
Time series Augmented Generation for Financial Applications

Anonymous ACL submission

Abstract001

Financial analysis demands bridging natural002
language queries with complex quantitative003
time series (TS) computations. While Large004
Language Models (LLMs) excel at language,005
they often falter on precise numerical reason-006
ing and grounding in volatile financial data.007
We propose Time Series Augmented Gener-008
ation (TSAG), an alternative to conventional009
Retrieval-Augmented Generation (RAG) ap-010
proach. TSAG relies on tool-based infrastruc-011
ture provided by LangChain framework and012
utilizes an LLM agent to parse natural lan-013
guage queries, select and invoke appropriate014
predefined time series analysis tools, and syn-015
thesize the tool outputs into coherent, accu-016
rate responses. We implement and evaluate017
TSAG, initially focusing on a proof-of-concept018
(POC) with cryptocurrency data and robust, pre-019
defined tools for seasonality, volatility, price,020
and correlation analysis. We compare multi-021
ple LLM agents (Llama 3.x, Qwen2 variants,022
GPT-4o variants, DeepSeek-V3 API). We pro-023
vide evaluation benchmark which includes a024
set of typical questions with expected answers025
and framework to evaluate the LLM perfor-026
mance against them. The framework evaluates027
metrics such as Return Rate, Match Accuracy,028
LLM-accessed Accuracy, Hallucination Rate,029
and query latency as Seconds per Query (SPQ).030
Results demonstrate TSAG, particularly with031
capable agents like GPT-4o and Qwen2 (7B),032
achieves high levels of accuracy and low hallu-033
cination rates, validating the tool-based LLM034
integration approach for financial applications.035

