
Under review as a conference paper at ICLR 2021

DISTANTLY SUPERVISED END-TO-END MEDICAL
ENTITY EXTRACTION FROM ELECTRONIC HEALTH
RECORDS WITH HUMAN-LEVEL QUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Medical entity extraction (EE) is a standard procedure used as a first stage in
medical texts processing. Usually Medical EE is a two-step process: named entity
recognition (NER) and named entity normalization (NEN). We propose a novel
method of doing medical EE from electronic health records (EHR) as a single-
step multi-label classification task by fine-tuning a transformer model pretrained
on a large EHR dataset. Our model is trained end-to-end in an distantly supervised
manner using targets automatically extracted from medical knowledge base. We
show that our model learns to generalize for entities that are present frequently
enough, achieving human-level classification quality for most frequent entities.
Our work demonstrates that medical entity extraction can be done end-to-end
without human supervision and with human quality given the availability of a
large enough amount of unlabeled EHR and a medical knowledge base.

1 INTRODUCTION

Wide adoption of electronic health records (EHR) in the medical care industry has led to accumula-
tion of large volumes of medical data (Pathak et al., 2013). This data contains information about the
symptoms, syndromes, diseases, lab results, patient treatments and presents an important source of
data for building various medical systems (Birkhead et al., 2015). Information extracted from medi-
cal records is used for clinical support systems (CSS) (Shao et al., 2016) (Topaz et al., 2016) (Zhang
et al., 2014), lethality estimation (Jo et al., 2015) (Luo & Rumshisky, 2016), drug side-effects dis-
covery (LePendu et al., 2012) (Li et al., 2014) (Wang et al., 2009), selection of patients for clinical
and epidemiological studies (Mathias et al., 2012) (Kaelber et al., 2012) (Manion et al., 2012), med-
ical knowledge discovery (Hanauer et al., 2014) (Jensen et al., 2012) and personalized medicine
(Yu et al., 2019). Large volumes of medical text data and multiple applicable tasks determine the
importance of accurate and efficient information extraction from EHR.

Information extraction from electronic health records is a difficult natural language processing task.
EHR present a heterogeneous dynamic combination of structured, semi-structured and unstructured
texts. Such records contain patients’ complaints, anamneses, demographic data, lab results, instru-
mental results, diagnoses, drugs, dosages, medical procedures and other information contained in
medical records (Wilcox, 2015). Electronic health records are characterised by several linguistic
phenomena making them harder to process.

• Rich special terminology, complex and volatile sentence structure.

• Often missing term parts and punctuation.

• Many abbreviations, special symbols and punctuation marks.

• Context-dependant terms and large number of synonims.

• Multi-word terms, fragmented and non-contiguous terms.

From practical point of view the task of medical information extraction splits into entity extraction
and relation extraction. We focus on medical entity extraction in this work. In the case of medical
texts such entities represent symptoms, diagnoses, drug names etc.
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Entity extraction, also referred as Concept Extraction is a task of extracting from free text a list of
concepts or entities present. Often this task is combined with finding boundaries of extracted entities
as an intermediate step. Medical entity extraction in practice divides into two sequential tasks:
Named entity recognition (NER) and Named entity normalization (NEN). During NER sequences
of tokens that contain entities are selected from original text. During NEN each sequence is linked
with specific concepts from knowledge base (KB). We used Unified Medical Language System
(UMLS) KB (Bodenreider, 2004) as the source of medical entities in this paper.

In this paper we make the following contributions. First, we show that a single transformer model
(Devlin et al., 2018) is able to perform NER and NEN for electronic health records simultaneously
by using the representation of EHR for a single multi-label classification task. Second, we show that
provided a large enough number of examples such model can be trained using only automatically
assigned labels from KB to generalize to unseen and difficult cases. Finally, we empirically esti-
mate the number of examples needed to achieve human-quality medical entity extraction using such
distantly-supervised setup.

