
Graphcode: Learning from multiparameter persistent
homology using graph neural networks

Michael Kerber∗
Institute of Geometry

Graz University of Technology
kerber@tugraz.at

Florian Russold∗

Institute of Geometry
Graz University of Technology

russold@tugraz.at

Abstract

We introduce graphcodes, a novel multi-scale summary of the topological properties
of a dataset that is based on the well-established theory of persistent homology.
Graphcodes handle datasets that are filtered along two real-valued scale parameters.
Such multi-parameter topological summaries are usually based on complicated
theoretical foundations and difficult to compute; in contrast, graphcodes yield
an informative and interpretable summary and can be computed as efficient as
one-parameter summaries. Moreover, a graphcode is simply an embedded graph
and can therefore be readily integrated in machine learning pipelines using graph
neural networks. We describe such a pipeline and demonstrate that graphcodes
achieve better classification accuracy than state-of-the-art approaches on various
datasets.

1 Introduction

A quote attributed to Gunnar Carlsson says "Data has shape and shape has meaning". Topological
data analysis (TDA) is concerned with studying the shape, or more precisely the topological and
geometric properties of data. One of the most prominent tools to quantify and extract topological and
geometric information from a dataset is persistent homology. The idea is to represent a dataset on
multiple scales through a nested sequence of spaces, usually simplicial complexes for computations,
and to measure how topological features like connected components, holes or voids appear and
disappear when traversing that nested sequence. This information can succinctly be represented
through a barcode, or equivalently a persistence diagram, which capture for every topological feature
its lifetime along the scale axis. Persistent homology has been successfully applied in a wealth of
application areas [14, 23, 28, 30, 31, 36], often in combination with Machine Learning methods – see
the recent survey [22] for a comprehensive overview.

A shortcoming of classical persistent homology is that it is bound to a single parameter, whereas
data often is represented along several independent scale axes (e.g., think of RGB images which
have three color channels along which the image can be considered). To get a barcode, one is
forced to chose fixed scales for all but one scale parameters. The extension to multi-parameter
persistent homology [7, 9] avoids to make such choices. Similar to the one-parameter setup, the data
is represented in a nested multi-dimensional grid of spaces and the evolution of topological features
in this grid is analyzed. Unfortunately, a succinct representation as a barcode is not possible in this
extension, which makes the theory and algorithmic treatment more involved. Nevertheless, the quest
of how to use informative summaries in multi-parameter persistence is an active field of contemporary
research. A common theme in this context is vectorization, meaning that some (partial) topological
information is extracted from the dataset and transformed into a high-dimensional vector suitable for
machine learning pipelines.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Persistent

Homology

Persistent

Homology

Persistent

Homology

Induced homology map

Induced homology map

Induced homology map

Figure 1: Schematic overview of our approach.

Contribution. We introduce graphcodes, a novel representation of the homology of a dataset that
is filtered along two scale parameters. The idea, depicted in Figure 1, is to consider one-parameter
slices of the dataset by fixing one parameter, obtaining a stack of persistence diagrams. We define a
map between two consecutive diagrams in this stack, resulting in a bipartite graph connecting these
diagrams. The graphcode is the union of these bipartite graphs over all consecutive pairs.

Since the maps connecting diagrams depend on a choice of basis for each persistence diagram, the
graphcode is not a topological invariant. Nevertheless, the graphcode is a combinatorial description
whose features are easy to interpret and which permits, for fixed bases per diagram, a complete
reconstruction of the persistence module induced by the bifiltration. Moreover, the structure as an
(embedded) graph in R3 admits a direct integration of graphcodes into machine learning pipelines
via graph neural network architectures. In that way, graphcodes avoid the vectorization step of
other homology-enhanced learning pipelines which often require more parameter choices and are
sometimes slow in practice. In contrast, we describe an efficient algorithm to compute the graphcode
of a bifiltered simplicial complex which essentially computes all required information through a single
out-of-order matrix reduction of the boundary matrix of the entire complex. While the worst-case
complexity is cubic, the practical performance is closer to linear for realistic datasets [5, 29].

We demonstrate how graphcodes facilitate classification tasks. For that, we implemented a machine
learning pipeline that feeds the graphcodes into a simple graph neural network pipeline. On graph
datasets used in related works on multi-parameter persistent learning, our approach shows a compara-
ble classification quality. As a proof of concept, we also created a synthesized dataset of point clouds
in R2 that contain a number of densely sampled disks and annuli plus some uniform noise. Clearly,
topological classifiers are well-suited for such data. In our experiments, graphcodes outperform
related methods on this type of data in terms of accuracy. At the same time, graphcodes are faster
computed than all alternative topological descriptors, sometimes by several orders of magnitude.
We also demonstrate that graphcodes perform better than other topological methods on two further
datasets, established in related work on TDA, which consist of samples from different random point
processes and orbits generated by a dynamical system, respectively.

Related work. Our method can be viewed as a generalization of PersLay [11] to the two-parameter
case. PersLay is a neural network layer that enables vectorization-free learning from one-parameter
persistent homology. It uses a deep set [37] architecture to directly take persistence diagrams as
input. A conceptually simpler generalization of PersLay would consist of only using the union of
persistence diagrams of the one-parameter slices, that is, the graphcode without connecting edges.
We show in our experiments, however, that the edges improve the accuracy in the two-parameter case.

Most of the previous methods used in applications are based on transforming persistence diagrams
into vectors in Euclidian space, or other data structures suitable for machine learning. Examples are

2

persistence landscapes [8], persistence images [1], or scale-space kernels [32]. These vectorization
methods for one-parameter persistence modules have been generalized in various forms to the two-
parameter case [10, 16, 18, 26, 35]. The difference in the two-parameter case is that the vectorizations
are not based on a complete invariant like the persistence diagram but on weaker invariants like
the rank-invariant, generalized rank-invariant or the signed barcode. Hence, these vectorizations
capture the persistent homology only partially. Moreover, even this partial information is often
times computationally expensive. In contrast, our method avoids to compute a direct vectorization,
although we point out that a vectorization is implicitly computed eventually within the graph neural
network architecture. To our knowledge there exists no other method that allows to feed a complete
representation of two-parameter persistent homology into a machine learning pipeline.

Our approach also resembles persistent vineyards [17] in the sense that a two-parameter process is
considered as a dynamic 1-parameter process and the evolution of persistence diagrams is analyzed.
Indeed, vineyards produce a layered graph of persistence diagrams just as graphcodes (see Fig VIII.6
in [19]), but they operate in a different setting where the simplicial complex is fixed throughout the
process and only the order of simplices changes, whereas graphcodes rely on bifiltered simplicial
complex data that only increases along both axis. Most standard constructions of multi-parameter
persistence yield such a bifiltered complex and graphcodes are more applicable in this situation.

Generating bifiltered simplicial complexes out of point cloud data is computationally expensive and
an active area of research. In the context of the aforementioned two-dimensional point clouds that we
analyze with graphcodes, we heavily rely on sublevel Delaunay bifiltrations which were introduced
very recently by Alonso et al. [2]. That algorithm (and its implementation) render the two-parameter
analysis of such point clouds possible in machine learning contexts, partially explaining why previous
methods have only tested their approaches on very small point cloud data, if at all.

Outline. We review basic notions of persistent homology in Section 2 and define graphcodes in
Section 3 based on these definitions. We decided for a “down-to-earth” approach, defining graphcodes
in terms of cycle bases in simplicial complexes to keep concepts concrete and relatable to geometric
constructions for the benefit of readers that are not too familiar with the algebraic foundations of
persistent homology. Moreover, this treatment simplifies the algorithmic description to compute
graphcodes in Section 4. We explain the machine learning architecture based on graphcodes in
Section 5 and report on our experimental results in Section 6. We conclude in Section 7.

2 Persistent homology

We will use the following standard notions from simplicial homology. For readers not familar with
these concepts, we provide a summary in Appendix A. For a more in-depth treatment see, for instance,
the textbook by Edelsbrunner and Harer [19].

For an (abstract) simplicial complex K and p ≥ 0 an integer, let Cp(K) denote its p-th chain group
with Z2 coefficients (which is, in fact, a vector space) and ∂p : Cp(K) → Cp−1(K) the boundary
map (see also Figure 2 (left)). Let Zp(K) be the kernel of ∂p. Elements of Zp(K) are called p-cycles.
Bp(K) is the image of ∂p+1, and its elements are called p-boundaries. The quotient Zp(K)/Bp(K)
is called the p-th homology group Hp(K), whose elements are denoted by [α]K with α a p-cycle, or
just [α] if the underlying complex is clear from context. See Figure 2 (right) for an illustration of
these concepts.

We call a basis (z1, . . . , zm) of Zp(K) (boundary-)consistent if there exists some ℓ ≥ 0 such that
(z1, . . . , zℓ) is a basis of Bp(K). In this case, [zℓ+1], . . . , [zm] is a basis of Hp(K). A consistent
basis can be obtained by first determining a basis of Bp(K) and completing it to a basis of Zp(K).
Clearly, Zp(K) usually has many consistent bases.

