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ABSTRACT

Modern large language models (LLMs) commonly leverage external context
(e.g. Retrieval-Augmented Generation, RAG) to provide more accurate and up-
to-date information. However, recent research reveals that once conflicts arise
between the contextual information and the internal parametric knowledge, LLMs
tend to underutilize the external evidence, leading to unreliable or even contra-
dictory outputs. This raises a fundamental question: how can we dynamically
reconcile these knowledge conflicts to ensure faithful integration of contextual
information? Inspired by mechanism interpretability findings that identify the
Attention module as the primary aggregator of external context and the FFN
module as the locus of internal knowledge lookup, we pinpoint the vanilla resid-
ual pathway as the crucial junction where these two information streams are
integrated. Based on this insight, we introduce AdaRes (Adaptive Residual),
a lightweight, parameter-free trust calibration mechanism that operates at test-
time. Specifically, AdaRes recalibrates the standard residual connection to dy-
namically balance the influence of external knowledge (from Attention) and
internal knowledge (from FFN). This balancing is guided by two instance-specific
“trust scores”, which are calculated on-the-fly by probing how much the input
query relies on contextual versus parametric knowledge sources. By adaptively
reweighting these contributions without altering any parameters, AdaRes effec-
tively mitigates knowledge conflicts. Experiments on different benchmarks verify
the effectiveness of AdaRes in regulating contextual and parametric knowledge.
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Figure 1: Model outputs become unreliable when conflicts arise. The vanilla residual connection
merely adds knowledge from two different sources equally (i.e. the contextual and parametric),
which cannot handle conflicts. Our motivation is to introduce trust values to enable reconciliation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance due to encoding broad
parametric knowledge and exhibiting strong in-context learning capabilities, thereby supporting ap-
plications ranging from question answering to knowledge-intensive dialogue (Dai, 2024; Wu et al.,
2024a; Hu et al., 2025). In practical applications, tasks often require information that lies outside the
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parametric memory, including recent facts, domain knowledge, retrieved passages, or user-provided
context, so that LLMs’ predictions could align with real requirements. A prevailing strategy sup-
plies such information directly in the input context, e.g. via retrieval-augmented generation (RAG),
a practice typically referred to as contextual knowledge injection (Yang et al., 2023; Ovadia et al.,
2024; Wang et al., 2025a; Bhushan et al., 2025). While effective, this paradigm exposes a funda-
mental vulnerability: when the provided context conflicts with the model’s parametric knowledge,
LLMs often ignore the new evidence, even leading to factual errors or unreliable behavior (Xu et al.,
2024b;a; Xie et al., 2024). This bias limits the effectiveness of applications such as RAG systems
and fact correction, all of which rely on the model’s ability to incorporate external knowledge (He
et al., 2024; Wang et al., 2025b). Existing remedies either permanently modify model parameters
(too static) or passively prepending context (fails to resolve conflicts), neither of which provides a
dynamic and principled paradigm for reconciling knowledge conflicts at inference time.

Inspired by LLMs’ studies (i.e. identifying FFN (Feed-Forward Network) as primary repositories
of parametric memory (Geva et al., 2021; 2023; Hernandez et al., 2024; Zhai et al., 2025b), with
Attention acting primarily to aggregate contextual information (Wang et al., 2023; Lu et al.,
2024; Chen et al., 2024), see Appendix C for explanation), we revisit the residual connection in
each LLM hidden layer and discover that it provides an intrinsic vantage point for mediating the in-
fluence between parametric knowledge and contextual information (see Figure 1). Recognizing this
viewpoint, we introduce adaptive residual (dubbed AdaRes), a lightweight, parameter-free mecha-
nism that dynamically reconciles the contributions of internal knowledge (from FFN) and external
information (from Attention) within the residual pathway. This process is governed by two trust
values that quantify the contributions of these knowledge sources toward resolving the input query.

Building on this view, we estimate, at the layer level, the trust in the context and the parametric
knowledge for the given query without updating any parameters. Specifically, the context trust is
obtained by a probe within Attention that measures the query’s reliance on the context. Comple-
mentarily, the trust value for parametric knowledge is produced via an analogous probe in FFN that
scores affinity to the feed-forward memory. Given these trust values, we employ a Lambda Function
to perform the reweighting process. Additionally, AdaRes is applied at test time to a chosen subset
of hidden layers and provides explicit control over the relative influence of two knowledge sources.
Extensive experiments on four benchmarks verify the effectiveness of our adaptive residual. To
summarize, our contribution could be listed as follows:

• A Novel Reconciliation Mechanism: We propose AdaRes, a parameter-free modification to
the residual pathway that dynamically mediates between contextual and parametric knowledge.
It is model-agnostic and can be integrated into existing LLMs with minimal code changes.

• Train-Free Trust Calibration: We design intuitive, training-free methods to estimate the trust
in contextual and parametric knowledge and provide a Lambda Function to utilize this trust.