1 Introduction036

The financial domain demands timely and accurate037

insights derived from complex, dynamic data (Tsay,038

2005). Natural language offers an intuitive inter-039

face for accessing this information, yet effectively040

bridging conversational queries with the necessary041

underlying quantitative analysis remains a signifi-042

cant hurdle. Large Language Models (LLMs) have043

demonstrated remarkable capabilities in natural lan- 044

guage understanding and generation (Brown et al., 045

2020; Wu et al., 2023). However, their applica- 046

tion to finance is often constrained by limitations 047

in precise numerical computation, robust temporal 048

reasoning, and reliable grounding in volatile, high- 049

frequency financial time series data (Fons et al., 050

2024). Directly applying LLMs to tasks requiring 051

high analytical fidelity can lead to inaccurate or 052

unsubstantiated outputs. Conversely, traditional 053

quantitative models and libraries (Box and Jenkins, 054

1970), while accurate, lack accessible natural lan- 055

guage interfaces, limiting their usability for broader 056

audiences. 057

This capability gap hinders the seamless integra- 058

tion of sophisticated data analysis into interactive fi- 059

nancial workflows. Standard Retrieval-Augmented 060

Generation (RAG) systems primarily retrieve tex- 061

tual documents (Lewis et al., 2020) and are insuffi- 062

cient for queries demanding real-time computation 063

over numerical time series. Recent RAG adapta- 064

tions for time series forecasting focus on retrieving 065

similar historical data sequences (Zaremba et al., 066

2024; Wu et al., 2025), a different task from exe- 067

cuting diverse, on-demand analytical computations 068

required for complex financial question-answering 069

(Q&A) systems. 070

To address these limitations, we propose Time 071

Series Augmented Generation (TSAG), a frame- 072

work conceptualized as a Tool-Augmented RAG 073

system, based on LangChain infrastructure (Kotiyal 074

et al., 2024). TSAG employs an LLM agent not 075

merely as a text processor, but as an orchestra- 076

tor that translates natural language queries into 077

calls to specialized, predefined financial time se- 078

ries analysis "grounding" functions (tools in terms 079

of LangChain). This architecture synergistically 080

combines the LLM’s linguistic competence and rea- 081

soning capacity with the computational precision 082

and verifiability of dedicated analytical tools oper- 083

ating on grounded data. By explicitly delegating 084

1

quantitative tasks to reliable tools, TSAG aims to085

significantly enhance the accuracy, reliability, and086

interpretability of LLM-driven financial analysis087

compared to end-to-end models or less constrained088

agentic approaches (Data Science Dojo, 2023).089

The main contributions of this work are:090

• We design and implement TSAG, a novel091

Tool-Augmented RAG framework for finan-092

cial Q&A via LLM agents and special-093

ized tools, demonstrating a proof-of-concept094

within the cryptocurrency domain.095

• We define and implement a library of special-096

ized time series analysis tools targeting com-097

mon financial queries related to seasonality,098

volatility, price dynamics, and correlation.099

• We propose and apply a comprehensive,100

multi-dimensional evaluation benchmark and101

framework assessing execution success (Re-102

turn Rate), accuracy based on query answer103

matching expected patterns (Match Accu-104

racy), accuracy based on evaluation of answer105

against complete expected answer (evaluated106

by DeepEval (Confident AI, 2023)), Halluci-107

nation Rate(evaluated by DeepEval, and run-108

time efficiency as response latency measured109

as average Seconds per Query.110

• We provide extensive empirical validation111

comparing multiple modern LLM agents112

(Llama 3.x, Qwen2 variants, GPT-4o variants,113

DeepSeek) within TSAG, analyzing perfor-114

mance trade-offs with different extreme set-115

tings for temperature - Temperature = 0.0 for116

the most conservative response and Tempera-117

ture = 1.0 for the greatest diversity.118

• We publicly release our evaluation bench-119

mark consisting of 100 questions with120

expected patterns and full answers121

(benchmark.tsv) and evaluation frame-122

work (test_eval_tsag.py.py) to facilitate123

reproducibility and encourage further re-124

search into reliable, tool-grounded financial125

AI assistants.126

This paper presents the related work (section 2),127

describes the TSAG framework (section 3), experi-128

mental setup (section 4) and results (section 5), and129

derives the conclusion (section 6).130

2 Related Work 131

Our work intersects with Large Language Models 132

(LLMs) in finance, time series analysis, Retrieval- 133

Augmented Generation (RAG), and the paradigm 134

of tool-based LLM agents. 135

LLMs in Finance LLMs have been applied to 136

various financial tasks, including sentiment anal- 137

ysis (Loughran and McDonald, 2011), news sum- 138

marization (Jin et al., 2020), report generation, 139

and forecasting. Domain-specific models like 140

BloombergGPT (Wu et al., 2023) show strong per- 141

formance on financial NLP benchmarks. How- 142

ever, ensuring numerical accuracy and grounding in 143

real-time quantitative data remains a challenge for 144

these models when faced with complex analytical 145

queries, which motivates our tool-based approach. 146

Time Series Analysis and Forecasting Tradi- 147

tional methods like ARIMA (Box and Jenkins, 148

1970) and GARCH (Engle, 1982), along with 149

deep learning models like LSTMs (Hochreiter and 150

Schmidhuber, 1997) and Transformers (Vaswani 151

et al., 2017; Lim and Zohren, 2021), are widely 152

used for financial time series, typically focusing on 153

prediction. Integrating complex reasoning or natu- 154

ral language interaction for diverse Q&A tasks is 155

less common. Furthermore, understanding model 156

uncertainty in time series predictions is critical 157

(Fons et al., 2024), reinforcing the need for reli- 158

able, verifiable computation where possible. 159

Retrieval-Augmented Generation (RAG) for 160

Time Series Standard RAG enhances LLMs by 161

retrieving relevant textual documents (Lewis et al., 162

2020). Adapting RAG for time series is an active 163

research area. Recent works focus on retrieving rel- 164

evant past time series segments to improve fore- 165

casting. Zaremba et al. (2024) introduced Retrieval 166

Augmented Forecasting (RAF), using embedding 167

similarity to find relevant historical patterns for 168

Time Series Foundation Models (TSFMs). Simi- 169

larly, Wu et al. (2025) proposed FinSeer, using an 170

LLM-enhanced retriever and specific training ob- 171

jectives to find historically significant sequences for 172

financial forecasting with their StockLLM model. 173

While highly relevant in applying RAG to financial 174

time series, these approaches focus on augment- 175

ing forecasting tasks by retrieving similar data 176

sequences. Our TSAG framework differs signifi- 177

cantly by employing an agent to select and invoke 178

computational tools based on the query’s analytical 179

2

requirements, generating answers grounded in the180

tool’s output rather than retrieved historical data.181

Tool-Using LLMs and Agents for Time Series182

A significant recent trend involves augmenting183

LLMs with the ability to use external tools or184

APIs. Models like Toolformer (Schick et al., 2023)185

learn implicit API calls, while frameworks like186

LangChain (Chase, 2022) and systems using ex-187

plicit function calling like Gorilla (Patil et al., 2023)188

enable LLMs to act as agents orchestrating external189

computations. The application of LLMs to time se-190

ries analysis, including the combination with tools,191

is recognized as a key research direction (Jin et al.,192

2023). Various agentic architectures are being ex-193

plored for time series. For instance, Ma et al. (2024)194

use LLM agents to reason about and integrate news195

events (external text) for forecasting. Liu et al.196

(2025b) (TimeCAP) employ a two-agent system197

where one LLM generates textual context from the198

time series, aiding the second agent in event predic-199

tion. Liu et al. (2025a) (TimeXL) utilize a multi-200

modal encoder and three collaborating LLMs (pre-201

dict, reflect, refine) for explainable prediction. Our202

TSAG aligns with the tool-using agent paradigm203

but distinguishes itself by focusing specifically on204

financial Q&A, utilizing a curated set of prede-205

fined, reliable quantitative "grounding" func-206

tions as tools, and tasking a single LLM agent (in207

the current architecture) with orchestrating the en-208

tire process from NL query parsing to grounded209

NL response synthesis. This emphasizes verifiable210

computation for accuracy in the financial domain,211

contrasting with approaches focused solely on fore-212

casting, integrating text, or using more complex213

multi-agent loops.214

3 Methodology: The TSAG Framework215

TSAG operates as a Tool-Augmented RAG system216

using an LLM agent to orchestrate specialized tools217

(Figure 1). This approach leverages predefined,218

reliable computations, contrasting with open-ended219

code generation or embedding-based retrieval.220

3.1 Architecture221

The architecture consists of four layers, presented222

in Figure 1.223

First, there is a User Layer with "front-end" com-224

ponents which may be represented by a Telegram225

bot, Jupyter Notebook for research purposes, any226

end-user application (e.g. in Python) or the Eval-227

uation Agent as part of the evaluation framework228

Figure 1: The TSAG Tool-Augmented RAG architec-
ture and workflow.

