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Abstract Surround-view Cameras Map Construction

Robust high-definition (HD) map construction is
vital for autonomous driving, yet existing methods
often struggle with incomplete multi-view cam-
era data. This paper presents SafeMap, a novel
framework specifically designed to ensure accu-
racy even when certain camera views are miss-
ing. SafeMap integrates two key components:
the Gaussian-based Perspective View Reconstruc-
tion (G-PVR) module and the Distillation-based
Bird’s-Eye-View (BEV) Correction (D-BEVC)
module. G-PVR leverages prior knowledge of
view importance to dynamically prioritize the
most informative regions based on the relation-
ships among available camera views. Further-
more, D-BEVC utilizes panoramic BEV features
to correct the BEV representations derived from
incomplete observations. Together, these compo-
nents facilitate comprehensive data reconstruction
and robust HD map generation. SafeMap is easy
to implement and integrates seamlessly into ex-
isting systems, offering a plug-and-play solution
for enhanced robustness. Experimental results
demonstrate that SafeMap significantly outper-
forms previous methods in both complete and
incomplete scenarios, highlighting its superior
performance and resilience.

1. Introduction

Online high-definition (HD) map construction is a critical
and challenging task in autonomous driving, providing pre-
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Figure 1. Online Vectorized HD Map Construction with Incom-
plete Observations. C/IC denotes complete/incomplete observa-
tions. IC-F/FL/FR/B/BL/BR represents a collection of six scenar-
ios of missing camera views, where F, B, L, and R correspond to
front, back, left, and right camera views, respectively.

cise and detailed static environmental information essential
for vehicle planning and navigation (Caesar et al., 2020;
Zhang et al., 2025). These maps enable ego-vehicles to
accurately localize themselves on the road and anticipate
upcoming features (Zhang et al., 2023; Ding et al., 2023;
Qiao et al., 2023). HD maps encapsulate vital semantics,
including road boundaries, lane dividers, and road markings
(Liao et al., 2023a; Hao et al., 2024a). Depending on the
input sensor modality, HD map construction models are
typically categorized into three types: camera-based (Hao
et al., 2025b; Yuan et al., 2024), LiDAR-based (Li et al.,
2022a; Sauerbeck et al., 2023), and camera-LiDAR fusion
models (Liao et al., 2023a; Hao et al., 2024b; 2025a).
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Recently, multi-view camera-based HD map construction
methods have gained attention due to advancements in
Bird’s-Eye-View (BEV) perception (Chen et al., 2024a; Ma
et al., 2024). Compared to LiDAR-based and fusion-based
approaches, multi-view camera methods are easier and more
cost-effective to deploy (Li et al., 2022b; Liu et al., 2023c).
However, a key limitation is their dependence on complete
multi-view images, which can lead to catastrophic failures
when views are obstructed by occlusions or sensor mal-
functions (Kong et al., 2023b; Li et al., 2024). As shown
in Fig. 1, the absence of crucial visual information can
significantly degrade overall map construction. Thus, it be-
comes crucial to enhance the robustness of online vectorized
HD map construction under incomplete visual observations.
Overcoming these challenges is essential for ensuring safe
navigation, particularly in complex and extreme driving
scenarios, thereby significantly contributing to the overall
reliability of autonomous systems (Kong et al., 2024).

Enhancing the robustness of driving perception models
against sensor failures has emerged as a prominent topic
in autonomous driving research (Kong et al., 2023b;a; Liu
et al., 2023a). MapBench (Hao et al., 2024a; 2025c¢) eval-
uates the reliability of HD map models against various
real-world corruptions, revealing that sensor failures can
severely compromise performance and traffic safety. Al-
though recent methods like MetaBEV (Ge et al., 2023) and
UniBEV (Wang et al., 2024) have started to tackle camera
failures in 3D object detection, maintaining commendable
performance even when camera views or LiDAR signals
are lost. However, these approaches still rely on complete
multi-view camera images and do not tackle the challenges
of incomplete observations due to camera damage or occlu-
sions (Xie et al., 2023). Additionally, Chen (Chen et al.,
2024b) introduced a masked view reconstruction module
(M-BEV) to enhance robustness in 3D object detection un-
der various missing view scenarios. Nonetheless, incom-
plete multi-view camera-based methods for HD map con-
struction remain underexplored.

To bridge this gap, we propose a novel framework,
SafeMap, designed to maintain accuracy even when cam-
era views are missing. SafeMap comprises two key com-
ponents: the Gaussian-based Global View Reconstruction
(G-GVR) module and the Distillation-based BEV Correc-
tion (D-BEVC) module. G-GVR utilizes Gaussian-based
sparse sampling to generate strategic reference points based
on view importance, serving as spatial priors for lost views.
These reference points facilitate deformable attention, al-
lowing the model to dynamically focus on the most infor-
mative regions across available views and efficiently re-
construct missing views. Meanwhile, D-BEVC leverages
complete panoramic BEV features to further correct the
BEV representations obtained from incomplete observa-
tions. Importantly, these components are simple yet effec-

tive plug-and-play techniques that integrate seamlessly with
existing pipelines. Experimental results demonstrate that
SafeMap significantly outperforms previous methods across
both complete and incomplete observations, showcasing
superior performance and robustness.