• Empirical Verification: Extensive experiments on conflict-centric benchmarks verify the ef-
fectiveness of AdaRes in conflict reconciliation, with negligible runtime cost.

2 RELATED WORK

2.1 ANALYSIS: LLMS’ BEHAVIOR UNDER CONFLICTS

Contextual knowledge injection often materializes as retrieval-augmented generation, which condi-
tions generation on retrieved information (Wu et al., 2024b; He et al., 2024; Wang et al., 2025b).
Understanding how LLMs behave when discrepancies between contextual and parametric knowl-
edge arise is crucial, since unpredictable outcomes undermine reliability. Tan et al. (2024) examine
open-domain QA and show that models often favor parametric knowledge when retrieval is incom-
plete. In contrast, Xie et al. (2024) construct controlled conflicts between memorized facts and
curated external context and show high receptivity to coherent, persuasive external evidence even
against parametric beliefs. Complementarily, Qian et al. (2024) find frequent deviations from para-
metric recall under conflicts. Farahani & Johansson (2024) indicate that, when both sources are
available, reliance often shifts toward the context. Under interactive and multi-turn settings, Xu
et al. (2024a) report a preference for logically structured presentations even when such structure
conflicts with factual accuracy. Taken together, what is the conclusion? No universal rule for
whether an LLM prioritizes contextual or parametric knowledge (Xu et al., 2024b).

2
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2.2 SOLUTIONS: HANDLING CONFLICTS

To reconcile contextual and parametric knowledge, prior works can be organized into four categories
(Xu et al., 2024b). Context-first alignment methods prioritize generation toward supplied context,
such as preserving factual consistency via prompting strategies (Zhou et al., 2023); enhancing sit-
uated faithfulness (Huang et al., 2025; Zhang et al., 2025a;b), amplifying distributional differences
between decoding with and without context (Shi et al., 2024); intervening on internal model compo-
nents (Jin et al., 2024b; Li et al., 2025); or knowledge editing (Wang et al., 2024a; Xu et al., 2025;
Zhai et al., 2025a; Fang et al., 2025). Parametric-preservation strategies safeguard internal mem-
ory when conflicts arise. Some works reduce contextual noise or verify parametric beliefs before
answering (Pan et al., 2023), or instruct models to verify memorized knowledge (Xu et al., 2024a),
or adjust influential attention heads to downweight low-quality retrieved content (Deng et al., 2025).
Dual-response strategies first detect conflicts, and then invoke tailored resolution strategies, such
the design of a three-step identifying process (Wang et al., 2024b). Fusion methods merge infor-
mation from both sources. Zhang et al. (2023) use discriminators to pair compatible generated and
retrieved passages for joint use. Jin et al. (2024a) adopt contrastive decoding to maximize differ-
ences of logits under conflicts.

Positioning This Work Existing studies provide limited control over the relative impact of contex-
tual aggregation versus parametric recall inside LLMs. Our work differs by introducing a lightweight
adaptive residual mechanism that merely augments the standard residual pathway with the calibrated
trust to reweight contributions from different knowledge sources explicitly.

3 METHODOLOGY

3.1 NOTATION AND TASK DEFINITION

Let X = [C;Z] denote the string-form context-query input, where C and Z are contextual knowl-
edge and query prompt, respectively. [; ] denotes concatenation. This textual input is first tokenized
into token sequences X = [x1, . . . , x|X|] with |X| being the sequence length, and then these tokens
are encoded by an LLM into hidden representations. We employ the bold uppercase X(l) to denote
the whole token feature matrix at l-th hidden layer, with the bold lowercase [x

(l)
1 , . . . ,x

(l)
|X|] being

token features. l ∈ {1, ..., L} indexes model layers. The LLM isMΘ, with fixed parameters Θ.

To analyze potential conflicts within a given model, we first detail each LLM block as:

U (l) = Attention(Norm(X(l)))︸ ︷︷ ︸
Aggregating contextual information: A(l)

+X(l); X(l+1) = FFN(Norm(U (l)))︸ ︷︷ ︸
Recalling parametric knowledge: F (l)

+U (l) (1)

Here, the prevalent Pre-Normalization setting is used, i.e. Norm(·). X(l) and X(l+1) refer to the
input and output representations of l-th layer, respectively. Attention(·) is the attention module
that aggregates contextual information while FFN performs parametric knowledge recall. Concep-
tually, the information flow within this layer can be simplified as follows:

X(l+1) = 1 ·A(l) + 1 · F (l) +X(l) (2)

This formulation reveals that the vanilla residual pathway passively aggregates two different sources
of knowledge, i.e. 1 ·A(l) + 1 · F (l). It lacks any mechanism to selectively prioritize or reconcile
these information streams, leading to unpredictable behavior when they conflict.

