Time series Augmented Generation for Financial Applications

Anonymous ACL submission

Abstract

Financial analysis demands bridging natural
language queries with complex quantitative
time series (TS) computations. While Large
Language Models (LLMs) excel at language,
they often falter on precise numerical reason-
ing and grounding in volatile financial data.
We propose Time Series Augmented Gener-
ation (TSAG), an alternative to conventional
Retrieval-Augmented Generation (RAG) ap-
proach. TSAG relies on tool-based infrastruc-
ture provided by LangChain framework and
utilizes an LLM agent to parse natural lan-
guage queries, select and invoke appropriate
predefined time series analysis tools, and syn-
thesize the tool outputs into coherent, accu-
rate responses. We implement and evaluate
TSAG, initially focusing on a proof-of-concept
(POC) with cryptocurrency data and robust, pre-
defined tools for seasonality, volatility, price,
and correlation analysis. We compare multi-
ple LLM agents (Llama 3.x, Qwen?2 variants,
GPT-4o0 variants, DeepSeek-V3 API). We pro-
vide evaluation benchmark which includes a
set of typical questions with expected answers
and framework to evaluate the LLM perfor-
mance against them. The framework evaluates
metrics such as Return Rate, Match Accuracy,
LLM-accessed Accuracy, Hallucination Rate,
and query latency as Seconds per Query (SPQ).
Results demonstrate TSAG, particularly with
capable agents like GPT-40 and Qwen?2 (7B),
achieves high levels of accuracy and low hallu-
cination rates, validating the tool-based LLM
integration approach for financial applications.

1 Introduction

The financial domain demands timely and accurate
insights derived from complex, dynamic data (Tsay,
2005). Natural language offers an intuitive inter-
face for accessing this information, yet effectively
bridging conversational queries with the necessary
underlying quantitative analysis remains a signifi-
cant hurdle. Large Language Models (LLMs) have

demonstrated remarkable capabilities in natural lan-
guage understanding and generation (Brown et al.,
2020; Wu et al., 2023). However, their applica-
tion to finance is often constrained by limitations
in precise numerical computation, robust temporal
reasoning, and reliable grounding in volatile, high-
frequency financial time series data (Fons et al.,
2024). Directly applying LLMs to tasks requiring
high analytical fidelity can lead to inaccurate or
unsubstantiated outputs. Conversely, traditional
quantitative models and libraries (Box and Jenkins,
1970), while accurate, lack accessible natural lan-
guage interfaces, limiting their usability for broader
audiences.

This capability gap hinders the seamless integra-
tion of sophisticated data analysis into interactive fi-
nancial workflows. Standard Retrieval-Augmented
Generation (RAG) systems primarily retrieve tex-
tual documents (Lewis et al., 2020) and are insuffi-
cient for queries demanding real-time computation
over numerical time series. Recent RAG adapta-
tions for time series forecasting focus on retrieving
similar historical data sequences (Zaremba et al.,
2024; Wu et al., 2025), a different task from exe-
cuting diverse, on-demand analytical computations
required for complex financial question-answering
(Q&A) systems.

To address these limitations, we propose Time
Series Augmented Generation (TSAG), a frame-
work conceptualized as a Tool-Augmented RAG
system, based on LangChain infrastructure (Kotiyal
et al., 2024). TSAG employs an LLM agent not
merely as a text processor, but as an orchestra-
tor that translates natural language queries into
calls to specialized, predefined financial time se-
ries analysis "grounding" functions (tools in terms
of LangChain). This architecture synergistically
combines the LLM’s linguistic competence and rea-
soning capacity with the computational precision
and verifiability of dedicated analytical tools oper-
ating on grounded data. By explicitly delegating

quantitative tasks to reliable tools, TSAG aims to

significantly enhance the accuracy, reliability, and

interpretability of LLM-driven financial analysis

compared to end-to-end models or less constrained

agentic approaches (Data Science Dojo, 2023).
The main contributions of this work are:

* We design and implement TSAG, a novel
Tool-Augmented RAG framework for finan-
cial Q&A via LLM agents and special-
ized tools, demonstrating a proof-of-concept
within the cryptocurrency domain.

* We define and implement a library of special-
ized time series analysis tools targeting com-
mon financial queries related to seasonality,
volatility, price dynamics, and correlation.

* We propose and apply a comprehensive,
multi-dimensional evaluation benchmark and
framework assessing execution success (Re-
turn Rate), accuracy based on query answer
matching expected patterns (Match Accu-
racy), accuracy based on evaluation of answer
against complete expected answer (evaluated
by DeepEval (Confident Al, 2023)), Halluci-
nation Rate(evaluated by DeepEval, and run-
time efficiency as response latency measured
as average Seconds per Query.

* We provide extensive empirical validation
comparing multiple modern LLM agents
(Llama 3.x, Qwen2 variants, GPT-40 variants,
DeepSeek) within TSAG, analyzing perfor-
mance trade-offs with different extreme set-
tings for temperature - Temperature = 0.0 for
the most conservative response and Tempera-
ture = 1.0 for the greatest diversity.

* We publicly release our evaluation bench-
mark consisting of 100 questions with
expected patterns and full answers
(benchmark.tsv) and evaluation frame-
work (test_eval_tsag.py.py) to facilitate
reproducibility and encourage further re-
search into reliable, tool-grounded financial
Al assistants.

This paper presents the related work (section 2),
describes the TSAG framework (section 3), experi-
mental setup (section 4) and results (section 5), and
derives the conclusion (section 6).

2 Related Work

Our work intersects with Large Language Models
(LLMs) in finance, time series analysis, Retrieval-
Augmented Generation (RAG), and the paradigm
of tool-based LLM agents.

LLMs in Finance LLMs have been applied to
various financial tasks, including sentiment anal-
ysis (Loughran and McDonald, 2011), news sum-
marization (Jin et al., 2020), report generation,
and forecasting. Domain-specific models like
BloombergGPT (Wu et al., 2023) show strong per-
formance on financial NLP benchmarks. How-
ever, ensuring numerical accuracy and grounding in
real-time quantitative data remains a challenge for
these models when faced with complex analytical
queries, which motivates our tool-based approach.