The contributions of this paper are mainly three-fold:

* We present SafeMap, a robust HD map construction
framework that ensures high accuracy and reliability
even in the presence of missing camera views.

* We introduce two innovative techniques in SafeMap: 1)
the Gaussian-based Perspective View Reconstruction
module, which utilizes relationships among available
camera views to infer missing information through
Gaussian-based reference point sampling, and 2) the
Distillation-based BEV Correction module to further
correct the BEV feature extracted from incomplete
observations.

» SafeMap outperforms state-of-the-art methods in both
complete and incomplete scenarios, demonstrating su-
perior performance and robustness, thereby establish-
ing a strong baseline for HD map construction research.

2. Related Work

HD Map Construction. The construction of HD maps is a
pivotal area of research in autonomous driving, with exist-
ing methodologies categorized by their input sensor modal-
ity into camera-based (Liu et al., 2024a; Li, 2024; Chen
et al., 2025; Zhao et al., 2025; Zhang et al., 2024), LiDAR-
based (Li et al., 2022a; Liu et al., 2023b), and camera-
LiDAR fusion (Dong et al., 2024; Liao et al., 2023a;b; Xi-
aoshuai et al., 2025; Zhou et al., 2024) models. Among
these, multi-view camera-based approaches are particularly
favored for their ease of deployment and cost-effectiveness
(Ma et al., 2024; Chen et al., 2024a). However, these meth-
ods often rely on the availability of complete multi-view
images, making them susceptible to failures when one or
more camera views are compromised, potentially leading to
traffic safety incidents (Kong et al., 2024). This limitation
highlights the urgent need for robust solutions that can facili-
tate accurate online HD map construction, even in scenarios
where camera views are incomplete. Our research pioneers
efforts to enhance robustness in multi-view camera-based
HD map construction under conditions of view corruption
or failure encountered in real-world environments.

Robustness against Sensor Failures. Sensor failures sig-
nificantly challenge the accuracy of perception systems,
posing direct risks to the safety of autonomous vehicles.
Consequently, developing robustness against these failures
has become a crucial research focus (Dong et al., 2023;
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Figure 2. Overview of the SafeMap Framework. We first extract features from complete multi-view camera images and efficiently
transform them into a unified BEV space using view transformations. To simulate emergency scenarios involving camera failures, we

employ a Random View Masking (RVM) and recovery scheme. Specifically,

we introduce a novel Gaussian-based Perspective View

Reconstruction (G-PVR) module and a Distillation-based Bird’s-Eye-View Correction (D-BEVC) module to reconstruct the missing view
information. Finally, the reconstructed BEV features are processed by a map decoder and prediction heads for HD map construction.

Zhu et al., 2023; Kong et al., 2024; Song et al., 2024; Xie
et al., 2025). The resilience of BEV perception has been
extensively studied across various applications, including
3D object detection (Song et al., 2025; Liu et al., 2023c;
Yin et al., 2024), semantic segmentation (Zhang et al., 2022;
Zhou & Krihenbiihl, 2022; Xu et al., 2024; Hong et al.,
2024; Liu et al., 2024b; Kong et al., 2025; Xu et al., 2025),
depth estimation (Kong et al., 2023c; Wei et al., 2023a;
Ke et al., 2024), and semantic occupancy prediction (Wei
et al., 2023b; Tang et al., 2024). Notably, MapBench (Hao
et al., 2024a) evaluates the reliability of HD map models
under natural sensor corruptions, highlighting significant
performance degradation linked to sensor failures.

Comparisons with Recent Works. Recent advancements,
such as MetaBEV (Ge et al., 2023), UniBEV (Wang et al.,
2024), and M-BEV (Chen et al., 2024b), have begun to
tackle sensor failures in 3D object detection frameworks.
For instance, MetaBEV (Ge et al., 2023) incorporates a
meta-BEV query and an evolving decoder to mitigate the
impact of sensor failures, while UniBEV (Wang et al., 2024)
is designed to improve robustness against missing modali-
ties. Nevertheless, these approaches still rely on complete
multi-view camera images and do not address challenges
from incomplete observations due to camera damage or oc-
clusions. Furthermore, M-BEV (Chen et al., 2024b) aims
to reconstruct image features from neighboring views when
specific camera sensors fail. However, HD map construction
heavily depends on static environmental data captured by
surrounding cameras, necessitating specialized methods to
handle incomplete observations. To our knowledge, this
work is the first to propose a novel approach for HD map
construction that addresses the challenges of incomplete
multi-view camera data.