3.2 ADAPTIVE RESIDUAL

To make up for the deficiency of Eq. 2 in reconciling A(l) and F (l), we introduce the adaptive
residual (AdaRes for short) to reweight the two terms while leaving parameters unchanged:

X(l+1) = Λ(A(l),F (l);α(l), β(l)|H) +X(l) (3)

where Λ is the Lambda Function to scale the features from different sources. In addition to the fea-
tures A(l) and F (l), Λ also receives trust values α(l) and β(l) to compute the scale factors, i.e. scale1
for A(l) and scale2 for F (l). H ⊆ {1, . . . , L} refers to the set of hidden layers where the Lambda

3
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Figure 2: Framework of the proposed AdaRes. Specifically, residual pathways for context informa-
tion C and query prompt Z are omitted to enhance simplicity. All the model parameters are frozen.

Function Λ is applied. For any layer l /∈ H, it will seamlessly revert to the vanilla form in Eq. 2. Fig-
ure 2 depicts the layer equipped with our method, where the AdaRes layer differs from the original
only in the recalibrated residual connection. Our central idea is to use this pathway to dynamically
balance the contributions from contextual and parametric knowledge. Consequently, two additional
input streams are introduced for trust estimation, i.e. C and Z. Based on this depiction and definition
in Eq. 3, two core steps need to be determined: how to estimate the trust values (α(l), β(l))? and
how to instantiate the function Λ to reweight A(l) and F (l) based on the estimated trust?

3.2.1 TRUST ESTIMATION

The trust values (α(l), β(l)) quantify, at the l-th layer, the relevance or usefulness of the (contextual,
parametric) knowledge for answering the current query. Taking α(l) as an example, we estimate it
from the input context-query pair (C,Z). To precisely measure the query’s reliance on the context,
we process C and Z through the attention mechanism separately to generate their respective feature
matrices, thus avoiding information leakage from the standard self-attention. This is also why we
introduce three input information streams in Figure 2. Specifically, the core idea of estimation is to
measure the extent to which the query Z attends to the context C via a cross-attention probe:

S(l) =
∑
Head

σ

(
Q

(l)
Z (K

(l)
C )⊤√

DA

)
, S(l) ∈ RN×M ; s(l) =

1

M
S(l)1M , s(l) ∈ RN ; (4)

Here, S(l) is the query-to-context attention score that reflects the potential usefulness of the contex-
tual knowledge; s(l) averages its attention mass for each query token over the context span. N and
M are the lengths of token sequences for query Z and context C. Q(l)

Z and K
(l)
C denote the feature

matrices in one attention head with DA being its dimension.
∑

Head is summation of different at-
tention heads. σ denotes the softmax function. 1M is an all-ones column vector of length M . From
this per-token score vector s(l), we estimate α(l) by taking its mean, i.e. α(l) = Mean

(
s(l)
)
. This

scalar value represents the expected attention from the query Z to the context C, providing a holis-
tic measure of the context’s overall relevance. Analogously, β(l) is obtained by probing the FFN
module with the query features (see Appendix D). Algorithm of AdaRes is provided in Appendix E.

3.2.2 LAMBDA FUNCTION: Λ

Given the estimated trust (α(l), β(l)), the function Λ’s role is to adaptively combine the contextual
information A(l) and the parametric knowledge F (l). To motivate our design, we first consider the
four archetypal scenarios an LLM might face, as depicted in Figure 3. While synergistic integra-
tion (Scenario #1) is interesting (see Appendix F), this work primarily focuses on resolving the
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knowledge conflicts inherent in Scenario #4 (faithful contextual information injection). In this ex-
plicit conflict scenario, LLMs must prioritize using context information. We design a re-weighting
strategy to intelligently amplify the trusted source while suppressing the other:

Λ(A(l),F (l);α(l), β(l)|H) = (1 +
α(l)

α(l) + β(l)
)A(l) + (1− α(l)

α(l) + β(l)
)F (l), l ∈ H (5)
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Figure 3: Which knowledge to use?

This asymmetric scaling design has a crucial property1:
for the prioritized contextual source, its trust value is
bounded in the range [1, 2], while the suppressed source
is bounded in [0, 1]. This acts as a protective floor, guar-
anteeing that the prioritized information is at least passed
through (coefficient of 1, the worst case) and can be am-
plified up to a factor of 2 (the best case).

Apart from the trust estimation and the Lambda Func-
tion, the last key design choice is the selection of target
layers H. This is the sole hyperparameter in AdaRes, in-
dicating that AdaRes incurs minimal tuning overhead, fa-
cilitating efficient deployment (see detailed discussion in
Section 4.4). Additionally, our overall design philosophy
prioritizes simplicity. Hence, two primary components
(i.e. trust estimation via attention probing and linear scal-
ing in Λ) are intentionally concise. Practitioners can readily substitute more advanced, task-tailored
estimators or scaling functions as needed.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments are designed to evaluate AdaRes’s ability to reconcile knowledge conflicts, thereby
enhancing the integration of contextual information in LLMs. We assess this capability on two
primary classes of benchmarks: knowledge editing datasets (including ZSRE and COUNTERFACT)
and conflict-aware QA datasets (i.e. ConflictQA (Xie et al., 2024)). The knowledge editing task
is particularly well-suited to our evaluation, as it requires the model to override its internal, often
conflicting, knowledge and faithfully adhere to the new fact provided in the context. All datasets
are publicly available2, and detailed experimental configurations are provided in Appendix J. All
experiments of all methods are conducted on a Linux NVIDIA A100 80GB (256 GB RAM) machine.

