkbasket 2

moira
cosme.

2 namshi 2 noon 2 p louise co. 2 pantaloons 2 pepper 2

redbubble 2 royal 2 safeway 2 sports bazar 2 sportsdirect 2 sportspar 2
super note 2 top-most ha. 2 topmost har. 2 weather rad. 2 yoox 2 zappo 2
zappo
brands

2 acme 1 apkpure 1 app market 1 character c. 1 dubizzle 1

ebay app 1 electronics. 1 estee lauder 1 farfetch 1 fernsnpetals 1 goat 1
gostor 1 ikea app 1 industry ub. 1 insaraf - s. 1 iplan.ai 1 jd sports 1
jollee 1 kicks crew 1 luxuryestate 1 massimo du. 1 mikbasket 1 mytrip 1
nnnnow 1 nobroker 1 same temu 1 samsung

shop
1 sanitary ba. 1 second cale. 1

sun & sand . 1 tesco 1 thriftbooks 1 toys shoppi. 1 tradet mark. 1 vijetha live 1
winni 1 woodland 1 woodlands 1 zomato 1
Travelling
google maps 111 expedia 55 omio 47 booking.com 46 kayak 40 citymapper 37
cruisemapper 29 makemytrip 27 trainline 27 airbnb 25 skyscanner 25 agoda 23
wanderu 21 alltrails 20 rail planner 20 guardian 15 moovit 14 traillink 13
hopper 11 momondo 11 rome2rio 11 trip.com 11 yatra 10 cruisedeals 9
goibibo 9 amtrak 8 easemytrip 8 ixigo 8 klook 8 flixbus 7
foursquare 7 talabat 7 time zone c. 6 trainpal 6 schedule pl. 5 cleartrip 4
kiwi.com 4 shipatlas 4 traveloka 4 getby 3 hiking proj. 3 hotels.com 3
immobiliare 3 lambus 3 maxmilhas 3 prestigia 3 rail europe 3 riyadh bus 3
travel life 3 wego flight. 3 bookaway 2 eurostar 2 gotogate 2 greyhound 2
hhr train 2 hiiker 2 klm 2 lner 2 orbitz 2 passporter 2
sbb mobile 2 sncf connect 2 sygic travel 2 trovit 2 cheapflights 1 egy train w. 1
farefirst 1 maps go 1 mytrip 1 roadtrippers 1 sncb intern. 1 thalys 1
trivago 1
Office
gmail 189 clock 158 google drive 127 reminder 101 calendar 72 contacts 69
google keep 65 google docs 52 recorder 48 voice recor. 47 google slid. 45 ticktick 37
khan aca. 36 skype 36 chat 33 powerpoint 33 settings 31 files by go. 30
dropbox 28 officesuite 22 todoist 22 phonebook 21 polaris off. 20 clockbuddy 19
all currenc. 18 memrise 17 microsoft w. 17 onedrive 17 outlook 17 smart recor. 16
google news 15 taskito 15 tasks 15 jotform 14 myrecorder 14 any.do 13
readera 13 translate 13 currency pl. 12 easy voice . 12 migros 12 merriam. 11
to do remin. 11 to do list 10 formsapp 9 notein 9 presentatio. 9 colornote 8
coursera 8 easy dialer 8 easy notes 8 easy timezo. 8 xodo 8 zoho meet-

ing
8

calculator 7 note 7 spck editor 7 webex 7 alarmy 6 dictionary 6
duocards 6 habitica 6 meet 6 microsoft p. 6 mondly

lang.
6 moon+

reader
6

pdf reader . 6 whiteboard 6 notebook 5 pcloud 5 schedule pl. 5 simple calc. 5
timezone co. 5 alarm clock. 4 calendar pl. 4 code editor 4 digital ala. 4 easynotes 4
forms app 4 plantapp 4 savvy time 4 sheets 4 sublime text 4 tododo 4
vocab.com 4 webex meet 4 winzip 4 word office 4 zarchiver 4 alarm clock. 3
clevnote 3 contact 3 cursa 3 cx file exp. 3 deftpdf 3 digical 3
Continued on next page.
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App Num App Num App Num App Num App Num App Num

