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Abstract001

Multiple-choice benchmarks, consisting of var-002
ious prompts and choices, are among the most003
widely used methods to assess a language004
model’s natural language understanding capa-005
bility. Given a specific prompt, we typically006
compute P (Choice|Prompt) to evaluate how007
likely a language model is to generate the cor-008
rect choice compared to incorrect ones. How-009
ever, we observe that performance measured us-010
ing this approach reflects not only the model’s011
comprehension of the prompt but also its in-012
herent biases for certain choices regardless of013
the prompt. This issue makes it challenging to014
accurately measure a model’s natural language015
understanding, as models may select the answer016
without fully understanding the prompt. To ad-017
dress this limitation, we propose a novel metric018
called ANPMI, which normalizes Pointwise019
Mutual Information (PMI) by − logP (Choice).020
ANPMI provides a more accurate assessment021
of the model’s natural language understanding022
by ensuring that it is theoretically impossible023
to answer a question without properly under-024
standing the prompt.025

1 Introduction026

Suppose that a man/woman answers a multiple-027

choice question, and the answer is correct. Could028

he truly solve the problem if he only looked at the029

options and guessed? It would not accurately re-030

flect his ability or understanding that was intended031

to be assessed by the question.032

A similar issue arises when we evaluate a lan-033

guage model. Currently, the natural language un-034

derstanding capability of the model is often as-035

sessed using multiple choice questions (Achiam036

et al., 2023; Team et al., 2023; Jiang et al., 2024;037

Dubey et al., 2024). The performance of the model038

is measured by how frequently it selects the correct039

answer, based on the probability P (Choice|Prompt)040

- the likelihood that the model will generate a given041

choice in response to the prompt. However, this042
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Figure 1: When a model selects an answer solely based
on the choices without understanding the question, ac-
curately assessing its comprehension of the problem
becomes difficult.

method overlooks whether the decision is made 043

based on a genuine understanding of the prompt, 044

focusing solely on the model’s final choice. It is 045

similar to solving the problem by only looking at 046

the choices without seeing the question. 047

The options in multiple-choice questions con- 048

sist of diverse sentences, and the language model is 049

not trained to generate these sentences with equal 050

probabilities with a given prompt. It is a natural 051

phenomenon for the language model, but it may 052

lead to performance measurements that do not ac- 053

curately reflect the model’s understanding of the 054

prompt. For example, the model might select the 055

correct choice c because P (c) is much higher than 056

others, leading to overestimating the model’s ac- 057

tual performance. Conversely, it might choose an 058

incorrect option if the correct choice has a lower 059

probability, leading to an underestimation of its 060

performance. 061

To assess the model’s actual ability to understand 062

the given multiple-choice question and answer it 063

correctly, it is important to equalize the genera- 064

tion probabilities of each answer choice. However, 065

modifying the language model to deal with this 066

problem is not only complicated but also sabotages 067

the process of assessing the model’s performance. 068

Adjusting the answer choices in benchmarks is not 069

a practical solution either, as finding suitable al- 070

ternatives is challenging and could limit the diver- 071
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sity of the tasks, restricting the evaluation of the072

