DELTA: Decomposed Efficient Long-Term Robot Task Planning
using Large Language Models

Yuchen Liu'?, Luigi Palmieri!, Ilche Georgievski® and Marco Aiello?

Abstract— Recent advancements in Large Language Models
(LLMs) have revolutionized many research fields. In robotics,
the integration of common-sense knowledge from LLMs into
downstream tasks has drastically advanced the field by unlock-
ing unprecedented levels of context awareness. Despite their vast
collection of knowledge, LLMs may generate infeasible plans
due to hallucinations or missing domain information. To address
these challenges and improve plan feasibility and computational
efficiency, we introduce DELTA, a novel LLM-informed task
planning approach. By using scene graphs as environment
representations within LLMs, DELTA achieves rapid generation
of precise planning problem descriptions. To enhance planning
performance, DELTA decomposes long-term task goals with
LLMs into an autoregressive sequence of sub-goals, enabling
automated task planners to efficiently solve complex problems.
In our extensive evaluation, we show that DELTA enables an
efficient and fully automatic task planning pipeline, achieving
higher planning success rates and significantly shorter planning
times compared to the state of the art.

I. INTRODUCTION

Various powerful Large Language Models (LLMs) have
been developed in the past years that are capable of producing
human-like texts, programming code, and service composi-
tions etc. [1]-[5]. Nowadays with more robots cooperating
with humans in industrial and household settings [6], [7], e.g.,
performing household tasks such as cleaning (Fig. 1), many
researchers use LLMs for solving robot Task And Motion
Planning (TAMP) problems [8]-[15]. While directly using
pre-trained LLMs to generate action plans for the robots
tends to result in extremely low success rates in generating
executable plans and completing the goals [16], [17], most
of them use LLMs to extract common-sense knowledge to
improve the performance of classical automated task planning
approaches with respect to plan correctness, executability, and
feasibility [8], [11], [14]. Several approaches use LLMs to
generate task specifications defined in formal language, e.g.,
the domain and problem files programmed in the Planning
Domain Definition Language (PDDL) [18], that can be
solved by the off-the-shelf TAMP algorithms [10], [19],
[20]. However, previous TAMP approaches were cumbersome
as they required vast manual knowledge engineering and
input from human experts. On the other hand, none of the
approaches above tackle long-term task planning problems,
which are particularly difficult to solve with the growing
problem complexity [14].

ICorporate Research and Advance Engineering, Robert Bosch GmbH,
Germany {yuchen.liu2, luigi.palmieri}@bosch.com

’Institute of Architecture of Application Systems, University of
Stuttgart, Germany {yuchen .liu, ilche.georgievski,
marco.aiello}@iaas.uni-stuttgart.de

This work was partly supported by the EU Horizon 2020 research and
innovation program under grant agreement No. 101017274 (DARKO).

S sraph
Scene Girapl % 1 want to dispose of all
a o) possible rubbish in the

i)

®) [Item
o hs Break down the task into
Q = 4 multiple sub-tasks as fine as
(BB possible. The mop should be

clean in the end.

environment and clean the
floor in the kitchen and living
room. What are the relevant
objects in the environment?

R 5
oom The relevant objects are: cola.

Iy
can, banana peel, rubbish bin, :
sink_1, sink_2 and mop. B
‘ N
-
A

1. Dispose of cola can
2. Dispose of banana peel
3. Mop floor in kitchen

4. Clean mop in sink_1

5. Mop floor in living room
6. Clean mop in sink 2

. Automated
% Tk Planner

N
Task Plan

Fig. 1: An example of the task decomposition. A Scene Graph
(SG) is pre-built from the environment [24]. Using the SG as the
environment representation, a human user queries a LLM with goal
descriptions to extract the relevant items and decompose the goal
into multiple sub-goals. An automated task planner generates a task
plan with respect to the sub-goals for the robot to execute.