2 RELATED WORK

First systems for named entity extraction from medical texts combined NER and NEN using term
vocabularies and heuristic rules. One of the first such systems was the Linguistic String Project
- Medical Language Processor, described in Sager et al. (1986). Columbia University developed
Medical Language Extraction and Encoding System (MedLEE), using rule-based models at first and
subsequently adding feature-based models (Friedman, 1997). Since 2000 the National Library of
Medicine of USA develops the MetaMap system, based mainly on rule-based approaches (Aronson
et al., 2000). Rule-based approaches depend heavily on volume and fullness of dictionaries and
number of applied rules. These systems are also very brittle in the sense that their quality drops
sharply when applied to texts from new subdomains or new institutions.

Entity extraction in general falls into three broad categories: rule-based, feature-based and deep-
learning (DL) based. Deep learning models consist of context encoder and tag decoder. The context
encoder applies a DL model to produce a sequence of contextualized token representation used as
input for tag decoder which assign entity class for each token in sequence. For a comprehensive
survey see (Li et al., 2020). In most entity extraction systems the EE task is explicitly (or for some
DL models implicitly) separated into NER an NEN tasks.

Feature-based approaches solve the NER task as a sequence markup problem by applying such
feature-based models as Hidden Markov Models (Okanohara et al., 2006) and Conditional Random
Fields (Lu et al., 2015). The downside of such models is the requirement of extensive feature
engineering. Another method for NER is to use DL models (Ma & Hovy, 2016) (Lample et al.,
2016). This models not only select text spans containing named entities but also extract quality
entity representations which can be used as input for NEN. For example in (Ma & Hovy, 2016)
authors combine DL bidirectional long short-term memory network and conditional random fields.

Main approaches for NEN task are: rule-based (D’Souza & Ng, 2015) (Kang et al., 2013), feature-
based (Xu et al., 2017a) (Leaman et al., 2013) and DL methods (Li et al., 2017a) (Luo et al., 2018b)
and their different combinations (Luo et al., 2018a). Among DL approaches a popular way is to
use distance metrics between entity representations (Ghiasvand & Kate, 2014) or ranking metrics
(Xu et al., 2017a) (Leaman et al., 2013). In addition to ranking tasks DL models are used to create
contextualized and more representative term embeddings. This is done with a wide range of models:
Word2Vec (Mikolov et al., 2013), ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT
(Devlin et al., 2018). The majority of approaches combine several DL models to extract context-
aware representations which are used for ranking or classification using a dictionary of reference
entity representations (Ji et al., 2020).

The majority of modern medical EE systems sequentially apply NER and NEN. Considering that
NER and NEN models themselves are often multistage the full EE systems are often complex com-
binations of multiple ML and DL models. Such models are hard to train end-to-end and if the NER
task fails the whole system fails. This can be partially mitigated by simultaneous training of NER
and NEN components. In (Durrett & Klein, 2014) a CRF model is used to train NER and NEN
simultaneously. In Le et al. (2015) proposed a model that merged NER and NEN at prediction
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time, but not during training. In Leaman & Lu (2016) proposed semi-Markov Models architecture
that merged NER and NEN both at training and inference time. Even with such merging of NER
and NEN both tasks were present in the pipeline which proves problematic in difficult cases with
multi-word entities or single entities with non-relevant text insertions.

A number of deep-learning EE models (Strubell et al., 2017), (Li et al., 2017b), (Xu et al., 2017b),
(Devlin et al., 2018), (Cui & Zhang, 2019) do not split the EE task into NER and NEN implicitly
and use a single linear classification layer over token representations as the tag decoder. Our model
is mostly identical to the model described in (Devlin et al., 2018) with the difference that instead of
using a contexualized representation of each token to classify it as an entity we use the representation
of the whole text to extract all entities present in the text at once.