based on DeepEval (Confident AI, 2023) being 229

presented in this paper. Second, the LLM Layer 230

consists of the TSAG kernel based on LangChain 231

(Chase, 2022), connecting to one of the selected 232

LLM agents - either self-hosted locally or cloud- 233

hosted such as ChatGPT or DeepSeek. Third, the 234

Tools Layer contains the tools plugged into the 235

TSAG kernel as a "grounding" functions. Finally, 236

the time series (TS) database layer (DB Layer) pro- 237

vides API for accessing the TS data. 238

For the evaluation purposes discussed in this pa- 239

per, the Tools Layer contains grounding function 240

"stubs" with expected responses hard-coded accord- 241

ing to the Benchmark Data. The latter makes it pos- 242

sible to abstract from specific transient temporal 243

data in the TS DB to perform Benchmark-Driven 244

Development (BDD) of the TSAG framework on 245

the basis of the Benchmark Data, supporting desig- 246

nated set of grounding functions. 247

3.2 Workflow 248

Given a natural language query (NLQ), TSAG pro- 249

ceeds via LLM-orchestrated steps to obtain a natu- 250

ral language response (NLR): 251

1. Query Parsing & Tool Selection: LLM agent 252

parses NLQ, identifies intent, extracts pa- 253

rameters (using defaults from subsection 3.4) 254

and selects tool(s) (subsection 3.3) based on 255

prompt descriptions (subsection 3.5. 256

2. Tool Execution: System invokes selected 257

tool(s) (e.g., volatility(...) according to 258

Parkinson (1980)) via predefined Python code, 259

querying data sources and performing verifi- 260

able TS computation. 261

3. Result Synthesis: Tool returns structured re- 262

sult (e.g., {'volatility_percent': 5.0}). 263

3

4. Response Generation: LLM agent synthe-264

sizes result into a grounded NLR answering265

the NLQ.266

This structured workflow ensures calculations are267

handled by dedicated, verifiable logic.268

3.3 Grounding Functions (Tools)269

A core TSAG component is a library of special-270

ized Python functions serving as tools. This proof-271

of-concept (POC) focuses on cryptocurrency trad-272

ing data sourced from a Time-Series Database, as273

shown in Figure 1. We implement tools based on274

the NLQ → Function → NLR structure identified275

in our design. In this work, in order to provide276

an evaluation criterion, all real implementations277

of functions are replaced by corresponding “surro-278

gate” stubs with predefined responses, depending279

on the input parameters. The initial tool set, prior-280

itizing reliability for this study, covers the follow-281

ing:282

• Seasonality/Pattern Analysis:283

Tools (peak_traded_volume,284

lowest_traded_volume,285

round_the_clock_pattern,286

abnormal_deviations) identifying re-287

curring/anomalous volume patterns via288

statistical analysis.289

• Price and Volatility Analysis: Tools (price,290

volatility) retrieving current data or cal-291

culating historical metrics (e.g., Parkinson292

volatility (Parkinson, 1980)) along with re-293

spective prediction tools (predict_price,294

predict_volatility).295

• Correlation Analysis: Tools296

(correlation_between_exchanges,297

correlation_between_tokens) com-298

puting Pearson correlation coefficients299

(Pearson, 1895) across different instruments300

and exchanges.301

• Metadata Retrieval: Tools302

(get_base_tokens, get_exchanges,303

get_valid_time_units, etc.) that provide304

valid parameters for the tools listed above.305

Future work includes implementing more sophisti-306

cated "real" functions and expanding the scope of307

applications to traditional finance.308

3.4 Function Parameters and Defaults 309

The LLM extracts parameters from the NLQ. 310

Predefined defaults (e.g., quote_token='USDT', 311

exchange='BINANCE') handle short queries with 312

poorly defined input parameters. 313

3.5 LLM Agents 314

We evaluated several LLMs (Table 1) as agents, se- 315

lected to explore trade-offs between size, cost, accu- 316

racy, hallucinations and run-time performance. Ini- 317

tial experiments involved use of different prompts, 318

however at some point we have sorted out that us- 319

ing standard LangChain contextualization together 320

with sufficient context size does not require spe- 321

cific prompts in order to maximize accuracy and 322

minimize hallucinations. In particular, we discov- 323

ered that context of 8192 is sufficient for holding 324

the tool context for our set of tools, while smaller 325

contexts of 4096 and default 2048 is insufficient. 326

Specifically, insufficient context does not fit all 327

tools to have their parameters (function arguments) 328

identified properly. 329

4 Experimental Setup 330

We evaluated TSAG reliability, accuracy, level of 331

hallucinations, and run-time efficiency across dif- 332

ferent LLM agents. 333

4.1 Tasks 334

We run the evaluation framework against bench- 335

mark consisting of 100 natural language questions 336

with different levels of brevity corresponding to the 337

tools described above in subsection 3.3: seasonal- 338

ity and patterns, price/volatility, correlation, and 339

metadata retrieval. 340

4.2 Benchmark and Test Corpus 341

The test corpus used for evaluation consists of 100 342

items each represented by triplet derived from the 343

original business specification, including the origi- 344

nal natural language query (NLQ, as a "zero shot" 345

sample), a set of expected words or numbers to be 346

found in the text of the natural language response 347

(NLR), and the full expected NLR text in the ex- 348

pected wording at the expected level of detail. 349

4.3 Evaluation Framework and Metrics 350

We evaluated across LLM agents using the eval- 351

uation framework based on DeepEval (Confident 352

AI, 2023), having the following metrics evaluated 353

based on the benchmark, having the DeepEval 354

4

backed up with locally hosted Qwen2 7B LLM355

agent (Bai et al., 2024).356

• Return Rate (RR): For each of the bench-357

mark items - end-to-end execution success358

indicator, set to 1.0 if any non-empty text re-359

sult is returned by the TSAG framework in360

response to the benchmark NLQ, and 0.0 oth-361

erwise. Across the entire benchmark - the362

average result, the higher the better.363

• Match Accuracy (MA): For each of the364

benchmark items - Presence of all of the ex-365

pected words or numbers in the benchmark366

indicated as 1.0 in case for the match, and 0.0367

otherwise. Across the entire benchmark - the368

average result, the higher the better.369

• LLM-accessed Accuracy (LA): For each of370

the benchmark items - measure of accuracy371

comparing the expected NLR from benchmark372

against the actual NLR, assessed by DeepEval373

(Confident AI, 2023) in the range between 0.0374

and 1.0. Across the entire benchmark - the375

average result, the higher the better.376

• Hallucination Rate (HR): For each of the377

benchmark items - degree of contextual diver-378

gence of the actual NLR text away from the379

expected one, assessed by DeepEval in the380

range between 0.0 and 1.0. Across the entire381

benchmark - the average result, the lower the382

better.383

• Seconds per Query (SPQ): For each of the384

benchmark items - the amount of seconds to385

obtain NLR given NLQ. Across the entire386

benchmark - the average result, the lower the387

better.388

4.4 Comparative Analysis389

Our primary analysis compares the performance of390

different LLM agents, hosted locally or available391

online in the cloud, given the TSAG framework392

(Table 1) to identify models best suited for orches-393