Efficient environment representations are essential for
robots solving long-term tasks in complex environments.
Mapping mid-level perceptual data (e.g., 2D semantic seg-
mentation) to high-level abstractions (e.g., environment topol-
ogy) can be streamlined using Scene Graphs (SGs) [21].
Researchers have found that SGs provide compact spatial
representations and enhance planning efficiency in task plan-
ning problems [13], [22], [23].

As it emerges from the state of the art, utilizing LLMs
and automated task planning techniques to solve long-term
robot task planning problems, with structured representations
of large environments, still remains an open research topic.
Therefore, we propose DELTA: Decomposed Efficient Long-
term TAsk planning for mobile robots using LLMs, which
is the first to fill the aforementioned vacancy. DELTA first
feeds SGs into LLMs to generate the necessary domain
and problem specifications in formal planning language,
then decomposes the long-term task goals into multiple sub-
ones using LLMs. The corresponding sub-problems are then
solved autoregressively with an automated task planner. In
summary, we present the following key contributions:

i) We introduce a novel combination of LLMs and SGs
that enables the extraction of actionable and semantic knowl-
edge from LLMs and its grounding into the environmental
topology. Thanks to one-shot prompting, DELTA is capable
of solving complex planning problems in unseen domains.

ii) We show that with the LLM-driven task decomposition
strategy and the usage of formal planning language, compared
to representative LLM-based baselines, DELTA is able to

Fig. 2: Shelbiana scene [24] and the corresponding SG with floor,
, and item node layers. The edges refer to the semantic
relationships. Not all item nodes are visualized.

complete long-term tasks with higher success rates, near-
optimal plan quality, and significantly shorter planning time.

IT. RELATED WORK

Despite LLMs’ ability in temporal and few-shot reasoning
[25], [26], they still struggle with analyzing complex spatial
relationships and processing detailed environmental features
[16]. Consequently, plans directly generated by LLMs are of-
ten not executable for the robots. Therefore, researchers have
developed various approaches to ground LLM’s output into
executable and affordable action plans, or ground actionable
knowledge into formal planning or programming language.
Liu et al. [10] introduced LLM+ P that translates NL problem
descriptions into PDDL problem files with LLMs given user-
provided PDDL domain files. Silver et al. [15] leveraged
LLMs to comprehend the action knowledge from PDDL files
and generate Python code to solve the problems. Despite the
grounding with formal language, these approaches require
handcrafted domain descriptions provided by human experts.
They neither generalize to new domain knowledge, nor tackle
long-term problems in large and complex environments.

Semantic understanding is a crucial factor for robot navi-
gation in large environments. LLMs unlock the capability of
reasoning over semantic relations embedded in large scenes
and allow the capture of those relations from different scene
representations, e.g., semantic maps [27], landmarks [28],
[29], as well as SGs. Rana et al. [13] proposed SayPlan
that uses LLMs to first conduct a semantic search through
3DSGs, then generates task plans upon the graph and refines
iteratively, achieving grounded and scalable robot TAMP. But
it still does not aim to solve long-term tasks.

However, since the probability of LLMs in producing
incorrect output accumulates with growing planning horizon
[16], most of the LLM-based approaches above have diffi-
culties in tackling long-term planning problems. Thus, they
mainly focus on semantically simple short-term tasks, e.g.,
object rearrangement, object-goal navigation, or other tasks
that consist of a few such sub-tasks. The capability of LLMs
to handle long-term tasks in large environments is not fully
exploited. While decomposing a long-term task into multiple
sub-tasks via classical machine learning methods can lead to
a significant reduction of planning time [6], completing such
a job with LLMs is still unexplored in the state-of-the-art.

III. METHODOLOGY
A. Problem Statement

We focus on solving long-term robot task planning prob-
lems with LLMs and consider mobile robot navigation tasks
in household environments. The approach can also be gen-
eralized to other use cases. Given a SG as environment rep-
resentation and domain and problem descriptions in NL, the
LLM will generate the PDDL planning files and decompose
the long-term goal into a sequence of sub-goals for solving
the corresponding sub-problems autoregressively.