Homology maps. Let L ⊆ K be a subcomplex. The inclusion map from L to K maps p-cycles
of L to p-cycles of K and p-boundaries of L to p-boundaries of K. It follows that for every p, the
map i∗ : Hp(L) → Hp(K), [α]L 7→ [α]K is a well-defined map between homology groups. This
map is a major object of study in topological data analysis, as it contains the information how the
topological features (i.e., the homology classes) evolve when we embed them on a larger scale (i.e., a
larger complex).

3

F

G

H

A

B

C

D
E

Figure 2: Left: A simplicial complex with 11 0-simplices, 19 1-simplices and 7 2-simplices. A
2-chain consisting of three 2-simplices is marked with darker color, and its boundary, a collection of
7 1-simplices is displayed in thick.
Right: The 1-cycle marked in thick on the left is also a 1-boundary, since it is the image of the
boundary operator under the 4 marked 2-simplices. On the right, the 1-cycle α going along the
path ABCDE is not a 1-boundary; therefore it is a generator of an homology class [α] of H1(K).
Likewise, the 1-cycle α′ going alongABCFGH is not a 1-boundary neither. Furthermore, [α′] = [α]
since the sum α+α′ is the 1-cycle given by the pathAEDCFGH , which is a 1-boundary because of
the 5 marked 2-simplices. Hence, α and α′ represent the same homology class which is characterized
by looping aroung the same hole in K.

Being a linear map, i∗ can be represented as a matrix with Z2-coefficients. It is instructive to think
about how to create this matrix: Assuming having fixed consistent bases AL for Zp(L) and AK for
Zp(K) and considering a basis element [α]L ofHp(L), we write the p-cycle α as a linear combination
with respect to the basis AK . We can ignore summands that correspond to basis elements of Bp(K),
and the remaining entries yield the image of [α]L in Hp(K), and thus one column of the matrix of i∗.

Alternatively, i∗ takes a diagonal form when picking suitable consistent bases AL and AK . We can
do that as follows: We start with a basis A′ of Zp(L) ∩Bp(K), the set of p-cycles in L that become
“trivial” when included in K. This subspace contains Bp(L) and we can choose A′ such that it starts
with a basis of Bp(L), followed by other vectors. Now we extend A′ to a basis AL of Zp(L) which
is consistent by the choice of A′. Since Zp(L) is a subspace of Zp(K), we can extend AL to a basis
AK of Zp(K). Importantly, we can do so such that AK is consistent, because the sub-basis A′ maps
to Bp(K) and AL \A′ does not, so we can first extend A′ to a basis of Bp(K), ensuring consistency,
and then extend to a full bais of Zp(K). In this way, considering a homology class [α] with α a basis
element of AL, α is also a basis element of AK , and the map i∗ indeed takes diagonal form.

Filtrations and barcodes. A filtration of a simplicial complex K is a nested sequence
K1 K2 · · · Kn = K of subcomplexes of K. Applying homology, we obtain

vector spaces Hp(Ki) and linear maps Hp(Ki) → Hp(Kj) whenever i ≤ j. This data is called a
persistence module. For simplicity, we assume that Hp(K) is the trivial vector space, implying that
all p-cycles eventually become p-boundaries.

It is possible to iterate the above construction for a single inclusion to obtain consistent bases Ai for
Zp(Ki) such that all maps Hp(Ki)→ Hp(Kj) have diagonal form. Equivalently, there is one basis
of Zp(K) that contains consistent bases for all subcomplexes K1, . . . ,Kn. To make this precise, we
first observe that for every α ∈ Zp(K), there is a minimal i such that α ∈ Zp(Kℓ) for all ℓ ≥ i. This
is called the birth index of α. Moreover, there is a minimal j such that α ∈ Bp(Kℓ) for all ℓ ≥ j.
This is called the death index of α. By our simplifying assumptions that Hp(K) is trivial, every α
indeed has a well-defined finite death index. The half-open interval [i, j) consisting of birth and death
index is called the bar of α. We say that α is already born at index ℓ if its birth index is at most ℓ.
We call α alive at ℓ if alpha is already born at ℓ and ℓ is strictly smaller than the death index of α;
otherwise we call it dead at ℓ.
Definition 2.1. For a filtration of K as above, a barcode basis is a basis A of Zp(K) where each
basis element is attached its bar such that the following property holds: For every i, the elements of
A dead at i form a basis of Bp(Ki), and the elements of A already born at i form a basis of Zp(Ki).
In particular, these cycles form a consistent basis of Zp(Ki).

See Figure 3 (left) for an illustration. The collection of bars of a barcode basis is called the barcode
of K. Indeed, while there is no unique barcode basis for K, they all give rise to the same barcode.

4

a

d b

c

a

d b

c

a

d b

c

a

d b

c

a

d b

c

a

d b

c

a

d b

c

a

d b

c

L0 L1 L2 L3

K0 K1 K2 K3

L

K

+
[1,3)

[0,2)

[1,3)

Figure 3: Left, lower row: Z1(L) is generated by the cycles abcd and abd. They form a barcode
basis, with attached bars [1, 3) and [2, 2), respectively. Note that also abd and bcd form a basis of
Z1(L), but that is not a barcode basis as none of these cycles is already born at L1, so they do not
induce a basis of Z1(L1). Left, upper row: Here, abd and bcd form a barcode basis with attached
bars [0, 2) and [1, 3), respectively, and abd and abcd as well (with identical barcode).
Right: Choosing the basis abcd, abd for Z1(L) and abd and bcd for Z1(K), we have abcd =
abd + bcd, hence the cycle abcd has two outgoing edges, to both basis elements in K. We ignore
the basis vector abd of L in the figure, since its birth and death index coincide, so the corresponding
feature has persistence zero.

This barcode (or the equivalent persistence diagram, where a bar [i, j) is interpreted as a point (i, j)
in the plane) yields a topological summary of the filtration, revealing what topological features are
active on which ranges of scale. Therefore, barcodes are a suitable (discrete) proxy for a dataset and
are heavily used in applications.

The concept of a barcode basis enhances the barcode with a consistent choice of representative cycle
for every bar. In practice, this extra information is obtained with no additional computation costs
because the standard algorithm to compute barcodes computes a barcode basis as a by-product.

3 Graphcodes

We now consider the case of two filtered complexes L, K such that Li ⊆ Ki for all i:

K1 K2 · · · Kn = K

L1 L2 · · · Ln = L

(1)

Assume we have fixed barcode bases AL for Zp(L) and AK for Zp(K). The inclusion L ⊆ K
induces a linear map ϕ : Zp(L) → Zp(K), mapping each element of AL to a linear combination
of AK with Z2-coefficients, or equivalently, to a subset of AK . The map ϕ can be represented as a
bipartite graph over AL ⊔AK . By furthermore replacing elements of AL and AK with their attached
bars, we can interpret this graph as a graph between barcodes, which we call the graphcode of (1).
See Figure 3 (right) for an illustration. We emphasize that the graphcode depends on the chosen
barcode bases for L and K, thus the graphcode is not unique, and not a topological invariant.

The bases AL and AK together with their graphcode are sufficient to recover the homology maps
ϕi : Hp(Li)→ Hp(Ki), induced by the inclusion Li ⊆ Ki: Since a basis of Zp(Li) is contained in
AL, ϕ restricts to a map Zp(Li) → Zp(Ki), and it is not hard to see that this map equals the map
induced by the inclusion Zp(Li) → Zp(Ki). Moreover, the basis of Zp(Li) within AL is simply
determined by those elements in AL that are already born at i, by definition of the barcode basis.
Within this basis, the homology class represented by cycles alive at i form a basis of Hp(Li). The
image of these classes under ϕ yields a linear combination of cycles in Zp(Ki) which are all already
born, and removing the summands corresponding to dead cycles yields the image of ϕ in Hp(Ki).

5

Bifiltrations. Assume our data is now a bifiltered simplicial complex written as

Km,1 Km,2 · · · Km,n = K

· · · · · · · · · · · ·

K2,1 K2,2 · · · K2,n

K1,1 K1,2 · · · K1,n.

(2)

Such a structure often times appears in applications where a dataset is analyzed through two dif-
ferent scales. An example is hierarchical clustering where the points are additionally filtered by an
independent importance value.

We can iterate the idea from the last paragraph to a bifiltration in a straight-forward manner: Let Ai
be a barcode basis for the horizontal filtration Ki,1 Ki,2 · · · Ki,n = Ki. With that

bases fixed, there is a graphcode between the i-th and (i+ 1)-th horizonal filtration, and we define
the union of these graphs as the graphcode of the bifiltration. The vertices of the graphcode are bars
of the form [b, d) that are attached to a basis Ai, and we can naturally draw the graphcode in R3 by
mapping the vertex to (b, d, i). This yields a layered graph in R3 with respect to the 3rd coordinate
with edges only occurring between two consecutive layers. As discussed in Appendix D, graphcodes
can be defined for arbitary two-parameter persistence modules. They can also be defined for arbitrary
fields, in which case we obtain a graph that has not only node but also edge attributes.

