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ABSTRACT

Accuracy and generalization of dynamics models is key to the success of model-
based reinforcement learning (MBRL). As the complexity of tasks increases, learn-
ing dynamics models becomes increasingly sample inefficient for MBRL methods.
However, many tasks also exhibit sparsity in the dynamics, i.e., actions have only a
local effect on the system dynamics. In this paper, we exploit this property with
a causal invariance perspective in the single-task setting, introducing a new type
of state abstraction called model-invariance. Unlike previous forms of state ab-
stractions, a model-invariance state abstraction leverages causal sparsity over state
variables. This allows for generalization to novel combinations of unseen values
of state variables, something that non-factored forms of state abstractions cannot
do. We prove that an optimal policy can be learned over this model-invariance
state abstraction. Next, we propose a practical method to approximately learn a
model-invariant representation for complex domains. We validate our approach
by showing improved modeling performance over standard maximum likelihood
approaches on challenging tasks, such as the MuJoCo-based Humanoid. Further-
more, within the MBRL setting we show strong performance gains w.r.t. sample
efficiency across a host of other continuous control tasks.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) is a popular framework for data-efficient learning of
control policies. At the core of MBRL is learning an environmental dynamics model and using it
to: 1) fully plan|Deisenroth & Rasmussen| (201 1));/Chua et al.|(2018), 2) augment the data used by a
model-free solver Sutton|(1991), or 3) be used as an auxiliary task while training|Lee et al.[(2019);
Zhang et al.| (2021). However, learning a dynamics model — similar to other supervised learning
problems — suffers from the issue of generalization since the data we train on is not necessarily the
data we test on. This is a persisting issue that is worsened in MBRL as even a small inaccuracy in the
dynamics model or changes in the control policy can result in visiting completely unexplored parts of
the state space. Thus, it is generally considered beneficial to learn models capable of generalizing
well. Various workarounds for this issue have been explored in the past; for example coupling the
model and policy learning processes (Lambert et al., [2020) so that the model is always accurate to a
certain threshold, or using an ensemble of models to handle the uncertainty in each estimate (Chua
et al.| 2018). However these approaches are unnecessarily pessimistic, and do not leverage structure
in factored dynamics for better generalization.

In this paper, we study how to improve generalization capabilities through careful state abstraction.
In particular, we leverage two existing concepts to produce a novel combination in MBRL that yields
improved generalization performance. The first concept is the principle of causal invariance, which
dictates that given a set of features, we should aim to build representations that comprise only those
features that are consistently necessary for predicting the target variable of interest across different
interventions (Peters et al.,[2015). The intuition is that a predictor built only over such invariant
features should generalize well for all possible shifts in the data distribution. The second concept is
that many real world problems exhibit sparsity in the local dynamics — given a set of state variables,
each variable only depends on a subset of those variables in the previous timestep. The two concepts
of sparsity and causality are intertwined, in that they both are a form of inductive biases that surround
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the agent dynamics |Goyal & Bengio| (2020). The policy of a continuously improving learner is
crucial, as it allows for the realization of both causal invariance and sparsity.

We focus on the prediction problem corresponding to learning a model of a Contextual Decision
Process (CDP) [Krishnamurthy et al.|(2016)), a generalization of the typical Markov decision process
that also encompasses rich and partial observability settings (see Section for details). Causal
invariance in the CDP setting can be considered a supervised learning problem where the features
are the state and action variables (the probable set of causal predictors for the target) and the target
variables are the state variables of the next state. In this context, we ask the question, can we exploit
the idea of causal invariance to learn a model with improved generalization ability to unseen parts of
the state-action space? Ultimately, based on experimental results we will show that the answer is
“yes.” Given basic exploratory assumptions, we show both theoretically and empirically that we can
learn a model that generalizes well on state distributions induced by any policy distinct from the ones
used while learning it.

The contributions of this paper are as follows. 1) We highlight an important concept required to
answer this question, that of independence between state variables in a dynamics model. We leverage
this observation to propose a new kind of state abstraction, model-invariance. model-invariance is
similar in flavour to model irrelevance (L1, 2009) but applies to individual state variables instead of
the full state as a whole. This leverages natural sparsity over state variables by constructing coarser
state abstractions on a per-variable level, also allowing for new generalization capabilities over novel
compositions of state variable values. 2) We show that a representation that only uses the causal
parents of each state variable is, in fact, a model-invariant representation. 3) We show that learning
a model over such an abstraction, and then planning using this model, is optimal, given certain
exploratory assumptions on the CDP. 4) We perform a proof-of-concept experiment in the batch
setting to show that such a model learning approach always leads to better generalization in unseen
parts of the state space for this CDP. 5) We then introduce a practical method which approximates
learning a model-invariant representation for more complex domains. 6) We empirically show that
our approach results in better model generalization for domains such as the MuJoCo-based Humanoid
and follow this by combining our model learning scheme with a policy optimization framework
which leads to improvements in sample efficiency.

We believe that the proposed algorithm is an important step towards leveraging sparsity in complex
environments and to improve generalization in MBRL methods.

2 PRELIMINARIES
We now formalize and discuss the foundational concepts used in our work.

2.1 PROBLEM FORMULATION

We consider the agent’s interaction with the environment as a discrete time y-discounted Contextual
Decision Process (CDP), a term recently proposed by [Krishnamurthy et al.| (2016)) to broadly model
sequential decision processes which require the policy to be based on rich features (context). A
CDP is defined as M = (X, A, P,R,~, ), where X C R? and A are the state and action spaces;
P = P(z'|x,a) is the transition kernel; R = r(x, a) is the reward function with the maximum value
of Ruyax; 7 € (0,1) is the discount factor; and p is the initial state distribution. CDPs generalize
MDPs by unifying decision problems that depend on rich context. Let 7 : X — A 4 be a stationary
Markovian policy, where A 4 is the set of probability distributions on .A. The discounted frequency of
visiting a state s by following a policy  is defined as pr(z) = (1 — V)E[>,~o V' I{z: = z} | p, 7).
The value function of a policy 7 at a context x € X is defined as V™ (z) = E[Y_,~ o v'r(@s, ar) o =
x, w). Similarly, the action-value function of 7 is defined as Q™ (z, a) = E[Y_,~,v'r(z¢, a¢)|zo =
x,ag = a, 7). The CDP definition also assumes that there exists a set of latent states S, finite in
number, which are latent. If we pose further structural assumptions, such as that of a Block MDP |Du
et al.|(2019);[Zhang et al.| (2020), then the notion of .S becomes more apparent.