Time Series Analysis and Forecasting Tradi-
tional methods like ARIMA (Box and Jenkins,
1970) and GARCH (Engle, 1982), along with
deep learning models like LSTMs (Hochreiter and
Schmidhuber, 1997) and Transformers (Vaswani
et al., 2017; Lim and Zohren, 2021), are widely
used for financial time series, typically focusing on
prediction. Integrating complex reasoning or natu-
ral language interaction for diverse Q&A tasks is
less common. Furthermore, understanding model
uncertainty in time series predictions is critical
(Fons et al., 2024), reinforcing the need for reli-
able, verifiable computation where possible.

Retrieval-Augmented Generation (RAG) for
Time Series Standard RAG enhances LLMs by
retrieving relevant textual documents (Lewis et al.,
2020). Adapting RAG for time series is an active
research area. Recent works focus on retrieving rel-
evant past time series segments to improve fore-
casting. Zaremba et al. (2024) introduced Retrieval
Augmented Forecasting (RAF), using embedding
similarity to find relevant historical patterns for
Time Series Foundation Models (TSFMs). Simi-
larly, Wu et al. (2025) proposed FinSeer, using an
LLM-enhanced retriever and specific training ob-
jectives to find historically significant sequences for
financial forecasting with their StockLLM model.
While highly relevant in applying RAG to financial
time series, these approaches focus on augment-
ing forecasting tasks by retrieving similar data
sequences. Our TSAG framework differs signifi-
cantly by employing an agent to select and invoke
computational tools based on the query’s analytical

requirements, generating answers grounded in the
tool’s output rather than retrieved historical data.

Tool-Using LL.Ms and Agents for Time Series
A significant recent trend involves augmenting
LLMs with the ability to use external tools or
APIs. Models like Toolformer (Schick et al., 2023)
learn implicit API calls, while frameworks like
LangChain (Chase, 2022) and systems using ex-
plicit function calling like Gorilla (Patil et al., 2023)
enable LLMs to act as agents orchestrating external
computations. The application of LLMs to time se-
ries analysis, including the combination with tools,
is recognized as a key research direction (Jin et al.,
2023). Various agentic architectures are being ex-
plored for time series. For instance, Ma et al. (2024)
use LLM agents to reason about and integrate news
events (external text) for forecasting. Liu et al.
(2025b) (TimeCAP) employ a two-agent system
where one LLM generates textual context from the
time series, aiding the second agent in event predic-
tion. Liu et al. (2025a) (TimeXL) utilize a multi-
modal encoder and three collaborating LLMs (pre-
dict, reflect, refine) for explainable prediction. Our
TSAG aligns with the tool-using agent paradigm
but distinguishes itself by focusing specifically on
financial Q&A, utilizing a curated set of prede-
fined, reliable quantitative '"grounding'' func-
tions as tools, and tasking a single LLM agent (in
the current architecture) with orchestrating the en-
tire process from NL query parsing to grounded
NL response synthesis. This emphasizes verifiable
computation for accuracy in the financial domain,
contrasting with approaches focused solely on fore-
casting, integrating text, or using more complex
multi-agent loops.

3 Methodology: The TSAG Framework

TSAG operates as a Tool-Augmented RAG system
using an LLM agent to orchestrate specialized tools
(Figure 1). This approach leverages predefined,
reliable computations, contrasting with open-ended
code generation or embedding-based retrieval.

3.1 Architecture

The architecture consists of four layers, presented
in Figure 1.

First, there is a User Layer with "front-end" com-
ponents which may be represented by a Telegram
bot, Jupyter Notebook for research purposes, any
end-user application (e.g. in Python) or the Eval-
uation Agent as part of the evaluation framework

DB Layer Tools Layer LLM Layer User Layer
-
Bot
TSAG
Time-Series tools TSAG.
DB API (real) (LangChain)
Jupyter
Notebook
Python
LLM
TSAG B . Evaluation
tools Data 1 - Agent
(stubs) j (DeepEval)
Evaluation - Benchmark Driven Development (BDD) Framework

Figure 1: The TSAG Tool-Augmented RAG architec-
ture and workflow.

based on DeepEval (Confident Al, 2023) being
presented in this paper. Second, the LLM Layer
consists of the TSAG kernel based on LangChain
(Chase, 2022), connecting to one of the selected
LLM agents - either self-hosted locally or cloud-
hosted such as ChatGPT or DeepSeek. Third, the
Tools Layer contains the tools plugged into the
TSAG kernel as a "grounding" functions. Finally,
the time series (TS) database layer (DB Layer) pro-
vides API for accessing the TS data.

For the evaluation purposes discussed in this pa-
per, the Tools Layer contains grounding function
"stubs" with expected responses hard-coded accord-
ing to the Benchmark Data. The latter makes it pos-
sible to abstract from specific transient temporal
data in the TS DB to perform Benchmark-Driven
Development (BDD) of the TSAG framework on
the basis of the Benchmark Data, supporting desig-
nated set of grounding functions.

3.2 Workflow

Given a natural language query (NLQ), TSAG pro-
ceeds via LLM-orchestrated steps to obtain a natu-
ral language response (NLR):

1. Query Parsing & Tool Selection: LL.M agent
parses NLQ, identifies intent, extracts pa-
rameters (using defaults from subsection 3.4)
and selects tool(s) (subsection 3.3) based on
prompt descriptions (subsection 3.5.

2. Tool Execution: System invokes selected
tool(s) (e.g., volatility(...) according to
Parkinson (1980)) via predefined Python code,
querying data sources and performing verifi-
able TS computation.

3. Result Synthesis: Tool returns structured re-
sult (e.g., {'volatility_percent': 5.03}).

4. Response Generation: LLM agent synthe-
sizes result into a grounded NLR answering
the NLQ.

This structured workflow ensures calculations are
handled by dedicated, verifiable logic.