4 Computation

The vertices and edges of a graphcode in homology dimension p can be computed efficiently in
O(n3) time where n is the total number of simplices of dimension p or p + 1. We expose the full
algorithm in Appendix B in a self-contained way and only sketch the main ideas here for brevity.

First of all, it can be readily observed that the standard algorithm to compute persistence diagrams
via matrix reduction yields a barcode basis in O(n3) time (see [19]). Doing so for every horizontal
slice in (2) yields the vertices of the graphcode, and computing the edges between two consecutive
slices can be reduced to solving a linear system via matrix reduction as well, resulting in O(n3) time
as well for any two consecutive slices. This is not optimal though as it results in a total running time
of O(sn3) with s the number of horizontal slices.

To reduce further to cubic time, we perform an out-of-order matrix reduction, where the (p + 1)-
simplices are sorted with respect to their horizontal filtration value, but are added to the boundary
matrix in the order of their vertical value. This reduction process, which still results in cubic runtime,
yields a sequence of n snapshots of reduced matrices that correspond to the barcode basis on every
horizontal slice, and thus yields all vertices of the graphcode. The final observation is that with
additional book-keeping when going from one snapshot to the next, we can track how the basis
elements transform from one horizontal slice to the next and these changes encode which edges are
present in the graphcode.

Finally, the practical performance can be further improved by reducing the size of the graphcode, by
keeping s small, by ignoring bars whose persistence is below a certain threshold, and by precomputing
a minimal presentation instead of working with the simplicial input. See Appendix B for details.

5 Learning from graphcodes using graph neural networks

We describe our pipeline that exemplifies how graphcodes can be used in combination with graph
neural networks (GNN’s). The inputs are layered graphs with vertex attributes [(b, d), i], with [b, d) a
bar of the barcode at the i-th layer. We can add further meaningful attributes like the additive d− b
and/or multiplicative d

b persistence to the nodes to suggest the GNN that these might be important.
Any graph neural network architecture can be used to learn from these topological summaries. We
propose the architecture depicted in Figure 4. It starts with a sequence of graph attention (GAT) layers

6

Figure 4: Neural network architecture for graphcodes.

[34] taking the graphcodes as input. The idea is that the network should learn to pay more attention
to adjacent features with high persistence which are commonly interpreted as the topological signal.
These layers are followed by a local max-pooling layer that performs max-pooling over all vertices in
a common slice. Then we concatenate the vectors obtained from the local max-pooling over all slices
and feed the resulting vector into a standard feed-forward neural network (Dense Layers).

If we remove all the edges from the graphcodes, this model can be viewed as a combination of
multiple Perslay architectures [11], one for each slice of the bifiltration. In such a case, the model
would implicitly learn for each barcode individually which bars are important for classification.
Adding the edges, in turn, enhances this model as propagation between neighboring layers is possible:
a bar that is connected to important bars in adjacent layers is more likely to be significant itself.

We also point out that the separate pooling by slices is crucial in our approach. It takes advantage
of the additional information provided by the position of a slice in the graphcode. If we simply
embed the entire graphcode in the plane by superimposing all persistence diagrams and do one global
pooling, the outcome gets significantly worse.

6 Experiments

We have implemented the computation of graphcodes in a dedicated C++ library and the machine
learning pipeline in Python. All the code for our experiments is available in the supplementary
materials. The experiments were performed on an Ubuntu 23.04 workstation with NVIDIA GeForce
RTX 3060 GPU and Intel Core i5-6600K CPU.

Graph datasets. We perform a series of experiments on graph classification, using a sample of
TUDatasets, a collection of graph instances [27]. Following the approach in [10], we produce
a bifiltration of graphs using the Heat Kernel Signature-Ricci Curvature bifiltration. From these
bifiltrations, we compute the graphcodes (GC) and train a graph neural network as described in
Section 5 to classify them. More details on these experiments can be found in Appendix C.1 and
the supplementary materials. We compare the accuracy with multi-parameter persistence images
(MP-I) [10], multi-parameter persistence kernels (MP-K) [18], multi-parameter persistence land-
sacapes (MP-L) [35], generalized rank invariant landscapes (GRIL) [16] and multi-parameter Hilbert
signed measure convolutions (MP-HSM-C) [26]. All these approaches produce a vector and use
XGBoost [15] to train a classifier.

The results in Table 1 indicate that graphcodes are competitive on most of these datasets in terms of
accuracy. In terms of runtime performance, the instances are rather small and all approaches terminate
within a few seconds (with the exception of GRIL that took longer). Also, while the numbers in
Table 1 for the previous approaches are taken from [26], we have partially rerun the classification
using convolutional neural networks instead of XGBoost. Since the results were comparable, we
decided to use the numbers from the previous work.

Graphcodes do not outperform other methods on these datasets but one can observe that there is no
descriptor that consistently outperforms the other descriptors. We also observe that the performance
of a certain descriptor on a certain dataset seems a little bit arbitrary. For example, (MP-HSM-C)
has arguably the best overall performance but has the worst performance on COX2. A possible
explanation could be that there is not enough topological signal in these datasets. This might be
unfavorable for graphcodes as they capture more information at the cost of invariance. We also note
that the different formats of the topological descriptors require different classifiers and make a direct
comparison of the results difficult. This test was included primarily because it is the standard test in
related work. Still, it seems unclear that topological descriptors are well suited for these datasets as,
for example, on the PROTEINS dataset GNN-architectures reach up to 85% accuracy [38].

7

Table 1: Graph classification results. The table shows average test set prediction accuracy in %. The
numbers in all columns except the last one are taken from Table 3 in [26].

Dataset MP-I MP-K MP-L GRIL MP-HSM-C GC

PROTEINS 67.3±3.5 67.5±3.1 65.8±3.3 70.9±3.1 74.6±2.1 73.6±2.6
DHFR 80.2±2.2 81.7±1.9 79.5±2.3 77.6±2.5 81.9±2.5 76.4±3.9
COX2 77.9±2.7 79.9±1.8 79.0±3.3 79.8±2.9 77.1±3.0 78.7±4.9

MUTAG 85.6±7.3 86.1±5.2 84.0±6.8 87.8±4.2 85.6±5.3 86.4±6.1
IMBD-BINARY 71.1±2.1 68.2±1.2 71.2±2.0 65.2±2.6 74.8±2.5 65.4±2.7

Table 2: Average test set prediction accuracy in % over 20 train/test runs with random 80/20 train/test
split on the point cloud dataset and computation time in seconds of the topological descriptors. We
note that GRIL could only be computed with low resolution.

MP-I MP-L P-I GRIL MP-HSM-C GC GC-NE

Accuracy 64.1±4.7 37.2±1.5 43.6±2.2 74.9±2.7 57.0±2.3 86.9±1.4 82.8±1.9
Time 9176 3519 1090 333187 282 95 –

Shape dataset. To demonstrate that graphcodes are powerful topological descriptors, we ap-
ply them on a synthetic shape dataset with a strong topological signal. We construct 5 classes
of shapes c0, . . . , c4 as follows: Class ci consists of i annuli and 5 − i disks in the plane. The
centers and radii are sampled uniformly such that the shapes do not overlap. This implies that
the homology of class ci in degree one has rank i. Now we uniformly sample points from
these shapes and add uniform noise. The Figure on the left shows an example of class c3.

We generate 1000 random shape configurations and point sam-
ples per class to obtain a dataset of 5000 point clouds. The point
clouds are labeled with the homology of the underlying shape
configuration. The goal is to classify the point clouds according
to their homology in degree one. To filter the homology signal
from the noise, we first compute a local density estimate at each
point in a point cloud and compute the Delaunay-bifiltration [2]
with respect to relative density scores. This yields a dataset of
5000 labeled bifiltrations. From these bifiltrations, we compute

the graphcodes as well as the topological descriptors for the same related approaches as for the graph
case. Additionally we also compute one-parameter persistence images (P-I) based on a one-parameter
alpha filtration.

The time to compute these topological descriptors is reported in Table 2. Graphcode is faster than
every other method, in some cases by orders of magnitude. On the other hand, training graph neural
networks is more time-consuming than for convolutional neural networks, and thus graphcodes
require more time in the subsequent training phase. In our experiments, the training took around 9
minutes for graphcodes and around 1 minute for other methods.

We now split the various datasets of topological descriptors and class labels 80/20 into a training
set and a test set without labels, train neural networks on the training sets and test their ability to
make predictions on the test sets. Further details on these experiments can be found in Appendix
C.2 and the supplementary materials. The results in Table 2 show that on this inherently topological
classification task, graphcodes outperform every other method by a significant margin. To demonstrate
that the graphcode edges that connect consecutive layers add significant information, we run the
same experiment on graphcodes with edges removed (GC-NE). The results show even without edges,
graphcodes yield a better accuracy compared to related approaches, but also that the edge information
further improves accuracy.

Random point process dataset. The following is a variation of an experiment proposed in [6]:
they consider 4 types of random point processes, namely a Poisson, Matérn, Strauss and Baddeley-
Silverman process, and try to discriminate the Poisson null model from the other processes using a
hypothesis test based on multiparameter persistent Betti numbers. The latter 3 processes are prototyp-
ical models for attractive behaviour, repulsive behaviour and complex interactions, respectively. We
instead use multiparameter topological descriptors and neural networks to classify these processes.