There are two important cases we can consider with CDPs. We explore these with simple examples:

Case 1: Large state space or full state input: Consider X" as the proprioceptive states of a robot. In this
case, X is not a rich observation, but rather an arbitrarily large set of state variables {z!, 22, ..., 2P}.



Published as a conference paper at ICLR 2021

There is likely to be little irrelevant information present w.r.t. the downstream task in such a
case, i.e., the latent state space and observation space are the same, S := X. Here, the model-
invariant abstraction S; € S, conditioned on a specific state variable X;, corresponds to some coarser
abstraction of the given full state, learning and planning over which can still be optimal.

Case 2: Rich observation or pixel based input: Consider & to be a set of images, for example, each
being a front view of a robot. There is irrelevant information present in the form of background pixels.
Nevertheless, the latent state set S is still the same as in the previous case, a coarse representation of
the rich observation space /X'. Our task here is more challenging, in that we first have to compress a
low-dimensional state of the robot from the image that exhibits sparsity (equivalent to what is given
in case 1) and then learn a model-invariant representation. Also note that, for us to consider case 2 as
tractable, at least theoretically, we would have to assume a block MDP structure, since otherwise
having access to just the observations can lead to a POMDP setting.

In this work, we focus on case 1 and from now one use the term CDP and MDP interchangeably
throughout the paper. However, we remain general in our setup description since case 2 becomes
immediately relevant if we have a method of learning a compressed representation with sparseness
properties, which makes our method applicable. In both cases, we assume that the transition dynamics
over the full state are factorized. More formally:

Assumption 1. (Transition Factorization) For given full state vectors x;,x¢11 € X, action a € A,
and x; denoting the i" dimension of state x we have P(xy41|xy, a) = [[; P(xi, 1|2, a).

Note that this is a weaker assumption than assuming factored MDPs (Kearns & Koller, 1999; |Guestrin
et al.| 2001) since we do not assume a corresponding factorization of the reward function.

2.2 INVARIANT CAUSAL PREDICTION

Invariant causal prediction (ICP) (Peters et al.l 2015)) considers learning an invariant representation
w.r.t. spurious correlations that arise due to noise in the underlying (unknown) causal model which
describes a given system. The key idea is that across different environments (generally defined by
interventions on the data), the response variable Y remains the same given the variables X; that
directly cause the response variable, i.e., its parents PA(Y).

2.3 MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning typically involves learning a dynamics model of the environment
by fitting it using a maximum-likelihood estimate of the trajectory-based data collected by running
some exploratory policy. Such a learned model can then be used with various control methods.
Specifically, some popular approaches include using the model 1) to plan for the policy using
techniques such as model predictive control (MPC) Williams et al.| (2017); [Chua et al.| (2018));
Nagabandi et al.| (2018)), 2) to improve estimates of the () value by rolling out the model for a small
number of steps [Feinberg et al.|(2018)); |/ Amos et al.|(2020) and 3) to provide synthetic data samples
for a model-free learner|Janner et al.| (2019); [Kurutach et al.|(2018)). In the offline/batch RL setting,
where we only have access to the data collected by multiple policies, recent techniques build on the
idea of pessimism (regularizing the original problem based on how confident the agent is about the
learned model) and have resulted in better sample complexity over model-free methods on benchmark
domains (Kidambi et al., 2020; Yu et al., [2020).

2.4 STATE ABSTRACTIONS AND MODEL IRRELEVANCE

State abstractions allow us to map behaviorally equivalent states into a single abstract state, thus
simplifying the learning problem which then makes use of the (potentially much smaller set of)
abstract states instead of the original states (Bertsekas & Castanon,|1989). In theory, any function
approximation architecture can act as an abstraction, since it attempts to group similar states together.
Therefore, it is worth exploring the properties of a representation learning scheme as a state abstraction.
In the rest of the paper, we build our theory based on this connection.

We are interested in a specific kind of state abstraction called model irrelevance state abstraction
or bisimulation (Even-Dar & Mansour} [2003; [Ravindran & Barto), [2004} [Li, [2009)). An abstraction
¢ : X — S is model irrelevant if for any two states z, ' € X, abstract state s € S, a € A where



Published as a conference paper at ICLR 2021

R(z,a) = R(z, a),
Z P(2"|x,a) = Z P(x"|2a).
)

z''ep=1(s ' ep1(s)
Since an exact equivalence is not practical, prior work deals with approximate variants through the
notion of e-closeness (Jiang,[2018)). The main difference between a model irrelevance state abstraction
and our proposed model-invariance state abstraction is that the model irrelevance abstraction does not
leverage sparsity in factored dynamics. Our model-invariance state abstraction is variable specific,
assuming the state space consists of a set of state variables. We formally define our model-invariance

state abstraction in Section[3]

4

3 CASUAL INVARIANCE IN MODEL LEARNING

transition model, given limited environment data. We first highlight
how the independence assumption (Assumption[I)) connects to this

central goal by introducing a new kind of state abstractions called
model-invariance.

Figure 1: Graphical model of
3.1 MODEL INVARIANT ABSTRACTIONS sparsity across state variables.
Sparsity example: The dimension
Given conditional independence over state variables, we define x?,1 (shaded in blue) only de-
model-invariance as an abstraction that preserves transition behavior ~pends on two dimensions x} and
for each state variable. Formally, we define a reward-free version as 7 (in the blue box).
follows:

In this section, we build towards our goal of learning a generalizable @ K

Definition 1. (Model Invariant Abstraction) ¢; is model-invariant if for any x,z’, 2" € X,a € A,
¢i(x) = ¢i(z’) if and only if

P(x!|x,a) = P(z]|2',a), (1)
where x! denotes the value of state variable i in state x”'.

In words, an invariant abstraction is one which has the same transition probability to next state for
any two given states = and 2/, in the i index. If we assume factored rewards, we can define a
corresponding reward-based invariant abstraction that parallels the model-irrelevance abstraction
more closely, but we focus here on the reward-free setting.