4.2 PERFORMANCE COMPARISON: PRIORITIZING CONTEXTUAL INFORMATION

Table 1 presents the primary results on ZSRE and COUNTERFACT using three standard metrics (see
Appendix J.2): Efficacy (adherence to the contextual fact), Generality (generalization to paraphrased
queries under providing the same contextual information), and Locality (retention of unrelated para-
metric knowledge). The “Original” rows quantify the base models’ pre-existing knowledge, re-
vealing the severity of the conflict. For instance, on COUNTERFACT, Llama3 (8B)’s Efficacy of
0.87% indicates that over 99% of facts in this dataset directly conflict with its parametric mem-
ory. Generally, We compare AdaRes against a strong suite of specialized baselines in this task,
including finetuning (FT-C, LoRA), parameter-editing (e.g. ROME, AlphaEdit), and memory-based
methods (GRACE, WISE). The results indicate that extensive existing methods struggle to resolve
these conflicts, with some even yielding counter-productive results. Notably, the standard In-Context
Knowledge Editing (IKE) provides essential knowledge into the context, yet exhibits poor fidelity
(e.g. Llama3 (8B) achieves 0.55% Efficacy on COUNTERFACT with IKE). This failure underscores
the critical need for an explicit mechanism to make models trust external evidence. In stark contrast,
our AdaRes improves the model’s adherence to the context, boosting the Efficacy of Llama3 (8B)
from 0.55% to 65.45% on COUNTERFACT, a more than 100-fold increase. Our analysis reveals two

1See Appendix G for a detailed discussion on why we design Λ in this way.
2Code, datasets and running scripts are all provided as supplementary materials to facilitate the reproduction.
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Table 1: Performance comparison for Scenario #4 under the consecutive knowledge editing.

Method CounterFact ZSRE
Efficacy Generality Locality Efficacy Generality Locality

Llama3 (8B) (Original Model) 0.0087 0.0075 / 0.2627 0.2598 /

FT-C (Meng et al., 2022) 0.0575 0.0047 0.0013 0.0769 0.0666 0.0069
LoRA Xu et al. (2024c) 0.0077 0.0117 0.0017 0.1145 0.1116 0.0535
ROME (Meng et al., 2022) 0.2507 0.1323 0.0097 0.0339 0.0280 0.0015
R-ROME (Gupta et al., 2024) 0.4892 0.3662 0.0147 0.0271 0.0243 0.0035
MEMIT (Meng et al., 2023) 0.0000 0.0000 0.0722 0.0000 0.0000 0.0396
AlphaEdit (Fang et al., 2025) 0.0033 0.0017 0.0007 0.0001 0.0000 0.0003
GRACE (Hartvigsen et al., 2023) 0.0003 0.0000 0.9938 0.0624 0.0095 1.0000
WISE (Wang et al., 2024a) 0.1473 0.0763 0.9907 0.3348 0.3283 0.9997

IKE (Zheng et al., 2023) 0.0055 0.0043 0.6509 0.5233 0.5231 0.5289
AdaRes/RAG 0.6485 0.2963 1.0000 0.5912 0.5629 1.0000
AdaRes 0.6545 0.2987 1.0000 0.6571 0.6263 1.0000

Qwen2.5 (7B) (Original Model) 0.0078 0.1340 / 0.2016 0.1942 /
FT-C (Meng et al., 2022) 0.0407 0.0150 0.0003 0.0239 0.0199 0.0029
LoRA (Xu et al., 2024c) 0.0200 0.0200 0.0020 0.0527 0.0516 0.0072
ROME (Meng et al., 2022) 0.0000 0.0000 0.0242 0.2809 0.2538 0.0924
R-ROME (Gupta et al., 2024) 0.5778 0.1742 0.4585 0.5910 0.5016 0.3871
MEMIT (Meng et al., 2023) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AlphaEdit (Fang et al., 2025) 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002
GRACE (Hartvigsen et al., 2023) 0.0012 0.0000 0.9939 0.2905 0.0095 1.0000
WISE (Wang et al., 2024a) 0.0352 0.0283 0.0645 0.2747 0.2690 0.0985

IKE (Zheng et al., 2023) 0.5001 0.2272 0.5686 0.6974 0.6889 0.5029
AdaRes/RAG 0.6408 0.4772 1.0000 0.8374 0.8000 1.0000
AdaRes 0.6475 0.4812 1.0000 0.9264 0.9156 1.0000

further key insights: (1) Many knowledge editing methods appear less effective in editing, some-
times paradoxically exacerbating conflicts. (2) While AdaRes provides a substantial improvement,
a performance gap to 100% remains. We therefore conduct an error analysis in Section 4.6.