B. System Architecture

The architecture of DELTA is built around a five-step
process (Fig. 3): domain generation, scene graph pruning,
problem generation, goal decomposition, and autoregressive
sub-task planning.

1) Domain Generation: The LLM takes an NL prompt
describing the domain knowledge as input and generates a
domain description file encoded in PDDL in a one-shot
fashion. The prompt consists of three main parts: role,
example, and instruction. The prompts in the following
steps also have the same structure. After assigning a role
description to the LLM, the necessary object types and
the action knowledge, i.e., pre-conditions and effects, are
given in the example. An instance of translating NL action
description into PDDL is shown in Listing 1 in App. VII-A.
Subsequently, the instruction depicts the action knowledge
of a new domain. An example of the corresponding prompt
design can be found in App. VII-B.

2) Scene Graph Pruning: Fig. 2 shows the hierarchical
structure of a SG. The room nodes are annotated with
their neighboring rooms, and the item nodes contain several
attributes, e.g., accessibility, states, and affordable actions.
In particularly large environments, SGs can contain a vast
number of items, where not all items are relevant for accom-
plishing the given tasks. Therefore, we prompt the LLM to
prune the SGs by only keeping the task-relevant items. An
example of the prompt is listed in App. VII-B.

Pruning the SG allows a reduction of input tokens for the
LLMs, thus reduce response time in generating the problem
files. On the other hand, the more concise the information
provided to the LLMs, the less likely that the LLMs generate
erroneous output and hallucinations [16].

3) Problem Generation: In the generated problem file,
the connections of rooms in the SG can be expressed using
the neighbor predicate bi-directionally since the rooms are
connected in both ways. The attributes of items can be defined
with the predicates from the previously generated domain
file, such as their positions and accessibilities. The LLM also
translates the NL goal description into PDDL. An example of
PDDL goal formulation is depicted in Listing 2 in App. VII-
A. We again refer to App. VII-B for the prompt example.

4) Goal Decomposition: To improve the computational
efficiency and reduce the complexity of the planning problem,
we decompose the long-term goal defined in the problem file
with LLMs. The prompt design is shown in App. VII-B.

Considering action preconditions and effects is essen-
tial in goal decomposition. E.g., action mop_floor requires

Domain Description

—P{(:a) Domain }

(:a) Sub-goal 1

Concat.

Prompt

(:a) Sub-goal 2‘\

Goal
Decomposition

TN 5 — N

Automated

Final
plan

{4

LLM

Pruned SG

—>< (:a) Problem T

Full SG

Problem Description

Task Planner;

K:a) Sub-goal n‘

Fig. 3: The system architecture of DELTA with five steps: Domain Generation, Scene Graph Pruning, Problem Generation, Goal

Decomposition, and Autoregressive Sub-Task Planning.

Algorithm 1: Autoregressive Sub-Task Planning

Data: I1, d, pg, G
Result: ©
T O
extract s, 8o from pg
§ < 80
for g€ G do
p < replace so,&(in py with s,g
n'.s' «1I(d, p)
7T <+ concat(m, ')
s s
end

R-TE-CREEN B N I S

mop_clean and results in not (mop_clean) as shown in
Listing 1, it infers that one cannot mop the floor in another
room continuously since the it turns dirty after mopping
the previous one. Thus, the mop should be cleaned before
going for the next room. An example of the corresponding
decomposed goals is shown in App. VII-A.

5) Autoregressive Sub-Task Planning: As shown in Alg. 1,
with the automated planner I, the previously generated PDDL
domain file d and problem file pg, and the sequence of PDDL
sub-goals G as inputs, since the initial states s; of the first
sub-problem p; are identical to the initial states so from the
original problem pg, thus, p; can be formulated by replacing
the overall goal states g, with the first sub-goal states g;.