Since it is impractical to ensure this equivalence exactly, we introduce an approximate definition
which ensures an e-closeness.

Definition 2. (Approximate Model Invariant Abstraction) ¢ is €; p-model-invariant if for each index
i,

sup |®:;P(z" |z, a) — ®;P(z" |2’ a)|| < € p.

acA,

z,2' €X,p(x):=¢(z")

¢ is eg-model-invariant if

€R = sup |R(z,a) — R(z,a)|.

a€A,
z,2' €X p(x)=¢(z")

®,; P denotes the lifted version of P, where we take the next-step transition distribution from observa-
tion space A" and lift it to latent space S.

Lemma 1. (Model Error Bound) Let ¢ be an €; p-approximate model-invariant abstraction on
CDP M. Given any distributions p, : x; € ¢;(X) where p, = [[0_, pa, is supported on ¢~ (z;),
we define My = (¢;(X), A, Py, Ry, ) where Py(z,a) = [1_, Py, (x,a). Then for any x € X,
ac A

P
|Py(e.a) — BP(z,0)| < e
=1
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Proof in[Section B| [Lemma I|provides a bound on the modelling error when the individual errors for
an approximate model-invariant abstraction are compounded. Specifically, Py refers to the transition
probability of a CDP which acts on the states ®(X’), rather than the original CDP which acts on the
original states. Note that we are particularly concerned with the case where each z; is atomic in
nature, i.e., it is not divisible further. Such a property ensures that model-invariance does not collapse
to model irrelevance.

4 THEORETICAL RESULTS

We now move on to providing a connection between causal invariance and model-invariant abstrac-
tions. First, we describe the causal setup below:

Definition 3. (Causal Setup) For each future state variable indexed by i, x' 11, there exists a linear
structural equation model consisting of state dimensions and actions, (z,,,x;,...,a}, a;) with
coefficients (Bji)j.k=1,...p+2, given by a directed acyclic graph. An experimental setting e € &
arises due to one or more interventions on the variable set {x},...,27, as}, with the exception of
i1

Assumption 2. (Invariant Prediction|Peters et al.|(2015)) For each e € E: the experimental setting
e arises due 1o one or several interventions on variables from (xi, ..., %, a;) but not on x}__; here,
we allow for do-interventions|Pearl|(2009) or soft-interventions |\Eberhardt & Scheines|(2007).

For our purposes, each intervention corresponds to a change in the action distribution, i.e., policy.
Thus, in turn, each policy 7; defines an environment e.

Proposition 1. (Causal Feature Set Existence) Under Assumption 2| the direct causes, i.e., parents of
x| define a valid support over invariant predictors, namely S* = PA(x}_ ).

The proof follows directly by applying Proposition 1 of [Peters et al.| (2015) (which itself follows from
construction) to each dimension 7.

Now that we consider each state variable individually, we wish to incorporate the causal invariance
idea into the model prediction problem for each state variable. The key idea is to make sure that in
predicting each state variable we use only its set of invariant predictors and not all state variables and
actions (see Figure|[T).

With this intuition, it becomes clearer why our original model learning problem is inherently tied
with learning better representations, in that having access to a representation which discards excess
information for each state variable (more formally, a casually invariant representation), would be
more suited to learning an accurate model over and thus, at least in principle, lead to improved
generalization performance across different parts of the state space. We now show that such a casually
invariant representation is in fact a model-invariant abstraction.

Theorem 1. For the abstraction ¢;(x) = [z]s,, where S; = PA(z}_ ), ¢; is model-invariant.

Proof in Appendix [B] Next, we show that learning a transition model over a model-invariant abstrac-
tion ¢ and then planning over this model is optimal.

Assumption 3. (Concentratability Coefficient, Chen & Jiang|(2019)) There exists C' < oo such that
for any admissible distribution v,
v(z,a)

V(z,a) € X x A,
(z.a) (z,a)

<C.

Here, an admissible distribution refers to any distribution that can be realized in the given CDP by
following a policy for some timesteps. p refers to the distribution the data is generated from.

Theorem 2. (Value bound) If ¢ is an €Rg, €; p approximate model-invariant abstraction on CDP M,
and My is the abstract CDP formed using ¢, then we can bound the loss in the optimal state action
value function in both the CDPs as:

Ve

1@, I — Qisll2, < ﬁH[QM]M = T1Qu, M2,
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Figure 2: Consider the network topology CDP (Guestrin et al.,|2001). We compare the mean and standard error
over 10 random seeds of the estimated transition probability of our invariant learner ( ) and MLE

(blue curve). m; is a policy that restarts whichever machine (based on index order) is not working and does
nothing if all machines are working. 72 is a random policy. 73 restarts the middle machine most of the times,
while acting randomly otherwise. We can see how our invariant learner converges faster and more stably to the
common solution (dashed black curve).
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Proof and all details surrounding the theoretical results are provided in Appendix [B]

5 PROOF OF CONCEPT EXPERIMENT: CERTAINTY EQUIVALENCE

In the tabular case, estimating the model using transition samples and then planning over the learned
model is referred to as certainty equivalence (Bertsekas| [1995)). Particularly for estimating the
transition model, it considers the case where we are provided with n transition samples per state-
action pair, (z, a;) in the dataset D, ,, and estimate the model as

1 _
P(ziq1]oe, a) = - Z (% = 2¢41) . 2)
€Dy o
If we assume that the next state components do not depend on each other given the previous state
and action (i.e., Assumption , we can re-write P(x; 1|2, a;) as [ [, P(x} |z, a;). Assuming we
know the parents of x}, , we can instead empirically estimate the true transition probabilities as

P(mi+1\xt,at) = P(mi+1|PA(xi+1),at) 3)
1 -, i
= ok Z I(z" = 2i14),
zeD
k
where D = UDr,aa x € ¢; (7). In the tabular case, Eq. [2|corresponds to a solution obtained by a
i=1

standard maximum likelihood learner. On the other hand, Eq. [3|corresponds to a solution obtained by
an invariant model learner. Proposition[I]showed that such an invariant solution exists for the given
causal abstraction definition. Here, assuming we have access to such an abstraction (i.e. access to
parent information for each state variable), we aim to show on a simple MDP that the invariance
based solution performs zero shot generalization to unseen parts of the state space while the standard
model learner does not.