4.3 GENERALIZATION ON OTHER DATASETS & LLMS

To assess the generalization of AdaRes, we extend our evaluation to a wider range of datasets and
a diverse suite of LLMs at different sizes, with results presented in Table 2. The findings consis-
tently show that while baseline models suffer from significant knowledge conflicts and exhibit low
utilization of contextual information, AdaRes provides a robust and significant performance uplift
across all tested model families and sizes. Interestingly, we observe that the performance gains
from AdaRes are often more pronounced on larger-scale models. We hypothesize that this is be-
cause larger models have stronger capabilities of language understanding, which provides a more
impactful and necessary trust calibration, discussed in Section 4.6.

4.4 ANALYSIS OF H

The selection of the layer set H is a critical hyperparameter that dictates where AdaRes is applied.
To understand its effects, we first conduct a single-layer ablation study, applying AdaRes to only
one layer at a time (results in Figure 4a and 4b). This analysis reveals that a model’s sensitivity
to intervention varies dramatically across its depth, with certain layers acting as “hotspots” where
recalibration is more effective. Interestingly, we observe that different models exhibit distinct sen-
sitivity patterns. For instance, Llama3 (8B)’s influential layers are distributed relatively uniformly,
while Qwen2.5 (7B) tends to exhibit a bimodal mode (lower and higher layers show better effects).

6
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Table 2: Generalization of AdaRes on other LLMs with different sizes (Efficacy).

Versions Phi3 Gemma3 Phi3 Gemma3

Size (3.8B) (14B) (4B) (12B) (3.8B) (14B) (4B) (12B)

ZSRE COUNTERFACT

Original 0.3058 0.3298 0.2237 0.2225 0.1536 0.1512 0.0043 0.0055
Vanilla Res 0.5954 0.5695 0.4942 0.4734 0.6354 0.5186 0.6092 0.5417
AdaRes 0.8924 0.9301 0.9811 0.9868 0.8165 0.9076 0.9923 0.9992

ConflictQA-(PopQA) ConflictQA-(StrategyQA)

Original 0.6416 0.6663 0.5562 0.6260 0.7640 0.7769 0.6852 0.6689
Vanilla Res 0.8248 0.8003 0.7523 0.7702 0.8137 0.8191 0.7718 0.7710
AdaRes 0.8284 0.8358 0.7893 0.7949 0.8577 0.8699 0.8357 0.8261

(a) Effects of single layer for Llama3 (8B) (b) Effects of single layer for Qwen2.5 (7B)

(c) Effects of different |H| for Llama3 8B. (d) Effects of different |H| for Qwen2.5 7B

Figure 4: Effects ofH on model performance under prioritizing contextual information.

Informed by these identified single-layer “hotspots”, we then seek an optimal multi-layer configura-
tion. To discover an effective layer combination without an exhaustive search, we employ a greedy
forward selection strategy. That is, starting with the best-performing single layer, we iteratively add
the layer from the remaining set that yields the largest marginal performance gain, with results shown
in Figure 4c and Figure 4d. The results consistently show that performance initially rises with the
number of modulated layers, but peaks before gradually declining. This degradation with excessive
intervention suggests a risk of “over-correction”. Furthermore, we observe a fascinating pattern in
the composition of the optimal layer sets: they consistently exhibit a bimodal distribution, typically
combining a cluster of early-to-mid layers with a cluster of higher layers (e.g. {3, 12; 17, 25} for
Llama3 (8B) or {3; 26, 27} for Qwen2.5 (7B) on COUNTERFACT). This empirical finding aligns
remarkably well with established mechanistic interpretability research (Chen & Yan, 2024; Zhao
et al., 2024): early-to-mid layers are often implicated in factual recall and knowledge retrieval from
parametric memory, while the mid-to-high layers are responsible for high-level semantic synthe-
sis. These results suggest a powerful takeaway for practical applications: to make a model trust
external knowledge, it is often best to intervene at both stages: first, to modulate the initial
retrieval of conflicting internal facts, and second, to guide the final synthesis process to ensure
the contextual information is correctly prioritized.

4.5 ANALYSIS OF TRUST VALUE OF α(l) AND SCALE FACTORS

To understand how AdaRes operates internally, we visualize the estimated trust precursors α(l) and
β(l), and the final recalibrated trust scores applied by the Λ function. As illustrated in Figure 5, when
provided with the necessary context, we observe a significant disparity between the estimated α(l)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Analysis of α(l), β(l) and corresponding trust for Llama3 (8B) under prioritizing context information.

(b) Analysis of α(l), β(l) and corresponding trust for Qwen2.5 (7B) under prioritizing context information.