doodle 3 forms.app 3 math tests 3 my money 3 pdfelement 3 pull&bear 3
spendee 3 udemy 3 voice recor. 3 weather xl 3 calcu 2 calendar pro 2
carrot 2 ereader pre. 2 flipsnack 2 funeasylearn 2 giant stopw. 2 google tasks 2
letter temp. 2 math learni. 2 microsoft 3. 2 multi calcu. 2 munimobile 2 mycurrency 2
papago 2 power point 2 pro 7-zip 2 quip 2 simple cont. 2 smartcal 2
super note 2 timezones 2 unit conver. 2 voice recor. 2 world clock 2 xe converter 2
zoho show 2 7z 1 blaze wordp. 1 bookscape 1 calculator . 1 currencycon. 1
docx - all . 1 drawing pad 1 everand ebo. 1 exchange ra. 1 focus to-do 1 g-forms 1
internal fi. 1 iplan.ai 1 lists 1 math learni. 1 maths test 1 monefy 1
office: pre. 1 oppia 1 pdf extra 1 radio u.s. 1 rar 1 setting 1
simple clock 1 smartify 1 step tracke. 1 telegram 1 upgrad 1 webcode 1
Lives
kitchen sto. 91 home work. 51 fit 50 sidechef 44 yummly 44 insight tim. 38
leafsnap 30 redfin 30 blossom 28 weather 27 plantum 26 opentable 25
google fit 24 simple habit 24 plantin 23 strava 20 dmart ready 19 fitai 19
fitbit 19 meditopia 19 idanim 18 artier 17 medito 17 pepperfry 17
calm 15 jefit 15 grubhub 13 mindfulness 13 tasty 13 cookpad 12
deliveroo 12 evolve 12 migros 12 trovit homes 12 breethe 11 lifestyle 11
photos 11 supercook 11 all recipes 10 bigoven 10 lunch recip. 10 notes 10
doordash 9 home centre 9 99acres 8 all recipes. 8 rentberry 8 urban ladder 8
fitpro 7 heartfulness 7 phases of t. 7 talabat 7 bbc news 6 budgetbytes 6
daff moon 6 moon 6 pizza hut 6 withings 6 baby tracker 5 balance 5
gym work-
out

5 martinoz pi. 5 mi fitness 5 my moon
pha.

5 plant ident. 5 realtor.com 5

runkeeper 5 housing 4 moonx 4 serenity 4 flo 3 headspace 3
healthifyme 3 ovia pregna. 3 planta 3 pregnancy 3 smiling

mind
3 trulia 3

carrot 2 hatch baby 2 home garden 2 immoscout24 2 moonly 2 plantora 2
property fi. 2 recime 2 vivareal 2 what to exp. 2 babycenter 1 cult.fit 1
freshto
home

1 good food 1 immobiliare. 1 indian reci. 1 luxuryestate 1 mojopizza 1

my workout
.

1 nobroker 1 workout pla. 1

Entertainment
youtube 95 vimeo 64 gallery 36 artsy 35 messenger 32 pinterest 31
spotify 27 sketchbook 26 soundcloud 23 flipboard 20 snapchat 17 the weather. 16
cnn 15 google news 15 guardian 15 arts & cult. 13 tunein radio 13 wynk music 12
audiomack 11 deviantart 11 nytimes 11 photos 11 pocketbook 11 show 11
smartnews 11 youtube

mus.
11 coolblue 10 mytuner rad. 10 the hindu 10 sgraffito 9

skyview free 9 behance 8 reuters 7 sketchar 7 bbc news 6 moon+
reader

6

radio garden 6 time zone c. 6 toi 6 washington . 6 webnovel 6 whiteboard 6
color 5 euronews 5 gaana 5 hindu 5 kobo books 5 mi fitness 5
thefork 5 wattpad 5 cafeyn 4 cna 4 cnn news 4 dolby on 4
domino’s 4 hindu news 4 hungama 4 usa today 4 anghami 3 dailymotion 3
fox news 3 headspace 3 mojarto 3 nbc news 3 peggy 3 rtistiq 3
toi news 3 daily art 2 dailyart 2 hiiker 2 magzter 2 msn weather 2
paint 2 radio 2 radio fm 2 readly 2 readwhere

m.
2 sky tracker 2

startracker 2 zinio magaz. 2 app market 1 artly 1 bbdaily 1 deccan hera. 1
expert pape. 1 hipaint 1 messages 1 newyork

tim.
1 radio u.s. 1 readly maga. 1

sky view 1 skyview 1 smartify 1 winni 1

Table 16: Application categorization and statistics for the Basic-AC Dataset. Due to the limited table width, app
names that are too long will be truncated, with the truncated portion replaced by a dot(.).
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