We consider the simple network topology domain introduced in |Guestrin et al.|(2001). The setup
involves a star based topology comprising five machines. At each step, a machine fails randomly,
increasing the chances of the adjacent machine failing. Moreover, at each step, a single machine can
be restarted, resulting in a lower chance of it failing in the subsequent time step. Our objective here is
to estimate the transition probability for a given (x¢, a;, 4+1) tuple using the two methods in Eq.
and Eq.[3] In Figure 2] we compare our invariant learner ( ) against a standard MLE
learner (blue curve) and study for three different policies how their estimate varies as the number of
samples grows.

Note that Figure |2|is specified by a fixed policy that is used for data collection. If the policy
changes, it would result in a different environment as described in Our ideal scenario is
to find a predictive model that is optimal for all environments. To show this generalization, we find
that the invariant learner quickly converges to approximately the same solution across all training
environments, in just few data samples. The solution for any test environment is therefore this
common solution. As can be seen, this common solution (i.e., 0.02) also coincides with the true
probability we are trying to estimate. On the other hand, the standard MLE learner results in different
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Algorithm 1 Model-Invariant MBRL

1: Initialize Replay buffer D = (); Value and policy network parameters 6, 6 corresponding to any model

based RL algorithm;
2: for environment stepst = 1,...,7 do
3 Take action a; ~ m(-|x¢), observe r; and x+1, and add to the replay buffer D;
4 for Mmodel-free Updates do
5 Sample a batch {(z;, a;,7j, 2;j+1)} = from D;
6: Run gradient update for the model free components of the algorithm (e.g. 6, 6 etc.)
7 end for
8 for Mmodel updates do
9 Sample a batch {(z;, a;,7j, 2;j+1)} ey from D;
10 Run gradient update for reward model (6,)
11 Run gradient update for invariant dynamics model: 60 < invariant_update(fs, Vo ;L 7) (Pseu-
docode[C.T)
12:  end for
13: end for

solutions for each training environment in the low data regime. The solution provided at test time
in such a case is an average of all such solutions found during training, which is clearly off the true
probability.

It is worth noting that this example is only a proof of concept and that in more complex domains, we
do not assume access to the causal parents of each state variable. To that end, in the next section we
will describe a practical method that leverages the ideas presented until now.

6 TOWARDS LEARNING PRACTICAL MODEL-INVARIANT REPRESENTATIONS

We now introduce a practical algorithm for learning model-invariant representations. The main idea is
to use two (or more) independent models for dynamics prediction and constraining their predictions
to be close to each other for individual state variables (see Figure[3). Specifically, we instantiate two
identical models at the start of training. At each optimization step, a model is sampled randomly
and is used for minimizing the standard MLE model predictive loss. Simultaneously, an invariance
loss defined over the predictions of both models is attached to the main objective. The role of the
invariance loss is essentially to minimize the difference in similarity between the prediction of one
model w.r.t. the predictions of the second model and vice versa (Eq. ).

An important detail to note is that this similarity is computed for a single state variable (randomly
selected) at each training step. The overall rationale is that the invariance loss would implicitly force
each model to only depend on the causal parents of each state variable. We borrow the specifics of
the similarity definition from [Mitrovic et al.|(2020) and detail out our exact implementation of the
invariance loss in pseudocode form in Appendix

The overall loss used to learn the dynamics model is thus

2 . .
Ly =EBoup| (fzra) —zen) +KLE (LR, ¥/ (0 5) | (@)
Standard MLE Loss Invariance Loss e

Tii1
. . . Loss
where ' (f,h) = <g(f’(xt,at)),g(hl(xt,at))> is the similarity
between the predictions for the models f and & for the state variable

indexed by ¢. The function g is popularly known as the critic in
self-supervised learning losses (Chen et al.|(2020).

Standard MLE Loss

T+1

Eventually, we wish to use the invariant model learner described | —

above within a model based policy optimization algorithm and check

for how the policy performance varies as compared to a standard  Figure 3: Architecture for learn-
MLE based model learner. There are multiple ways of incorporating ing model-invariant representa-
a model for policy optimization in RL. A general framework that tions.

utilizes an invariant model learner is outlined in Algorithm|[I] For

the purposes of this paper, we employ a simple actor-critic setup where the model is used to compute
multi-step estimates of the () value used by the actor learner. A specific instantiation of this idea of
model value expansion is the SAC-SVG algorithm proposed in Amos et al.[(2020). It is important
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to note that the proposed version of model-invariance can be used in combination with any MBRL
method, and with any type of model architecture, such as ensembles or recurrent architectures.

7 EXPERIMENTS

Our experiments address the following questions:

* Moving to more complex control tasks, can we visibly show the adverse effects of spurious corre-
lations arising due to learning the model as the policy distribution, and thus the state distribution

changes during learning (Section 7.1)?

* How does our invariant model learning scheme performs in comparison to a standard MLE based
model learner on more challenging tasks? Does the performance gain, if any, has any correlation
with the number of samples, i.e., amount of data available (Section 7.2)?

* How does learning an invariant model affect performance in a model based policy optimization
algorithm? Does learning a more accurate model results in more sample efficient algorithms

tion 7.3))?

7.1

To test the presence of spurious correlations
when learning the dynamics model, we present
three particular cases. For the Humanoid-v2 do-
main, we choose to predict a single dimension
(the knee joint) when 1) No Mask: the entire
current observation and action are provided as
input, 2) Mask_1: when the dimensions that are
likely to be useful in predicting the knee joint
are masked and 3) Mask_2: when the dimen-
sions that seem uncorrelated to the knee joint
are masked. Having trained different models for
all three cases, we observe that the model error,
i.e., loss for case 2) is the most, as would be
expected. Furthermore, we see that 1) performs
worse than 3), for both horizon values in {3, 5}
(see Figure[d). This indicates that there indeed
is an invariant, casual set of parents among the
observation dimensions and that there could be
some interference due to spurious correlations
in 1) and thus it performs worse than case 3).