Figure 5: Trend of α(l) across layers (left). Estimated α(l) and β(l) (middle), Adjusted trust (right).

and β(l) values across all model layers (shown in the middle of Figure 5). This indicates that our
probing mechanism correctly perceives the high utility of the contextual information for the given
query. However, the static, uniform weighting in the vanilla residual block (1 ·A(l) + 1 · F (l)) is
oblivious to this crucial signal, forcing an equal combination of a useful source with a conflicting
one and thus leading to suboptimal performance. In contrast, AdaRes uses this disparity to compute
highly asymmetric recalibration weights (scale1 ·A(l) + scale2 · F (l)), which amplify the contex-
tual information while suppressing the conflicting parametric one (shown in the right of Figure 5).
Beyond these aggregate behaviors, we examine the dynamics of α(l) across model layers, which
is helpful for diagnosing the failure mode in vanilla residual. As shown in Figure 5 (left), α(l)

scores for Llama3 (8B) tends to decrease in later layers, suggesting a failure in late-stage semantic
integration, i.e. the model understands the context only early on but fails to let it guide the final
output. Conversely, Qwen2.5 (7B)’s trust of α(l) are low in the initial layers, suggesting a failure in
early-stage contextual grounding; i.e. it prematurely commits to its internal knowledge, and this
erroneous signal propagates, making it difficult for later layers to correct the course. These distinct
failure patterns provide a compelling explanation for why the bimodal intervention strategy iden-
tified in Section 4.4 is so effective. Llama3 (8B) requires late-layer intervention to force semantic
adherence, while Qwen2.5 (7B) needs early-layer intervention to ensure the context is properly en-
coded from the start. A “bimodal adjustment” strategy effectively addresses both types of failure
points simultaneously, providing a robust solution for different model architectures.

4.6 ERROR ANALYSIS

As demonstrated in Table 1, while AdaRes yields substantial improvements over baseline methods,
a performance gap to the ideal 100% Efficacy remains. For instance, on COUNTERFACT, AdaRes
boosts the Efficacy of Llama3 (8B) by 60+ percentage points compared to vanilla IKE, yet the score
of 65% indicates that the model does not perfectly utilize the provided context. To diagnose this,
we re-think the two core components of our method: trust estimation and trust utilization (i.e. the
Λ function). We hypothesize that the primary bottleneck is not the re-weighting mechanism itself,
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Table 3: Efficacy comparison between base and instruction-tuned (it) versions of LLMs.

LLMs Llama3 (8B) Qwen2.5 (7B) Llama3 (8B) Qwen2.5 (7B)

Versions (base) (it) (base) (it) (base) (it) (base) (it)

ZSRE COUNTERFACT

Original 0.2627 0.2240 0.2016 0.2514 0.0087 0.0085 0.0078 0.0087
IKE 0.5233 0.5158 0.6974 0.8922 0.0055 0.0056 0.5001 0.7693
AdaRes 0.6571 0.7430 0.9264 0.9498 0.6545 0.5965 0.6475 0.9751

Figure 6: Efficiency comparison: GPU memory (left) and inference time (right).

but the preceding and fundamental trust estimation step. This process relies on the model’s internal
attention probes, and its accuracy is therefore contingent upon the model’s foundational language
understanding and its ability to discern contextual relevance. If the model fails to properly com-
prehend the input, the estimated α(l) and β(l) will be unreliable, leading to incorrect recalibration.
To test this hypothesis, we conduct a controlled experiment, i.e. migrating our evaluation from the
base pre-trained models to their instruction-tuned versions, which are explicitly optimized to better
comprehend and follow contextual instructions. The results are presented in Table 3. The findings
are striking and strongly support our hypothesis. With the instruction-tuned version of Qwen2.5
(7B), the Efficacy score on COUNTERFACT jumps from 60+% to over 90+%. This improvement,
achieved simply by enhancing the base model’s comprehension abilities, confirms that the concep-
tual framework of AdaRes is sound. The primary source of error in the base model lies in its inability
to consistently generate an accurate trust signal in the first place, not in the Lambda Function’s abil-
ity to act on that signal. This is a promising result, as it implies that AdaRes will naturally become
more effective as foundational models continue to improve. It also validates the key direction for
future work of introducing more sophisticated trust estimators (see discussion in Limitation B).

4.7 EFFICIENCY ANALYSIS: GPU MEMORY USAGE AND INFERENCE LATENCY

AdaRes is a training-free mechanism that operates purely at the inference stage. While this avoids
costly training, it introduces additional computations for the on-the-fly trust estimation. To provide
a comprehensive assessment of its efficiency, we compare AdaRes against the standard contextual
inference baseline in terms of peak GPU memory usage and end-to-end inference latency. As shown
in Figure 6, AdaRes introduces only a marginal increase in both memory consumption and latency.
Crucially, these measurements represent the full cost of our method, including the parallel probe
streams for trust estimation, without any optimizations such as caching or pre-computation. This
demonstrates that AdaRes is an inherently lightweight mechanism that can be integrated into existing
inference pipelines with modest impact, confirming its practicality for real-world deployment.