Supervised training of EE systems requires large amount of annotated data, this is especially chal-
lenging for domain-specific EE where domain-expert annotations is costly and/or slow to obtain.
To avoid the need of hand-annotated data various weakly-supervised methods were developed. A
particular instance of weak annotation is distant annotation which relies on external knowledge base
to automatically label texts with entities from KB (Mintz et al., 2009), (Ritter et al., 2013), (Shang
et al., 2018). Distant supervision can been applied to automatically label training data, and has
gained successes in various natural language processing tasks, including entity recognition (Ren
et al., 2015), (Fries et al., 2017), (He, 2017). We use distant annotation in this paper to label our
train and test datasets.

3 DATA

3.1 ELECTRONIC HEALTH RECORDS DATASETS

In this work we used two proprietary Russian language EHR datasets, containing anonymized infor-
mation. First one contains information about 2,248,359 visits of 429,478 patients to two networks
of private clinics from 2005 to 2019. This dataset does not contain hospital records and was used
for training the model. The second dataset was used for testing purposes and comes from a regional
network of public clinics and hospitals. Testing dataset contains 1,728,259 visits from 2014 to 2019
of 694,063 patients.

3.2 MEDICAL KNOWLEDGE BASE

We used UMLS as our medical KB and a source of medical entity dictionary for this paper. A subset
of UMLS, Medical Dictionary for Regulatory Activities (MedDRA) was used to obtain translation
of terms to Russian language. After merging the synonymous terms we selected 10000 medical
entities which appeared most frequently in our training dataset. To find the terms we used a distantly
supervised labelling procedure as described in next section. To increase the stability of presented
results we decided to keep only terms that appear at least 10 times in the test dataset reducing
the total number of entities to 4434. Medical terms were grouped according to UMLS taxonomy,
statistics for group distribution are shown in Table 1.

3.3 DISTANT SUPERVISION LABELING

Combining an EHR dataset and a list of terms from medical KB we used a simple rule-based model
for train and test datasets labeling. The exact procedure for each record was as follows:

• Input text was transformed to lower case, all known abbreviations where expanded, and all
words were lemmatized using pymorphy2 (Korobov, 2015)

• We selected all possible candidates using sliding window with lengths from 1 to 7 words

• All possible candidates where compared to all possible synonims of medical entities

• Exact matches between candidate and medical terms from KB where considered to be
positive cases.

3



Under review as a conference paper at ICLR 2021

Table 1: Medical entity group statistics

Entity group Total terms Instances in train Instances in test

Diagnostic Procedure 157 654.222 301.279
Disease or Syndrome 1307 2.204.636 2.318.028
Finding 475 2.137.647 1.287.896
Injury or Poisoning 168 230.543 159.913
Laboratory Procedure 141 891.110 380.129
Neoplastic Process 212 132.732 117.311
Pathologic Function 231 600.567 288.433
Pharmacologic Substance 324 474.033 263.762
Sign or Symptom 368 3.912.937 2.279.892
Therapeutic or Preventive Procedure 352 287.533 218.826
All other groups 699 3.527.664 1.821.642

4 MODEL

In this paper we used a RuBERT model pretrained on general russian texts (Kuratov & Arkhipov,
2019) and further pretrained on electronic health records. A linear classification layer with 10000
outputs was added as the last model layer (Fig 1.). This layer was initialized with weights from
normal distribution with mean=-0,1 and std=0,11 to have at the start of training a low prediction
probability for all classes.

We trained our model with binary crossentropy loss and Adam optimizer (Kingma & Ba, 2014) with
learning rate 0.00001 making one pass over training dataset with training batches of size 20. To
speed up training we used dynamic class weightings, classes not present in the current batch were
given less weight compared to classes present. Model architecture is shown on Figure 1.

Figure 1: Model architecture

5 RESULTS

5.1 DISTANT LABELS

Using distantly-generated labels we calculated the recall of our model on the test dataset. Our
expectations were that with enough training examples the model should achieve recall close to 1.
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We found that for some categories for like ’Pharmacologic Substance’ the model did not learn to
correctly find entities even with a large enough number of training instances. The relation between
number of training examples an recall on the test for entity classes: Sign or Symptom, Finding and
Pharmacological Substance, and for all entities is shown on Fig 2.