trating financial tools, a key goal of our work. We394

evaluated these LLM agents against our benchmark.395

As expected, raw models not augmented with the396

tools provided ultimate Return Rate but showed397

zero Match Accuracy and negligible LLM-assessed398

Accuracy with high Hallucination Rate, confirming399

TSAG’s necessity for grounded quantitative Q&A.400

These baseline results are omitted from Table 1 for401

clarity.402

4.5 Implementation Details & 403

Hyper-parameters 404

For TSAG development and evaluation we 405

used Python 3.11, langchain 0.3.20, langchain- 406

core 0.3.45, langchain-deepseek-official 0.1.0, 407

langchain-ollama 0.2.2, langchain-openai 0.3.8, 408

deepeval 2.5.4. LLM agents hosted locally were 409

accessed via Ollama v0.1.32 for local models and 410

official vendor APIs (OpenAI, DeepSeek) accessed 411

in April 2025. The following models were evalu- 412

ated. 413

• Llama 3.1 (8B) (Meta AI, 2024b) 414

• Llama 3.2 (3.2B) (Meta AI, 2024a) 415

• Qwen2 (0.5B, 1.5B, 7B) (Bai et al., 2024) 416

• Qwen2.5 (0.5B, 1.5B, 3B, 7B) (Lu et al., 417

2024) 418

• GPT-4o (OpenAI, 2024b) 419

• GPT-4o-mini (OpenAI, 2024a) 420

• DeepSeek-V3 (API) (AI, 2024) 421

Some LLM agents that we were considering to 422

use initially, including local Gemma 7B (Gemma 423

Team, 2024), DeepSeek hosted online (AI, 2024), 424

and online Qwen (Lu et al., 2024) were excluded 425

from evaluation results due to incompatibility 426

with the required tooling in the used version of 427

LangChain (Kotiyal et al., 2024). 428

We evaluated the LLM agents with different 429

temperatures: Temperature=0.0 was used for them 430

most "conservative" responses (Figure 2), Temper- 431

ature=1.0 was used for the greatest "diversity". In 432

case of Temperature=1.0, we used 3 different ran- 433

dom seeds [1, 10, 100] for 3 runs (Table 1, Fig- 434

ure 3). 435

The following hardware was used for the eval- 436

uation: MSI Raider GE77HX 12UGS notebook 437

with 12th Gen Intel(R) Core(TM) i7-12800HX 438

2.00 GHz, 32.0 GB RAM, 23.9 GB GPU NVIDIA 439

GeForce RTX 3070 Ti Laptop GPU. The compu- 440

tational budget in hours was taking about 2 hours 441

for each run of the benchmark including TSAG 442

with LLM agent execution and evaluation carried 443

our with DeepEval. The total research time with 444

all experimental runs and debugging was about 3 445

machine-months. 446

5

Figure 2: TSAG performance with different LLM agents
(Temperature = 0.0). Metrics: return rate, match accu-
racy, LLM-measured accuracy and hallucination rate
measured by DeepEval framework. Figure 3 shows re-
sults for Temperature = 1.0.

5 Results and Discussion447

We analyzed the performance of TSAG, focusing448

on comparing LLM agents, using multiple runs449

with different random seeds with non-zero temper-450

ature to assess the reliability of our evaluations.451

5.1 Quantitative Results452

Table 1 and Figure 2 summarize the average perfor-453

mance of TSAG agents at Temperature=0.0. Fig-454

ure 3 visualizes these averages at Temperature=1.0455

and run variability based on three random seeds456

with indication of mean percentage error (MPE)457

and indication of respective error bars indicating458

reliability of our assessments.459

Our quantitative evaluation reveals several key460

insights into TSAG performance. Firstly, the frame-461

work’s viability is confirmed by high Return Rate462

values for most agents (Table 1), indicating suc-463

cessful orchestration of the NLQ-to-NLR pipeline.464

Secondly, Match Accuracy results highlight the465

variance in LLM agents’ ability to correctly parse466

queries, invoke tools and generate output; state-of-467

the-art models like GPT-4o and Qwen2 7B achieve468

perfect scores, whereas most of smaller quanti-469

fied models (Llama 3.2B, Qwen2.5 1.5B) strug-470

gle more, suggesting complex parameter extraction471

and response generation from tool output remains472

challenging for less capable agents. Some of the473

smallest models (Qwen2 0.5-1.5B, Qwen2.5 0.5B)474

delivering no responses at all with Return Rate at475

0.0 were not included into resulting analysis at all.476

Response quality, assessed via DeepEval, shows477

GPT-4o minimizes Hallucination Rate (0.02),478

demonstrating exceptional reliability in synthesis.479

Qwen2 7B leads slightly in average LLM-assessed480

Accuracy (0.66), indicating its responses closely481

mirror tool outputs, while also maintaining low Hal-482

lucination Rate (0.08). The variability across runs,483

indicated by MPE error bars (Figure 3), suggests 484

good consistency for top models like GPT-4o and 485

Qwen2 7B, whereas models with lower average 486

performance also tend to exhibit higher variability 487

between runs. 488

Comparing the deterministic "conservative" per- 489

formance at Temperature=0.0 shown in Figure 2 490

with the "diverse" (which can be considered "ex- 491

ploratory") results at Temperature=1.0 shown in 492

Figure 3a shows that the top-performing models 493

deterministically maintain high Return Rate, Match 494

Accuracy, LLM-assessed Accuracy, and low Hallu- 495

cination Rate. Zero temperature generally leads to 496

slight reductions in hallucination across the board, 497

reinforcing its suitability for high-stakes applica- 498

tions requiring maximal factuality. 499

Latency analysis (Figure 3b) reveals significant 500

differences. Local models like Qwen2 7B (2.2s) 501

and the smaller Qwen2.5 3B (2.8s) offer fast re- 502

sponses. API models vary, with GPT-4o-mini (2.4- 503

3s) being relatively quick, while DeepSeek-V3 504

exhibited high latency (14s) in our tests. This 505

highlights a crucial trade-off between accessing 506

potentially highest-performing proprietary models 507

versus leveraging efficient open models for lower 508

latency. 509

Based on the experiment with "conservative" 510

Temperature=0.0 setting, the Qwen2 7B and GPT- 511

4o appear to be equally good options for either local 512

self-hosting on proprietary or leased hardware or 513

remote access on subscription basis (Figure 2). 514

Based on the experiment with "diversity" Tem- 515

perature=1.0 setting, both remotely accessible 516

cloud versions of GPT-4o and GPT-4o-mini ap- 517

pear equal to Qwen2 7B in terms of accuracy and 518

hallucinations, however they both become signif- 519

icantly less attractive due to increased response 520

times (Figure 3). 521

In both cases of the temperature, DeepSeek-V3 522

hosted online appeared little behind the top com- 523

petitors in terms of accuracy and hallucinations, 524

and losing dramatically with largest response time. 525

5.2 Qualitative Analysis 526

Manual review of generated responses comple- 527

ments the quantitative findings. Successful cases 528

demonstrate the LLM agent’s ability to parse 529

complex natural language, correctly identify and 530

parameterize the appropriate tool (e.g., handling 531

multiple constraints in a query handled by func- 532

tion like peak_traded_volume(base_token, 533

quote_token, exchange, time_interval, 534

6

LLM agent RR↑ MA↑ LA↑ HR↓ SPQ↓

Llama 3.1 (8B) (Meta AI, 2024b) 0.98 0.90 0.60 0.13 4.6
Llama 3.2 (3.2B) (Meta AI, 2024a) 0.91 0.76 0.53 0.26 2.7
Qwen2 (7B) (Bai et al., 2024) 1.00 1.00 0.66 0.08 2.2
Qwen2.5 (1.5B) (Lu et al., 2024) 0.80 0.66 0.47 0.37 5.7
Qwen2.5 (3B) (Lu et al., 2024) 0.89 0.82 0.55 0.19 2.8
Qwen2.5 (7B) (Lu et al., 2024) 0.90 0.86 0.59 0.17 5.3
GPT-4o (API) (OpenAI, 2024b) 1.00 1.00 0.65 0.02 2.4
GPT-4o-mini (API) (OpenAI, 2024a) 1.00 0.97 0.59 0.04 2.9
DeepSeek-V3 (API) (AI, 2024) 1.00 0.92 0.58 0.08 14.1