5 CONCLUSION

In this paper, we present a preliminary exploration into mediating conflicts between contextual infor-
mation and parametric knowledge in an LLM, thereby enabling more reliable utilization of contex-
tual information. We introduce Adaptive Residual (AdaRes), a novel, training-free mechanism that
performs dynamic, test-time trust calibration directly within the model’s residual pathway. From
extensive experiments, we observe several key insights: (1) the layer-wise analysis reveals a failure
mode in vanilla models: their under-utilization of context often stems from either over-retrieval of
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internal knowledge in lower layers (leading to the neglect of contextual signals) or insufficient atten-
tion to context during semantic fusion in middle-to-high layers (insufficient integration of contextual
information during semantic fusion). (2) the most effective interventions for promoting contextual
fidelity often follow a bimodal distribution, requiring simultaneous modulation of both early-layer
knowledge retrieval and late-layer semantic synthesis. (3) crucially, as a pure inference-time method,
AdaRes is exceptionally lightweight, achieving these gains with negligible computational overhead.
This highlights its significant potential for practical applications where both reliability and efficiency
are paramount.

6 ETHICS STATEMENT

Ours AdaRes could enhance the ability of large language models (LLMs) to adhere to contextual
information, thereby improving factual grounding. However, this also introduces a potential risk: by
increasing contextual fidelity, our method may make models more susceptible to generating harmful
outputs if provided with misleading, malicious, or unethical content. Models using our AdaRes
could thus be more prone to reproducing and propagating such material. We strongly recommend
implementing robust content filtering and safety checks on all contextual inputs when using AdaRes.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the complete source code and datasets
available in the supplementary material. Additionally, Appendix I provides a detailed implementa-
tion guide along with a summary of key hyperparameters and further configuration details. These
resources are provided to facilitate the verification of our results during the reviewing process.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used solely for language polishing and proofreading purposes, includ-
ing refining Abstract and Introduction. All core contributions, including the idea, methodology,
algorithm, experiments, and the majority of writing, were conducted entirely by the authors.

B LIMITATIONS

In this paper, we made a three-fold contribution: (1) a novel conceptual perspective for mitigating
knowledge conflicts by recalibrating the standard residual connection; (2) an attention-based
mechanism for estimating usefulness of contextual versus parametric knowledge; and (3) a sim-
ple yet effective scaling function Λ to apply these trust scores. While demonstrating significant
promise, we identify two main limitations that open up exciting directions for future research:

1. Limitation in Trust Estimation. The current method leverages the LLM’s internal attention
to measure the relevance of each knowledge source to the query. Although efficient and
intuitive, this method is inherently self-referential, i.e. its reliability is contingent upon the
model’s own understanding capability of language. In complex scenarios where the model’s
foundational understanding is flawed, the attention patterns may be misleading, leading to
unreliable trust estimation. A compelling direction for future work is the development of
more robust and decoupled trust estimators. For instance, one could explore using spe-
cialized, external embedding models or task-specific classifiers to provide an orthogonal
assessment of the query-context relevance, thereby creating a more reliable trust signal.

2. Limitation in Trust Utilization. This limitation concerns the expressiveness of the Λ func-
tion. Our current implementation employs a linear interpolation, which, while simple and
effective, may not be sufficient to capture complex interactions between knowledge sources
This limitation points to two intriguing research directions. First, exploring more sophis-
ticated, non-linear functions within the Lambda block could enable a more precise control
over the re-weighting process. Second, our method currently calibrates the selected layers
independently, overlooking potential cross-layer dependencies. A fascinating future direc-
tion is to design hierarchical or collaborative re-weighting schemes where trust signals are
propagated or co-adjusted across layers. Such a mechanism could enable a more holistic
and globally coherent reconciliation of knowledge.
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These limitations highlight meaningful directions for further improving the robustness and expres-
sivity of training-free knowledge conflict resolution.
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Figure 7: Explanation of Attention and FFN from the perspective of information aggregation.

C REVISIT THE ROLE OF SELF-ATTENTION AND FEED-FORWARD NETWORK

In this paper, we build on the perspective that the Attention and FFNmodules function as distinct
information aggregation mechanisms: one operating on the immediate context and the other on the
model’s internal parametric memory. To elucidate this viewpoint, which underpins our adaptive
residual method, we provide a detailed explanation of each module below.