3. Methodology

SafeMap presents a robust HD map framework that aims to
maintain accuracy even in the presence of missing camera
views. During training, we randomly mask and reconstruct

camera views, enabling the reconstruction module within
the map encoder to predict features for the missing views
during testing. The model architecture, as shown in Fig. 2,
consists of four key components: the Map Encoder (Sec-
tion 3.2), the Gaussian-based Perspective View Reconstruc-
tion (G-PVR) module (Section 3.3), the Distillation-based
BEV Correction (D-BEVC) module (Section 3.4), and the
Map Decoder (Section 3.5).

3.1. Preliminaries

To ensure clarity in notation, we first define the symbols
and concepts used throughout this paper. Our objective
is to develop a novel framework for safe and robust HD
map construction capable of processing both complete and
incomplete multi-view camera images. This framework pre-
dicts vectorized map elements in BEV space, specifically
targeting three types of map elements: road boundaries, lane
dividers, and pedestrian crossings. Formally, we denote a
set of multi-view RGB camera images captured in perspec-
tive view as I = {Iy, I5,...,In}, where N represents the
number of camera views. Each image I; is characterized as
I; € RHT"XWEXE \yith He™ and W™ denoting the
image height and width, respectively.

3.2. Map Encoder

We build our Map Encoder based on the popular HD map
construction method MapTR (Liao et al., 2023a), which
consists of a 2D feature extractor and a Perspective-View
(PV) to BEV transformation module. Specifically, we first
use 2D feature extractor (He et al., 2016; Liu et al., 2021)
to extract multi-scale 2D features from each perspective
view I = {I,Is,..,In}, and outputs complete multi-
view PV features F5" = {Fy,, FI,, ..., Fi, }. Then, we
adopt a 2D-to-BEV feature transformation module (Chen
et al., 2022) to map the multi-view PV features F53/" into
BEV features F5py. The BEV features can be denoted
as Fgon € RITXWXC where H, W, C refer to the spatial
height, spatial width, and the number of channels of feature
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maps, respectively. To mimic the emergency situation of
camera failure in the testing phase, we adopt a view masking
and recovering scheme in the training phase. Specifically,
we randomly mask a certain 2D image feature, name the
incomplete PV feature as Fso™ = {Fp,, F1 ..o Fiy }s
and then initialize the F%,‘{Som using the spatial feature cues
around it.

3.3. Gaussian-based PV Reconstruction Module

The challenge of reconstructing a missing view from mul-
tiple perspectives is critical for ensuring comprehensive
environmental perception. Existing approaches rely on crop-
ping partial pixels from the left and right adjacent views
and processing them through a transformer-based model
for missing view reconstruction. While effective, it is con-
strained by the need for a predefined crop ratio and fails to
fully leverage information from all available views, poten-
tially overlooking valuable contextual cues.

To address the aforementioned limitations, we introduce a
novel Gaussian-based Perspective View Reconstruction (G-
PVR) module, consisting of a learnable query vector that
serves as a flexible representation of the missing view cou-
pled with multi-view values derived from all available per-
spectives. Specifically, G-PVR samples the feature at loca-
tions of reference point p to construct keys and values for
multi-head attention modules:

k=dWg, ©=2aW,,

, ) ) )
with Ap = Oogset(V), & = ¢(FPV§p + Ap),

where V is a learnable query. W, and W, are transforma-
tion matrices. k and © are the key and value embeddings.
Oofrset 1S a light weight network to generate offsets. ¢ is
a sampling function from deformable attention (Zhu et al.,
2021). F&, = Fineem\ {Fy_ . }is the feature of all avail-
able views. A naive solution is to generate vanilla reference
points from a uniform grid, which, however, ignores the
important fact that different views contribute unequally to
the reconstruction of the missing view. Adjacent views typi-
cally contain the most relevant information and should be
given higher importance, while more distant views (e.g.,
the opposite of the missing perspective) may contain less
information and should be weighted accordingly.

Motivated by this, the G-PVR module incorporates prior
knowledge about view importance to dynamically focus on
the most informative regions, as illustrated in Fig. 3. Specif-
ically, using the left and right views of the missing perspec-
tive as a starting point, we tiled all available frames, based
on the spatial distance to the missing frame, to construct a
panoramic perspective view as Fppy = Concat(Fp,) €
RHXNaxWxC where N, denotes the number of available
views and concat is the concatenation operation. Then, a
set of Gaussian-based reference points is generated to cover
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Figure 3. Illustration of the proposed Gaussian-based Perspective
View Reconstruction (G-PVR) module.

the panoramic perspective view:

P ~ N(Ny x W/2;0%),

2
Dy ~ U(O,H),

where N and U/ is the Gaussian distribution and uniform
distribution, respectively. o2 is the variance.