8

Table 3: Average test set prediction accuracy in % over 20 train/test runs with random 80/20 train/test
split on the point-process dataset.

Dataset MP-I MP-L P-I GRIL MP-HSM-C GC GC-NE

Processes 66.0±2.5 50.2±3.0 35.5±10.4 61.1±1.6 70.7±4.9 83.4±2.5 83.1±3.7

Table 4: Orbit classification results. The table shows average test set prediction accuracy in %. The
numbers in all columns except the last two are taken from Table 1 in [11].

Dataset PSS-K PWG-K SW-K PF-K PersLAY GC GC-NE

Orbit5k 72.4±2.4 76.6±0.7 83.6±0.9 85.9±0.8 87.7±1.0 88.5±1.1 88.4±1.5
Orbit100k - - - - 89.2±0.3 92.3±0.3 91.5±0.3

We create a dataset Processes consisting of 4 classes, each of which consisting of 1000 point clouds
sampled from the above processes and use the topological descriptors and neural networks, discussed
for the shape dataset above, for the classification. More details can be found in C.3. The results
reported in Table 3 show again that graphcodes outperform other topological descriptors. They also
show that for these random point processes the influence of the edges of the graphcodes is much
smaller than for the shape dataset. This is expected since prominent persistent features along the
density direction are very unlikely in random point processes.

Orbit dataset. Finally we test our pipeline on another dataset which has been established in
topological data analysis as a benchmark in the one-parameter setting. The purpose of this experiment
is twofold: On the one hand it demonstrates that grapohcodes can be applied to very big datasets. On
the other hand it compares the two-parameter graphcode pipeline to its one-parameter analog PersLay
[11]. The dataset consists of orbits generated by a dynamical system defined by the following rule:{

xn+1 = xn + ryn(1− yn) mod 1

yn+1 = yn + rxn+1(1− xn+1) mod 1
(3)

where the starting point (x0, y0) is sampled uniformly in [0, 1]2. The behaviour of this dynamical
system heavily depends on the parameter r > 0. Following [11], we create two datasets consisting of
5 classes of orbits of 1000 points generated by this dynamical system, where the 5 classes correspond
to the following five choices of the parameter r = 2.5, 3.5, 4.0, 4.1 and 4.3. The datasets Orbit5k
and Orbit100k consist of 1000 and 20000 orbits per class, respectively. We again use our graphcode
pipeline, discussed for the shape dataset, to classify them. The computation of the graphcodes of the
100000 point clouds took just 27 minutes demonstrating the efficiency of our algorithm. The results
are reported in Table 4 where we compare them to the results achieved by Persistence Scale Space
Kernel (PSS-K) [32], Persistence Weighted Gaussian Kernel (PWG-K) [24], Sliced Wasserstein
Kernel (SW-K) [12], Persistence Fisher Kernel (PF-K) [25] and (PersLAY) [11] as reported in Table
1 of [11]. The results demonstrate that graphcodes perform better than the one-parameter methods
and underpin our conjecture that the performance of the graphcode-GNN pipeline relative to other
methods gets better as the size of the dataset increases. More details can be found in C.4.

Graphcodes with different bases. The edges of the graphcode of a two-parameter persistence
module depend on a choice of bases. So far, in all experiments, we used graphcodes with bases
produced by our graphcode-algorithm which is based on the standard reduction algorithm. We
next discuss the performance of graphcodes on the shape classification task introduced above with
respect to different choices of bases. We compute the graphcodes using the dataset from the previous
paragraph "Shape dataset". At first we construct a graphcode dataset (GC-ER) using an exhaustive
column reduction [4] instead of the standard reduction. Next we construct a graphcode dataset
(GC-RS) where we randomly shuffle the bases. This is done by performing valid column additions
on the input presentation with a 5% probability. Finally, we produce a graphcode dataset (GC-BC)
containing 20 graphcodes constructed with random base shuffles for each input instance.

We observe that the bases chosen by the standard reduction and exhaustive reduction algorithm are
far from random. The input presentation arising from a simplicial bifiltration is usually sparse. We
find that this initial sparseness is preserved by the standard and exhaustive reduction algorithm in the
sense that both lead to sparse graphcodes. If we do random base changes in the input presentation we
reduce the sparseness of the input which also leads to a loss of sparseness in the output graphcodes.

9

Table 5: Average test set prediction accuracy in % over 20 train/test runs of Graphcodes with different
choices of bases on the shape dataset.

GC GC-NE GC-ER GC-RS GC-BC

100 Epochs 86.9±1.4 82.8±1.9 86.7±1.4 84.5±2.4 86.6±1.7
200 Epochs 87.1±1.6 83.7±1.0 87.0±1.4 85.0±1.7 88.1±1.2

The result is an increase in the average number of edges of the produced graphs. Average number of
edges with standard reduction: ∼ 826, exhaustive reduction: ∼ 841, random shuffle: ∼ 1977.

We train the same graph neural network as in the previous experiments on these alternative graphcode
datasets and report the results in Table 5. For the (GC-BC) dataset we modify the training process in
the following way: In the i-th epoch of the training process we use the (i mod 20)-th graphcode for
each instance. This approximates a change of basis of each graphcode after each training epoch by
picking one of 20 available bases. We find that this training procedure disproportionally benefits from
a larger number of training epochs. Therefore, we run the same experiments with twice the number
of training epochs.

The results in Table 5 show that the exhaustive reduction (GC-ER) does not significantly change
the result compared to the standard bases (GC). The random basis shuffle (GC-RS) leads to slightly
worse performance and a slight increase in variability of the results but we note that the performance
is still better than without edges (GC-NE). If we use randomly shuffled bases but provide the network
20 different bases for each instance we match, and with more training epochs, even exceed the
performance of (GC) and (GC-ER). These results indicate that changing the graphcode bases during
the training process can increase the performance.

7 Conclusion

Our shape experiment shows that current implementations of topological classifiers struggle with
simple datasets that contain a clear topological signal but also a lot of noise. A possible explanation is
that the vectorization step in these methods blurs the features too much or relies on invariants which
might be too weak for a classifier to pick up delicate details. Graphcodes, on the other hand, provide
an essentially complete description of the (persistent) topological properties of the data and delegates
finding the relevant signal to the graph neural network. As additional benefit, some vectorizations are
challenging to compute, whereas graphcodes can be computed efficiently.

The biggest drawback of graphcodes is certainly that they dependent on a choice of basis and therefore
are not uniquely defined for a given dataset. The bases chosen by the standard reduction algorithm
are special in the sense that they lead to sparse graphs. Doing random basis changes on the graphcode
dataset leads to denser graphs and a slightly worse performance on the shape classification task. But
doing multiple random basis changes during the training process and, thus, providing the neural
network different bases for the same instance, increases the performance even beyond the performance
of the sparse graphs.

A goal for future work is to combine sparse graphcodes and random basis changes during the training
process. A possible direction could be to decompose the two-parameter modules into indecomposable
summands, compute the graphcodes for the indecomposables and perform random basis changes
on the individual components during the training process. By working only with graphcodes of
decompositions we could reduce the number of possible edges.

We speculate that the combination of computational efficiency and discriminatory power will make
graphcodes a valuable tool in data analysis. With the advent of more efficient techniques to gen-
erate bifiltrations for large datasets, we foresee that the potential of graphcodes will be a study of
investigation in the coming years.

10

Acknowledgments and Disclosure of Funding

This research has been supported by the Austrian Science Fund (FWF), grant numbers W1230 and P
33765-N.

The authors thank David Loiseaux for his help with using the multipers-package and Shreyas Samaga
and Soham Mukherjee for their help with using the GRIL-package.

References
[1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,

Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. Journal of Machine Learning Research,
18(8):1–35, 2017.

[2] Angel Alonso, Michael Kerber, Tung Lam, and Michael Lesnick. Delaunay bifiltrations of
functions on point clouds. In ACM-SIAM Symposium on Discrete Algorithms (SODA24), 2024.

[3] Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-
Schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.

[4] Ulrich Bauer, Talha Bin Masood, Barbara Giunti, Guillaume Houry, Michael Kerber, and
Abhishek Rathod. Keeping it sparse: Computing persistent homology revisited. Computing in
Geometry and Topology, 3(1):6:1–6:26, Aug. 2024.

[5] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat–persistent homology
algorithms toolbox. Journal of symbolic computation, 78:76–90, 2017.

[6] Magnus Bakke Botnan and Christian Hirsch. On the consistency and asymptotic normality
of multiparameter persistent betti numbers. Journal of Applied and Computational Topology,
2021.

[7] Magnus Bakke Botnan and Michael Lesnick. An introduction to multiparameter persistence,
2023.

[8] P. Bubenik. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16:77–102, 01 2015.

[9] Gunnar E. Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discret.
Comput. Geom., 42(1):71–93, 2009.