The final states of each solvable sub-problem are exactly
the initial states of the next sub-problem. Therefore, as shown
in L. 4-9, after solving each sub-problem p, we obtain a sub-
plan 7’ and the resulting final states s’ (L. 6), which will then
be assigned to s for the next sub-problem. The following sub-
problems can be solved in the same way autoregressively.
The final task plan 7 can be obtained by concatenating all
sub-plans 7’ (L. 7), that only consist of executable actions.

IV. EVALUATION

In this section, we detail the metrics, domains, baselines,
and datasets used for the evaluation.

A. Metrics

We evaluate the proposed system in terms of computational
and task efficiency by the following metrics:

« Success rate: ratio of the succeeded trials to all trials.
A trial is successful if the plan validator reports that the
generated plan is valid, i.e., correct and executable.

« Plan length: number of actions in a plan. The decom-
posed plan length shows the length of the concatenated
sub-plans from solving the sub-problems.

Models PC Dining Cleaning Office
LLM-As-Planner 70 38.67 0 0
LLM+P 76 4 0 0
LLM-GenPlan 88 80.67 3.33 0.67
SayPlan 68.67 70.67 54 40
DELTA (w/o dp.) 9733 99.33 80 68.67
DELTA 98 100 80 74.67

TABLE I: Success rates [%] of each model. The results from each
domain are averaged through all the scenes. w/o dp. refers to without
goal decomposition.

« Planning time: inference time of the automated planner
for finding a solution. The decomposed planning time
refers to the total time of solving all sub-problems.

B. Evaluation Domains

We evaluate the approaches with five domains. The Laun-
dry domain has a short-term task that serves as the example
for one-shot prompting, where the robot is asked to bring
the dirty clothes and detergent to the washing machine and
then bring them to the bedroom after washed. Of the other
domains, two have independent sub-tasks, namely, the PC
Assembly domain (in the following abbreviated as PC)
requires the robot to gather six different PC parts distributed
in the environment and bring them together for assembly. In
the Dining Table Setup domain (abbr. Dining), the robot
should collect six different tableware from different rooms
and place them on the dining table. Both domains can be
decomposed into independent transportation sub-tasks. The
remaining two domains have dependent sub-tasks which
should be executed in a certain order. In the House Cleaning
domain (abbr. Cleaning), the robot should first dispose of
various rubbishes, then mop the floor in two rooms and clean
the mop immediately after using it, and finally return to the
hub for recharging. The Home Office Setup domain (abbr.
Office) requires the robot to set up a home office by bringing
four pieces of furniture, where some of them have contents
inside that should be kept in the end, but they cannot be
moved without unloading the contents. In each domain, the
robot can only load one item at a time. Further details of the
domains can be seen in App. VII-C.

C. Baselines

We select the following most popular and representative
LLM-based task planning approaches as baselines:

LLM-As-Planner is a naive approach that directly queries
the LLM to generate a high-level plan with a single prompt.

LLM+P [10] uses LLMs to translate NL problem descrip-
tions into a PDDL problem file given user-provided PDDL
domain files. It can be treated as a subset of DELTA with only

Metrics Models PC Dining Cleaning Office
A S P A S P A S P A S P
GT 41 42 47 39 39 33 39 43 41 40 33 52
LLM-As-Planner 41 42.81 47 - 43 35 - - - - - -
Plan LLM+P 41 42 47 - 39 - - - - - - -
Length LLM-GenPlan 4132 43.65 47 4095 40.70 35 43.67 - 47 - 37 -
SayPlan 44.45 48 4724 4183 4697 3548 45 48.11 4329 46 4285 5647
DELTA 41 42 47 39 39 35 40 44 45 40 33 52
Planning DELTA 0.0134 0.0144 0.0117 0.0101 0.0103 0.0089 0.0112 0.0120 0.0111 0.0170 0.0167 0.0149
Time DELTA (w/o dp.) 51.76 4929 28.65 42.69 54.68 1.76 23.04 58.38 5.75 24.69 9.01 10.67

TABLE II: Further metrics of DELTA and other baselines of all domains and A(llensville), S(helbiana), and P(arole) scenes. The ground

truth (GT) plan lengths are shown in the first row, indicating the optimal values.

the problem generation step. In the following experiments,
we provide a pre-defined PDDL domain file as input.