G-PVR module effectively guides the module in focusing
on the most informative regions of the input views, and
can easily adapt to different numbers of input views and
varying spatial relationships between views. Through the
deformable attention module with Gaussian-based reference
points and the panoramic perspective view, the learnable
query V aggregates the information from available views
according to Eq. (1). Then, we use MAE-like transformer
blocks to reconstruct the missing view:

LRec = H Ff)‘\’,m - Fli:‘r{(/:om ||7 3

where Fiie°™ = Decoder([V, Fppy]). Then, we use
a PV-to-BEV feature transformation module to map the
incomplete PV feature as F357°™ into the BEV feature

incom
FBEV :

3.4. Distill-based BEV Correction Module

In addition to reconstructing the perspective features of
partially missing views, we also need to establish a global
BEV feature learning space to further correct the extraction
of BEV features from incomplete observations. Specifically,
we leverage the complete panoramic BEV features FSg%,
as the supervisory signal to correct the BEV features of
incomplete observations FiJi$9™ via an MSE loss:

Lcor = MSE( F5E2, Fincom ), “)

We use L, as one of the correction objectives to enable
the panoramic BEV features of incomplete observations
can implicitly benefit from the panoramic BEV features of
complete observations during the training phase.

3.5. Map Decoder

We follow (Liao et al., 2023a) and adopt its BEV feature
decoder, composed of several decoding layers and a predic-
tion head. Each decoding layer learns through self-attention
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and cross-attention. Self-attention is utilized to facilitate
interaction between hierarchical map queries in a decoupled
manner. Cross-attention in the decoder is specifically de-
signed to enable interaction between map queries and input
BEV features. Specifically, the input to the BEV Decoder is
the panoramic BEV features from incomplete observations
FE’]E?}”. Then, the Map head (MapHead) employs the clas-
sification and point branches to produce the final predictions
of map element categories and point positions.

3.6. Overall Optimization Objective

To improve the accuracy of online construction of vectorized
HD maps in the presence of incomplete observations, we
integrate the map loss L., With the above reconstruction
losses, including the Perspective View Reconstruction loss
(LRrec) and the BEV Feature Correction loss (Lcor). The
overall training objective can be formulated as:

L= Lmap + A1 LRec + >\2LCor7 (5)

where A\; and )\, are hyper-parameters for balancing
these losses. Lmap is calculated following (Liao et al.,
2023a), which is composed of three parts, i.e., classification
loss (Mukhoti et al., 2020), point2point loss (Malkauthekar,
2013), and edge direction loss (Liao et al., 2023a).

4. Experiments
4.1. Experimental Settings

Datasets. The nuScenes dataset (Caesar et al., 2020)
contains 1,000 sequences of recordings collected by au-
tonomous driving cars. Each sample is annotated at 2Hz and
includes six camera images covering the 360° horizontal
FOV of the ego-vehicle. For fair evaluation, we follow (Liao
et al., 2023a; Zhou et al., 2024) and focus on three types of
map elements: pedestrian crossings, lane dividers, and road
boundaries. The Argoverse2 dataset (Wilson et al., 2021)
consists of 1,000 logs, each capturing 15 seconds of 20Hz
RGB images from 7 cameras, 10Hz LiDAR sweeps, and a
3D vectorized map. The dataset is split into 700 logs for
training, 150 logs for validation, and 150 logs for testing.
Consistent with previous works (Liao et al., 2023a), we re-
port results on the validation set and focus on the same three
map categories as the nuScenes dataset.

Evaluation Metrics. We use metrics consistent with pre-
vious HD map works (Liao et al., 2023a; Li et al., 2022a;
Zhou et al., 2024). Average precision (AP) is used to assess
map construction quality, while Chamfer distance (Dchamfer)
measures the alignment between predictions and ground
truth. We calculate AP, under various Dcpamfer thresholds
(r € T = 0.5m, 1.0m, 1.5m), averaging across all thresh-
olds to obtain the final mean AP (mAP) metric. The percep-
tion ranges are [—15.0m, 15.0m] and [—30.0m, 30.0m)] for

Table 1. Performance comparisons with (Liao et al., 2023a) when
losing each of six camera views on the nuScenes validation set.