Table 1: TSAG performance with different LLM agents (Temperature = 0.0). Metrics: return rate (RR), match
accuracy (MA), LLM-measured accuracy (LA) measured by DeepEval framework, hallucination rate (HR) measured
by DeepEval framework, seconds spent by query (SPQ). Arrows pointing up (↑) indicate the greater the better.
Arrows pointing down (↓) indicate the smaller the better. Best results are highlighted as "bold".

(a) Metrics: return rate, match accuracy, LLM-measured accu-
racy and hallucination rate measured by DeepEval framework.

(b) Seconds spent by query (SPQ). Use of GPT and especially
DeepSeek takes longer, compared to locally hosted models.

Figure 3: TSAG performance with different LLM agents as average over 3 runs (Temperature = 1.0). Error bars
indicate run variability as mean percentage error (MPE). Figure 2 shows results for Temperature = 0.0.

time_unit, period_unit, granularity_unit,535

threshold_percent)), and synthesize the numer-536

ical or list-based output into a fluent, accurate537

sentence in natural language. For example, given538

"What was the price correlation between BTC and539

ETH quoted in USDT on BINANCE exchange540

in the past 7 days?", a high-performing agent541

correctly invokes correlation_between_tokens542

with extracted parameters and generates a response543

like "The price correlation between tokens BTC544

and ETH quoted in USDT on BINANCE exchange545

in the past 7 days trading window is 1.0." Common546

failure modes, particularly with less capable547

agents or ambiguous queries, included selecting548

an incorrect tool, failing to extract all necessary549

parameters (relying incorrectly on defaults), or550

minor hallucinations where the synthesized text551

slightly misrepresents the exact nuance of the552

tool’s output (though major fabrications were rare553

with top models, reflected in low HR scores).554

5.3 Discussion555

The experimental results strongly validate Time-556

Series Augmented Generation (TSAG) approach557

for enabling reliable quantitative Q&A over finan-558

cial time series using LLMs. By delegating com- 559

putation to predefined, verifiable tools, TSAG ef- 560

fectively grounds LLM responses, achieving high 561

accuracy scores (Table 1) and mitigating the in- 562

herent weaknesses of LLMs in complex numeri- 563

cal reasoning (Fons et al., 2024). The comparison 564

across different agents underscores the critical role 565

of the LLM’s underlying capabilities; models like 566

GPT-4o and Qwen2 (7B) excel at the multi-step rea- 567

soning involved in parsing, tool selection/invoca- 568

tion, and synthesis. The performance drop-off with 569

smaller models suggests that robust instruction- 570

following and parameter extraction are non-trivial 571

requirements for successful tool orchestration in 572

this domain. 573

Our analysis of run variability (MPE error bars, 574

Figure 3) indicates good stability for the top- 575

performing models across different random seeds 576

with high temperature, lending confidence to their 577

reliability. The comparison between Tempera- 578

ture=0.0 (Figure 2) and Temperature=1.0 average 579

results (Figure 3a) suggests that while deterministic 580

generation slightly reduces hallucination, perfor- 581

mance on core accuracy metrics remains high for 582

capable agents across these temperatures, offering 583

7

flexibility depending on application needs (consis-584

tency vs. minor linguistic variation).585

The TSAG approach, using predefined tools,586

offers significant advantages in terms of reliabil-587

ity and interpretability compared to alternatives588

considered in our design phase, such as agents589

generating Python code on the fly (Data Science590

Dojo, 2023) or end-to-end fine-tuning of a Large591

Language-Numeric Model (LLNM). While less592

flexible than code generation, the verifiable nature593

of the tools is paramount in the high-stakes finan-594

cial domain. The challenges encountered, primarily595

related to natural language ambiguity and tool cov-596

erage, highlight key areas for future work. Improv-597

ing the TSAG robustness through advanced prompt-598

ing, agent fine-tuning, or incorporating query clar-599

ification steps could enhance performance. Ex-600

panding the tool library, potentially incorporating601

more sophisticated forecasting models beyond the602

current POC stubs, and developing mechanisms603

for multi-tool composition are necessary steps to604

broaden TSAG’s analytical capabilities and address605

more complex financial queries. The latency differ-606

ences observed also motivate further exploration of607

optimized local models like Qwen2 (7B).608

6 Conclusion609

In this paper, we presented and evaluated a Time-610

Series Augmented Generation (TSAG) approach,611

implemented as a Tool-Augmented RAG frame-612

work designed to empower LLM agents with re-613

liable quantitative analysis capabilities for finan-614

cial time series Q&A. By orchestrating calls to a615

library of specialized, predefined computational616

tools, TSAG effectively grounds language model617

outputs in verifiable data analysis, addressing criti-618

cal limitations of LLMs in numerical reasoning and619

factuality within the demanding financial domain.620

Our comprehensive experiments, comparing621

multiple state-of-the-art LLM agents (Llama 3.x,622

Qwen2 variants, GPT-4o variants, DeepSeek-V3),623

demonstrate the viability and effectiveness of this624

approach. We show that capable agents like GPT-625

4o and Qwen2 7B, when integrated into TSAG,626

achieve high accuracy and low hallucination in ex-627

ecuting the tool-based pipeline, accurately match-628

ing tool outputs, generating faithful responses with629

minimal hallucination (validated by DeepEval). We630

analyzed performance trade-offs across model size,631

accuracy (RR, MA, LA) and hallucination (HR)632

metrics, latency (SPQ), and consistency (MPE),633

providing insights into agent selection. Further- 634

more, analysis of deterministic (Temperature=0.0) 635

versus stochastic (Temperature=1.0) generation 636

highlights the framework’s stability and potential 637

for tuning based on application requirements for 638

factuality versus linguistic variation. 639

We provide a benchmark that can be used to eval- 640

uate other LLM agents to improve the described 641

evaluation metrics, and can also be extended to ob- 642