model’s ability.073

Instead of relying on P (Choice|Prompt), alter-074

native methods are often used to determine the075

selection by the model. For example, in bench-076

marks like Hellaswag (Zellers et al., 2019), the077

model’s performance is usually measured by nor-078

malizing P (Choice|Prompt) based on the length of079

the choice (Gao et al., 2024; Zhang et al., 2024),080

addressing the probability imbalance caused by the081

varying lengths of the choices. Another approach082

involves calculating mutual information to mea-083

sure the dependence between the choice and the084

prompt (Gao et al., 2024). However, these methods085

do not completely solve the issue stated above re-086

garding the probability imbalance between choices.087

This paper analyzes the impact of the imbalance088

in P (Choice) on language model performance and089

confirms the importance of addressing the issue.090

We propose a method to measure model perfor-091

mance by normalizing the Pointwise Mutual In-092

formation (PMI) between the prompt and choice093

using − logP (Choice) to assess the model’s actual094

understanding of the prompt. Our approach is theo-095

retically unaffected by the imbalance in P (Choice).096

Using various pre-trained models and benchmarks,097

we show that the proposed method more accu-098

rately evaluates the understanding of prompts by099

the model than existing approaches.100

2 Related Work101

In Deep Learning, objective functions, such as102

Mean Squared Error (MSE) and Cross-Entropy, are103

commonly optimized to train models effectively.104

However, these functions may not truly represent105

the quality of outcomes, such as the perceptual106

quality of generated images or a model’s true lan-107

guage understanding capabilities. To address this108

issue, researchers have focused on developing di-109

verse benchmarks (Rajpurkar et al., 2016; Sarlin110

et al., 2020) and evaluation metrics (Zhang et al.,111

2018; Ding et al., 2020; Ren et al., 2023) that bet-112

ter align with human judgment and application-113

specific needs.114

In natural language processing (NLP), the most115

common approach to evaluate generative language116

models involves measuring the likelihood of gen-117

erating correct answers based on specific prompts.118

However, this method is sensitive to the choice119

of prompts, which can lead to substantial out-120

come variations and heavily affect measured perfor-121

mance. As a result, many studies have investigated 122

techniques to identify prompts that most accurately 123

reflect a model’s language understanding capabili- 124

ties (Webson and Pavlick, 2021; Wei et al., 2022; 125

Leidinger et al., 2023). 126

However, our observation indicates that prompt 127

selection and answer choice design significantly 128

influence evaluating the language model’s capa- 129

bilities. This paper examines how the aspects of 130

answer choices impact the assessment of language 131

models and proposes effective methods to address 132

the challenge. 133

3 Impact of the Prior Probability 134

Multiple-choice questions are standard for evalu- 135

ating a language model’s natural language under- 136

standing. The model solves each question based 137

on the probability P (Choice|Prompt) — the like- 138

lihood of generating a particular choice Choice 139

given the prompt Prompt. The predicted answer 140

is the choice with the highest probability, and the 141

number of correctly predicted answers determines 142

accuracy. This section explores how P (Choice), the 143

prior probability, affects model performance when 144

calculating P (Choice|Prompt). We also investigate 145

how varying the answer choices affects the model’s 146

accuracy. 147

We divide P (Choice|Prompt) into two compo- 148

nents: P (Choice) determined independently of 149

the prompt Prompt and P (Choice|Prompt)
P (Choice)

influ- 150

enced by the prompt. This allows us to express 151

P (Choice|Prompt) as a product of the two compo- 152

nents: 153

P (Choice|Prompt)

= P (Choice) · P (Choice|Prompt)
P (Choice)

.
(1) 154

P (Choice) represents the probability of generating 155

a choice Choice without any prompt, which we 156

refer to as prior probability. On the other hand, 157
P (Choice|Prompt)

P (Choice)
indicates how much the prompt 158

Prompt affects the probability of generating the 159

choice Choice. It is equivalent to the exponen- 160

tial of the Pointwise Mutual Information (PMI), 161

log P (Choice|Prompt)
P (Choice) (Fano and Hawkins, 1961). 162

We analyze the two components for each choice 163

across various benchmarks to understand how the 164

choices influence the model’s final decision. 165

3.1 Effects of Prior Probability and PMI 166

We first investigate which of the two components 167

influences the model’s final decision more. We fo- 168

cus on two choices, C1 with the highest value of 169
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Table 1: The percentage of cases in which the log prior probability difference exceeds the PMI difference for each
dataset. A high percentage value indicates that the model’s decision is primarily driven by the prior probability
difference, indicating limited influence from the prompt.

Hellaswag PiQA ARC-e ARC-c LogiQA RACE SciQ MMLU
OPT-125M 72.14% 78.62% 53.03% 58.62% 50.69% 55.22% 33.90% 96.39%
OPT-350M 72.13% 79.38% 51.43% 54.61% 50.23% 55.50% 29.40% 81.74%
OPT-1.3B 70.33% 76.17% 48.57% 53.67% 49.16% 56.08% 26.70% 15.23%
OPT-2.7B 69.40% 76.33% 49.41% 55.63% 49.46% 53.68% 25.30% 13.33%
OPT-6.7B 67.96% 74.65% 45.88% 52.22% 51.61% 53.30% 20.70% 29.56%
Mistral-7B 60.35% 64.25% 27.15% 37.37% 46.85% 47.94% 7.80% 13.05%
Gemma-7B 75.60% 80.63% 56.99% 56.57% 48.39% 57.61% 48.30% 14.72%

LLaMA3.1-8B 65.26% 71.82% 37.25% 44.71% 49.00% 48.80% 16.50% 15.95%

P (Choice|Prompt) and C2 with the second highest,170

among all choices. We compare them by calculat-171

ing logP (C1|Prompt)−logP (C2|Prompt). By taking172

the logarithm of both sides of equation (1), we ex-173

press logP (Choice|Prompt) as the sum of the log174

prior probability and the PMI:175

logP (Choice|Prompt)

= logP (Choice) + log P (Choice|Prompt)
P (Choice)

.
(2)176

Then, we calculate logP (C1|Prompt) −177

logP (C2|Prompt) using the differences in log178

prior probabilities and PMIs between C1 and C2.179

logP (C1|Prompt)− logP (C2|Prompt)
= (logP (C1)− logP (C2))

+
(
log P (C1|Prompt)

P (C1)
− log P (C2|Prompt)

P (C2)

)
= (logP (C1)− logP (C2))
+(PMI(C1, P rompt)− PMI(C2, P rompt)).

(3)180

Suppose the final decision is primarily driven181

by differences in prior probability between the two182

choices. In that case, we expect the difference of183

the log prior probabilities to exceed that of the PMI184

values as follows:185

(logP (C1)− logP (C2))
> (PMI(C1, P rompt)− PMI(C2, P rompt)).