Figure 2: Relation between number of training examples and recall on test data

As can be seen in Table 2 the number of training examples needed to achieve given recall differs
between classes with some classes needing noticeably more examples. There could be numerous
sources of such difference: tokenization, number of synonims, difficult context (substances are often
as encountered lists mixed with dosages) and others. Even for the harder classes fifty thousand
examples are enough to find nearly all distant labels

5.2 HUMAN LABELING

A major disadvantage of our labelling procedure is its incompletness. Any slight change of known
term, a typo or a rare abbreviation will lead to missed entities. This makes estimating the precision
of the model impossible with such labels. To compare our model with a human benchmark we
randomly selected 1500 records from the testing dataset for hand labelling by a medical practitioner
with 7 years of experience. These records where labeled for 15 most common entities in train dataset.
After labeling we further analysed the cases where the model disagreed with human annotator by
splitting all instances into following cases:
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Table 2: Recall on test dataset
Examples in train dataset

>0 >500 >2.500 >50.000
Entity group # recall . # recall . # recall . # recall

Diagnostic Procedure 157 0.39 63 0.76 29 0.86 6 1.0
Disease or Syndrome 1307 0.33 338 0.83 138 0.91 10 0.99
Finding 475 0.42 167 0.81 80 0.93 10 0.99
Injury or Poisoning 168 0.33 26 0.88 8 0.96 1 0.98
Laboratory Procedure 141 0.44 75 0.71 35 0.86 2 0.99
Neoplastic Process 212 0.18 28 0.78 12 0.90 0 -
Pathologic Function 231 0.32 61 0.81 25 0.92 4 0.98
Pharmacologic Substance 324 0.26 104 0.53 40 0.60 1 0.95
Sign or Symptom 368 0.55 159 0.87 87 0.95 14 0.99
Therapeutic Procedure 352 0.30 74 0.82 24 0.86 0 -
All entities 4434 0.36 1344 0.79 608 0.89 62 0.98

Table 3: Discrepancies between human and model labeling

correct
both human model

Entity Examples . tp tn . tp tn . tp tn .

Pain (Sign or Symptom) 1.011.037 400 1079 5 5 0 11
Frailty (Sign or Symptom) 390.422 41 1448 3 2 1 5
Coughing (Sign or Symptom) 328.236 118 1358 17 1 0 6
Complete Blood Count (Laboratory Procedure) 326.281 22 1468 2 3 0 5
Rhinorrhea (Sign or Symptom) 261.519 62 1427 5 1 0 5
Evaluation procedure (Health Care Activity) 253.766 39 1455 0 1 0 5
Illness (Disease or Syndrome) 245.042 90 1301 4 6 0 99
Headache (Sign or Symptom) 222.656 83 1408 7 0 0 2
Ultrasonography (Diagnostic Procedure) 218.481 40 1448 1 0 0 11
Discomfort (Sign or Symptom) 211.075 13 1477 0 4 0 6
Discharge, body substance (Sign or Symptom) 184.181 4 1486 1 0 0 9
Nasal congestion (Sign or Symptom) 183.886 20 1475 2 0 0 3
Abdomen (Body Location) 176.965 27 1465 0 0 0 8
Urinalysis (Laboratory Procedure) 171.541 14 1485 0 0 0 1
Infection (Pathologic Function) 154.753 13 1464 2 0 13 8

• both correct - model and annotator found the term (true positive)

• both correct - model and annotator did not find the term (true negative)

• model correct - found term missed by annotator (model true positive)

• model correct - did not find erroneously annotated term (model true negative)

• model wrong - non-existing term found (human true negative)

• model wrong - existing term missed (human true positive)

From the results presented in Table 3 we can conclude that our model in general extracts most
frequent entities with human-level quality. Large number of annotator errors for entities ’Illness’
and ’Infection’ stem from their occurrence in multiple acronyms and so are easily missed. Large
number of model errors in case of ’Coughing’ are due to a single term synonym that was almost
completely absent from train dataset and present in test dataset.