tain richer and more functional sets of tools that 643

extend the applicability of TSAG. 644

This work validates tool-augmentation as a pow- 645

erful and pragmatic strategy for building more re- 646

liable, accurate, and interpretable artificial intelli- 647

gence (AI) applications for quantitative financial 648

analysis. Key future directions include expanding 649

the sophistication and coverage of the tool library 650

(including robust prediction models and tools for 651

traditional finance), enhancing the agent’s ability 652

to handle complex multi-step reasoning and natu- 653

ral language ambiguity, and incorporating rigorous 654

uncertainty quantification, while continuing to pri- 655

oritize ethical considerations and responsible AI 656

development. 657

7 Limitations 658

Our work has limitations: 659

• Tool Coverage & Brittleness: Scope lim- 660

ited by predefined tools; cannot answer out-of- 661

scope queries. Performance of the actual non- 662

stub tools depends on actual implementation 663

of them and content of the actual time-series 664

database. Tools may be brittle to API/data 665

format changes. 666

• Tool Correctness: Accuracy hinges on metic- 667

ulous tool implementation and valid data 668

sources. Further work on uncertainty quan- 669

tification (Fons et al., 2024) is also needed. 670

• Natural Language Robustness: Parsing am- 671

biguous or complex natural language queries 672

remains challenging; robustness to query per- 673

mutations needs further testing, as identified 674

in our design. 675

• Static Tools: No dynamic code generation, 676

limiting flexibility compared to some agent ap- 677

proaches. Reliance on LangChain-compatible 678

tooling excluded some models (e.g., online 679

Qwen). 680

8

• Evaluation Scope: Focused on crypto-681

finance Q&A domain; generalization to tradi-682

tional finance requires significant tool adapta-683

tion. Run variability analysis based on 3 seeds684

provides initial insights but more runs would685

be beneficial.686

• Compositionality: Limited exploration of687

multi-tool reasoning chains required for more688

complex analyses.689

• Sensitivity to Agent/Parameters: Perfor-690

mance varies significantly with LLM choice691

and temperature, necessitating careful tuning692

and selection.693

8 Ethical Considerations694

Deploying and using TSAG, especially in produc-695

tion environment, requires addressing ethical con-696

cerns, as follows. (ACL Rolling Review Chairs,697

2023):698

• Potential Risks Improper use of any finan-699

cial instrument cay cause financial damage to700

a user. From this perspective, grounding an701

LLM agent performance with manually prede-702

fined function with control over hallucination703

level, as we do in our work, can mitigate the704

risk. Anyway, using our TSAG framework in705

production, as using any financial instrument706

on the market requires personal responsibility707

and awareness.708

• Personally Identifying Info Or Offensive709

Content: The benchmark we created do not710

include any personally identifying info or of-711

fensive content.712

• Transparency vs. Opacity: Tool use en-713

hances computational transparency. LLM rea-714

soning remains partially opaque; we provide715

code details with tool stubs, TSAG framework716

and evaluation framework.717

• Accuracy and Reliability: Crucial in finance.718

Tool accuracy dependence requires rigorous719

testing. Low hallucination rates are confirmed720

in our study for top performing models. Users721

must understand outputs are tool-based infor-722

mation, not infallible financial advice.723

• Data Bias: In production use, reliance on724

historical time-series data may reflect his-725

torical market biases (e.g., asset popularity,726

exchange-specific patterns). Auditing for bias 727

propagation is needed. 728

• Potential Misuse: Generating convincing 729

analyses requires safeguards against misin- 730

formation/manipulation. Not a substitute for 731

professional advice. 732

• Data Privacy: Uses public data; adaptation 733

for private data requires robust security/pri- 734

vacy protocols. 735

• Computational Resources: LLM inference 736

incurs costs. Experiments used remote ac- 737

cess over Web API to GPT and Qwen LLM- 738

s hosted in the cloud and local LLM host- 739

ing on MSI Raider GE77HX 12UGS note- 740

book with 12th Gen Intel(R) Core(TM) i7- 741

12800HX 2.00 GHz, 32.0 GB RAM, 23.9 GB 742

GPU NVIDIA GeForce RTX 3070 Ti Lap- 743

top GPU. We note the efficiency benefits of 744

capable local models like Qwen2 (7B). 745

• Reproducibility: Enhanced by releasing code 746

for function stubs with tool descriptions, en- 747

tire TSAG framework and evaluation frame- 748

work. API access and specific model versions 749

may limit full replication. 750

• Fairness & Equity: When using the TSAG 751

platform for production purposes, potential 752

biases may arise if the data or actual imple- 753

mentation of real tools favors certain assets or 754

exchanges. Expanding tool coverage requires 755

attention to equitable representation. 756

Adherence to responsible AI principles is 757

paramount. 758

References 759

ACL Rolling Review Chairs. 2023. Responsible NLP 760
Research Checklist. 761

DeepSeek AI. 2024. DeepSeek LLM: Scaling Open- 762
Source Language Models with Long Training. 763
Preprint, arXiv:2405.04434. 764

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 765
Xiaodong Deng, Yang Fan, Wenbin Ge, Yunxiang 766
He, Jianxin Li, Lei Li, Yankai Lin, Jian Long, Peng 767
Lu, Jiaxu Mao, Chengqiang Lu, Jianmin Wang, Wei 768
Wang, Rui Yan, and 9 others. 2024. Qwen2: The 769
New Generation of Qwen Large Language Models. 770
Preprint, arXiv:2406.04728. 771

9

https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2406.04728
https://arxiv.org/abs/2406.04728
https://arxiv.org/abs/2406.04728

George EP Box and Gwilym M Jenkins. 1970. Time772
series analysis: Forecasting and control. Holden-773
Day.774

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie775
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind776
Neelakantan, Pranav Shyam, Girish Sastry, Amanda777
Askell, and 1 others. 2020. Language Models are778
Few-Shot Learners. In Advances in Neural Informa-779
tion Processing Systems 33 (NeurIPS 2020), pages780
1877–1901. Curran Associates, Inc.781

Harrison Chase. 2022. Langchain. https://github.782
com/langchain-ai/langchain.783