(4)186

Otherwise, we expect the difference in the PMI187

values to be higher. To analyze whether the model’s188

final decision is more influenced by the prior prob-189

ability or exponential of PMI, we calculate the per-190

centage of cases where the difference of the log191

prior probabilities exceeds the difference of the192

PMI values across various benchmarks. A higher193

percentage indicates that the model’s final choice194

is primarily influenced by the prior probability, im-195

plying that the prompt has a limited impact on the196

final decision.197

The experiment is performed across eight198

multiple-choice tasks (Welbl et al., 2017; Lai199

et al., 2017; Hendrycks et al., 2020; Liu et al.,200

2021) including Hellaswag (Zellers et al., 2019), 201

PiQA (Bisk et al., 2020), and ARC (easy and 202

challenge) (Clark et al., 2018) using four differ- 203

ent language models: OPT with five different 204

sizes(125M, 350M, 1.3B, 2.7B, and 6.7B) (Zhang 205

et al., 2022), LLaMA3.1-8B (Dubey et al., 2024), 206

Mistral-7B(version 0.3) (Jiang et al., 2024), and 207

Gemma-7B (Team et al., 2024). We employ the 208

instruction-tuned versions of LLaMA3.1, Mistral, 209

and Gemma. The benchmarks used are briefly de- 210

scribed in Appendix A. All results are measured 211

under the zero-shot setting using Language Model 212

Evaluation Harness (Gao et al., 2024). The results 213

are summarized in Table 1. 214

When a model lacks sufficient language under- 215

standing capability, the probabilities of choices 216

are generated independently of the prompt, i.e., 217

P (Choice|Prompt) = P (Choice), leading to higher 218

percentages in Table 1. For the OPT model, as 219

the model size increases, we observe that the per- 220

centage decreases for most benchmarks in general, 221

leading to improved language understanding. How- 222

ever, for the models Mistral-7B, Gemma-7B, and 223

LLaMA3.1-8B, where instruction tuning has been 224

applied to significantly enhance the downstream 225

task performance (Ouyang et al., 2022; Rafailov 226

et al., 2024), up to 80% of choices are still deter- 227

mined by the prior probability difference. This re- 228

inforces the assertion that, in many cases, the prior 229

probability plays a significant role in determining 230

the model’s overall performance. 231

3.2 Effects of Altering Choices 232

To further investigate the impact of P (Choice) on 233

the model performance, we modify the choices for 234

each problem and examine how these changes af- 235

fect the model performance. To maintain the model 236

performance as much as possible while altering 237

the choices, we replace the choice with the low- 238

est P (Choice|Prompt) with the sentence "Hi." The 239
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Table 2: Model performance before and after altering the choices. Orig refers to the performance before altering the
choices, Modified refers to the performance after replacing the choice with the smallest P (Choice|Prompt) value
by "Hi."

Model
Hellaswag Arc-e SciQ

Orig Modified Orig - Modified Orig Modified Orig - Modified Orig Modified Orig - Modified
Mistral-7B 64.73% 3.97% -60.76% 84.30% 71.51% -12.79% 96.30% 95.80% -0.50%
Gemma-7B 55.97% 3.65% -52.32% 75.72% 61.70% -14.02% 95.40% 93.80% -1.60%
LLaMA3.1-8B 59.05% 3.66% -55.39% 81.78% 65.70% -16.08% 96.60% 96.20% -0.40%

(a) Raw log probabilities (b) Length-normalized log probabilities

Figure 2: Comparison of log probabilities for Hellaswag choices options based on their length. We use instruction-
tuned LLaMA3.1-8B.