LLM-GenPlan [15] summarize the domain knowledge
from given PDDL files, then propose a simple non-search-
based strategy for solving the problem, and generates Python
code to output a plan. The LLMs can refine the code using the
error message from a plan validator with maximal 4 iterations.

SayPlan [13] first uses LLMs to determines a task-relevant
sub-SG, then generate a high-level plan using the sub-SG and
iteratively replans based on environmental feedback in at most
4 times. We implemented SayPlan on our own due to the
lack of open-source code.

D. Dataset

We use four SGs from the 3D Scene Graph dataset [24]:
Kemblesville is paired with Laundry domain as an example.
Allensville, Parole, and Shelbiana are used for evaluations.
The SGs are implemented as nested Python dictionaries.

E. Implementation and Parameters

We evaluate all approaches with pre-trained GPT-4o (ver-
sion 2024-05-13) with default temperature and top_p param-
eters. We use Fast Downward (FD) [30] as the automated
task planner with the default search configuration seq-opt-
Imcut and the timeout of 60s, and PDDLGym [31] to obtain
the world states, and VAL [32] for plan validation. Each
experiment is repeated with 50 trials, resulting in 600 trials
crosswise evaluated with 4 domains and 3 scenes.

V. RESULTS AND DISCUSSION

The evaluation results are displayed in Tables I and II.
LLM-As-Planner performs the worst among all approaches,
which proves that LLMs still have difficulties in discovering
the underlying dependencies of complex tasks [17].

By grounding NL into PDDL, LLM+P achieves slightly
higher success rates in the PC domain and it is also able to
reach the optimal plan length. However, it only succeeded
4% in Dining and never in Cleaning and Office domains. The
leading failure is planner timeout. Since LLM+P consumes
the unpruned SGs, the complexity of the planning problem
increases exponentially with the growing number of items,
resulting in exceeding the planner’s time limit.

LLM-GenPlan learns the domain knowledge encoded in
PDDL and generalizes to solve unseen tasks. It achieves
around 80% success rates and near-optimal plan lengths in
the domains with independent sub-tasks (PC and Dining).

I

means the metric is not applicable due to failures.

Nonetheless, it mostly fails in the other more complex
domains. Its capability to tackle more complicated problems
is greatly limited by the usage of simple and non-search-based
problem-solving strategies.

SayPlan achieves slightly lower success rates in PC and
Dining domains than LLM-GenPlan, but considerably higher
in the complex ones (54% in Cleaning and 40% in Office).
Both approaches have replanning mechanisms, but LLM-
GenPlan relies on the plan validator instead of environmental
feedback, and therefore lacks affordance information such as
wrong item location and room connections.

Finally, DELTA reaches the highest performance in all
domains. The last two rows of Table I infer that the goal
decomposition marginally improves its success rates since
the original problems with undecomposed goals have signif-
icantly higher complexity, which occasionally leads to the
planner timeout. Further leading failure cases are incorrectly
generated predicates and missing attributes. The key factors
that enable DELTA for long-term planning are grounding
the actionable knowledge into formal planning language and
relying on automated planners to find optimal solutions.

Goal decomposition also contributes to a significant re-
duction of the planning time by four orders of magnitudes,
thus enabling a vast enhancement of planning efficiency. As
shown in the lower part of Table II, the planning time is over
3,000 times faster in PC and Dining domains, and almost
2,000 time faster in Cleaning and Office domains on average.