3.3 Grounding Functions (Tools)

A core TSAG component is a library of special-
ized Python functions serving as tools. This proof-
of-concept (POC) focuses on cryptocurrency trad-
ing data sourced from a Time-Series Database, as
shown in Figure 1. We implement tools based on
the NLQ — Function — NLR structure identified
in our design. In this work, in order to provide
an evaluation criterion, all real implementations
of functions are replaced by corresponding “‘surro-
gate” stubs with predefined responses, depending
on the input parameters. The initial tool set, prior-
itizing reliability for this study, covers the follow-
ing:

* Seasonality/Pattern Analysis:
Tools (peak_traded_volume,
lowest_traded_volume,
round_the_clock_pattern,
abnormal_deviations) identifying re-
curring/anomalous volume patterns via
statistical analysis.

* Price and Volatility Analysis: Tools (price,
volatility) retrieving current data or cal-
culating historical metrics (e.g., Parkinson
volatility (Parkinson, 1980)) along with re-
spective prediction tools (predict_price,
predict_volatility).

* Correlation Analysis: Tools
(correlation_between_exchanges,
correlation_between_tokens) com-

puting Pearson correlation coefficients
(Pearson, 1895) across different instruments
and exchanges.

* Metadata Retrieval: Tools
(get_base_tokens, get_exchanges,
get_valid_time_units, etc.) that provide
valid parameters for the tools listed above.

Future work includes implementing more sophisti-
cated "real" functions and expanding the scope of
applications to traditional finance.

3.4 Function Parameters and Defaults

The LLM extracts parameters from the NLQ.
Predefined defaults (e.g., quote_token="'USDT"',
exchange="BINANCE ') handle short queries with
poorly defined input parameters.

3.5 LLM Agents

We evaluated several LLMs (Table 1) as agents, se-
lected to explore trade-offs between size, cost, accu-
racy, hallucinations and run-time performance. Ini-
tial experiments involved use of different prompts,
however at some point we have sorted out that us-
ing standard LangChain contextualization together
with sufficient context size does not require spe-
cific prompts in order to maximize accuracy and
minimize hallucinations. In particular, we discov-
ered that context of 8192 is sufficient for holding
the tool context for our set of tools, while smaller
contexts of 4096 and default 2048 is insufficient.
Specifically, insufficient context does not fit all
tools to have their parameters (function arguments)
identified properly.

4 Experimental Setup

We evaluated TSAG reliability, accuracy, level of
hallucinations, and run-time efficiency across dif-
ferent LLM agents.

4.1 Tasks

We run the evaluation framework against bench-
mark consisting of 100 natural language questions
with different levels of brevity corresponding to the
tools described above in subsection 3.3: seasonal-
ity and patterns, price/volatility, correlation, and
metadata retrieval.

4.2 Benchmark and Test Corpus

The test corpus used for evaluation consists of 100
items each represented by triplet derived from the
original business specification, including the origi-
nal natural language query (NLQ, as a "zero shot"
sample), a set of expected words or numbers to be
found in the text of the natural language response
(NLR), and the full expected NLR text in the ex-
pected wording at the expected level of detail.

4.3 Evaluation Framework and Metrics

We evaluated across LLM agents using the eval-
uation framework based on DeepEval (Confident
Al, 2023), having the following metrics evaluated
based on the benchmark, having the DeepEval

backed up with locally hosted Qwen2 7B LLM
agent (Bai et al., 2024).

¢ Return Rate (RR): For each of the bench-
mark items - end-to-end execution success
indicator, set to 1.0 if any non-empty text re-
sult is returned by the TSAG framework in
response to the benchmark NLQ, and 0.0 oth-
erwise. Across the entire benchmark - the
average result, the higher the better.

e Match Accuracy (MA): For each of the
benchmark items - Presence of all of the ex-
pected words or numbers in the benchmark
indicated as 1.0 in case for the match, and 0.0
otherwise. Across the entire benchmark - the
average result, the higher the better.

e LLM-accessed Accuracy (LA): For each of
the benchmark items - measure of accuracy
comparing the expected NLR from benchmark
against the actual NLR, assessed by DeepEval
(Confident Al, 2023) in the range between 0.0
and 1.0. Across the entire benchmark - the
average result, the higher the better.

¢ Hallucination Rate (HR): For each of the
benchmark items - degree of contextual diver-
gence of the actual NLR text away from the
expected one, assessed by DeepEval in the
range between 0.0 and 1.0. Across the entire
benchmark - the average result, the lower the
better.

* Seconds per Query (SPQ): For each of the
benchmark items - the amount of seconds to
obtain NLR given NLQ. Across the entire
benchmark - the average result, the lower the
better.

4.4 Comparative Analysis

Our primary analysis compares the performance of
different LLM agents, hosted locally or available
online in the cloud, given the TSAG framework
(Table 1) to identify models best suited for orches-
trating financial tools, a key goal of our work. We
evaluated these LLM agents against our benchmark.
As expected, raw models not augmented with the
tools provided ultimate Return Rate but showed
zero Match Accuracy and negligible LLM-assessed
Accuracy with high Hallucination Rate, confirming
TSAG’s necessity for grounded quantitative Q&A.
These baseline results are omitted from Table 1 for
clarity.

4.5 Implementation Details &
Hyper-parameters

For TSAG development and evaluation we
used Python 3.11, langchain 0.3.20, langchain-
core 0.3.45, langchain-deepseek-official 0.1.0,
langchain-ollama 0.2.2, langchain-openai 0.3.8,
deepeval 2.5.4. LLM agents hosted locally were
accessed via Ollama v0.1.32 for local models and
official vendor APIs (OpenAl, DeepSeek) accessed
in April 2025. The following models were evalu-
ated.