sentence "Hi" appears frequently in various text240

data, resulting in a high prior probability P ("Hi").241

However, since choices like "Hi" are unrelated to242

the prompt, the model’s performance should re-243

main stable if it truly relies on prompt understand-244

ing rather than P (Choice) alone. If such a choice245

affects the model performance, this would indi-246

cate that P (Choice) plays a significant role in the247

model’s decision-making. We expect that altering248

a choice with a high prior probability, such as "Hi,"249

will lead to cases where the model incorrectly se-250

lects this option over the correct one. To verify it,251

we perform an experiment using three instruction-252

tuned language models: Mistral-7B(version 0.3),253

Gemma-7B, and LLaMA3.1-8B, with three down-254

stream tasks: Hellaswag, Arc-easy, and SciQ. The255

results are summarized in Table 2.256

Table 2 shows performance decreases across all257

benchmarks after altering the choices. SciQ’s per-258

formance drop is minimal, ranging from -0.4% to259

-1.6%. The log prior probability difference has less260

impact on performance than the PMI difference.261

However, for Hellaswag, where 60.35% to 75.60%262

of choices are determined by the prior probabil-263

ity difference, its performance decreases signifi-264

cantly, ranging from -52.32% to -60.76%. The265

results demonstrate that P (Choice) substantially af- 266

fects model performance depending on the bench- 267

mark. 268

4 Existing Metrics 269

Due to the limitations of evaluating model perfor- 270

mance based solely on P (Choice|Prompt), some 271

benchmarks employ additional metrics. This sec- 272

tion explores several alternative metrics commonly 273

used in such evaluations. We explain how these 274

metrics address the limitations of P (Choice|Prompt) 275

and discuss their constraints. 276

4.1 Length-Normalized Accuracy 277

Language models generally assign higher probabil- 278

ities to shorter sentences than longer ones. It means 279

that when there are significant differences in the 280

lengths of the choice options, the model’s answer 281

(choice) can be biased, favoring shorter options. 282

This results in an imbalance in P (Choice) based on 283

the length of a choice option Choice. To address it, 284

length-normalized accuracy is used, which normal- 285

izes logP (Choice|Prompt) based on the text length 286

of Choice. For example, the Language Model 287

Evaluation Harness uses length normalization by 288

dividing each choice option’s log-likelihood by its 289

4



length in bytes (Gao et al., 2024). It is particularly290

effective for datasets, such as Hellaswag, where291

there are significant differences in choice lengths.292

While the length-normalized accuracy addresses293

the problem of length imbalance and its impact294

on the model performance, P (Choice) is not al-295

ways inversely proportional to the length in bytes.296

Figure 2 shows the distribution of log probabili-297

ties and the length-normalized log probabilities for298

an instruction-tuned LLaMa3.1-8B on the choices299

used in Hellaswag. In Figure 2(a), we observe300

that the relationship between the choice length and301

its log probability is not linear. Consequently, the302

normalized log-likelihood is not constant with the303

text length, as shown in Figure 2(b). As a result,304

normalizing by length can sometimes introduce305

new biases, particularly when P (Choice) values are306

already similar across options of varying lengths.307

4.2 Pointwise Mutual Information (PMI)308

Using mutual information (Shannon, 1948) in lan-309

guage modeling has a different motivation. Its310

goal is to measure how much the presence of311

a prompt increases the likelihood of a particu-312

lar choice Choice compared to its prior probabil-313

ity P (Choice). Specifically, the model selects a314

choice option based on the Pointwise Mutual In-315

formation (PMI) value (Fano and Hawkins, 1961),316

log P (Choice|Prompt)
P (Choice)

. This approach counteracts the317

tendency of high-probability choices to dominate318

the selection. When P (Choice) is high, indicating319

that the model is likely to select Choice regardless320

of Prompt, PMI normalizes P (Choice|Prompt) us-321

ing the prior probability of Choice, allowing se-322

lection of less common but contextually relevant323

responses more often. Thus, PMI focuses on en-324

hancing contextual relevance over raw likelihood.325

While less common than metrics, such as accu-326

racy and length-normalized accuracy, PMI has been327

used selectively in some studies (Askell et al., 2021;328

Biderman et al., 2024).329

The PMI value is always zero when no prompt330

is given, regardless of the choice. It implies that331

in the absence of a prompt, each choice option332

has an equal probability of being chosen by the333

model. However, when a prompt is provided, the334

maximum possible PMI value is − logP (Choice), as335

PMI reaches its peak when P (Choice|Prompt) = 1.336

As a result, each choice has a different maxi-337

mum possible value based on its prior probabil-338

ity. When P (Choice) is high, the maximum PMI339

value decreases, resulting in an unintended issue:340

choices with high P (Choice) values are penalized 341

by PMI, even if they are not inherently incorrect 342

nor intentionally boosted. It becomes problematic 343

when a correct Choice has both a meaningfully 344

high P (Choice|Prompt), indicating relevance to the 345

prompt, and a naturally high P (Choice). This case 346

prevents the model from selecting the correct an- 347

swer simply because the answer’s prior probability 348

happens to be high. 349

4.3 Normalized PMI (NPMI) 350

PMI yields different maximum values depending 351

on the choice. Due to this property, PMI is unsuit- 352

able for comparing different choices. To address 353

this limitation, Normalized PMI (NPMI) (Bouma, 354

2009) was introduced by normalizing PMI with 355

− logP (Choice, Prompt). NPMI normalizes PMI so 356

that it falls within [−1, 1] under the assumption that 357

P (Choice, Prompt) = P (Prompt, Choice) to allow a 358

fair comparison. 359

If P (Choice, Prompt) = P (Prompt, Choice), PMI 360

satisfies the following relationship: 361

PMI(Choice, Prompt)

= log P (Choice,Prompt)
P (Choice)P (Prompt)

= log P (Choice|Prompt)
P (Choice)

= log P (Prompt|Choice)
P (Prompt)

.

(5) 362

In this case, we find, 363

log
P (Choice|Prompt)

P (Choice)
≤ − logP (Choice). 364

and 365

log
P (Prompt|Choice)

P (Prompt)
≤ − logP (Prompt). 366

This means, 367

max(PMI(Choice, Prompt))
= min(− logP (Choice),− logP (Prompt)).

368

Normalization by − logP (Choice, Prompt) en- 369

sures the maximum value 1 because, 370

− logP (Choice) < − logP (Choice, Prompt) 371

and 372

− logP (Prompt) < − logP (Choice, Prompt). 373

However, in the case of language models, 374

P (Choice, Prompt) represents the probability of 375

generating the sentence Prompt + Choice, which 376

results in P (Choice, Prompt) ̸= P (Prompt, Choice). 377

Thus, PMILM in language models satisfies the fol- 378

lowing relationship where x is Choice, and y is 379

Prompt: 380
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Choice A Choice B

(e) ANPMI

𝑤/𝑜 𝑃𝑟𝑜𝑚𝑝𝑡

𝑚𝑖𝑛

𝑚𝑎𝑥

Choice A Choice B

(a) P(Choice|Prompt)

Choice A Choice B

(b) Length Normalized

P(Choice|Prompt)

Choice A Choice B

(c) PMI

𝑤 𝑃𝑟𝑜𝑚𝑝𝑡

Choice A Choice B

(d) NPMI

Figure 3: Comparison of the existing metrics and ANPMI for two different choice options, A and B. Dotted lines
indicate values calculated without a prompt, while the heads of block arrows represent values after a prompt is
provided. The red lines denote the theoretical minimum and maximum values, and the blue arrows highlight the
difference caused by the two different choices. The value of P (Choice|Prompt) differs depending on choices
when no prompt is given. Furthermore, PMI has a different theoretical maximum value depending on the choice.
Normalizing by the length and NPMI mitigates this difference but does not eliminate it due to their incorrect
assumptions. ANMPI, on the other hand, always has the same value for all cases independent of the prompt.