VI. CONCLUSION

Suffering with LLMs’ hallucinations and the extensive
manual annotations of classical planning techniques, to ad-
dress these challenges and improve plan feasibility and
efficiency, we introduced DELTA, a novel LLM-informed
task planning approach. DELTA’s integration of scene graphs
and LLMs facilitates the rapid generation of precise planning
problem descriptions. To enhance planning performance,
DELTA decomposes long-term task goals with LLMs into
a sequence of sub-goals, enabling automated task planners
to efficiently solve complex problems. In our evaluation,
we show how DELTA enables a significant enhancement
of efficiency in automated task planning in terms of a
considerably faster planning time and higher success rates
compared to various baselines. For future work, we plan to
implement repairing mechanisms for handling uncertainties in
dynamic environments, ablate our approach with more LLMs,
and validate on real-world robot operations.

VII. APPENDIX
A. Translating Natural Language into PDDL Formulations

1) Action Formulation: For instance, the “mop_floor”
action can be described as “For mopping the floor, the agent is
in the room and has the mop in hand, the mop is clean while
the floor is not clean. After the action, the floor is clean, but
the mop is not clean anymore, and the agent’s battery will no
longer be full.” The corresponding action can be formulated
in PDDL as follows:

Listing 1: Action “mop floor” defined in PDDL

(:action mop_floor

:parameters (?a - agent ?i - item ?r - room)

:precondition (and
(agent_at ?a ?r)
(item_is_mop ?1i)
(item_pickable ?1i)
(agent_has_item ?a ?1i)
(mop_clean 7?1i)
(not (floor_clean ?r))

)

:effect (and
(floor_clean ?r)
(not (mop_clean ?1))
(not (battery_full ?a))

2) Goal Formulation: The goal of a house cleaning
problem shown in Fig. 1 given by the human user can be
formulated as follows:

Listing 2: Goal states of the house cleaning problem in PDDL

(:goal
(and
(item_disposed cola_can)
(item_disposed banana_peel)
(floor_clean living_room)
(floor_clean kitchen)
(mop_clean mop)

3) Goal Decomposition: As indicated in the mop_floor
action, it requires the predicate mop_clean as precondition,
and results in the state not (mop_clean). It infers that the
mop turns dirty after cleaning a room, and therefore cannot
be used to directly mop the next room. A cleaning action is
thus necessary. As such, the goal states in Listing 2 can be
decomposed as follows:

Listing 3: Decomposed goals of the house cleaning problem

(:goal (item disposed cola_can))
(:goal (item_disposed banana_peel))
(:goal (floor_clean living_room))
(:goal (mop_clean mop))

(:goal (floor_clean kitchen))
(:goal (mop_clean mop))

B. Prompt Design

The prompt structures for domain generation, SG pruning,
problem generation, and long-term goal decomposition are
formulated as follows (the purple and blue text refers to NL
description and programming code, respectively):

Prompt Structure for Domain Generation

Role: You are an excellent domain generator. Given a description
of domain knowledge, you can generate a PDDL domain file.

Example: A robot in a household environment can perform the
following example object types and example actions with pre-
conditions and effects. The corresponding action definitions in
a PDDL domain file look like: example_domain.pddl.

Instruction: A new domain has the following new object types
and actions. Please generate a corresponding PDDL domain file.

Prompt Structure for Scene Graph Pruning

Role: You are an excellent assistant in pruning SGs with a list
of SG items and a goal description.

Example: A SG can be programmed as a nested Python
dictionary such as example_sg.py. For accomplishing the example
goal, the relevant items are [example_relevant_items].
Instruction: Given a new query_sg.py and a new goal descrip-
tion, please prune the SG by keeping the relevant items.

Prompt Structure for Problem Generation

Role: You are an excellent problem generator. Given a SG and
desired goals, you can generate a PDDL problem file.
Example: Given an example_sg.py, an example goal description,
and using the predicates defined in example_domain.pddl, a corre-
sponding PDDL problem file looks like: example_problem.pddl.
Instruction: Given a new query_sg.py, a new goal description,
please generate a new PDDL problem file using the predicates
in the previously generated query_domain.pddl.

Prompt Structure for Goal Decomposition

Role: You are an excellent assistant in decomposing long-term
goals. Given a PDDL problem file, you can decompose the goal
states into a sequence of sub-goals.