Standard | Method | AP,.;. APy, APy, | mAP

. MapTR 46.3 51.5 53.1 50.3

All Views Ours | 481 543 553 | 525
View Missing | Method | AP,.s. APg,. APy, | mAP
Front View MapTR 25.7 34.5 33.6 31.3
(Center) Ours 36.6 45.0 45.8 42.4
Front Left View | MapTR 37.9 47.8 45.6 43.7
(Left) Ours 44.3 52.0 52.4 49.5
Front Right View | MapTR 38.8 46.6 47.1 44.2
(Right) Ours 45.3 52.3 51.7 49.4
Back View MapTR 334 25.2 27.0 28.5
(Center) Ours 39.6 40.8 41.2 40.5
Back Left View MapTR 41.3 48.3 47.8 45.8
(Left) Ours 45.5 53.1 52.9 50.5
Back Right View | MapTR 41.2 49.5 47.8 46.1
(Right) Ours 46.4 53.1 53.2 50.9

the X/Y axes, respectively.

Implementation Details. Our proposed SafeMap frame-
work is trained using four NVIDIA RTX 3090 GPUs. To
simulate real scenarios, we randomly discard RGB images
of any view in each sample during training, reflecting the
loss of frames from that view in actual situations. We se-
lect two baseline models, MapTR (Liao et al., 2023a) and
HIMap (Zhou et al., 2024), and retrain them using their
configurations. All experiments utilize the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a learning rate of
4.2 x 104, fine-tuning for 8 epochs, while hyperparameters
A1 and )Xo are set to 0.05 and 5, respectively.

The original images have a resolution of 1,600 x 900, re-
sized by a factor of 0.5 during training. We limit the maxi-
mum number of map elements per frame to 100, with each
containing 20 points. The size of each Bird’s-Eye-View
(BEV) grid is set to 0.75 meters, and the transformer de-
coder is configured with two layers. For the G-PVR mod-
ule, the SafeMap model undergoes fine-tuning for 8 epochs
on the nuScenes dataset and 2 epochs on the Argoverse2
dataset, with batch sizes set to 4 and 6, respectively. During
inference, we evaluate the model across possible scenarios.

4.2. Comparisons with State-of-the-Art Methods

Results on nuScenes. Tab. 1 and Tab. 2 present the re-
sults of our SafeMap model compared to the representative
MapTR (Liao et al., 2023a) and HIMap (Zhou et al., 2024)
methods in the HD map construction task under both com-
plete and incomplete observations on the nuScenes dataset.
For fairness, we used the official model configurations pro-
vided by the open-source codebases and retrained the mod-
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Table 2. Performance comparisons with (Zhou et al., 2024) when
losing each of six camera views on the nuScenes validation set.

Table 3. Performance comparison on MapTR (Liao et al., 2023a)
when losing each of seven camera views on Argoverse2 val set.

Standard | Method | AP,.s. APg, APy, | mAP Standard | Method | AP,.s. APg, APy, | mAP

. HIMap | 62.2 66.5 67.9 | 65.5 . MapTR | 57.7 58.9 59.4 | 58.7

All Views Ours | 626 667 687 | 66.0 All Views Ours | 587 597 60.6 | 59.7
View Missing | Method | AP,.; APy, APy, | mAP View Missing | Method | AP,cq. APy, APy, | mAP
Front View HIMap 39.2 41.6 33.1 38.0 Front View MapTR 50.8 49.8 53.9 51.5
(Center) Ours 50.7 55.7 56.3 | 54.3 (Center) Ours 53.8 549 581 | 55.6
Front Left View | HIMap | 51.5 59.6 60.0 | 57.0 Front Left View | MapTR | 51.8 55.4 53.4 | 53.5
(Left) Ours 59.2 64.2 65.7 | 63.0 (Left) Ours 546 586 579 | 57.0
Front Right View | HIMap 57.0 62.1 62.6 60.6 Front Right View | MapTR 52.7 57.3 54.2 54.7
(Right) Ours 60.0 642 66.1 | 634 (Right) Ours 55.6 589 57.3 | 57.3
Back View HIMap | 46.3 31.4 21.7 | 331 Rear Left View | MapTR | 50.5 48.1 50.0 | 49.5
(Center) Ours 514 50.8 516 | 513 (Left) Ours 546 539 555 | 54.7
Back Left View HIMap 58.1 63.8 64.2 62.0 Rear Right View | MapTR 49.1 52.6 47.0 49.6
(Lef) Ours 60.7 654 67.0 | 644 (Right) Ours 54.8 57.2 54.0 | 55.3
Back Right View | HIMap | 58.5 62.8 63.4 | 61.6 Side Left View | MapTR | 55.0 57.9 57.2 | 56.7
(Right) Ours 608 651 66.5 | 64.2 (Left) Ours 57.4 595 59.7 | 58.9
Side Right View | MapTR | 56.0 58.3 57.8 | 57.4

(Right) Ours 58.0 59.3 59.8 | 59.1

els according to their default settings. The experimental
results reveal the following: 1) Both MapTR and HIMap
models perform poorly when the ‘CAM FRONT’ and ‘CAM
BACK’ views are missing. These views have the most sig-
nificant impact on model performance due to their inclusion
of more critical map elements. 2) The SafeMap model con-
sistently outperforms the source MapTR/HIMap models in
both complete and incomplete observation scenarios. No-
tably, SafeMap improves the HIMap model’s mAP metric
by 2.4% to 18.2% across various missing camera view cases,
demonstrating its superior generalization capability in HD
map construction. 3) SafeMap can be seamlessly integrated
into existing models, offering a plug-and-play solution for
enhanced robustness. Its excellent performance under in-
complete view conditions is attributed to its comprehensive
feature reconstruction capability, which effectively restores
missing view features from incomplete data.