7.2 INVARIANT MODEL LEARNING ON
HUMANOID-V2

We compare the invariant model learner to a
standard model learner for the Humanoid-v2
task. To observe the effect of the invariance loss
clearly, we decouple the model learning compo-
nent from the policy optimization component by
testing the model on data coming from a replay
buffer a pre-trained model-free SAC agent.

Such a setup ensures that the change in state dis-
tribution according to changes in policy is still
present, which is necessary to test the general-
ization performance of a learned model. We ob-
serve that our invariant model learner performs
much better than the standard model learner, es-
pecially when the number of samples available
is low, i.e., around the 200k to 500k mark (see

PRESENCE OF SPURIOUS CORRELATIONS

Humanoid-v2 Humanoid-v2

054
052
o

Mask_2 No_mask

076 o

Test Model Error

Test Model Error

- ﬁ

o
)

Mask_2 No_mask

(a) Horizon=3 (b) Horizon=5

Figure 4: Effect of spurious correlation on the model
learning test loss of Humanoid-v2. We compare model
loss of predicting a single dimension (the knee joint)
for two schemes: Mask 2 and No_mask. No_mask
performs worse, thus supporting the claim that spurious
correlations do exist per state variable. Each curve is run
for 10 seeds, with the standard deviation shaded. Y-axis
magnitude order is le-3.
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=+ Invariant, H=3
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Figure 5: Test model learning error on Humanoid-v2
for different horizon values. We see that the invariant
learner consistently generalizes better than the standard
model learner. Each curve is the mean and standard error
over 10 random seeds.
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POPLIN POPLIN POPLIN POPLIN MBPO MBPO MBPO MBPO MBPO
Cheetah Walker Hopper Ant Cheetah Walker Hopper Ant Humanoid
*PETS 2288 +510 282 £+ 250 114 £311 1165 £+ 113 - - - - -
*POPLIN-A 1562 +568 -105 £ 125 202 + 481 1148 + 219
*POPLIN-P 4235 £566 597 + 239 2055 + 206 2330 + 160
*METRPO 2283 +£450  -1609 £328 1272 £ 250 282 +9
*SAC 4035 £134  -382 +424 2020 + 346 836 + 34 - - - - -
SAC-SVGH-3 8211 +408 -242 + 606 1869 £389 3977 + 357 7296 +462 3274 +£364 3055 +91 3090 + 160 441 £33
Ours H-3 8509 +470 -768 + 427 1801 £355 4521 + 307 7253 £395 2882 +416 3090 £ 109 3424 + 320 447 +9
SAC-SVG H-4 - - - - 6917 £564 3190 £374 3109 £1126 828 + 435 538 o4
Ours H-4 - - - - 7206 +327 3392 4407 3204 £ 115 2222 +383 494 +43
SAC-SVG H-5 - - - - 4305 £1025 2538 +492 2820 £ 316 2440 +479 576 + 63
Ours H-5 - - - - 6602 +345 2916 +442 3009 £280 2162 490 463 + 50
Timesteps 200000 200000 200000 200000 200000 200000 200000 200000 200000

Table 1: Invariant MBRL performance on four MuJoCo based domains from POPLIN |Wang & Ba|(2019) (left)
and five MuJoCo based domains from MBPO [Janner et al.| (2019) (right). * represents performance reported by
POPLIN. We run our method for 10 seeds and report the standard error for all methods.

Figure[3). As the number of samples increases, the performance between both models converges,
just as observed in the tabular case. This is expected since in the infinite data regime, both solutions
(MLE and invariance based) approach the optimal/true model. Furthermore, we observe that the
number of samples it takes for convergence of between the standard and the invariant model learners
increases as the rollout horizon (H in Figure[5) of the model learner is increased.

7.3 INVARIANT MODEL-BASED REINFORCEMENT LEARNING

Finally, we evaluate the invariant model learner within the the policy optimization setting of SAC-
SVG (Amos et al.l 2020). We compare the difference in performance to SAC-SVG when the horizon
length is varied (see MBPO environments in Table [T) and then compare the performance of our
method against multiple model based methods including PETS |Chua et al.| (2018), POPLIN |Wang
& Bal (2019), METRPO |Kurutach et al.| (2018)), and the model free SAC [Haarnoja et al.| (2018)
algorithm (see POPLIN environments in Table([I). The results show improved performance when the
invariant model learner is used instead of the standard model learner across most tasks. Interestingly,
the improvement we see in modelling performance is not translated as well in policy optimization
performance for the Humanoid-v2 task. It is worth noting that recently |[Lambert et al.|(2020) point
out that in some RL tasks, modelling performance could actually be uncorrelated to the policy’s
performance. Combining our invariant model learner with other policy optimization algorithms is
therefore a promising direction for future investigation.

8 CONCLUSION AND FUTURE DIRECTIONS

This paper introduced a new type of state abstraction for MBRL that exploits the inherent sparsity
present in many complex tasks. We first showed that a representation which only depends on the
causal parents of each state variable follows this definition and is provably optimal. Following, we
introduced a novel approach for learning model-invariant abstractions in practice, which can plugged
in any given MBRL method. Experimental results show that this approach measurably improves the
generalization ability of the learnt models. This stands as an important first step to building more
advanced algorithms with improved generalization for systems that possess sparse dynamics.

In terms of future work, there remain multiple exciting directions and open questions. First, to enable
model-invariance, we could also look at other kind of approaches proposed recently such as the AND
mask [Parascandolo et al[(2020). The AND mask specifically requires the data separated into multiple
environments, and thus looks much more suited for offline RL where we have data collected based
on multiple policies available. Second, moving to pixel based input, the representation learning task
becomes two-fold, including learning to abstract away the irrelevant information present in the pixels
and then learning a model-invariant representation. Third, note that our theoretical results do not
involve an explicit dependence on a sparsity measure, for example, the maximum number of parents
any state variable could have. Including such a dependence would ensure tighter bounds. Fourth,
it is worth asking how such an explicit constraint on model-invariance can perform as a standalone
representation learning objective, considering the strong progress made by self-supervised RL.
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Appendix

A

WHY CAUSAL INVARIANCE?