* Llama 3.1 (8B) (Meta Al, 2024b)
* Llama 3.2 (3.2B) (Meta Al, 2024a)
* Qwen2 (0.5B, 1.5B, 7B) (Bai et al., 2024)

« Qwen2.5 (0.5B, 1.5B, 3B, 7B) (Lu et al.,
2024)

* GPT-40 (OpenAl, 2024b)
* GPT-40-mini (OpenAl, 2024a)
* DeepSeek-V3 (API) (Al 2024)

Some LLM agents that we were considering to
use initially, including local Gemma 7B (Gemma
Team, 2024), DeepSeek hosted online (Al, 2024),
and online Qwen (Lu et al., 2024) were excluded
from evaluation results due to incompatibility
with the required tooling in the used version of
LangChain (Kotiyal et al., 2024).

We evaluated the LLM agents with different
temperatures: Temperature=0.0 was used for them
most "conservative" responses (Figure 2), Temper-
ature=1.0 was used for the greatest "diversity". In
case of Temperature=1.0, we used 3 different ran-
dom seeds [1, 10, 100] for 3 runs (Table 1, Fig-
ure 3).

The following hardware was used for the eval-
uation: MSI Raider GE77HX 12UGS notebook
with 12th Gen Intel(R) Core(TM) i7-12800HX
2.00 GHz, 32.0 GB RAM, 23.9 GB GPU NVIDIA
GeForce RTX 3070 Ti Laptop GPU. The compu-
tational budget in hours was taking about 2 hours
for each run of the benchmark including TSAG
with LLM agent execution and evaluation carried
our with DeepEval. The total research time with
all experimental runs and debugging was about 3
machine-months.

Sb qwen2.5:3b qwen2.5:7b gpt-do-mini gpt-d0 deepseek-chat

Figure 2: TSAG performance with different LLM agents
(Temperature = 0.0). Metrics: return rate, match accu-
racy, LLM-measured accuracy and hallucination rate
measured by DeepEval framework. Figure 3 shows re-
sults for Temperature = 1.0.

Model (T=0.0)

5 Results and Discussion

We analyzed the performance of TSAG, focusing
on comparing LLM agents, using multiple runs
with different random seeds with non-zero temper-
ature to assess the reliability of our evaluations.

5.1 Quantitative Results

Table 1 and Figure 2 summarize the average perfor-
mance of TSAG agents at Temperature=0.0. Fig-
ure 3 visualizes these averages at Temperature=1.0
and run variability based on three random seeds
with indication of mean percentage error (MPE)
and indication of respective error bars indicating
reliability of our assessments.

Our quantitative evaluation reveals several key
insights into TSAG performance. Firstly, the frame-
work’s viability is confirmed by high Return Rate
values for most agents (Table 1), indicating suc-
cessful orchestration of the NLQ-to-NLR pipeline.
Secondly, Match Accuracy results highlight the
variance in LLM agents’ ability to correctly parse
queries, invoke tools and generate output; state-of-
the-art models like GPT-40 and Qwen2 7B achieve
perfect scores, whereas most of smaller quanti-
fied models (Llama 3.2B, Qwen2.5 1.5B) strug-
gle more, suggesting complex parameter extraction
and response generation from tool output remains
challenging for less capable agents. Some of the
smallest models (Qwen2 0.5-1.5B, Qwen2.5 0.5B)
delivering no responses at all with Return Rate at
0.0 were not included into resulting analysis at all.

Response quality, assessed via DeepEval, shows
GPT-40 minimizes Hallucination Rate (0.02),
demonstrating exceptional reliability in synthesis.
Qwen2 7B leads slightly in average LLM-assessed
Accuracy (0.66), indicating its responses closely
mirror tool outputs, while also maintaining low Hal-
lucination Rate (0.08). The variability across runs,

indicated by MPE error bars (Figure 3), suggests
good consistency for top models like GPT-40 and
Qwen2 7B, whereas models with lower average
erformance also tend to exhibit higher variability
between runs.

Comparing the deterministic "conservative" per-
formance at Temperature=0.0 shown in Figure 2
with the "diverse" (which can be considered "ex-
ploratory") results at Temperature=1.0 shown in
Figure 3a shows that the top-performing models
deterministically maintain high Return Rate, Match
Accuracy, LLM-assessed Accuracy, and low Hallu-
cination Rate. Zero temperature generally leads to
slight reductions in hallucination across the board,
reinforcing its suitability for high-stakes applica-
tions requiring maximal factuality.

Latency analysis (Figure 3b) reveals significant
differences. Local models like Qwen2 7B (2.2s)
and the smaller Qwen2.5 3B (2.8s) offer fast re-
sponses. API models vary, with GPT-40-mini (2.4-
3s) being relatively quick, while DeepSeek-V3
exhibited high latency (14s) in our tests. This
highlights a crucial trade-off between accessing
potentially highest-performing proprietary models
versus leveraging efficient open models for lower
latency.

Based on the experiment with "conservative"
Temperature=0.0 setting, the Qwen2 7B and GPT-
4o appear to be equally good options for either local
self-hosting on proprietary or leased hardware or
remote access on subscription basis (Figure 2).

Based on the experiment with "diversity" Tem-
perature=1.0 setting, both remotely accessible
cloud versions of GPT-40 and GPT-40-mini ap-
pear equal to Qwen2 7B in terms of accuracy and
hallucinations, however they both become signif-
icantly less attractive due to increased response
times (Figure 3).

In both cases of the temperature, DeepSeek-V3
hosted online appeared little behind the top com-
petitors in terms of accuracy and hallucinations,
and losing dramatically with largest response time.