Results on Argoverse2. Tab. 3 compares the performance
of our SafeMap model with the popular MapTR(Liao et al.,
2023a) model on the Argoverse2 dataset. Compared to the
nuScenes dataset, both SafeMap and MapTR exhibit less
performance degradation under incomplete view conditions.
This is likely due to the Argoverse2 dataset capturing ob-
servations from seven viewpoints, whereas the nuScenes
dataset only has six. In the complete view observation
setting, our SafeMap model achieves a 1.0% absolute im-
provement in mAP compared to the source MapTR model.
Under incomplete observations, SafeMap significantly out-
performs the baseline MapTR model across various missing
camera view scenarios. For instance, when the front camera
view is missing, SafeMap achieves a 4.1% improvement in
mAP over MapTR. These results further demonstrate the

Table 4. Ablation study of components on the Gaussian-based
Perspective View Reconstruction module (G-PVR) and the Distill-
based BEV Correction module (D-BEVC).

G-PVR D-BEVC | AP,cq. APy, APy, | mAP
X X 36.4 42.0 41.5 | 39.9
v X 42.7 47.7 49.2 | 46.5
X v 42.4 47.7 49.4 | 46.5
v v | 429 494 495 | 473

generalization ability of our method across different sensor
configurations in the HD map construction task. Overall,
SafeMap significantly outperforms previous methods across
both complete and incomplete observations, showcasing the
benefits of the G-PVR and D-BEVC modules.

4.3. Ablation Study

In this section, we analyze the SafeMap model to verify
the effectiveness of the proposed method. Unless otherwise
specified, all experiments use MapTR as the baseline model
on the nuScenes dataset. For brevity, we report average
metrics across six missing camera view cases in the ablation
experiments.

Analysis on Different Modules. To systematically evaluate
the contribution of each module in SafeMap, we conducted
ablation studies by removing components individually and
presenting the results in Tab. 4. The following ablation
models were designed: 1) SafeMap (Baseline): the model
trained without the reconstruction module; 2) SafeMap (w/
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Figure 4. Comparisons of the Gaussian-based PVR vs. Local PVR.
ft- N denotes fine-tuning N epochs.

G-PVR): the model trained with the Gaussian-based Per-
spective View Reconstruction (G-PVR) module; 3) SafeMap
(w/ D-BEVC): the model trained with the Distill-based BEV
Correction (D-BEVC) module; 4) SafeMap with both G-
PVR and D-BEVC modules (the default setting). As shown
in Tab. 4, the results demonstrate that SafeMap models with
the G-PVR and D-BEVC modules significantly outperform
the baseline, verifying the effectiveness of these modules in
reconstructing missing camera view features. The ablation
study confirms that each module in SafeMap meaningfully
contributes to improving performance in settings with in-
complete observations.

Gaussian-based PVR vs. Local PVR. To explore the im-
pact of different Perspective View Reconstruction strategies,
we evaluated Gaussian-based and Local-level reconstruction
modules and presented the results in Fig. 4. The strategies
are as follows: 1) Gaussian-based PVR: uses all available
views as context to reconstruct missing view information
by leveraging relationships among camera views. 2) Lo-
cal PVR: follows the approach of M-BEV (Chen et al.,
2024b), using context from neighboring views to recover
missing views. As shown in Fig. 4, the Gaussian-based PVR
method consistently outperforms the Local PVR method in
all settings, including both complete and incomplete obser-
vations. The superior performance of the Gaussian-based
PVR module is attributed to its ability to leverage all views
for reconstructing missing map elements, which is crucial
for enabling the ego-vehicle to accurately locate itself and
anticipate upcoming features.

Ablation Study on G-PVR Module. To systematically
evaluate the effectiveness of the G-PVR module, we trained
the model with various variants and reported the mAP re-
sults in Tab. 5. The variants include Mean-PVR, MAE-PVR,
Standard-PVR, and G-PVR. Each variant employs a differ-
ent approach to reconstruct the missing view. Mean-PVR

Table 5. Ablation study on the use of the G-PVR module.