PMILM(x, y) = log
P (x|y)
P (x)

̸= log
P (y|x)
P (y)

. (6)381

Thus, NPMI is not an appropriate normalization382

method for PMI in language models. As a result,383

NPMI is treated as nonstandard in language model384

evaluation and is not commonly used.385

5 The Proposed Metric, ANPMI386

We observed that due to the imbalance in P (Choice),387

accurately assessing a model’s language compre-388

hension ability in multiple-choice tasks is challeng-389

ing. While carefully constructing answer choices390

could address this issue, designing choices that391

prevent P (Choice) imbalance across all language392

models is impractical. Thus, we propose a normal-393

ized PMI metric, Asymmetric NPMI (ANPMI) to394

evaluate the model performance in multiple-choice395

tasks. It is defined as follows:396

ANPMI(Choice, Prompt)

= PMI(Choice,Prompt)
− logP (Choice)

.
(7)397

It mitigates the influence of the P (Choice) imbal-398

ance, offering a more reliable indicator of a model’s399

understanding of the prompt.400

Ideally, the following requirements should be401

met by an assessment metric to measure a model’s402

true language comprehension capability:403

• In the absence of a prompt, the model should404

assign equal probabilities to each choice op-405

tion of a question, indicating that the prompt406

is essential for answering it.407

• The maximum and minimum values for the408

metric for selecting choices should remain409

consistent across the choices. A fair compar-410

ison between choices becomes difficult if a411

certain choice yields a disproportionately high 412

or low value. 413

Theoretically, PMI meets the first requirement 414

for accurately assessing a model’s language com- 415

prehension ability. However, it does not satisfy 416

the second requirement (discussed in Section 4.2). 417

PMI may yield different maximum values depend- 418

ing on the choice. 419

NPMI normalizes PMI under the assumption 420

that P (Choice, Prompt) = P (Prompt, Choice). How- 421

ever, this assumption does not hold in the lan- 422

guage model, making it an unsuitable normaliza- 423

tion method. 424

To overcome this, we propose ANPMI 425

(Asymmetric NPMI) that normalizes PMI by 426

− logP (Choice) for the evaluation metric. It yields 427

a value from 1 to −∞ regardless of the choice, thus 428

satisfying the second requirement for fair and ac- 429

curate evaluation. Figure 3 illustrates how these 430

characteristics distinguish ANPMI from existing 431

metrics. 432

Unlike NPMI, which normalizes PMI by 433

− logP (Choice, Prompt), ANPMI normalizes PMI 434

by − logP (Choice) to consider the inherent asym- 435

metry in P (Choice, Prompt) when computed with a 436

language model. 437

From Equation 6, we find, 438

PMILM (Choice, Prompt)

= log P (Choice|Prompt)
P (Choice)

≤ − logP (Choice).
(8) 439

Thus, the maximum of PMI in a language model 440

is − logP (Choice), not − logP (Choice, Prompt), 441

which is why ANPMI normalizes PMI using 442

− logP (Choice) to account for the asymmetry. 443
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Table 3: Model performance when no prompt is provided.
Metric Model Hellaswag PiQA ARC-e ARC-c LogiQA RACE SciQ MMLU

Random

label 0 25.04% 49.51% 25.08% 22.70% 20.08% 25.93% 0.00% 22.95%
label 1 24.75% 50.49% 24.62% 26.54% 24.42% 24.78% 0.00% 24.65%
label 2 25.73% - 26.64% 26.45% 27.50% 25.93% 0.00% 25.51%
label 3 24.48% - 23.61% 24.32% 27.80% 23.35% 100% 26.89%

Acc
Mistral-7B 46.22% 71.65% 35.06% 22.70% 19.35% 23.92% 27.50% 22.95%
Gemma-7B 40.79% 67.79% 33.00% 23.72% 19.66% 25.55% 24.60% 22.95%

LLaMA3.1-8B 43.24% 71.60% 35.23% 24.06% 19.35% 24.21% 27.50% 22.95%

AccNorm

Mistral-7B 59.06% 72.09% 32.45% 30.12% 24.42% 29.79% 31.90% 22.95%
Gemma-7B 29.37% 57.24% 27.15% 28.24% 30.26% 29.09% 26.10% 22.95%

LLaMA3.1-8B 54.74% 71.82% 33.84% 28.75% 24.88% 29.00% 32.30% 22.95%

AccPMI

Mistral-7B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%
Gemma-7B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%

LLaMA3.1-8B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%

AccANPMI

Mistral-7B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%
Gemma-7B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%

LLaMA3.1-8B 25.04% 49.51% 25.08% 22.70% 20.28% 25.93% 0.00% 22.95%

Table 4: Zero-shot model performance measured with various metrics. Bold numbers represent the best performance
for each model and each benchmark.