=]

5.2 Qualitative Analysis

Manual review of generated responses comple-
ments the quantitative findings. Successful cases
demonstrate the LLM agent’s ability to parse
complex natural language, correctly identify and
parameterize the appropriate tool (e.g., handling
multiple constraints in a query handled by func-
tion like peak_traded_volume(base_token,
quote_token, exchange, time_interval,

LLM agent RRT MAT LAt HR| SPQ/
Llama 3.1 (8B) (Meta Al 2024b) 098 090 060 013 46
Llama 3.2 (3.2B) (Meta AL 20242) 091 076 053 026 27
Qwen2 (7B) (Bai et al., 2024) 100 100 066 008 22
Qwen2.5 (1.5B) (Lu et al., 2024) 080 066 047 037 57
Qwen2.5 (3B) (Lu et al., 2024) 089 082 055 019 28
Qwen2.5 (7B) (Lu et al., 2024) 090 086 059 017 53
GPT-40 (API) (OpenAl, 2024b) 100 100 065 002 24
GPT-40-mini (API) (OpenAl 2024a) 1.00 097 059 004 29
DeepSeek-V3 (AP) (AL, 2024) 100 092 058 008 141

Table 1: TSAG performance with different LLM agents (Temperature = 0.0). Metrics: return rate (RR), match
accuracy (MA), LLM-measured accuracy (LA) measured by DeepEval framework, hallucination rate (HR) measured
by DeepEval framework, seconds spent by query (SPQ). Arrows pointing up (1) indicate the greater the better.
Arrows pointing down (J.) indicate the smaller the better. Best results are highlighted as "bold".

1

8

6

Metric Value

a

, B I I = HHN. HEED
llama3.1:8b llama3.2:3b qwen2:7b qwen2.5:1.5b qwen2.5:3b qwen2.5:7b gpt-do-mini gpt-do deepseek-chat
)]

Model(T=1.0, Seeds=[1,10,100.

Seconds

o

llama3.1:8b llama3.2:3b eepseek-chat

Model

(a) Metrics: return rate, match accuracy, LLM-measured accu- (b) Seconds spent by query (SPQ). Use of GPT and especially

racy and hallucination rate measured by DeepEval framework.

DeepSeek takes longer, compared to locally hosted models.

Figure 3: TSAG performance with different LLM agents as average over 3 runs (Temperature = 1.0). Error bars
indicate run variability as mean percentage error (MPE). Figure 2 shows results for Temperature = 0.0.

time_unit, period_unit, granularity_unit,
threshold_percent)), and synthesize the numer-
ical or list-based output into a fluent, accurate
sentence in natural language. For example, given
"What was the price correlation between BTC and
ETH quoted in USDT on BINANCE exchange
in the past 7 days?", a high-performing agent
correctly invokes correlation_between_tokens
with extracted parameters and generates a response
like "The price correlation between tokens BTC
and ETH quoted in USDT on BINANCE exchange
in the past 7 days trading window is 1.0." Common
failure modes, particularly with less capable
agents or ambiguous queries, included selecting
an incorrect tool, failing to extract all necessary
parameters (relying incorrectly on defaults), or
minor hallucinations where the synthesized text
slightly misrepresents the exact nuance of the
tool’s output (though major fabrications were rare
with top models, reflected in low HR scores).

5.3 Discussion

The experimental results strongly validate Time-
Series Augmented Generation (TSAG) approach
for enabling reliable quantitative Q&A over finan-

cial time series using LLMs. By delegating com-
putation to predefined, verifiable tools, TSAG ef-
fectively grounds LLM responses, achieving high
accuracy scores (Table 1) and mitigating the in-
herent weaknesses of LLMs in complex numeri-
cal reasoning (Fons et al., 2024). The comparison
across different agents underscores the critical role
of the LLM’s underlying capabilities; models like
GPT-40 and Qwen?2 (7B) excel at the multi-step rea-
soning involved in parsing, tool selection/invoca-
tion, and synthesis. The performance drop-off with
smaller models suggests that robust instruction-
following and parameter extraction are non-trivial
requirements for successful tool orchestration in
this domain.

Our analysis of run variability (MPE error bars,
Figure 3) indicates good stability for the top-
performing models across different random seeds
with high temperature, lending confidence to their
reliability. The comparison between Tempera-
ture=0.0 (Figure 2) and Temperature=1.0 average
results (Figure 3a) suggests that while deterministic
generation slightly reduces hallucination, perfor-
mance on core accuracy metrics remains high for
capable agents across these temperatures, offering

flexibility depending on application needs (consis-
tency vs. minor linguistic variation).

The TSAG approach, using predefined tools,
offers significant advantages in terms of reliabil-
ity and interpretability compared to alternatives
considered in our design phase, such as agents
generating Python code on the fly (Data Science
Dojo, 2023) or end-to-end fine-tuning of a Large
Language-Numeric Model (LLNM). While less
flexible than code generation, the verifiable nature
of the tools is paramount in the high-stakes finan-
cial domain. The challenges encountered, primarily
related to natural language ambiguity and tool cov-
erage, highlight key areas for future work. Improv-
ing the TSAG robustness through advanced prompt-
ing, agent fine-tuning, or incorporating query clar-
ification steps could enhance performance. Ex-
panding the tool library, potentially incorporating
more sophisticated forecasting models beyond the
current POC stubs, and developing mechanisms
for multi-tool composition are necessary steps to
broaden TSAG’s analytical capabilities and address
more complex financial queries. The latency differ-
ences observed also motivate further exploration of
optimized local models like Qwen2 (7B).

6 Conclusion

In this paper, we presented and evaluated a Time-
Series Augmented Generation (TSAG) approach,
implemented as a Tool-Augmented RAG frame-
work designed to empower LLM agents with re-
liable quantitative analysis capabilities for finan-
cial time series Q&A. By orchestrating calls to a
library of specialized, predefined computational
tools, TSAG effectively grounds language model
outputs in verifiable data analysis, addressing criti-
cal limitations of LLMs in numerical reasoning and
factuality within the demanding financial domain.

Our comprehensive experiments, comparing
multiple state-of-the-art LLM agents (Llama 3.x,
Qwen?2 variants, GPT-40 variants, DeepSeek-V3),
demonstrate the viability and effectiveness of this
approach. We show that capable agents like GPT-
40 and Qwen2 7B, when integrated into TSAG,
achieve high accuracy and low hallucination in ex-
ecuting the tool-based pipeline, accurately match-
ing tool outputs, generating faithful responses with
minimal hallucination (validated by DeepEval). We
analyzed performance trade-offs across model size,
accuracy (RR, MA, LA) and hallucination (HR)
metrics, latency (SPQ), and consistency (MPE),

providing insights into agent selection. Further-
more, analysis of deterministic (Temperature=0.0)
versus stochastic (Temperature=1.0) generation
highlights the framework’s stability and potential
for tuning based on application requirements for
factuality versus linguistic variation.