Setting | APpea.  APgiy. APy, mAP
SafeMap (w/o G-PVR) 42.4 47.7 49.4 46.5
SafeMap (w/ Mean-PVR) 35.8 41.0 42.8 39.9
SafeMap (w/ MAE-PVR) 42.3 47.9 49.2 46.5

SafeMap (w/ Standard-PVR) 42.6 48.9 48.7 46.8
SafeMap (w/ Gaussian-PVR) | 42.9 49.4 49.5 47.3

Table 6. Ablation study on the use of the distillation loss.

Method | APpea. APy APy, | mAP
SafeMap (w/o D-BEVC) 42.7 47.7 49.2 46.5
SafeMap (w/ KL) 42.3 48.6 49.5 46.8
SafeMap (w/ Ly) 42.8 49.2 49.4 47.1
SafeMap (w/ Ls) 42.9 49.4 49.5 47.3

calculates the mean of all available views, MAE-PVR uses
all views to reconstruct the missing one with a masked token,
and Standard-PVR utilizes a deformable attention module
to aggregate information from available views.

As shown in Tab. 5, the experimental results reveal the
following: 1) The Mean-PVR variant underperformed com-
pared to the baseline model, indicating that simple PVR
methods are insufficient for reconstructing missing view in-
formation. 2) The G-PVR module consistently outperforms
both the MAE-PVR and Standard-PVR variants. This per-
formance is attributed to G-PVR’s use of Gaussian-based
sparse sampling to generate strategic reference points, which
serve as spatial priors for missing views. By leveraging these
reference points, deformable attention focuses on the most
informative regions across all available views, facilitating
efficient reconstruction of the missing data. These findings
confirm that the G-PVR module effectively utilizes valuable
information in the remaining complete views to reconstruct
the missing view information.

Ablation Study on Distillation Loss. We also investigated
the impact of different distillation loss functions within
the D-BEVC module. The evaluated loss functions in-
clude Manhattan distance (L), Euclidean distance (L),
and Kullback-Leibler Divergence (K L). As shown in Tab. 6,
SafeMap utilizing the K L divergence demonstrated inferior
performance compared to both L1 and L. The experimen-
tal results indicate that SafeMap with Lo achieves the best
performance, which explains why L, was selected as the
default configuration in our experiments.

Impact of Different Numbers of Missing Views. To in-
vestigate the impact of varying numbers of missing camera
views on HD map construction, we randomly zeroed out
1, 2, 3, 4, and 5 camera images in the nuScenes dataset.
Each configuration yields several combinations of missing
views; specifically, there are 6 combinations for 1 missing
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Table 7. Impact of different numbers of missing views.
Method | #View | AP,.q. APy, APy, | mAP

1x 36.4 42.0 41.5 39.9
2% 275 31.3 29.9 29.6
MapTR 3X 18.8 20.9 18.8 19.5
4x 11.0 11.6 9.4 10.6

HX 4.6 4.3 3.0 4.0
1x 42.9 49.4 49.5 47.3
2% 33.5 37.0 35.0 35.2

SafeMap 3x 23.7 24.4 20.2 22.8
4x 15.6 16.2 12.6 14.8
5x 6.7 7.0 4.3 6.0

Table 8. Accuracy-computation analysis. We report the mAP
performance under the “complete” / “incomplete” observations.

Method | mAP | GFUMem Param FPS
MapTR 50.37/39.9 2298 MB 39.1 M 21.5
SafeMap | 52.5/47.3 2300 MB 395M 214
HIMap 65.5/52.1 4091 MB 68.1 M 9.7
SafeMap | 66.0/60.1 4155 MB 7T1.7TM 9.2

view, 15 for 2, 20 for 3, 15 for 4, and 6 for 5. We com-
pute the average AP and mAP metrics for each combination
to derive the final results. To demonstrate the robustness
of our model, we trained it to handle all these cases. As
shown in Tab. 7, the results reveal that as the number of
missing views increases, model performance declines, as ex-
pected. Compared to the MapTR (Liao et al., 2023a) model,
SafeMap shows significantly less performance degradation
with missing perspectives. This resilience stems from the
ability of SafeMap to effectively reconstruct features from
incomplete views, enhancing robustness despite multiple
missing cameras.

Inference Speed, Model Size & GPU Memory. To eval-
uate the effectiveness of SafeMap, we analyzed its perfor-
mance in terms of accuracy, model size, GPU memory us-
age, and inference speed. The results in Tab. 8§ reveal sev-
eral key findings: 1) SafeMap significantly outperforms the
source MapTR/HIMap models in both complete and incom-
plete observations. 2) In terms of model size, SafeMap only
increases the number of parameters by 0.4MB to 3.6MB
compared to the source models. 3) Regarding GPU memory
and inference speed, SafeMap and the source models show
nearly identical metrics. Overall, SafeMap achieves substan-
tial performance improvements over the baseline models
with minimal increases in parameters, while maintaining
comparable inference speed and memory usage.