[10] Mathieu Carrière and Andrew Justin Blumberg. Multiparameter persistence image for topologi-
cal machine learning. In Neural Information Processing Systems, 2020.

[11] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures.
In International Conference on Artificial Intelligence and Statistics, pages 2786–2796. PMLR,
2020.

[12] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence
diagrams. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 664–673. PMLR, 06–11 Aug 2017.

[13] W. Chacholski, M. Scolamiero, and F. Vaccarino. Combinatorial presentation of multidi-
mensional persistent homology. Journal of Pure and Applied Algebra, 221(5):1055–1075,
2017.

[14] Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution.
Proceedings of the National Academy of Sciences, 110(46):18566–18571, 2013.

[15] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

11

[16] X Cheng, S Mukherjee, S Samaga, and TK Dey. Gril: A 2-parameter persistence based
vectorization for machine learning. In Proc. ICML 2023 workshop TAGML, 2023.

[17] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Nina Amenta and Otfried Cheong, editors, Proceedings
of the 22nd ACM Symposium on Computational Geometry, Sedona, Arizona, USA, June 5-7,
2006, pages 119–126. ACM, 2006.

[18] René Corbet, Ulderico Fugacci, Michael Kerber, Claudia Landi, and Bei Wang. A kernel for
multi-parameter persistent homology. Comput. Graph. X, 2, 2019.

[19] Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical
Society, Providence, RI, 2010. An introduction.

[20] Ulderico Fugacci, Michael Kerber, and Alexander Rolle. Compression for 2-parameter persistent
homology. Computational Geometry, 109:101940, 2023.

[21] Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972.

[22] Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning
methods. Frontiers in Artificial Intelligence, 4, 2021.

[23] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue,
and Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent
homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, 2016.

[24] Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for
topological data analysis. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceed-
ings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 2004–2013, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[25] Tam Le and Makoto Yamada. Persistence fisher kernel: A riemannian manifold kernel for
persistence diagrams. In Neural Information Processing Systems, 2018.

[26] David Loiseaux, Luis Scoccola, Mathieu Carrière, Magnus Bakke Botnan, and Steve Oudot.
Stable vectorization of multiparameter persistent homology using signed barcodes as measures.
In Advances in Neural Information Processing Systems, volume 36, pages 68316–68342, 2023.

[27] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[28] Monica Nicolau, Arnold Levine, and Gunnar Carlsson. Topology based data analysis identifies
a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl
Acad Sci USA, 2011.

[29] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6:1–38, 2017.

[30] Pratyush Pranav, Herbert Edelsbrunner, Rien van de Weygaert, Gert Vegter, Michael Kerber,
Bernard J. T. Jones, and Mathijs Wintraecken. The topology of the cosmic web in terms of
persistent Betti numbers. Monthly Notices of the Royal Astronomical Society, 465(4):4281–4310,
2016.

[31] Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin,
Giuseppe Chindemi, Pawe Dlotko, Ran Levi, Kathryn Hess, and Henry Markram. Cliques of
neurons bound into cavities provide a missing link between structure and function. Frontiers in
Computational Neuroscience, 11, 2017.

[32] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for
topological machine learning. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 4741–4748. IEEE Computer Society,
2015.

12

[33] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[35] Oliver Vipond. Multiparameter persistence landscapes. Journal of Machine Learning Research,
21(61):1–38, 2020.

[36] Kelin Xia, Xin Feng, Yiying Tong, and Guo Wei Wei. Persistent homology for the quantitative
prediction of fullerene stability. Journal of Computational Chemistry, 36(6):408–422, 2015.

[37] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[38] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. ArXiv, abs/1911.05954, 2019.

13

A Basic topological notions

An (abstract) simplicial complex K with vertex set V is a collection of subsets of V , called simplices,
with the property that whenever σ ∈ K and τ ⊆ σ, then τ ∈ K as well. In that case, τ is called a
face of σ. A subcomplex L of K is a subset of K that is itself a simplicial complex. The dimension
of a simplex is its number of vertices minus 1 – this corresponds to the interpretation that the vertices
are embedded in Euclidean space and a simplex is identified with the convex hull of the embedded
vertices that define the simplex. Simplices in dimension 0, 1, 2 are called vertices, edges, and
triangles, respectively. A facet of a p-simplex σ is a face of σ that has dimension p− 1. A p-simplex
has exactly (p+ 1)-facets.

Let Z2 the field with two elements, p ≥ 0 an integer and K be a simplicial complex. The set of
p-simplices forms the basis of a Z2-vector space Cp(K), and we call elements of this vector space
p-chains. Put differently, a chain is a formal linear combination of p-simplices with coefficients in
{0, 1} and can thus be interpreted as a subset of p-simplices. The boundary of a p-simplex σ, written
∂σ, is the (p− 1)-chain formed by all facets of σ. For instance, the boundary of a triangle is the sum
of the three edges that (geometrically) form the boundary of the triangle. The boundary extends to a
linear map ∂ : Cp(K)→ Cp−1(K) because it is defined on a basis of Cp(K).

A p-chain c is called a p-cycle if ∂c = 0. The p-cycles are the kernel elements of the map ∂ and
hence form a vector space which we denote by Zp(K). The aforementioned three edges bounding a
triangle form a 1-cycle because when taking their boundary, every vertex appears twice, and hence
vanishes because we work with Z2-coefficients.

A p-chain c is called a p-boundary if there exists a (p+ 1)-chain d such that ∂d = c. In other words,
the p-boundaries are the images of the map ∂ and hence, form a vector space that we denote by
Bp(K). A fundamental property is that for any chain c, we have that ∂(∂c) = 0. As an example, for
c a triangle, the above examples exemplify that indeed, the boundary of the boundary of the triangle
is trivial. As a consequence, p-boundaries are p-cycles and hence Bp(K) is a subspace of Zp(K).

The p-th homology group Hp(K) is the quotient Zp(K)/Bp(K). We will use the standard notion
of “homology group” even though it is even a vector space in our case. The rank of Hp(K) can be
interpreted as the number of p-dimensional holes in K: indeed, a “hole” in K must have a p-cycle
(i.e., an element of Zp(K)) that encloses the hole, but we need to disregard such cycles that loop
around a space that is filled by (p+ 1)-simplices, hence we divide out Bp(K). We write [α]K for the
elements of Hp(K), called homology classes, where α is a p-cycle, called a representative cycle of
[α]K . By definition of quotients, [α]K = [α′]K if and only if α+ α′ ∈ Bp(K). When the complex
K is clear from context, we also just write [α].

B Computation

Computing barcode bases. We start by reviewing the classical matrix reduction algorithm for
computing persistent homology. For a fixed filtration of a simplicial complexK and p ≥ 0, we put the
(p+ 1)-simplicies of K in a total order that respects the filtration, meaning that if a (p+ 1)-simplex
σ of K enters the filtration at index i and a (p+ 1)-simplex τ of K enters at index j with i < j, then
σ precedes τ in the order. Writing np+1 for the number of (p+ 1)-simplices of K, we can assign
to each (p + 1)-simplex an index in {1, . . . , np+1} that reflects this order. Doing the same for the
p-simplices of K (with total number np), the boundary matrix ∂ of K in dimension p is defined as
the (np × np+1)-matrix over Z2 where each row corresponds to a p-simplex and each column to a
(p+ 1)-simplex, and the entry at position (i, j) equals 1 if and only if the i-th p-simplex is a facet of
the j-th (p+ 1)-simplex.

The columns of ∂ span Bp(K). Recall our simplifying assumption that Hp(K) is trivial, implying
that the columns also span Zp(K). However, they are not necessarily a basis because of linear
dependance. To obtain a basis, we apply matrix reduction on ∂: for a non-zero column, denote by its
pivot the highest index whose coefficient is not zero. Then, traverse the columns from left to right,
writing cj for the currently considered column. As long as cj is not zero and has the same pivot as a
previous column ci with i < j, add ci to cj . Every column addition will make the pivot entry in cj
disappear since we work with Z2-coefficients.

14

This process results in a reduced matrix R in which no two columns have the same pivot. The
remaining non-zero columns of R are linearly independent and thus form a basis of Zp(K). The bar
attached to each cycle can easily be read off the matrix R: fixing a cycle α represented by column
j, let σ be the (p + 1)-simplex that corresponds to column j in ∂. Then the death index is the
minimal d such that σ is contained in Kd. Furthermore, let i denote the pivot of column j and let τ
be the p-simplex that corresponds to row i in ∂. Then, the birth index is the smallest b such that τ
is contained in Kb. Exploiting the fact that the matrix reduction only performs left-to-right column
additions and that the resulting basis has pairwise-disjoint pivots, one can show that this basis forms
a barcode basis of Zp(K).

Moreover, the reduction process has the additional property that any column that is ever added to
another column is already reduced, that is, will not be modified further in the process. We record this
for later:
Proposition B.1. If a matrix A gets reduced to R as above, and a column addition cj ← ci + cj
happens during the reduction process, then ci is a column of R.