We provide a benchmark that can be used to eval-
uate other LLM agents to improve the described
evaluation metrics, and can also be extended to ob-
tain richer and more functional sets of tools that
extend the applicability of TSAG.

This work validates tool-augmentation as a pow-
erful and pragmatic strategy for building more re-
liable, accurate, and interpretable artificial intelli-
gence (Al) applications for quantitative financial
analysis. Key future directions include expanding
the sophistication and coverage of the tool library
(including robust prediction models and tools for
traditional finance), enhancing the agent’s ability
to handle complex multi-step reasoning and natu-
ral language ambiguity, and incorporating rigorous
uncertainty quantification, while continuing to pri-
oritize ethical considerations and responsible Al
development.

7 Limitations

Our work has limitations:

* Tool Coverage & Brittleness: Scope lim-
ited by predefined tools; cannot answer out-of-
scope queries. Performance of the actual non-
stub tools depends on actual implementation
of them and content of the actual time-series
database. Tools may be brittle to API/data
format changes.

* Tool Correctness: Accuracy hinges on metic-
ulous tool implementation and valid data
sources. Further work on uncertainty quan-
tification (Fons et al., 2024) is also needed.

* Natural Language Robustness: Parsing am-
biguous or complex natural language queries
remains challenging; robustness to query per-
mutations needs further testing, as identified
in our design.

* Static Tools: No dynamic code generation,
limiting flexibility compared to some agent ap-
proaches. Reliance on LangChain-compatible
tooling excluded some models (e.g., online

Qwen).

* Evaluation Scope: Focused on crypto-
finance Q&A domain; generalization to tradi-
tional finance requires significant tool adapta-
tion. Run variability analysis based on 3 seeds
provides initial insights but more runs would
be beneficial.

* Compositionality: Limited exploration of
multi-tool reasoning chains required for more
complex analyses.

* Sensitivity to Agent/Parameters: Perfor-
mance varies significantly with LLM choice
and temperature, necessitating careful tuning
and selection.

8 Ethical Considerations

Deploying and using TSAG, especially in produc-
tion environment, requires addressing ethical con-
cerns, as follows. (ACL Rolling Review Chairs,
2023):

* Potential Risks Improper use of any finan-
cial instrument cay cause financial damage to
a user. From this perspective, grounding an
LLM agent performance with manually prede-
fined function with control over hallucination
level, as we do in our work, can mitigate the
risk. Anyway, using our TSAG framework in
production, as using any financial instrument
on the market requires personal responsibility
and awareness.

* Personally Identifying Info Or Offensive
Content: The benchmark we created do not
include any personally identifying info or of-
fensive content.

* Transparency vs. Opacity: Tool use en-
hances computational transparency. LLM rea-
soning remains partially opaque; we provide
code details with tool stubs, TSAG framework
and evaluation framework.

¢ Accuracy and Reliability: Crucial in finance.
Tool accuracy dependence requires rigorous
testing. Low hallucination rates are confirmed
in our study for top performing models. Users
must understand outputs are tool-based infor-
mation, not infallible financial advice.

* Data Bias: In production use, reliance on
historical time-series data may reflect his-
torical market biases (e.g., asset popularity,

exchange-specific patterns). Auditing for bias
propagation is needed.

* Potential Misuse: Generating convincing
analyses requires safeguards against misin-
formation/manipulation. Not a substitute for
professional advice.

* Data Privacy: Uses public data; adaptation
for private data requires robust security/pri-
vacy protocols.

* Computational Resources: LLM inference
incurs costs. Experiments used remote ac-
cess over Web API to GPT and Qwen LLM-
s hosted in the cloud and local LLM host-
ing on MSI Raider GE77HX 12UGS note-
book with 12th Gen Intel(R) Core(TM) i7-
12800HX 2.00 GHz, 32.0 GB RAM, 23.9 GB
GPU NVIDIA GeForce RTX 3070 Ti Lap-
top GPU. We note the efficiency benefits of
capable local models like Qwen2 (7B).

* Reproducibility: Enhanced by releasing code
for function stubs with tool descriptions, en-
tire TSAG framework and evaluation frame-
work. API access and specific model versions
may limit full replication.

* Fairness & Equity: When using the TSAG
platform for production purposes, potential
biases may arise if the data or actual imple-
mentation of real tools favors certain assets or
exchanges. Expanding tool coverage requires
attention to equitable representation.

Adherence to responsible Al principles is
paramount.

References

ACL Rolling Review Chairs. 2023. Responsible NLP
Research Checklist.

DeepSeek Al 2024. DeepSeek LLM: Scaling Open-
Source Language Models with Long Training.
Preprint, arXiv:2405.04434.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yunxiang
He, Jianxin Li, Lei Li, Yankai Lin, Jian Long, Peng
Lu, Jiaxu Mao, Chengqiang Lu, Jianmin Wang, Wei
Wang, Rui Yan, and 9 others. 2024. Qwen2: The
New Generation of Qwen Large Language Models.
Preprint, arXiv:2406.04728.

https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2406.04728
https://arxiv.org/abs/2406.04728
https://arxiv.org/abs/2406.04728

George EP Box and Gwilym M Jenkins. 1970. Time
series analysis: Forecasting and control. Holden-
Day.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language Models are
Few-Shot Learners. In Advances in Neural Informa-
tion Processing Systems 33 (NeurIPS 2020), pages
1877-1901. Curran Associates, Inc.

Harrison Chase. 2022. Langchain. https://github.
com/langchain-ai/langchain.

Confident Al 2023.
tion framework for 1lms.
confident-ai/deepeval.

Deepeval: The evalua-
https://github.com/

Data Science Dojo. 2023.
Agents for Time Series
https://datasciencedojo.com/blog/

Langchain
Analysis.

langchain-agents-for-time-series-analysis/.