Example: Given an example_problem.pddl, the goal states can
be decomposed into a sequence of example sub-goals. Using
the predicates defined in example_domain.pddl, the example sub-
goals can be formulated as: sub-goal_1.pddl, ..., sub-goal_n.pddl.
Instruction: Given the query_problem.pddl generated previously,
please decompose the goal considering the predicates and actions
from the previously generated query_domain.pddl.

C. Evaluation Domains

1) Laundry Domain: New action: For laundering, you
need the clothes, the detergent, and the washing machine,
where the clothes and detergent are pickable, and the washing
machine can be turned on. The agent and all items should
be in the same room and the agent is not loaded. As result,
clothes will be clean. Goal: Launder the clothes and bring
them to bedroom_1.

2) PC Assembly Domain: New action: For assembling a
pc, you need a mainboard, a CPU (Central Processing Unit),
a RAM (Random-Access Memory), a SSD (Solid-State-Drive),
a GPU (Graphics Processing Unit), and a PSU (Power Supply
Unit), where all items are pickable. The agent and all items
should be in the same room, agent isn’t loaded. As result,
the PC is assembled. Goal: Bring the necessary PC parts to
the living room and assemble the PC.

3) Dining Table Setup Domain: New action: For placing
item_1 on item_2, the agent and item_2 must be in the same
room, item_1 is be pickable and the agent has it in hand. As
result, item_1 is on item_2, the agent is not loaded anymore.
Goal: Set up the dining table for dinner, place the tableware
(i.e., a plate, a fork, a knife, a spoon, and a glass) on the

dining table. Also bring something romantic (i.e., flower) to
the dining table.

4) House Cleaning Domain: New actions:

o For disposing of an item, you need a rubbish bin, the
agent should be in the same room with the rubbish bin,
and is loaded with the pickable item to be disposed of.
As result, the item will be disposed of, the agent is not
loaded anymore, and battery will not be full.

e Mop floor, see Listing 1

o For cleaning mop, the agent must have a pickable and
unclean mop in hand, and should be in the same room
with a sink. As result, mop will be clean and lies in the
room, agent is not loaded, and battery will not be full.

o For charging the agent, it should be in the same room
with the robot hub, the agent is not loaded, and the hub
is accessible. As result, agent’s battery will be full.

Goal: Identify and dispose of the possible rubbish (e.g. food
residue, drink bottles/cans etc.), mop the floor in living room

an
ba

d kitchen. The mop should be clean in the end, and the
ttery should be full.
5) Home Office Setup Domain: New actions:

o For loading item 2 into item_1, the agent and item_1
must be in the same room, item_1 must be loadable and
empty, item_2 must be pickable and is loaded by the
agent. As result, item_2 will be in item_1, and the agent
is not loaded anymore.

o For unloading item_2 from item_1, the agent and item_1
must be in the same room, item_1 must be loadable and
not empty, item_2 must be pickable and lie in item_1, the
agent is not loaded. As result, item_2 is not in item_1
anymore, and item_1 becomes empty.

Goal: Set up a home office in the living room by bringing the
desk, lamp, locker and shelf along with the contents inside.
Note that you cannot move a loadable item if it is not empty.

[1

[2]

[3

[4]

[5

[6]

[7]

[8

[10]

REFERENCES
] J. Achiam et al, “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.
A. Chowdhery et al., “Palm: Scaling language modeling with path-
ways,” Journal of Machine Learning Research, vol. 24, no. 240, pp.
1-113, 2023.
] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

H. Touvron et al., “Llama: Open and efficient foundation language
models,” arXiv preprint arXiv:2302.13971, 2023.

] M. Aiello and I. Georgievski, “Service composition in the chatgpt era,”
Service Oriented Computing and Applications, pp. 1-6, 2023.