Metric Model Hellaswag PiQA ARC-e ARC-c LogiQA RACE SciQ MMLU

Acc
Mistral-7B 64.73% 81.56% 84.30% 57.51% 32.72% 46.70% 96.30% 59.72%
Gemma-7B 55.97% 76.61% 75.72% 47.53% 24.88% 41.34% 95.40% 50.27%

LLaMA3.1-8B 59.05% 80.09% 81.78% 51.28% 31.64% 44.31% 96.60% 67.70%

AccNorm

Mistral-7B 82.91% 82.64% 82.87% 58.79% 33.79% 47.27% 94.50% 59.72%
Gemma-7B 73.10% 77.91% 72.69% 48.81% 29.19% 43.92% 91.80% 50.27%

LLaMA3.1-8B 79.25% 81.01% 79.55% 54.95% 31.95% 46.70% 96.10% 67.70%

AccPMI

Mistral-7B 69.44% 73.56% 80.51% 62.54% 32.10% 47.46% 96.00% 60.00%
Gemma-7B 54.15% 66.76% 61.20% 46.67% 30.41% 40.29% 84.50% 50.40%

LLaMA3.1-8B 62.33% 68.61% 68.14% 55.38% 33.64% 44.69% 92.20% 66.32%

AccANPMI

Mistral-7B 77.67% 77.58% 85.90% 63.99% 34.10% 51.20% 96.90% 59.91%
Gemma-7B 57.77% 76.55% 75.34% 47.78% 25.81% 42.11% 95.50% 50.41%

LLaMA3.1-8B 73.73% 77.69% 80.98% 57.85% 34.25% 48.13% 97.40% 67.79%

6 Experiments444

In this section, we evaluate the performance of445

the models using ANPMI, while comparing it446

with the existing metrics. Specifically, we con-447

duct experiments using instruction-tuned language448

models, such as Mistral-7B(version 0.3) (Jiang449

et al., 2024), Gemma-7B (Team et al., 2024),450

and LLaMA3.1-8B (Dubey et al., 2024), along451

with seven widely used multiple-choice bench-452

marks (Zellers et al., 2019; Bisk et al., 2020; Clark453

et al., 2018; Hendrycks et al., 2020; Welbl et al.,454

2017; Liu et al., 2021; Lai et al., 2017). We aim455

to highlight the differences between ANPMI and456

other popular existing metrics, demonstrating both457

their benefits and limitations through empirical458

analysis. The model performance is denoted as459

Acc, AccNorm, AccPMI, and AccANPMI when mea-460

sured using P (Choice|Prompt), length-normalized461

P (Choice|Prompt), PMI, and ANPMI. Random462

represents the baseline performance, reflecting the463

probability of selecting the correct label between464

labels 0, 1, 2, and 3 by chance, based solely on465

the label distribution. We exclude NPMI because466

it is not standard, and it is impossible to compute 467

P (Choice, Prompt) if Prompt+Choice is larger than 468

the maximum sequence length. 469

6.1 Performance When No Prompt Provided 470

To verify that ANPMI can evaluate performance 471

independently of the differences in P (Choice), we 472

measure the language model performance on the 473

various benchmarks without providing prompts. 474

The results of these evaluations are summarized 475

in Table 3. 476

For MMLU, we observe identical performance 477

across all models, regardless of the metric used. 478

This is because the same four choices — A, B, C, 479

and D — are given throughout examples. How- 480

ever, for other datasets, such as Hellaswag and 481

ARC, which have a set of different answer choices 482

for each example, model performance varies when 483

evaluated using Acc or AccNorm. For each bench- 484

mark, we observe a difference of up to 30% in per- 485

formance between models when evaluated using 486

these metrics. Section 3.1 demonstrates that varia- 487

tions in P (Choice) significantly influence a model’s 488
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Table 5: The proportion of choices selected in the
MMLU task based on PMI and ANPMI metrics for
the LLaMA3.1-8B model.