Being a variant of Gaussian elimination, the algorithm to compute a barcode basis out of the boundary
matrix ∂ requiresO(n3) in the worst case (with n = max{np+1, np}). However, the initial sparseness
of ∂ results in a close-to-linear performance in many applied scenarios [5, 29].

The assumption that Hp(K) is trivial might seem crucial for the construction, but one can lift this
assumption without much computational overhead. In that case, one also needs to perform matrix
reduction on the boundary matrix spanned by (p − 1)- and p-simplices and do some additional
book-keeping to obtain basis elements for p-cycles that do not die in K. We omit details for brevity.

Efficient graphcodes through batched matrix reduction. We consider the algorithmic problem
to compute the graphcode of a bifiltration of a simplicial complex K. We assume that the bifiltration
is 1-critical which means that for every simplex σ, there is a index pair (i0, j0), such that σ ∈ Ki,j

if and only if i0 ≤ i and j0 ≤ j. In other words, every simplex has a unique entrance time into
the bifiltration; while this assumption does not apply for every bifiltration, it is still satisfied for
many instances that occur in practice; furthermore, there are techniques to transform other types of
bifiltrations to the 1-critical case [13].

Our input is a list of simplices of K together with a critical index pair (i0, j0) per simplex, defining a
1-critical bifiltration as in (2). The output is the graphcode of the bifiltration.

The straight-forward approach to compute the graphcode is to first compute a barcode basis for
each horizontal slice ℓ independently, obtaining the vertices of the graphcode. Then, express every
basis element at level ℓ using the barcode basis at level ℓ+ 1 to determine the edges between levels
ℓ and ℓ + 1. This requires to solve one linear system per basis element. With s the total number
of horizontal slices and n the number of simplices, this approach requires O(sn3) to compute the
barcodes bases and also O(sn3) to get the edges, since every linear system can be solved in O(n2)
time using the reduced matrices.

The straight-forward approach is non-optimal because it computes the barcode bases on each level
from scratch. Since Kℓ+1 contains Kℓ, we can devise a more efficient strategy to update a barcode
basis for Kℓ to a barcode basis for Kℓ+1. In this way, we obtain the barcode bases for all horizontal
filtrations in O(n3) time.

First, we sort all (p + 1)-simplices of K with respect to their second critical index, and refine to
a total order, assigning to each (p + 1)-simplex an integer in {1, . . . , np+1}. Initialize A to be an
empty matrix, whose number of columns equals np+1. Precompute for every level ℓ the set of
(p+1)-simplices that are contained in Kℓ, but not in Kℓ−1 (these are precisely those simplices whose
first critical value equals ℓ), calling them the ℓ-th batch. Now assume that A contains a barcode basis
for the horizontal level ℓ− 1. Add the columns of the ℓ-th batch to A at the appropriate place with
respect to the chosen total order and apply the matrix reduction from the previous paragraph on A.
The resulting reduced matrix yields a barcode basis for level ℓ.

This above algorithm computes all vertices of the graphcode in worst-case O(n3) time, and also
efficiently in practice, as it basically performs a single reduction of the boundary matrix of K, in
some order that is determined by the bifiltration. What is perhaps remarkable is that with some extra
bookkeeping, the algorithm also computes the edges of the graphcode on the fly. To see that, consider
a non-zero column of the boundary matrix before the ℓ-th batch gets added, representing a basis

15

element α of Zp(Kℓ−1). If the column does not change during the reductions caused by the batch, α
is also basis element in the barcode basis for Kℓ, and there is a single edge connecting the two copies
of α in the basis for Kℓ−1 and Kℓ. If the column changes, this is caused by a column addition with a
column from the left. Because of Proposition B.1 the added column is a basis element z1 of the ℓ-th
barcode basis, and we know that α = z1 + α(1), where α(1) is the cycle represented by the column
after the addition. Now if α(1) gets modified by another basis element z2 of the ℓ-th barcode basis, we
get α = z1+z2+α

(2), and so on. The process either stops when the column becomes 0, in which case
α(k) = 0 for some k, and we have obtained the linear combination of α, or the process stops because
some α(k) is reduced and will not be modified further in the reduction. In that case, α(k) is itself a
basis element zk+1 of the ℓ-th barcode basis, and we obtain that α = z1 + z2 + . . .+ zk+1. Storing
the linear combination during the process does not affect the running time, hence the graphcode can
be computed in O(n3) time.

Speed-ups. When implementing the above algorithm, we observed that the resulting graphcodes can
become rather large and the practical bottleneck in the computation is to merely create the graphcode
data structure. We suggest two ways to reduce the size, resulting in a much better performance: first
of all, standard constructions for bifiltrations result in a large number of horizontal slices to consider.
Instead, we propose to fix an integer s > 0, and to equidistantly split the parameter range of the first
critical value equidistantly at s positions, obtaining s slices in the graphcode. To reduce the size
of individual graphcodes, we propose to only consider relevant bars, where relevance means that
the persistence of the bar (i.e., the distance between death and birth) is above some threshold. In
particular, this removes bars of zero length from consideration, which are often the majority of all
bars in a barcode. We then only return the subgraph of the graphcode induced by the relevant bars. In
Figure 3 (right), we have applied this filter, for instance.

Finally, we observed significant performance gains by first computing a minimal presentation [20]
of the input bifiltration, and computing the graphcode of this minimal presentation. A minimal
presentation consists of generators and relations capturing the homology of a bifiltration. The entire
approach works in an analogous way, with generators taking the role of p-simplices and relations the
role of (p+ 1)-simplices. We skip details for brevity.

C Details on experiments

In all our experiments, we compute the graphcodes from minimal presentations using our C++ library.
The graphcode software requires parameters specifying the homology degree, the number of slices
and the direction in which to take the slices. If the minimal presentation is already computed for
a specific homology degree (an option provided by MPFREE bitbucket.org/mkerber/mpfree and
FUNCTION_DELAUNAY bitbucket.org/mkerber/function_delaunay), the degree parameter can be
omitted. One can also specify a relevance threshold t to obtain the subgraph induced by all nodes
(b, d) such that d− b > t.

C.1 Graph experiments

For the datasets listed in Table 1 we first compute the Heat Kernel Signature-Ricci Curvature bi-
filtration using a function provided by github.com/TDA-Jyamiti/GRIL and then compute a minimal
presentation of this filtration using the software MPFREE [20]. In all the graph experiments we
compute the graphcodes using homology degree one, 20 slices and relevance-threshold t = 0. We
tested both possible slicing directions controlled by the option "primary-parameter" in the graphcode
software and found that primary parameter 1 is slightly better. The computation of the graphcodes
of these datasets takes between 1 and 7 seconds. We additionally augment the vertices [(b, d), i] of
the raw graphcodes with their multiplicative d

b and additive d− b persistence. The vertex attributes
[(b, d, db , d−b), i] yield slightly better results. The slices index i is only used for the local max-pooling
and not as part of the vector attributes for the neural network.

We then train a graph neural network classifier on these graphcode datasets where we use the
architecture specified in Section 5. The details of the chosen parameters for the GNN architectures
can be found in the code provided as supplementary material. We randomly shuffle the dataset and
split it 80/20 into a labeled training set and a test set without labels, train the GNN on the training

16

https://bitbucket.org/mkerber/mpfree/src/master/
https://bitbucket.org/mkerber/function_delaunay/src/master/
https://github.com/TDA-Jyamiti/GRIL/

set and evaluate it on the test set. We run this procedure 20 times and average the achieved test set
prediction accuracy over this 20 train/test runs. The results are reported in Table 1.

C.2 Shape experiments

The point cloud dataset is generated as follows. For class i we have to put i annuli and 5− i disks
on an empty canvas in a way such that they don’t overlap. We put the shapes on the canvas one by
one by uniformly sampling radii and centers in such a way that a newly added shape would have at
least separation ϵ > 0 from all shapes that are already there. At the end we put uniform noise with
a uniformly sampled density over the whole canvas. For each of the 5 classes we generate 1000 of
these random shape configurations and take a point sample from each of them. This leads to a dataset
of 5000 point clouds in the plane. The details of all the chosen parameters can be found in the code
in the supplementary materials.

The point clouds have a lot of randomness to them. The only thing that two point clouds in the same
class have in common is that, before adding the noise, they are both sampled from a space with the
same homology in degree one. A human could probably still predict with high accuracy how many
annuli are in a picture (cf. the example figure in Section 6). This is because the underlying regions of
the shapes have much higher density. To enable a classifier based on topological descriptors to do a
similar kind of inference we have to introduce some measure of density. Hence, we compute a local
density estimate at every point of a point cloud based on the number of neighbours in a circle with a
given radius. We then score the points with respect to these local density estimates and use these score
values as function values for the Delaunay-bifiltration computed with FUNCTION_DELAUNAY [2].

For the graphcode computation we use homology degree one, 10 slices and we slices the bifiltration
in direction of fixed density. On these datasets we have to set a positive relevance-threshold of 0.1
because the resulting graphcodes would be too big for the available GPU memory in the GNN training
process. The density scores and the slicing along fixed density will yield the following slices: The
first slice contains those 5% of the points with the lowest density. The second slice contains those
10% of the points with the lowest density, etc. The computation time reported in Table 2 is the time
needed to compute the graphcodes of the whole dataset from the minimal presentations.