Out of distribution (OOD) generalization has been attributed to learnt correlations that do not follow
the underlying casual structure of the system. These are referred to as spurious correlations. With
the use of deep neural networks, spurious correlations can arise due to 1) the way we collect data,
or selection bias, 2) overparameterization of the neural networks, and 3) presence of irrelevant
information in the data (ex. the background might be irrelevant for an object classification task). For
the setting in this paper, such issues are relevant since we use NN to learn the dynamics model of the
RL environment. Even if these issues are attended to, spurious correlation could still arise. However,
this time it would be due to the causal structure assumed and not the modelling technique (NNs) we
use over it. Two such causes are 4) hidden confounders in the causal graph and 5) conditioning on
anti-causal parts of input x. For our case, 4) could correspond to a hidden non-stationarity in the
system such as the friction coefficient between the robot and the floor. Since we are only concerned
with the z; to x4 causal diagram, 5) may not be as apparent. Nevertheless, we include it for
completeness. Therefore, in principle, choosing the right variables and deploying techniques that
discover an invariant Y conditioned on a given X helps us avoid spurious correlations. This in turn
leads to better OOD generalization.

NOTES ON ASSUMPTIONS

* There is a linearity assumption on the dynamics that is implicitly placed when we borrow
the generalization results of [Peters et al.[|(2015). These ensure that given data divided into
multiple environments (minimum 2) (in our case that refers to data from multiple single
policies), the causal representation results in a model that generalizes over all environments.
When the dynamics are non-linear, |Arjovsky et al.|(2019) showed that a similar argument
toward generalization can still be made, with the added requirement of having data from
at least a fixed amount (n, > 2) of environments. However, recent work (Rosenfeld et al.,
2020) has argued that such an analysis is not accurate and thus more investigation is required
to ensure OOD generalization. For the proof of concept experiment in Section [5] the
dynamics are linear and thus we can deploy ICP for learning the causal parents of each
state variable and ensure that the zero-shot generalization shown actually persists for any
arbitrarily different policy from the ones used for training the invariant learner. When we
move to Section [6| we do away with this approximation since the dynamics are no longer
linear. Moreover, we do not restrict ourselves to a multiple environment based regime, the
likes of which are required by [Peters et al.[(2015)).

* The transition factorization assumption, i.e. Assumption[I} seems like a strict condition
in theory when we move to complex domains, however, it is in fact a natural outcome of
how we model the agent dynamics in practice. In practice, each state variable of the next
state ;11 is set to only be dependent on the previous state z; and action a,. We can see this
for example in neural network based dynamics models where the next state as a whole (all
state variables simultaneously) is predicted given the previous state and action. Therefore,
even though it may seem as an over constraining assumption, in practice it is present by
default. In fact, this shows that we should focus more on theoretical results that build on
assumptions like transition factorization.

* A constraint on the exploration issue is usually dealt with by the concentratability assumption
(Assumption [3) in literature. A recent method to get around such an assumption is by
coupling the policy optimization algorithm with a exploration algorithm that maintains a set
of exploratory policies (policy cover in|Misra et al.[(2020)) which slowly keeps expanding.

* When describing the practical invariant model learner (Section [6]), we do not explicitly focus
on finding the exact causal parents for each state variable. On the other hand, we resort to
forcing such a constraint implicitly by describing a direct, differentiable invariance-based
loss. One benefit of this approach is that the overall method remains end-to-end. The

13



Published as a conference paper at ICLR 2021

downside of course is that we do not always ensure that the right set of causal parents is
found.

RELATED WORK

On Factored MDPs: Planning based on structural assumptions on the underlying MDP have been
explored in significant detail in the past (Boutilier et al.,|1999). The most closely related setting is
of factored MDPs, but learning based approaches that build on the factored MDP assumption have
predominantly also assumed a known graph structure for the transition factorization (Kearns & Koller]
1999; Strehl et al., [2007}; |Osband & Van Roy, [2014)).

On the theory side, most prior works on factored MDPs also do not learn and leverage state abstrac-
tions (Kearns & Koller, |1999; |Strehl et al., [2007). Jonsson & Barto|(2006) draw connections to causal
inference, but do so explicitly with dynamic Bayesian networks, as opposed to learning approximate
abstractions — and assume knowledge of the model. Most recently, Misra et al.| (2021) also tackle the
rich observation factored MDP setting, but consider each pixel an atom that belongs to a single factor.

On the algorithmic side, there have been only a few works that discuss learning the graph or DBN
structure alongside the factored MDP assumption, e.g., (Hallak et al.,[2015). We differ from these
in that we only learn the partial graph structure (not explicitly), i.e., only the direct parents of each
state variable. Moreover, we achieve this using the invariance principle, which has not been explored
in prior work. A major reason for adopting the invariance principle is that it naturally allows us to
work in the multiple environment setting, where an environment is characterized by the different state
distributions induced by different policies during training, a necessary component for learning an
invariant representation. This is an important distinction from the supervised learning setting, one
where other graph structure learning methods have been shown to work well. There is little reason to
believe that such approaches extend to the RL case as well, particularly because the data distribution
is not fixed in general in RL.

On CDPs: There has been a lot of recent work around the newly proposed CDP setting. Our work
has overlapping ideas with two specific works — model based learning in CDPs (Misra et al., [2020)
and learning efficient abstractions over them (Sun et al., [2019). Besides the more algorithmic and
empirically focused nature of this work, there remain several considerable distinctions. Firstly, we
focus on abstraction-based learning, whereas |Sun et al.|(2019) rely on the concept of witness misfit to
learn efficiently over the original CDP states. Secondly, we are focused on learning abstract states
that are a coarser representation of the true full state of the CDP, whereas Misra et al.| (2020) deal
with the case where the abstract states correspond to the full state/latent states of the CDP. In that
sense, the framework adopted here is a blend of that presented in these two works. Ideally, we would
like to show that the class of problems where the number of model-invariant abstract states is low,
also have a low witness rank.
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B PROOFS

Theorem 1. For the abstraction ¢;(x) = [x|s,, where S; = PA(z},,), ¢; is model-invariant.
Furthermore, if ¢ follows such a definition for all state variables indexed by i, ¢ is a reward free
model irrelevant state abstraction.

Proof. We first prove that ¢; is model-invariant. In the case where ¢;(z) = ¢;(z’) for some state
variable indexed by ¢, we have:

P(z{|x,a) = P(af|[z]s,, a)

a)

= P(}|¢i(x),
(z'),a).