Robert F Engle. 1982. Autoregressive conditional het-
eroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica, 50(4):987—
1007.

Joan Fons, Javier Conde, Adrian Martin, Paula Gordal-
iza, and Jordi Vitria. 2024. MEASURING AND
MODELING THE IMPACT OF MODEL UNCER-
TAINTY ON FINANCIAL TIME SERIES PREDIC-
TION. Preprint, arXiv:2408.14484.

Gemma Team. 2024. Gemma: Open Models Based
on Gemini Research and Technology. Preprint,
arXiv:2403.08295.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735—
1780.

Di Jin, Yixin Genc, Eugene Bart, Vick Singh, and
Mirella Lapata. 2020. Hooks in the Headlines: Learn-
ing to Generate Headlines with Controlled Hooks. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8716-8732.

Ming Jin, Yifan Chen, Haoming Chen, Qinkai Zheng,
Chenjuan Guo, Lu Chen, Ruidi Chen, Hassan
Foroosh, Reza Zandifar, Ramtin Zand, Huajie Shao,
Shiliang Sun, Bolin Ding, and Liang Wang. 2023.
Large Language Models for Time Series: A Survey.
Preprint, arXiv:2310.10195.

Arnav Kotiyal, Praveen Gujjar J, Guru Prasad M
S, Raghavendra M Devadas, Vani Hiremani, and
Pratham Tangade. 2024. Chat with pdf using
langchain model. In 2024 Second International
Conference on Advances in Information Technology
(ICAIT), volume 1, pages 1-4.

10

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
tdschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. Preprint, arXiv:2005.11401.

Bryan Lim and Stefan Zohren. 2021. Time se-
ries forecasting with deep learning: a survey.
Philosophical Transactions of the Royal Society A,
379(2194):202002009.

Chen Liu, Qiao Jin, Zheyuan Wang, Yuxuan Liang,
and B. Aditya Prakash. 2025a. Explainable Multi-
modal Time Series Prediction with LLM-in-the-Loop.
Preprint, arXiv:2503.01013. Version 1.

Chen Liu, Qiao Jin, Yu Zhang, Yifan Zhao, Ajitesh
Srivastava, and B. Aditya Prakash. 2025b. Time-
CAP: Learning to Contextualize, Augment, and Pre-
dict Time Series Events with Large Language Model
Agents. Preprint, arXiv:2502.11418. Version 2.

Tim Loughran and Bill McDonald. 2011. When is a
liability not a liability? Textual analysis, dictionaries,
and 10-Ks. The Journal of finance, 66(1):35-65.

Chenggiang Lu, Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu
Cui, Kai Dang, Yewen Dong, Yang Fan, Wenbin Ge,
Yunxiang He, Yue Huang, Luo Ji, Zhengran Jin, Peng
Lu, Jiaxu Mao, Run Ruan, Jiaqi Wang, Jianmin Wang,
Wei Wang, and 5 others. 2024. Qwen2.5: Advancing
Large Language Models in Reasoning, Comprehen-
sion, and Safety. Preprint, arXiv:2407.00678.

Yunjie Ma, Bingsheng Yao, Quan Tu, Ya Su, Yong Li,
and Dongsheng Li. 2024. From News to Forecast:
Iterative Event Reasoning in LLM-Based Time Series
Forecasting. Preprint, arXiv:2409.17515. Version 1.

Meta Al 2024a. Introducing Meta Llama 3.2.

Meta Al 2024b. Llama 3.1 (8B) Model - Ollama Li-
brary. https://ollama.com/library/llama3.1.
Accessed: 2025-04-22.

OpenAl 2024a. GPT-40 mini [Model Information].
OpenAl. 2024b. Introducing GPT-40.

Michael Parkinson. 1980. The Extreme Value Method
for Estimating the Variance of the Rate of Return.
The Journal of Business, 53(1):61-65.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Language
Model Connected with Massive APIs. Preprint,
arXiv:2305.15334.

Karl Pearson. 1895. Note on Regression and Inheritance
in the Case of Two Parents. Proceedings of the Royal
Society of London, 58:240-242.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use
Tools. Preprint, arXiv:2302.04761.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://github.com/confident-ai/deepeval
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://datasciencedojo.com/blog/langchain-agents-for-time-series-analysis/
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2408.14484
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2020.emnlp-main.703
https://aclanthology.org/2020.emnlp-main.703
https://aclanthology.org/2020.emnlp-main.703
https://arxiv.org/abs/2310.10195
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://doi.org/10.1109/ICAIT61638.2024.10690817
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2503.01013
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://arxiv.org/abs/2502.11418
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2407.00678
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://arxiv.org/abs/2409.17515
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ollama.com/library/llama3.1
https://platform.openai.com/docs/models/gpt-4o-mini
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761

Ruey S Tsay. 2005. Analysis of financial time series,
volume 543. John Wiley & Sons.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017), pages 5998-6008.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
BloombergGPT: A Large Language Model for Fi-
nance. arXiv preprint arXiv:2303.17564.

Zihao Wu, Cheng Yang, Fan Zhou, Jiaqi Wang, Qiang
Zhang, Keyu Duan, Yi Yang, and Chenjuan Guo.
2025. Enhancing Financial Time-Series Forecasting
with Retrieval-Augmented Large Language Models.
Preprint, arXiv:2502.05878. Version 2.

Adam Zaremba, Kacper Chwiatkowski, Tomasz
Zigba, Piotr Rybinski, and Marcin Andrychowicz.
2024. Retrieval-Augmented Financial Forecasting.
Preprint, arXiv:2411.08249.

A Reproducibility Information
A.1 Code

The code for reproducibility of our results is avail-
able upon request from authors and submitted with
the paper. The code consists of the following files,
residing in respective folders, that should be de-
ployed under common folder called graphRAG (due
to specific historical reasons).