6



Under review as a conference paper at ICLR 2021

Table 4: Examples of generalization by the entity extraction model

Original text Extracted entity Comments

leakage of urine into the di-
aper

Urinary
incontinence

A correct entity is extracted even though
the form used is not in the list of synonims
from the knowledge base.

prickling pains with feeling
of pressure in the heart

Pain in the
heart region

Correct entity extraction in with extra
words inside the entity span.

complaints of pain pain in
the lumbar joint

Pain in lum-
bar spine

Using the word joint as an anchor the
model correcctly selected the term ’Pain
in lumbar spine’ instead of closely related
terms ’Low back pain’ or ’Lumbar pain’.

complaints of pain in the
abdomen, right hypochon-
drium

Right upper
quadrant pain
...

The entity is extracted correctly even with
body location ’Abdomen’ in the middle of
the phrase.

complaints of trembling fin-
gers when excited

Shaking of
hands

Correct extraction of unusual entity form.

blood pressure occasionally
rises

Increase in
blood pres-
sure; Blood
pressure
fluctuation

Using the word ’occasionaly’ the model
in addition to general entity ’Increase in
blood pressure’ successfully extracts a cor-
rect more specific entity ’Blood pressure
fluctuation’.

a child on disability
since 2008 after a cy-
tomegalovirus infection
with damage to the heart,
hearing organs, vision,
central nervous system

Central ner-
vous system
lesion ...

Model correctly connects the word dam-
age with term central nervous system even
though they are separated by several words
and punctuation marks and extracts the
corresponding entity.

intercost neurlgia Intercostal
neuralgia

Typos ignored when extracting the correct
entity

5.3 EXAMPLES

In this section we selected several examples of model generalising in difficult cases. In Table 4 we
provide the original text translated into English and the extracted entity also in English form with
our comments.

6 CONCLUSION

In this paper we show that a single transformer model can be used for one-step medical entity
extraction from electronic health records. This model shows excellent classification quality for most
frequent entities and can be further improved by better language pretraining on general or in-domain
texts, hyperparameter tuning or applying various ensembling methods. Not all entity classes are
easily detected by model. Some classes like ’Farmacologial Substances’ are noticeably harder to
classify correctly. This can be due to number factors including differences in context, number of
synonims and the difference between train and test dataset.

We have shown that 50.000 training examples are enough for achieving near perfect-recall on auto-
matic labels even for hard classes. Most frequent entities, with more that 150.000 training examples
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are classified with human-level quality. We did not explicitly search for lower limit of training ex-
amples needed to achieve such quality so it can be substantially lower. Also we showed that such
quality is achieved even when using testing dataset which greatly differs in entity distribution, ge-
ographic location and institution types (clinic vs hospital) from training dataset. This implies the
model ability to generalize to new, unseen and difficult cases after training on a limited variety of
reference strings for each entity.

The number of errors made by human annotator highlights the hardships that medical entity anno-
tation poses to humans, including the need to find inner entities in complex and abbreviated terms.
The markup of the complete medical entities vocabulary is also problematic due to both a large
number of entities possibly present in each record and to the fact that some entities are exceedingly
rare. Less than half of training entities appearing at least 10 times in the testing dataset. A com-
plete markup of such infrequent entities is not really feasible as it would involve looking through an
extremely large number of records to get a reasonable number of entity occurrences.

The proposed distantly-supervised method can be used to extract with human-level accuracy a lim-
ited number of most frequent entities. This number can be increased by both improving the quality
of the model and by adding new unlabeled examples. Distantly supervised entity extraction systems
made in line with our model can be used for fast end resource-light extraction of medical entities for
any language. While currently limited to a small vocabulary of common terms such systems show
big promise in light of increasingly available amounts of medical data.
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