= P(a|i(x
Following the same steps backwards for ¢;(x’) concludes the proof.

We now prove the latter statement in the theorem. We note that for such a statement to be meaningful,
we require that the state space X’ includes some irrelevant state variables for the downstream task
in hand. For example, we could have some unnecessary noise variables appended to the full state
variables. In such a case, the full state variables are relevant for the downstream task whereas the
noise variables are irrelevant for the downstream task. Now, if ¢(x) = ¢(a'), i.e., ¢;(z) = ¢;(z")
for all relevant state variables indexed by ¢, ¢ is a reward free model irrelevant state abstraction, i.e.,

Z P(x"|x,a) = Z P(2" |2, a), 5)

z" €= (x) z''€P=1(T)
where T is the abstract state that ¢ maps to. With this note, the proof for the latter statement follows
directly from Theorem 1 in Zhang et al.| (2020).

On the absence of irrelevant state variables: The condition ¢(z') = ¢(z?) is quite strict if we
assume the absence of irrelevant state variables (if no such variables are present, then x! has to be
equal to 22 for this condition to be met, which is not meaningful).

Extending to model-invariance grounded in reward: Notice that Definition |l|is reward free, and
is grounded in the next state x”. We could instead extend this to a definition which is grounded in the
reward. Particularly,

Definition 4. (Reward Grounded Model Invariant Abstraction) ¢; is reward grounded model-
invariant if for any x, 2’ " € X, a € A, ¢;(x) = ¢;(2’) if and only if
Ri(z,a) = R;(2',a)

Z P(xﬂa:,a) = Z P(Iﬂx,?a)v

2/€=(2) 2€4=(2)

We can show that the causal representation of ¢ is a reward free version of the above defined
model-invariance abstraction (Definition [).

Proposition 2. For the abstraction ¢;(x) = [x]s,, where S; = PA(z}, ), ¢; is a reward free version

of Definition

Proof. Now, when ¢;(z) = ¢;(x') for a specific state variable indexed by 4, we have:
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Z P(2"|x,a) = Z HP(acﬂx,a)

I”E(Zﬁi_l(i‘) m//ed)i—l(f) k=0
p
= Y P@]llals,.a) [[PU2" eri ikenlr, a)
wred; (%) k=0
= P(z}|¢i(x),a) > P{a"}brpi, inenlr.a)

z" €, (Z)
= P(z}|¢i(z),a)
= P(z]|pi(2"), a).

Following the same steps backwards concludes the proof.

Lemma 1. (Model Error Bound) Let ¢ be an €; p-approximate model-invariant abstraction on
CDP M. Given any distributions p, : ©; € ¢;(X) where p, = [[0_, pa, is supported on ¢~ *(z;),
we define My = (¢;(X), A, Py, Ry, ) where Py(z,a) = [[_, Py, (x,a). Then for any x € X,
a€ A

P
1Py (x,a) = @P(x,a)| <D eip-
i=1

Proof. Consider any z, a and let g, := ®; P(z,a), where we have ||, — q,z2|| < € p if ¢;(z') =

(bl(.’EQ)

1Py (2, a) = ©P(x, a)|| = |] [ Ps; (,a) — @P(x,a)]|

1=0
p p
= 1[1Ps.(z.a) = ]| ®:iP(x,0)|
=0 =0
p p
= > @[]z -]
reo 1 ({midien) =0 i=0

P P

=1 > »m@(Ile-Ie)

z€d ' ({zitien)

p p
Z pw(«f)ll H dz; — H dz;
=0 =0

z€p " ({zi}ien)

IN

We now use the following inequality:

|AB — CD| = ||[AB— AD + AD — CD||
| A(B-D)+(A-C)D|
<||A(B—-D)+|(A-C)D|| (Triangle inequality)
< || A||loollB = D|l1 + [|A = C|1]| D]l (Holder’s inequality).
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The co—norm of a probability distribution is 1. Apply this result to the above expression p times,

p p
| Py(z,a) — DP(x,a)|| < S pe@I [~ [
z€p 1 ({zi}ien) 1=0 i=0

< > @]
i=0

z€d~({wi}ien)

< Y p@) ar

zed 1 ({zi}ien) =1

p
= E Eiyp.
=1

Theorem 2. (Value bound) If ¢ is an €Rr, €; p approximate model-invariant abstraction on CDP M,
and My is the abstract CDP formed using ¢, then we can bound the loss in the optimal state action
value function in both the CDPs as:

oo lltz, — 4z, 1||q:vp||oo

P P
v+ T ae — 1] e
i=0 i=0

VC

I(@3s, v = @rllzw < T NQ3sJar = TIQs Il
p

Q3 ar = TIQis Jarlloue < e +7(D €ir ) Rmand (21 = 7))
i=1

Note that this theorem deals with the batch setting, where we are given a batch of data and are
tasked at learning only using this data, without allowing any direct interaction with the CDP. We use
the concentratability coefficient as defined in Assumption[3] i.e., there exists a C' such that for any
admissible distribution v:

v(z,a)

w(z,a)

V(z,a) € X x A, <C.

Here, we abuse p to represent the distribution the data comes from instead of standard notation
representing the starting state distribution. Now,

1@, Iar = Qll2w = 1@, ]ar = TR, Iar + TQhs, Iar — Qa2
< @b, Jar — TIQh, Inell2w + 1T 1QAs, It — T Q2,0
< VO, Inr = TIQh, Jatllze + I TIQRs, I = TQhsllze (3)

Let us consider the second term:

2
IT1Q3s, Inr — TQ3 B = Eiwayes | (T1Q31, I (,0) — T35, ) ]

2
= Eeay | (TBarep (.0 X[ Qi |1 (2, @) — max Q3 (', )] )

2
< E(az,a)f\/u ’YZIE:D’NP(I,Q) (mgx[QZ/IAJW (I/a CL) - HlélX QR{ (SU/, a)) ]

<V Barmpioa) | max ([Qir, It (,0) = Qi (0 a))z]

2
< HlVaX |:72E(a:,a)~u EZ'NP(ZE,G) [mgx ([Q}c\/jde(m/a Cl) - Q*]\/[(J?/, CL)) :|]

IN

max [72E(m,u)wu [([Q}‘W]M(x’,a) - Qy (', a))QH

= max+?)[[Qr, v — QuilB.,
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where the last inequality follows because the two terms inside the expectation only depend on the next
state o’ and the next action a which can only be less than the value for z, a ~ v since we maximize
over it.