Robustness against Camera Sensor Corruptions. To fur-
ther evaluate the robustness of SafeMap, we assessed its per-

Table 9. Experimental results on the robustness of HD map con-
struction under camera sensor corruptions.

Method | AP,ca.  APuiy.  APiu. mAP | mRRT mCE|

MapTR 46.3 51.5 53.1 50.3 49.3 100.0
SafeMap 48.1 54.3 55.3 52.5 51.2 90.6
HIMap 62.2 66.5 67.9 65.5 56.6 100.0
SafeMap 62.6 66.7 68.7 66.0 62.8 83.2
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Figure 5. Sensitivity Analysis of Hyperparameters A\; and .

formance against eight real-world camera sensor corruptions
from MapBench (Hao et al., 2024a), categorized into exte-
rior environments, interior sensors, and sensor failures. The
details of these corruptions are outlined in MapBench (Hao
et al., 2024a). As shown in Tab. 9, SafeMap achieves gains
of 1.9% in mRR and 9.4% in mCE compared to the baseline
MapTR model. It also shows improvements of 6.2% in mRR
and 16.8% in mCE over the original HIMap model. These
results underscore SafeMap’s effectiveness in enhancing the
robustness of camera-based HD map construction methods
against various sensor corruptions.
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4.4. Sensitivity of Hyper-parameters

Sensitivity Analysis of Hyperparameters \; and \o. We
analyze the sensitivity of hyperparameters A\; and Ao, as
illustrated in Fig. 5. The results presented focus on the miss
Front View setting for the SafeMap (MapTR) and SafeMap
(HIMap) methods on the nuScenes dataset. By varying
A1 and A\, within a feasible range while keeping other hy-
perparameters at their default values, we gain insights into
each component’s contribution to overall performance. As
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Figure 7. Qualitative Comparisons. The camera view marked with the symbol X indicates the absence of this perspective.

shown, progressively increasing A; from 0.01 to 0.09 leads
to consistent improvements, achieving optimal performance
at A\; = 0.05. Additionally, Fig. 5 demonstrates that the best
performance for our method occurs at Ay = 5. Therefore,
we set A1 to 0.05 and A5 to 5 for all configurations.

Sensitivity Analysis of Hyperparameter Variance o in
Eq. 2. We conduct experiments using the results from the
‘miss all view’ setting for the SafeMap (MapTR) model on
the nuScenes dataset. The sensitivity of hyperparameter
variance o in Eq. 2 is illustrated in Fig. 6. Across a wide
range of « in [1, 5], as we progressively increase the thresh-
old o in Eq. 2 from 1 to 5, our method consistently performs
well, achieving the best results at ¢ = 3. Therefore, we set
o to 3 for all configurations.

4.5. Qualitative Results

We present the online vectorized HD map construction re-
sults for both the MapTR and SafeMap models under condi-
tions of incomplete observations, as shown in Fig. 7. Our
analysis reveals that the absence of different perspective
images affects map construction to varying degrees. No-
tably, the lack of front and back perspective images has a
significant negative impact, while the absence of other per-
spectives exerts a relatively minor influence. This finding
is consistent with the results shown in Tab. 1 and Tab. 2,
as front and back observations provide crucial information
relevant to map elements. In comparison to the baseline
MapTR model, SafeMap exhibits a significant advantage in
effectively modeling all map elements under conditions of
incomplete observations. Overall, our model shows signifi-
cant advantages in the incomplete observations setting.

5. Conclusion

In this paper, we present SafeMap, a novel robust frame-
work for high-definition (HD) map construction that en-
sures accuracy in the presence of missing camera views. At
the core of SafeMap is the Gaussian-based Global View
Reconstruction (G-GVR) module, which effectively lever-
ages relationships among available camera views to infer
missing information. Additionally, SafeMap incorporates a
Distillation-based Bird’s-Eye-view Correction (D-BEVC)
module, which uses the complete panoramic BEV features
to further correct the BEV features extracted from incom-
plete observations. Extensive experimental evaluations vali-
date that SafeMap significantly outperforms baseline models
across both complete and incomplete observation scenarios,
achieving substantial performance gains while maintaining
comparable inference speed and memory efficiency.

Impact Statement

While SafeMap achieves impressive results in high-
definition map construction with missing camera views,
it does not address the challenges of multi-sensor fusion.
This limitation could impact its effectiveness in real-world
applications where data from multiple sensor modalities is
critical. Future research should explore the development
of multi-modal robust architectures that can effectively in-
tegrate information from various sensor types, enhancing
the overall resilience and accuracy of map construction in
diverse environments. As far as we know, our work does
not have any negative ethical impacts or concerning soci-
etal consequences, as it focuses on advancing fundamental
research in autonomous driving robustness.
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