We then train a graph neural network classifier on these graphcode datasets where we use the
architecture specified in Section 5. The details of the chosen parameters for the GNN architectures
can be found in the code provided as supplementary material. We randomly shuffle the dataset and
split it 80/20 into a labeled training set and a test set without labels, train the GNN on the training
set and evaluate it on the test set. We run this procedure 20 times and average the achieved test set
prediction accuracy over this 20 train/test runs. We repeat this experiment for the graphcodes after
removing all the edges. The results are reported in Table 2.

As a comparison we test various other topological descriptors on this classification task. We start with
one-parameter persistence images obtained from one-parameter alpha-filtrations in homology degree
one on the point clouds. For the computation we use the Gudhi package [33]. The computation time
reported in Table 2 is the time needed to compute the persistence images of the whole dataset from
the alpha filtrations.

Next we compute the multiparameter persistence images, landscapes and the signed measure convo-
lutions using the multipers package github.com/DavidLapous/multipers. These vectorizations are
computed from minimal presentations, for homology degree one, of the Delaunay-bifiltrations. For
all these vectorizations we use a resolution of 100× 100, i.e., the output are 100× 100 images. For
the landscapes we use the first 5 landscapes. The computation time reported in Table 2 is the time
needed to compute the vectorizations of the whole dataset from the minimal presentations.

Finally we compute the generalized rank invariant landscapes (GRILs), for homology degree one,
using the GRIL package github.com/TDA-Jyamiti/GRIL/. Since the GRIL package takes bifiltrations
as input we first have to compute the Delaunay-bifiltrations in non-presentation form and convert
them to inputs suitable for GRIL. Since the computation of the GRIL’s is costly we were forced to
choose a rather large step size to make the computation of the landscapes feasible. We found that
enlarging the step size lead to better results than reducing the resolution. The resulting images are of
size 17× 17. The computation time reported in Table 2 is the time needed to compute the landscapes
of the whole dataset from the precomputed GRIL inputs.

17

https://github.com/DavidLapous/multipers
https://github.com/TDA-Jyamiti/GRIL/

For the computation of all multiparameter vectorizations we first scale the bidegrees of the bifiltration,
i.e., the parameter of the alpha complex and the density scores, to one to make the two parameters
comparable.

We then train convolutional neural network classifiers on these image datasets. As in the GNN case,
we randomly split the datasets into training and test sets using a 80/20 split, train the network on the
training set and test it on the test set. We run this procedure 20 times and take the average test set
prediction accuracy. The results are reported in Table 2.

We note that despite the big step size in the GRILs, leading to rather coarse images, the performance
is quite good compared to other vectorization methods. We believe that, given the computational
resources to use a smaller step size, the GRILs would perform significantly better.

C.3 Random Point-Process Experiments

Following [6], we consider four classes of point processes and create the dataset Processes by
simulating random samples of these processes. The four classes of our dataset correspond to the
four different processes and consist of 1000 random samples per class. We simulate all processes in
two-dimensional Euclidian space where we restrict the sampling window to [0, 1]2. The first process
is a standard homogeneous Poisson process which, in our case, corresponds to uniformly sampling
a Poisson distributed number of points with a given intensity in [0, 1]2. The second process is a
Matérn cluster process which is based on a parent Poisson process, whose points can be viewed
as cluster centers, where each parent point creates a Poisson distributed number of child points
uniformly sampled in a sphere centered at the parent. The third process is a Strauss process which
models repulsive behaviour. In the Strauss process there is a penalty on points sampled within a
given distance of each other based on an interaction parameter. To sample these processes, we use
the functions PoissonPointProcess, MatérnPointProcess and StraussPointProcess in MATHEMATICA.
The last process we consider is a Baddeley-Silverman process where we subdivide the sampling
window [0, 1]2 into a grid of boxes and sample 0, 1 or 2 points in each box with probabilities 0.45, 0.1
and 0.45, respectively. Since we could not find an implementation of this process in MATHEMATICA
we implemented this process in PYTHON. The details of all parameter choices can be found in the
supplementary materials. We choose the parameters in such a way that a sample of any of the above
processes contains about 200 points on average.

As in the previous experiments we compute a Delaunay-bifiltration based on local density estimates
and then compute graphcodes in homology degree one using 10 slices along fixed density values
without a threshold. The results are reported in Table 4.

We then train a graph neural network classifier on this graphcode dataset where we use the architecture
specified in Section 5. The details of the chosen parameters for the GNN architectures can be found
in the code provided as supplementary material. We randomly shuffle the dataset and split it 80/20
into a labeled training set and a test set without labels, train the GNN on the training set and evaluate
it on the test set. We run this procedure 20 times and average the achieved test set prediction accuracy
over this 20 train/test runs. We repeat this experiment for the graphcodes after removing all the edges.
The results are reported in Table 3.

As a comparison we also compute persistence images based on a one-parameter alpha filtration
and multiparameter persistence images, landsacapes and signed measure convolutions as well as
generalized rank invariant landscapes from the bifiltrations and classify them using convolutional
neural networks. For all these experiments we use the same settings as for the shape datasets. The
results can be found in Table 3.

C.4 Orbit Experiments

The orbit datasets Orbit5k and Orbit100k are created as follows. For each of the five parameter
values r = 2.5, 3.5, 4.0, 4.1 and 4.3 we uniformly sample 1000 and 20000 points (x0, y0) in [0, 1]2,
respectively, and run the dynamical system (3) for 1000 steps. In this way we obtain the two datasets
Orbit5k and Orbit100k consisting of 5 classes of 1000 and 20000 point clouds, respectively, where
each point cloud consists of 1000 points in R2. The class labels are the values of r used to generate a
point cloud.

18

https://reference.wolfram.com/language/ref/PoissonProcess.html
https://reference.wolfram.com/language/ref/MaternPointProcess.html
https://reference.wolfram.com/language/ref/StraussPointProcess.html

After constructing the datasets we compute local density estimates at every point, score the points
with respect to these density estimates and compute a Delaunay-bifiltration with respect to these
density scores. In contrast to the point clouds of the shape dataset, the point clouds from the orbit
datasets do not have particularly prominent dense regions which explains why the the difference
between the methods based on one-parameter persistence and graphcodes is smaller than for the
shape dataset. From these bifiltrations we compute graphcodes in homology degree one, using 10
slices along fixed density values and use a persistence threshold of 0.002.

We then train a graph neural network classifier on these graphcode datasets where we use the
architecture specified in Section 5. The details of the chosen parameters for the GNN architectures
can be found in the code provided as supplementary material. We randomly shuffle the dataset and
split it 70/30 (to be consistent with [11]) into a labeled training set and a test set without labels, train
the GNN on the training set and evaluate it on the test set. We run this procedure 20 times for Orbit5k
and 10 times for Orbit100k and average the achieved test set prediction accuracy over this train/test
runs. We note that in [11] they average over 100 train/test runs. For time reasons, especially on the
relatively large Orbit100k dataset, we avoided such a large number of runs but, since the results
have low variability, this does not make a significant difference. We repeat this experiment for the
graphcodes after removing all the edges. The results are reported in Table 4. We note that in [11] they
use persistent homology in degree zero and degree one for the classification. Thus we achieve the
reported accuracy with less information. We can observe that the performance of graphcodes relative
to perslay and the other methods as well as the influence of the graphcode-edges increases as the size
of the dataset increases. This demonstrates that the true power of the combination of graphcodes and
graph neural networks really starts to manifest itself on larger datasets.

D Graphcodes of general two-parameter persistence modules

In Section 3, we defined graphcodes of two-parameter persistence modules arising from bifiltered
simplicial complexes. In this section, we show that graphcodes can be defined for arbitrary two-
parameter persistence modules. For the graphcode construction, we consider a two-parameter
persistence module as a sequence of one-parameter persistence modules connected by morphisms. A
one-parameter persistence module M is a diagram

M1 M2 · · · Mn91 Mn
M2

1 M3
2 Mn91

n92 Mn
n91

where Mi is a finite-dimensional vector space and M i+1
i : Mi → Mi+1 is a linear map. The

elementary building blocks of one-parameter persistence modules are the so-called interval modules
I[a,b) defined by

(I[a,b))i :=

{
k if a ≤ i < b

0 else

(I[a,b))
i+1
i :=

{
id if a ≤ i < b− 1

0 else
A morphism of one-parameter persistence modules ϕ : M → N is a collection of linear maps
ϕi : Mi → Ni such that the following diagram commutes:

N1 N2 · · · Nn91 Nn

M1 M2 · · · Mn91 Mn

N2
1 N3

2 Nn91
n92 Nn

n91

M2
1

ϕ1

M3
2

ϕ2

Mn91
n92 Mn

n91

ϕn91 ϕn

The theorems of Krull-Remak-Schmidt [3, Theorem 1] and Gabriel [21, Chapter 2.2] imply that every
one-parameter persistence module M is isomorphic to a unique direct sum of interval modules, i.e.,
M ∼=

⊕g
j=1 I[aj ,bj). We define by Dgm(M) := {(aj , bj) ∈ R2|0 ≤ j ≤ g} the persistence diagram

of M . The points or intervals (aj , bj) ∈ Dgm(M) uniquely determine M up to isomorphism. We
call an isomorphisms µ : M

∼=−→
⊕g

j=1 I[aj ,bj) a barcode basis of M . This is the abstract analog of
the barcode basis of Definition 2.1. Note that there might be many choices for such an isomorphism.