1. requirements.txt - list of 3rd party com-
ponents with identified version numbers re-
quired to run the following TSAG framework
and evaluation framework code

2. tsag/tools.py - implementation of the tools
as grounding functions

3. tsag/1lm.py - code of the TSAG framework,
based on LangChain

4. DeepEval/EvalTsag.py - core code of the
evaluation framework based on DeepEval

5. DeepEval/deepeval_custom_l1m.py - cus-
tom code of the evaluation framework for spe-

cific LLM agents

6. tests/test_eval_tsag.py — root
executable evaluation framework
script used to evaluate specific LLM
agent with the following command:
python tests/test_eval_tsag.py

./tests/benchmark. tsv gwen2.5:7b
1.0 3 1,10,100 (see the source file for the
description of parameters)

A.2 Data

The data file represents the benchmark consist-
ing of 100 items, described in subsection 4.2 in
tab-separated file tests/benchmark. tsv which is
expected to reside together evaluation framework
script referenced above. The benchmark, which
is a scientific artifact resulting from our work, is
made publicly available under the terms of the MIT
License, specified in the file tests/LICENSE.

The intended use of the benchmark is develop-
ment and testing existing and future LLM agents
against set of tools described in our work. Also, itis
intended to have the benchmark extended with new
typical questions and answers based on existing set
of tools and parameters of respective function or
extending the set of tools together with the bench-
mark. The benchmark data belongs to financial
domain, specific to crypto-finance subject area, in
English language.

B Implementation Details

B.1 Grounding Function (Tool) Summary

The grounding function used in the TSAG POC are
implemented in Python. These tools expectedly en-
capsulate specific analytical logic corresponding to
common financial queries accordingly to business
specification in Table 2. The stubs of the functions
delivered as part of the benchmark presented in this
work are containing specific expected responses
hard-coded in tsag/tools.py source code accord-
ingly to the benchmark in tests/benchmark. tsv.

B.2 Parameters and Hyper-parameters

The following LLM parameters and hyper-
parameters were used, overriding the defaults for
respective LLM agents.

* LLM temperatures (temperature): [0.0, 1.0]
¢ Random seeds (seed): [1, 10, 100]

* Length of LLM context window in tokens
(num_ctx): 8192

¢ The maximum number of tokens LLM is al-
lowed to generate (num_predict): 512

¢ The maximum number of retries for GPT and
DeepSeek LLM agents (max_retries): 2

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2502.05878
https://arxiv.org/abs/2411.08249

tion between two tokens on one
exchange.

base_token_b: str

quote_token: str (default="USDT")
exchange: str (default="BINANCE")
time_interval: int (default=7)
time_unit: str (default="day’)

[Function Name Description Key Parameters (Defaults) Returns
peak_traded_volume Finds times (e.g., day of week) | base_token: str list[str]
with highest volume within pe- | quote_token: str (default="USDT")
riods, exceeding relative thresh- | exchange: str (default="BINANCE")
old. time_interval: int (default=1)
time_unit: str (default="year’)
period_unit: str (default="week’)
granularity_unit: str (default="day’)
threshold_percent: float (default=5.0)
lowest_traded_volume Finds times with lowest volume | base_token: str list[str]
within periods, below relative | quote_token: str (default="USDT")
threshold. exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="year’)
period_unit: str (default="week’)
granularity_unit: str (default="day’)
threshold_percent: float (default=5.0)
round_the_clock_pattern Combines peak and lowest vol- | base_token: str tuple
ume times for pattern summary. | quote_token: str (default="USDT")
exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="year’)
period_unit: str (default="week’)
granularity_unit: str (default="day’)
threshold_percent: float (default=5.0)
abnormal_deviations Finds recent time points with | base_token: str tuple
volume deviations exceeding | quote_token: str (default="USDT")
historical norms by threshold. exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="year’)
period_unit: str (default="week’)
granularity_unit: str (default="day’)
threshold_percent: float (default=5.0)
price Gets the latest price within the | base_token: str float
lookback window. quote_token: str (default="USDT")
exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="day’)
volatility Calculates historical price | base_token: str float
volatility (Parkinson method) | quote_token: str (default="USDT")
over window. exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="day’)
predict_price* Predicts price for the next win- | base_token: str float
dow (POC: simple extrapola- | quote_token: str (default="USDT")
tion). exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="day’)
predict_volatility* Predicts volatility for next win- | base_token: str float
dow (POC: simple extrapola- | quote_token: str (default="USDT")
tion). exchange: str (default="BINANCE")
time_interval: int (default=1)
time_unit: str (default="day’)
correlation_between_exchanges| Computes Pearson price correla- | base_token: str float
tion across two exchanges. quote_token: str (default="USDT")
exchange_a: str
exchange_b: str
time_interval: int (default=7)
time_unit: str (default="day’)
correlation_between_tokens Computes Pearson price correla- | base_token_a: str float

Table 2: Summary of key grounding functions (tools) in TSAG POC. Parameters are listed with type and default
value. *Prediction tools use simple extrapolation.

12

e The maximum number of retries for all
LLM agents, in case if no text is generated
(retries): 5

The search of the parameters and hyper-
parameters was performed incrementally along
with development course. Lower numbers or de-
faults of hyper-parameters were chosen at the be-
ginning of the study and then we were incremen-
tally increasing them in the course of debugging
and benchmarking till the return rate and accuracy
metrics reached the plateau and stopped improving
further.

13

	Introduction
	Related Work
	Methodology: The TSAG Framework
	Architecture
	Workflow
	Grounding Functions (Tools)
	Function Parameters and Defaults
	LLM Agents

	Experimental Setup
	Tasks
	Benchmark and Test Corpus
	Evaluation Framework and Metrics
	Comparative Analysis
	Implementation Details & Hyper-parameters

	Results and Discussion
	Quantitative Results
	Qualitative Analysis
	Discussion

	Conclusion
	Limitations
	Ethical Considerations
	Reproducibility Information
	Code
	Data

	Implementation Details
	Grounding Function (Tool) Summary
	Parameters and Hyper-parameters