Y. Liu, L. Palmieri, I. Georgievski, and M. Aiello, “Human-flow-
aware long-term mobile robot task planning based on hierarchical
reinforcement learning,” IEEE Robotics and Automation Letters, 2023.
N. Aboki, I. Georgievski, and M. Aiello, “Automating a telepresence
robot for human detection, tracking, and following,” in Annual Con-
ference Towards Autonomous Robotic Systems. Springer, 2023.

] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118-9147.

C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su,
“Llm-planner: Few-shot grounded planning for embodied agents with
large language models,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 2998-3009.

B. Liu et al., “Llm+ p: Empowering large language models with
optimal planning proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

[32]

Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion planning
with large language models for object rearrangement,” arXiv preprint
arXiv:2303.06247, 2023.

M. Ahn et al., “Do as i can, not as i say: Grounding language in
robotic affordances,” arXiv preprint arXiv:2204.01691, 2022.

K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suen-
derhauf, “Sayplan: Grounding large language models using 3d scene
graphs for scalable robot task planning,” in Conference on Robot
Learning. PMLR, 2023, pp. 23-72.

Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan, “Autotamp: Au-
toregressive task and motion planning with llms as translators and
checkers,” arXiv preprint arXiv:2306.06531, 2023.

T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and
M. Katz, “Generalized planning in PDDL domains with pretrained
large language models,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 18, 2024, pp. 20256-20264.

V. Pallagani et al., “On the prospects of incorporating large language
models (Ilms) in automated planning and scheduling (aps),” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling, vol. 34, 2024, pp. 432-444.

K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati, “Large
language models still can’t plan (a benchmark for Ilms on planning
and reasoning about change),” arXiv preprint arXiv:2206.10498, 2022.
D. McDermott et al., “Pddl-the planning domain definition language,”
1998.

Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating natural
language to planning goals with large-language models,” arXiv preprint
arXiv:2302.05128, 2023.

M. Zuo, E. P. Velez, X. Li, M. L. Littman, and S. H. Bach, ‘“Planetarium:
A rigorous benchmark for translating text to structured planning
languages,” arXiv preprint arXiv:2407.03321, 2024.

Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, and L. Carlone,
“Hierarchical representations and explicit memory: Learning effective
navigation policies on 3d scene graphs using graph neural networks,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 9272-9279.

C. Agia et al., “Taskography: Evaluating robot task planning over large
3d scene graphs,” in Conference on Robot Learning. PMLR, 2022.
G. Chalvatzaki, A. Younes, D. Nandha, A. T. Le, L. F. Ribeiro, and
I. Gurevych, “Learning to reason over scene graphs: a case study
of finetuning gpt-2 into a robot language model for grounded task
planning,” Frontiers in Robotics and Al, vol. 10, 2023.

I. Armeni ef al., “3d scene graph: A structure for unified semantics,
3d space, and camera,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877-1901, 2020.
S. Xiong, A. Payani, R. Kompella, and F. Fekri, “Large language models
can learn temporal reasoning,” arXiv preprint arXiv:2401.06853, 2024.
B. Chen et al., “Open-vocabulary queryable scene representations
for real world planning,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2023, pp. 11509-11522.
D. Shah, B. Osinski, S. Levine et al., “Lm-nav: Robotic navigation with
large pre-trained models of language, vision, and action,” in Conference
on Robot Learning. PMLR, 2023, pp. 492-504.

S. Wang et al., “Less is more: Generating grounded navigation instruc-
tions from landmarks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 15428-15438.
M. Helmert, “The Fast Downward Planning System,” Journal of
Artificial Intelligence Research, vol. 26, pp. 191-246, 2006.

T. Silver and R. Chitnis, “Pddlgym: Gym environments from pddl
problems,” in International Conference on Automated Planning and
Scheduling (ICAPS) PRL Workshop, 2020.

R. Howey, D. Long, and M. Fox, “VAL: automatic plan validation,
continuous effects and mixed initiative planning using PDDL,” in 16th
IEEE International Conference on Tools with Artificial Intelligence.
IEEE, 2004, pp. 294-301.