The results discussed above can be interpreted on an elementary level in the following way: for a
persistence module M there exists a choice of bases of the vector spaces Mi such that all the matrices

19

M i+1
i are in diagonal form, i.e., every basis element in Mi is either mapped to a unique basis element

in Mi+1 or is mapped to zero. Since there is no unique way of transforming arbitrary bases of M
into a barcode basis there is no unique isomorphism.

Since every persistence module is isomorphic to a direct sum of interval modules, to understand
morphisms of persistence modules, it is enough to understand morphisms between interval modules.
Given two interval modules I[a,b) and I[c,d) the vector space Hom

(
I[a,b), I[c,d)

)
of morphisms

I[a,b) → I[c,d) has the following simply structure:

Hom
(
I[a,b), I[c,d)

) ∼= {
k if c ≤ a < d ≤ b
0 else

(4)

This means that, if the intervals overlap as described in (4), then, up to a scalar factor λ ∈ k, there
is a unique morphism I[a,b)

λ−→ I[c,d). Otherwise the only possible morphism is the zero-morphism.

For a choice of barcode bases µ : M
∼=−→

⊕g
j=1 I[aj ,bj) and ν : N

∼=−→
⊕h

l=1 I[cl,dl), a morphism
ϕ : M → N induces a morphism ψϕ

M N

⊕g
j=1 I[aj ,bj)

⊕h
l=1 I[cl,dl)

µ

ϕ

ν

ψϕ

defined by ψϕ := ν ◦ ϕ ◦ µ−1. Such a morphism between direct sums is completely determined by
the morphisms between individual summands, i.e.

Hom(M,N) ∼=
g⊕
j=1

h⊕
l=1

Hom
(
I[aj ,bj), I[cl,dl)

)
The morphisms between summands are given by composition with the inclusion and projection to
these summands

I[as,bs) I[ct,dt)

⊕g
j=1 I[aj ,bj)

⊕h
l=1 I[cl,dl)

ιs

ψϕ
ts

ψϕ

πt

Hence, by (4), ψϕts := πt ◦ ψϕ ◦ ιs is either zero or determined by a scalar λϕts ∈ k and we can
represent the morphism ψϕ by a matrixM(ϕ) of the form

[a1, b1) [a2, b2) · · · [ag, bg)

[c1, d1) λϕ11 λϕ12 · · · λϕ1g
[c2, d2) λϕ21 λϕ22 · · · λϕ2g

...
...

...
. . .

...
[ch, dh) λϕh1 λϕh2 · · · λϕhg

where λϕts is the scalar determining the morphism ψϕts. Note the analogy to matrices representing
maps between vector spaces with respect to a choice of basis.
Example D.1. Consider the following morphism of persistence modules

N : k k2 k 0

M : 0 k k 0
1 2 3 4

(
1
0

) (
1 0

)
ϕ (

0
)(

0
) (

1
)

(
1
1

) (
1
)

20

In this case, we have M = I[2,4) and N = I[1,4) ⊕ I[2,3), i.e., M and N are already in barcode form.
The morphism ϕ : M → N given by the vertical maps sends I[2,4) to both summands I[1,4) and I[2,3).
Therefore, we obtain

M(ϕ) =

[2, 4)()[1, 4) 1
[2, 3) 1

(5)

As in the case of matrix representations of linear maps, representing ϕ with respect to different bases
leads to different coefficients. Therefore, the matrixM(ϕ) is not unique. It depends on the choice of
barcode bases µ and ν.
Example D.2. The morphisms of persistence modules ϕfront and ϕback given by the front- and back-face
of the following diagram are isomorphic

k k2

k k2

k k2

k k2

(
1
1

)

(
1
)

(
1
0

)(
1
)

(
1 0
1 1

)

(
1
1

)
(
1 0
0 1

)

(
1
0

)
(
1
)

(
1
)

(
1 0
0 1

)

(
1 0
1 1

)

but they induce the following different matrices

M(ϕfront) =

[1, 3)()[1, 3) 1
[1, 3) 0

M(ϕback) =

[1, 3)()[1, 3) 1
[1, 3) 1

To get rid of the dependence on scalar factors, from now on we assume that k = Z2. This implies
that the entries ofM(ϕ) are either 0 or 1 and allows us to view(

0 M(ϕ)T

M(ϕ) 0

)
as the adjacency-matrix of a bipartite graph with vertex set Dgm(M) ∪ Dgm(N).

Definition D.3 (Graphcode general). A graphcode G(ϕ) =
(
V (ϕ), E(ϕ)

)
of a morphism ϕ : M → N

of one-parameter persistence modules with respect to a choice of barcode bases is the bipartite graph
defined by

V (ϕ) :=Dgm(M) ∪ Dgm(N)

E(ϕ) :={(v, w) ∈ Dgm(M)× Dgm(N)|M(ϕ)wv = 1}

By construction, the graphcode describes the morphism ϕ : M → N up to isomorphism. In some
sense a graphcode is just a representation of the morphism with respect to specific (barcode) bases.

We can now extend graphcodes from a single morphism of one-parameter persistence modules to
two-parameter persistence modules which can be viewed as a sequence of one-parameter persistence

21

modules:

M•m M0m M1m · · · Mnm

...
...

...

M•2 M12 M22 · · · Mn2

M•1 M11 M21 · · · Mn1

M1m
0m M2m

1m Mnm
n91m

M•m
•m91 M0m

0m91 M1m
1m91 Mnm

nm91

M•3
•2

M22
12

M13
12

M32
22

M23
22

Mn2
n912

Mn3
n2

M•2
•1

M21
11

M12
11

M31
21

M22
21

Mn1
n911

Mn2
n1

There is a graphcode G(M•i+1
•i) for every morphism M•i+1

•i : M•i → M•i+1 between horizontal
slices. Thus, we can define the graphcode of the two-parameter persistence module as the union of
the graphcodes for all morphsims M•i+1

•i .
Example D.4.

M3 k k 0 0

M2 k k2 k 0

M1 0 k k 0

1 2 3 4

(
1
) (

0
)

ϕ2 (
1
1

)(
1
)

(
1 1

)
(
1 0

) (
0
)

ϕ1 (
0
)

(
0
)

(
1
)

(
1
0

) (
1
)

In Example D.1 we already determined the matrix corresponding to the morphism from the first to
second slice. Thus,M(ϕ1) =M(ϕ) forM(ϕ) as in (5). Similarly we obtain the matrix from the
second to third slice

M(ϕ2) =
[1, 4) [2, 3)
()[1, 3) 1 1 (6)

By combining the matricesM(ϕ1) andM(ϕ2) we obtain the following graphcode G

[1, 3)
•

[1, 4) • • [2, 3)

•
[2, 4)

The graphcode is a complete description of a two-parameter persistence module in the following
sense: Given the graphcode we can reconstruct the persistence module up to isomorphism. This
follows directly from the construction.

Finally we note that we don’t necessarily have to restrict to Z2 coefficients. If k is an arbitary field
we can define the graphcode in a similar fashion as a graph with labeled edges, where the label of an
edge records the scalar factor λ determining the morphism between the two corresponding interval
summands. We can still use graphcodes defined in this way for arbitrary fields k as inputs for graph
neural networks by using an architecture that allows edge weights.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explain the construction of Graphcodes in Section 3 and D, describe an
efficient algorithm to compute them in Section 4 and B and demonstrate their performance
in Experiments discussed in Section 6 and C.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss that graphcodes are not a topological invariant and depend on a
choice of basis. Moreover, we discuss that graphcodes seem to perform not as well on small
datasets as on big datasets.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

23

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our results are based on basic facts from the area of combinatorial algebraic
topology that are well-established in the area of topological data analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the most imporant aspects of our architecture and the experimental
setup in the main body and give more details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code to reproduce all our datasets and experiments is provided as supple-
mentary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all details relevant to appreciate the results in the main part and
provide all further details in the appendix and the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To deal with the variability of neural network training with randomly initialized
weights we run all our experiments multiple times and report average test set accuracy plus
standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the specifications of the workstation used for our experiments at
the beginning of Section 6. We also discuss significant execution times in this Section,
especially in Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with all points of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper does not have any impact on social issues.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

26

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t see any potential for misuse of our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All authors of assets used in our experiments are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The provided code is properly documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Persistent homology
	Graphcodes
	Computation
	Learning from graphcodes using graph neural networks
	Experiments
	Conclusion
	Basic topological notions
	Computation
	Details on experiments
	Graph experiments
	Shape experiments
	Random Point-Process Experiments
	Orbit Experiments

	Graphcodes of general two-parameter persistence modules