Choices
A B C D

log(P (Choice)) -9.14 -10.08 -10.27 -9.95
PMI 12.36% 31.65% 33.31% 22.69%

ANPMI 18.01% 30.10% 29.66% 23.23%

final decisions. Thus, these performance differ-489

ences observed without prompts, which highlight490

the impact of prior probabilities, may complicate491

accurately ranking models. Moreover, the mea-492

sured performance for Hellaswag, PiQA, and ARC-493

easy is significantly higher than that of random494

guessing. This indicates that when using Acc or495

AccNorm, models may achieve high scores on these496

benchmarks without understanding the prompts,497

complicating the evaluation of their language com-498

prehension capability.499

In contrast, PMI and ANPMI have identical500

performance across all models when prompts501

are absent. These metrics always assign a zero502

value when prompts are not provided, resulting in503

consistent performance measurements by always504

choosing the same choice. Consequently, PMI505

and ANPMI effectively eliminate the influence of506

P (Choice) on performance, making them reliable507

metrics for accurately assessing a model’s under-508

standing of prompts to answer questions.509

6.2 Comparison of the Metrics510

The results of evaluating the model performance511

using various metrics are summarized in Table 4.512

The experiments are conducted using the Language513

Model Evaluation Harness (Gao et al., 2024) under514

a zero-shot setting.515

Benchmarks where the final decision of the516

model depends heavily on P (Choice) show a larger517

performance gap when measured using metrics518

other than P (Choice|Prompt). For instance, when519

evaluating HellaSwag using LLaMA3.1-8B, about520

65% of decisions are influenced by the differ-521

ences in P (Choice) as seen in Table 1, resulting522

in a 14.68% performance gap between Acc and523

AccANMPI. Conversely, in MMLU, where only524

13% to 16% of decisions of each model depend525

on the P (Choice) difference according to Table 1,526

the maximum performance discrepancy is merely527

up to 0.19% comparing Acc and AccANPMI.528

The difference between Length-normalized529

logP (Choice|Prompt) and ANPMI can be observed530

on MMLU. Since all choices in MMLU have the 531

same length in bytes (1 byte), AccNorm is identical 532

to Acc, with no performance change occurring due 533

to length normalization. In contrast, ANPMI the- 534

oretically addresses the impact of the imbalance 535

in P (Choice) on model performance measurement. 536

As a result, differences between Acc and AccANPMI 537

are consistently observed across all models. 538

The difference in model performance measured 539

by PMI and ANPMI is caused by the fact that 540

PMI does not perform any normalization. Table 5 541

shows how the lack of normalization affects the 542

model’s final choices in MMLU. PMI tends to 543

assign smaller maximum values to choices with 544

higher logP (Choice), making the model less likely 545

to select options with large P (Choice) values. As 546

demonstrated in Table 5, under PMI, choice A 547

(A has the highest logP (Choice)) is the least fre- 548

quently chosen, whereas choice C (C has the low- 549

est logP (Choice)) is the most frequently chosen. In 550

contrast, this tendency is less evident when using 551

ANPMI. 552

The experimental results indicate that when 553

model performance is evaluated using a metric that 554

fails to account for the P (Choice) imbalance, the 555

model’s performance does not accurately reflect its 556

natural language understanding capability. As a 557

result, ANPMI, which theoretically addresses the 558

P (Choice) imbalance, is identified as the most ap- 559

propriate metric for assessing a language model’s 560

natural language understanding capability. 561

7 Conclusion 562

This paper introduces ANPMI, a novel metric for 563

assessing natural language understanding in lan- 564

guage models for multiple-choice tasks. It ensures 565

that the model performance reflects the true com- 566

prehension capability of the model rather than un- 567

related choice preferences. ANPMI is defined by 568

normalizing PMI with − logP (Choice). All choices 569

yield an identical score without a prompt under 570

ANPMI, requiring the model to understand the 571

prompt to solve the task. Unlike PMI, ANPMI 572

maintains the same maximum and minimum values 573

across all choices, eliminating bias towards any spe- 574

cific choice and focusing solely on the relationship 575

between the prompt and choices. Through evalu- 576

ations using diverse language models and bench- 577

marks, we demonstrate that ANPMI effectively 578

addresses the issue of inaccurate performance mea- 579

surement caused by imbalances in P (Choice). 580
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Limitations581

While some benchmarks for evaluating language582

model performance, such as HumanEval (Chen583

et al., 2021) and IFEval (Zhou et al., 2023), are not584

in multiple-choice format, this study focuses exclu-585

sively on multiple-choice benchmarks. Addition-586

ally, although the structure of prompts used in eval-587

uations significantly impacts model performance,588

our analysis is limited to the effects of choice con-589

struction. In the future, we plan to address cases590

not covered in this study to ensure accurate perfor-591

mance measurement and fair comparisons across592

models.593

Ethics Statement594

Our research adheres to rigorous ethical standards595

while contributing to the advancement of NLP.596

We exclusively utilize publicly available language597

models and benchmarks in our experiments. The598

datasets employed in our study—HellaSwag (MIT),599

PiQA (AFL), ARC (CC-BY-SA 4.0), LogiQA (CC-600

BY-NC-SA 4.0), RACE (AFL), SciQ (CC-BY-NC601

3.0), and MMLU (MIT)—are all permitted for aca-602

demic use. We ensure full compliance with their re-603

spective license requirements. Furthermore, while604

our research presents evaluation results across vari-605

ous models, it contains no information that could606

harm individuals or groups.607
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A Benchmarks used in Experiments768

In this paper, we perform experiments using seven769

multiple-choice benchmarks. The experiments770

are conducted with the Language Model Eval-771

uation Harness (Gao et al., 2024), and we fol-772

low the prompt and choice structures outlined by773

this library. Below, we provide detailed descrip-774

tions, evaluation templates, and examples of the775

benchmarks. Each template and example uses a776

monospaced font to indicate parts that vary be-777

tween examples.778

A.1 Hellaswag779

HellaSwag (Zellers et al., 2019) is a benchmark780

for evaluating commonsense natural language in-781

ference (NLI). The task involves selecting the most782

appropriate continuation of a given sentence. We783

use the validation set, which consists of 10,042784

examples, for our experiment.785

[Template]
Prompt: activity_label: ctx_a ctx_b
Choices: [endings1, endings2, endings3, endings4]
[Example]
Prompt: Clean and jerk: A lady walks to a
barbell. She bends down and grabs the pole.
The lady
Choices: [

swings and lands in her arms.,
pulls the barbell forward.,
pulls a rope attached to the barbell.,
stands and lifts the weight over her head.