Confident AI. 2023. Deepeval: The evalua-784
tion framework for llms. https://github.com/785
confident-ai/deepeval.786

Data Science Dojo. 2023. Langchain787
Agents for Time Series Analysis.788
https://datasciencedojo.com/blog/789
langchain-agents-for-time-series-analysis/.790

Robert F Engle. 1982. Autoregressive conditional het-791
eroscedasticity with estimates of the variance of792
United Kingdom inflation. Econometrica, 50(4):987–793
1007.794

Joan Fons, Javier Conde, Adrián Martín, Paula Gordal-795
iza, and Jordi Vitrià. 2024. MEASURING AND796
MODELING THE IMPACT OF MODEL UNCER-797
TAINTY ON FINANCIAL TIME SERIES PREDIC-798
TION. Preprint, arXiv:2408.14484.799

Gemma Team. 2024. Gemma: Open Models Based800
on Gemini Research and Technology. Preprint,801
arXiv:2403.08295.802

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long803
short-term memory. Neural Computation, 9(8):1735–804
1780.805

Di Jin, Yixin Genc, Eugene Bart, Vick Singh, and806
Mirella Lapata. 2020. Hooks in the Headlines: Learn-807
ing to Generate Headlines with Controlled Hooks. In808
Proceedings of the 2020 Conference on Empirical809
Methods in Natural Language Processing (EMNLP),810
pages 8716–8732.811

Ming Jin, Yifan Chen, Haoming Chen, Qinkai Zheng,812
Chenjuan Guo, Lu Chen, Ruidi Chen, Hassan813
Foroosh, Reza Zandifar, Ramtin Zand, Huajie Shao,814
Shiliang Sun, Bolin Ding, and Liang Wang. 2023.815
Large Language Models for Time Series: A Survey.816
Preprint, arXiv:2310.10195.817

Arnav Kotiyal, Praveen Gujjar J, Guru Prasad M818
S, Raghavendra M Devadas, Vani Hiremani, and819
Pratham Tangade. 2024. Chat with pdf using820
langchain model. In 2024 Second International821
Conference on Advances in Information Technology822
(ICAIT), volume 1, pages 1–4.823

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 824
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 825
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock- 826
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 827
Retrieval-Augmented Generation for Knowledge- 828
Intensive NLP Tasks. Preprint, arXiv:2005.11401. 829

Bryan Lim and Stefan Zohren. 2021. Time se- 830
ries forecasting with deep learning: a survey. 831
Philosophical Transactions of the Royal Society A, 832
379(2194):20200209. 833

Chen Liu, Qiao Jin, Zheyuan Wang, Yuxuan Liang, 834
and B. Aditya Prakash. 2025a. Explainable Multi- 835
modal Time Series Prediction with LLM-in-the-Loop. 836
Preprint, arXiv:2503.01013. Version 1. 837

Chen Liu, Qiao Jin, Yu Zhang, Yifan Zhao, Ajitesh 838
Srivastava, and B. Aditya Prakash. 2025b. Time- 839
CAP: Learning to Contextualize, Augment, and Pre- 840
dict Time Series Events with Large Language Model 841
Agents. Preprint, arXiv:2502.11418. Version 2. 842

Tim Loughran and Bill McDonald. 2011. When is a 843
liability not a liability? Textual analysis, dictionaries, 844
and 10-Ks. The Journal of finance, 66(1):35–65. 845

Chengqiang Lu, Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu 846
Cui, Kai Dang, Yewen Dong, Yang Fan, Wenbin Ge, 847
Yunxiang He, Yue Huang, Luo Ji, Zhengran Jin, Peng 848
Lu, Jiaxu Mao, Run Ruan, Jiaqi Wang, Jianmin Wang, 849
Wei Wang, and 5 others. 2024. Qwen2.5: Advancing 850
Large Language Models in Reasoning, Comprehen- 851
sion, and Safety. Preprint, arXiv:2407.00678. 852

Yunjie Ma, Bingsheng Yao, Quan Tu, Ya Su, Yong Li, 853
and Dongsheng Li. 2024. From News to Forecast: 854
Iterative Event Reasoning in LLM-Based Time Series 855
Forecasting. Preprint, arXiv:2409.17515. Version 1. 856

Meta AI. 2024a. Introducing Meta Llama 3.2. 857

Meta AI. 2024b. Llama 3.1 (8B) Model - Ollama Li- 858
brary. https://ollama.com/library/llama3.1. 859
Accessed: 2025-04-22. 860

OpenAI. 2024a. GPT-4o mini [Model Information]. 861

OpenAI. 2024b. Introducing GPT-4o. 862

Michael Parkinson. 1980. The Extreme Value Method 863
for Estimating the Variance of the Rate of Return. 864
The Journal of Business, 53(1):61–65. 865

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 866
Joseph E. Gonzalez. 2023. Gorilla: Large Language 867
Model Connected with Massive APIs. Preprint, 868
arXiv:2305.15334. 869

Karl Pearson. 1895. Note on Regression and Inheritance 870
in the Case of Two Parents. Proceedings of the Royal 871
Society of London, 58:240–242. 872

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 873
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 874
Cancedda, and Thomas Scialom. 2023. Toolformer: 875
Language Models Can Teach Themselves to Use 876
Tools. Preprint, arXiv:2302.04761. 877

10

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2020.emnlp-main.703
https://aclanthology.org/2020.emnlp-main.703
https://aclanthology.org/2020.emnlp-main.703
https://arxiv.org/abs/2310.10195
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ollama.com/library/llama3.1
https://platform.openai.com/docs/models/gpt-4o-mini
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761

Ruey S Tsay. 2005. Analysis of financial time series,878
volume 543. John Wiley & Sons.879

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob880
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz881
Kaiser, and Illia Polosukhin. 2017. Attention is all882
you need. In Advances in Neural Information Pro-883
cessing Systems 30 (NIPS 2017), pages 5998–6008.884

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,885
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-886
badur, David Rosenberg, and Gideon Mann. 2023.887
BloombergGPT: A Large Language Model for Fi-888
nance. arXiv preprint arXiv:2303.17564.889

Zihao Wu, Cheng Yang, Fan Zhou, Jiaqi Wang, Qiang890
Zhang, Keyu Duan, Yi Yang, and Chenjuan Guo.891
2025. Enhancing Financial Time-Series Forecasting892
with Retrieval-Augmented Large Language Models.893
Preprint, arXiv:2502.05878. Version 2.894