Plugging this back in (3):
11Qis,1ar = Qisllzw < VOIQas, I — T(Qir, arll2p + max y[|[@Q4r,|ar — Qill2w
max [[[Qhy, Jar = Qall2, < VaIQis, I = T(Qhs, Iull2p + max y|[[@h,]ar = Qlll2.v
VG

max [[[Q4y, ]ar = Qarll2, < ﬁl\[QR@]M = T, a2,

Since Qi 1ar — Qirllaw < mas, [[@ir,]ar — Qiyllz.. we have:

C
Qs I — Qirll2 < LII[QM]M = T, a2

Now, we prove the second statement:

@3, = TIQhg I aellz < M@, )ar — T1QAs, Iarlloo
= 11721, Qs Ir = TIQr, Il oo
= sup| Ry (¢(x), a) +7{Py(¢(x), a), Vi, ) — B(w, a) = 1{P(@, a), Vi, Inr)
< er +ysup [(Py(o(2), ), Vi, ) — (Pl a), Vg, L)

er +vsup [(Py(o(x), a), Viy,) — (2P(z,a), Vi, )|

z,a

* Rmax
<er+ep||Viy, — mlllm
<er+ ’YGPRmax/(z(l - 7))

€Rr + ’Y(Zp: €i,P)Rmax/(2(1 -7)
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C IMPLEMENTATION DETAILS

C.1 PYTORCH-LIKE PSEUDOCODE FOR LEARNING MODEL-INVARIANT REPRESENTATIONS

for x in loader: #

# independent pre
z1l, z2 = f£(x), h(x) #
# pick random dimension

dim = rand(zl.shape)

pred_1 = g(cat(zl[dim], one_hot (dim))) # g: critic
pred_2 = g(cat(z2[dim], one_hot (dim)))
pl, p2 = Invloss(pred_1, pred_2)

L = KL(pl, p2)

L.backward()
update (f, h, g)

def InvLoss(pred_1l, pred_2):
phi_1 = pred_1 % pred_2.T
phi_2 = pred_2 * pred_1.T

# matrix of inner product of 2-norm of pred_1 rows with pred_2 columns
norm_12 = normalize (pred_1, pred_2)
phi_1 = phi_1 / norm_12

phi_2 phi_2 / norm_12.T
pl = F.softmax(phi_1, dim=-1)
p2 = F.softmax(phi_2, dim=-1)
return pl, p2

def KL(pl, p2):
p2 = p2.detach()

return (pl * (pl / p2).log()).sum(dim=-1) .mean ()

C.2 SAC-SVG ALGORITHM

The SAC-SVG algorithm is presented in|Amos et al.|(2020) and is based on the idea of model-based
value expansion (MVE) [Feinberg et al.[(2018). MVE uses the model to expand the value function to
compute a multi-step estimate which a model-free base algorithm uses for policy optimization. In
SAC-SVG, the model-free base learner is a SAC agent and the multi-step estimates correspond to
that of the ) value used by the SAC actor.

ACZ/;S»SVG = Eme, ar~T T QS?E (LL', a)>

where « is the entropy temperature parameter of SAC. Note that for H = 0, SAC-SVG is equivalent
to SAC, since the model is no longer used for updating the actor. Thus the impact of the model on
the final algorithm performance is through the horizon parameter /1. Regarding the model learner,
SAC-SVG uses a recurrent deterministic model which takes as input the current state and a hidden
state to output the next state for a given horizon step H. The other popular alternative is to use an
ensemble of probabilistic model learners, as done in|Chua et al.| (2018)).

C.3 MBPO vs POPLIN ENVIRONMENTS

For our MBRL experiments, we used two sets of MuJoCo-based environments, each used before in
individual papers. Specifically, the POPLIN based environments were originally used in the paper
by Wang & Ba (2019). These refer to the ‘-v0’ versions from OpenAl Gym Brockman et al.|(2016)
and also includes a separately tweaked Cheetah (called PETS-Cheetah) and Swimmer environments.
On the other hand, the MBPO based environments refer to the ones used by the paper Janner et al.
(2019) and largely correspond to the ‘-v2’ versions from OpenAl Gym. These include an additional
reward for staying alive throughout an episode.
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Hyperparameter Value
Replay buffer size 1000000
Initial temperature () 0.1
Learning rate le — 4 SAC actor and critic; 1e — 3 Model learner
SAC Critic 7 0.005
Discount ~y 0.99
SAC batch size 1024
Model batch size 512
Optimizer Adam
Model updates per env step 4

Initial steps 1000

Number of encoder hidden layers (Model) 2
Number of decoder hidden layers (Model) 2

Encoder hidden layer size (Model) 512
Decoder hidden layer size (Model) 512
Model critic (g) Single layer MLP (512)

Table 1: Hyper-parameters used for the Invariant-SAC-SVG algorithm.
C.4 SPURIOUS CORRELATION

For the experiment in Section we used three different input strategies to test for the presence of
spurious correlations in model learning. Here, we define the exact masking schemes used. We are
interested in only predicting a single dimension here— the left knee joint position. Below are the
masking detailed descriptions:

¢ No Mask: None of the observation dimensions are masked.
* Mask_1: Dimensions that are seemingly correlated to the left knee joint are masked.
Specifically, {left_hip_x, left_hip_y, left_hip_z, left_knee} (qpos and qvel)

* Mask_2: Dimensions that are seemingly uncorrelated to the left knee joint are masked.
Specifically, {left_shoulder_1, left_shoulder_2, left_elbow} (qpos and qvel)

C.5 INVARIANT MODEL LEARNING

For our invariant model learner, we test on offline data collected in a replay buffer during the first IM
training steps of a model-free SAC agent. We start model training with the initial samples from the
replay buffer and continue to add more as the training progresses. Such a scheme ensures that we
have access to changing state distributions as the policy changes while remaining isolated from direct
policy optimization on the CDP.
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