]

A.2 PiQA786

Physical Interaction: Question Answer-787

ing(PiQA) (Bisk et al., 2020) is a benchmark to788

evaluate whether a model can answer questions789

based on physical commonsense knowledge. PiQA790

focuses on everyday situations with a preference791

for atypical solutions, and each question has two792

options. The validation set used for our evaluation793

consists of 1,838 questions.794

[Template]
Prompt: Question: goal
Answer:
Choices: [sol1, sol2]
[Example]
Prompt: Question: To fight Ivan Drago in Rocky
for sega master system.
Answer:
Choices: [

Drago isn’t in this game because it was
released before Rocky IV.,

You have to defeat Apollo Creed and
Clubber Lang first.
]

A.3 ARC 795

The AI2 Reasoning Challenge(ARC) (Clark et al., 796

2018) comprises science questions and answers 797

targeted at students from grade 3 to grade 9. It is di- 798

vided into two difficulty levels: easy and challenge. 799

For model evaluation, we use the test sets for both 800

difficulty levels. The ARC-Easy test set includes 801

2,376 questions, while the ARC-Challenge test set 802

contains 1,172 questions. 803

[Template]
Prompt: Question: question
Answer:
Choices: [choices1, choices2, choices3, choices4]
[Example]
Prompt: Question: Which piece of safety
equipment is used to keep mold spores from
entering the respiratory system?
Answer:
Choices: [ safety goggles, breathing mask, rubber
gloves, lead apron]

A.4 LogiQA 804

Logical Reasoning Question Answer- 805

ing(LogiQA) (Liu et al., 2021) is a benchmark 806

designed to assess a model’s logical reasoning 807

abilities. It consists of expert-written questions that 808

cover multiple types of deductive reasoning. In our 809

experiments, we use a test set of 651 problems. 810

[Template]
Prompt: Passage: context
Question: question
Choices:
A: option1
B: option2
C: option3
D: option4
Answer:
Choices: [option1, option2, option3, option4]
[Example]
Prompt: Passage: There are five teams
participating in the game. The audience had
the following comments on the results? (1) The
champion is either the Shannan team or the
Jiangbei team. (2) The champion is neither
Shanbei nor Jiangnan. (3) The champion is
Jiangnan Team. (4) The champion is not the
Shannan team.
Question: The result of the match showed that
only one argument was correct, so who won the
championship?
Choices:
A. Shannan
B. Jiangnan
C. Shanbei
D. Jiangbei
Answer:
Choices: [Shannan, Jiangnan, Shanbei, Jiangbei]
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A.5 RACE811

ReAding Comprehension dataset from Examina-812

tions(RACE) (Lai et al., 2017) is an English reading813

comprehension dataset derived from China’s mid-814

dle and high school English exam questions. Each815

question comprises an article followed by several816

questions and answer choices. For our evaluation,817

the test set contains 1,045 questions. We include all818

but the final question from each set in the prompt,819

ensuring that most of the context is part of the820

model’s input.821

[Template]
Prompt: Article: article
Question: problem1
Answer: answer1
...
Question: problem_last
Choices: [option1, option2, option3, option4]
[Example]
Prompt: Article: A girl with blue eyes is a
blue-eyed girl. . . . There are sound-proof
rooms in all broadcasting stations.
Question: The clothes which you buy from the
supermarket are called _ clothes.
Answer: ready-made
. . .
What do you think is the best title for the
article?
Choices: [

The Forms of Compound Words.,
Compound Words in Everyday Life,
How to Use Compound Words.,
Water-proof Cloth in the Best.

]

A.6 SciQ822

Scientific Question Answering(SciQ) (Welbl et al.,823

2017) is a dataset of science exam questions crowd-824

sourced across domains such as Physics, Chemistry,825

and Biology. Each question includes a question,826

answer choices, and a paragraph of supporting in-827

formation to assist reasoning. For our evaluation,828

we use a test set comprising 1,000 questions.829

[Template]
Prompt: support
Question: question
Answer:
Choices: [distractor1, distractor2, distractor3,
correct_answer]
[Example]
Prompt: Tree rings, ice cores, and varves
indicate the environmental conditions at the
time they were made.
Question: Ice cores, varves and what else indicate the
environmental conditions at the time of their creation?
Answer:
Choices: [mountain ranges, fossils, magma, tree
rings]

A.7 MMLU 830

Massive Multitask Language Understand- 831

ing(MMLU) (Hendrycks et al., 2020) evaluates a 832

model’s breadth and depth of knowledge across 833

various domains. The dataset covers 57 topics, 834

including STEM, humanities, and social sciences. 835

Our experiments use the comprehensive test 836

set, which contains 14,042 questions. Each 837

multiple-choice question assesses the model’s 838

ability to integrate diverse knowledge. 839

[Template]
Prompt: question
A. choice1
B. choice2
C. choice3
D. choice4
Answer:
Choices: [A, B, C, D]
[Example]
Prompt: The following are multiple choice
questions (with answers) about astronomy.
What is the second most common element in the
solar system?
A. Iron
B. Hydrogen
C. Methane
D. Helium
Answer:
Choices: [A, B, C, D]
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