Adam Zaremba, Kacper Chwiałkowski, Tomasz895
Zięba, Piotr Rybinski, and Marcin Andrychowicz.896
2024. Retrieval-Augmented Financial Forecasting.897
Preprint, arXiv:2411.08249.898

A Reproducibility Information899

A.1 Code900

The code for reproducibility of our results is avail-901

able upon request from authors and submitted with902

the paper. The code consists of the following files,903

residing in respective folders, that should be de-904

ployed under common folder called graphRAG (due905

to specific historical reasons).906

1. requirements.txt - list of 3rd party com-907

ponents with identified version numbers re-908

quired to run the following TSAG framework909

and evaluation framework code910

2. tsag/tools.py - implementation of the tools911

as grounding functions912

3. tsag/llm.py - code of the TSAG framework,913

based on LangChain914

4. DeepEval/EvalTsag.py - core code of the915

evaluation framework based on DeepEval916

5. DeepEval/deepeval_custom_llm.py - cus-917

tom code of the evaluation framework for spe-918

cific LLM agents919

6. tests/test_eval_tsag.py — root920

executable evaluation framework921

script used to evaluate specific LLM922

agent with the following command:923

python tests/test_eval_tsag.py924

./tests/benchmark.tsv qwen2.5:7b 925

1.0 3 1,10,100 (see the source file for the 926

description of parameters) 927

A.2 Data 928

The data file represents the benchmark consist- 929

ing of 100 items, described in subsection 4.2 in 930

tab-separated file tests/benchmark.tsv which is 931

expected to reside together evaluation framework 932

script referenced above. The benchmark, which 933

is a scientific artifact resulting from our work, is 934

made publicly available under the terms of the MIT 935

License, specified in the file tests/LICENSE. 936

The intended use of the benchmark is develop- 937

ment and testing existing and future LLM agents 938

against set of tools described in our work. Also, it is 939

intended to have the benchmark extended with new 940

typical questions and answers based on existing set 941

of tools and parameters of respective function or 942

extending the set of tools together with the bench- 943

mark. The benchmark data belongs to financial 944

domain, specific to crypto-finance subject area, in 945

English language. 946

B Implementation Details 947

B.1 Grounding Function (Tool) Summary 948

The grounding function used in the TSAG POC are 949

implemented in Python. These tools expectedly en- 950

capsulate specific analytical logic corresponding to 951

common financial queries accordingly to business 952

specification in Table 2. The stubs of the functions 953

delivered as part of the benchmark presented in this 954

work are containing specific expected responses 955

hard-coded in tsag/tools.py source code accord- 956

ingly to the benchmark in tests/benchmark.tsv. 957

B.2 Parameters and Hyper-parameters 958

The following LLM parameters and hyper- 959

parameters were used, overriding the defaults for 960

respective LLM agents. 961

• LLM temperatures (temperature): [0.0, 1.0] 962

• Random seeds (seed): [1, 10, 100] 963

• Length of LLM context window in tokens 964

(num_ctx): 8192 965

• The maximum number of tokens LLM is al- 966

lowed to generate (num_predict): 512 967

• The maximum number of retries for GPT and 968

DeepSeek LLM agents (max_retries): 2 969

11

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2411.08249

Function Name Description Key Parameters (Defaults) Returns
peak_traded_volume Finds times (e.g., day of week)

with highest volume within pe-
riods, exceeding relative thresh-
old.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’year’)
period_unit: str (default=’week’)
granularity_unit: str (default=’day’)
threshold_percent: float (default=5.0)

list[str]

lowest_traded_volume Finds times with lowest volume
within periods, below relative
threshold.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’year’)
period_unit: str (default=’week’)
granularity_unit: str (default=’day’)
threshold_percent: float (default=5.0)

list[str]

round_the_clock_pattern Combines peak and lowest vol-
ume times for pattern summary.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’year’)
period_unit: str (default=’week’)
granularity_unit: str (default=’day’)
threshold_percent: float (default=5.0)

tuple

abnormal_deviations Finds recent time points with
volume deviations exceeding
historical norms by threshold.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’year’)
period_unit: str (default=’week’)
granularity_unit: str (default=’day’)
threshold_percent: float (default=5.0)

tuple

price Gets the latest price within the
lookback window.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’day’)

float

volatility Calculates historical price
volatility (Parkinson method)
over window.

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’day’)

float

predict_price* Predicts price for the next win-
dow (POC: simple extrapola-
tion).

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’day’)

float

predict_volatility* Predicts volatility for next win-
dow (POC: simple extrapola-
tion).

base_token: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=1)
time_unit: str (default=’day’)

float

correlation_between_exchanges Computes Pearson price correla-
tion across two exchanges.

base_token: str
quote_token: str (default=’USDT’)
exchange_a: str
exchange_b: str
time_interval: int (default=7)
time_unit: str (default=’day’)

float

correlation_between_tokens Computes Pearson price correla-
tion between two tokens on one
exchange.

base_token_a: str
base_token_b: str
quote_token: str (default=’USDT’)
exchange: str (default=’BINANCE’)
time_interval: int (default=7)
time_unit: str (default=’day’)

float

Table 2: Summary of key grounding functions (tools) in TSAG POC. Parameters are listed with type and default
value. *Prediction tools use simple extrapolation.

12

• The maximum number of retries for all970

LLM agents, in case if no text is generated971

(retries): 5972

The search of the parameters and hyper-973

parameters was performed incrementally along974

with development course. Lower numbers or de-975

faults of hyper-parameters were chosen at the be-976

ginning of the study and then we were incremen-977

tally increasing them in the course of debugging978

and benchmarking till the return rate and accuracy979

metrics reached the plateau and stopped improving980

further.981

13

	Introduction
	Related Work
	Methodology: The TSAG Framework
	Architecture
	Workflow
	Grounding Functions (Tools)
	Function Parameters and Defaults
	LLM Agents

	Experimental Setup
	Tasks
	Benchmark and Test Corpus
	Evaluation Framework and Metrics
	Comparative Analysis
	Implementation Details & Hyper-parameters

	Results and Discussion
	Quantitative Results
	Qualitative Analysis
	Discussion

	Conclusion
	Limitations
	Ethical Considerations
	Reproducibility Information
	Code
	Data

	Implementation Details
	Grounding Function (Tool) Summary
	Parameters and Hyper-parameters