C.1 PERSPECTIVE OF INFORMATION AGGREGATION IN THE ATTENTION MODULE

This module is the primary mechanism by which LLMs dynamically route and aggregate infor-
mation from the input sequence. It achieves this by computing attention scores that represent the
interaction between each pair of input tokens. In a multi-head attention block, this process is paral-
lelized to capture diverse relational patterns. Each head’s operation can be formulated as:

S
(l)
X = Softmax

(
Q

(l)
X (K

(l)
X )⊤√

DA

)
, Q

(l)
X = X(l)W

(l)
Q ,K

(l)
X = X(l)W

(l)
K (6)

Here, Q(l)
X and K

(l)
X denote the Query and Key feature matrices which are from the input feature X

projected via the attention weight matrices W (l)
Q and W

(l)
K .
√
DA is the dimension of the attention

head. The resulting attention weight S(l)
X quantifies the relevance of every token to every other token

in the input. In our paper, we leverage these scores as a direct signal of the context’s usefulness for
answering a given query prompt, forming the basis of our contextual trust score.

The final output of the attention head is a weighted aggregation of Value vectors, where the weights
are the attention scores S(l)

X :

X(l+1) = S
(l)
X V

(l)
X , V

(l)
X = X(l)W

(l)
V (7)
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Crucially, the Value vectors V (l)
X are also projections fo the input representations X(l+1). Therefore,

the entire self-attention operation can be viewed as a dynamic summarization or aggregation of
information drawn directly from the input context.

C.2 PERSPECTIVE OF INFORMATION AGGREGATION IN THE FFN MODULE

Following the Attention module, FFN acts as a content-based memory lookup, allowing the
model to access and integrate its stored parametric knowledge. It is typically composed of two
linear layers with an intermediate non-linear activation, which can also be interpreted through a
key-value lens. The first transformation can be seen as identifying relevant knowledge patterns:

R
(l)
X = ReLU(U (l)︸︷︷︸

query

W
(l)
1︸ ︷︷ ︸

key

) (8)

where U (l) serves a Query signal. This query interacts with the first weight matrix W
(l)
1 which

can be conceptualized as the Key representing the learned pattern. The activation function deter-
mines which of these patterns are activated by the Query, producing the relevance matrix R

(l)
X . This

relevance then determines how to combine the knowledge stored in the second weight matrix:

F (l+1) = R
(l)
X W

(l)
2︸ ︷︷ ︸

value

(9)

The weight matrix W
(l)
2 acts as the Value store, where each row contains a piece of information.

The output F (l+1) is thus a weighted combination of these “Value” rows. Consequently, the FFN
module can be regarded as an aggregation of the model’s own parametric memory.

C.3 COMPARISON BETWEEN ATTENTION AND FFN

Drawing from the key-value analogy to its conclusion, both modules perform a similar abstract
operation: a query-activated, weighted aggregation of values. The crucial distinction lies in the
sources of these values, i.e. generated from the input in Attention, pre-existing memory in a
weight matrix for FFN. This fundamental difference, depicted in Figure 7, motivates our method to
separately estimate and re-weight the contributions from these two distinct knowledge sources.

D β(l) ESTIMATION

The trust score β(l) quantifies the relevance of the model’s memory for answering the query prompt
Z. Analogous to the estimation of α(l) for contextual knowledge, we derive β(l) by probing the FFN
at test-time without updating any parameters.

Drawing from the key-value perspective of FFN (as detailed in Appendix C.2), we also compute
a per-token relevance score by first calculating the activation matrix R(l) for the query tokens and
then averaging these activations across the FFN’s intermediate dimension:

R(l) = ReLU(U
(l)
Z W

(l)
1 ), R(l) ∈ RN×DF ; r(l) =

1

DF
R(l)1DF

, r(l) ∈ RN (10)

Here, U (l)
Z represents the input representations for the query tokens Z entering the FFN block. R(l)

is the resulting query-to-parametric memory relevance score that reflects the potential usefulness
of the parametric knowledge; r(l) is the final vector of per-token relevance scores, which averages
the attention mass R(l) for each query token over the context span. DF is the dimensionality of
the FFN’s intermediate layer, which corresponds to the number of learned patterns in the paramet-
ric memory store. 1DF

is an all-ones column vector of length DF . Following the same robust
estimation procedure used for α(l), the final trust value β(l) is computed by taking average on r(l).

E ALGORITHM

Algorithm 1 details the overall process of the proposed adaptive residual. Generally, our AdaRes
is designed to recalibrate the trust of different knowledge sources. During the process, the core
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Algorithm 1 Flow of using Adaptive Residual in large language models

Require: Context C, Query Z, Input X = [C;Z],H.
Ensure: Model predictionsMΘ(X) based on our adaptive residual.

1: // Initialize representations of C, Z, X from token embeddings
2: X(0),C(0),Z(0) ← TokenizeAndEmbed(X,C,Z)
3: // Model Forward Pass
4: for layer idx in enumerate(L) do
5: // 1. Estimate trust scores using probe representations
6: Estimate α(l) via Eq. 4 based on the context feature C(l) and query feature Z(l)

7: Estimate β(l) via Eq. 10 based on the query feature Z(l)

8: // 2. Apply AdaRes to the main forward pass of X
9: if layer idx inH then

10: // Perform AdaRes in this layer for the input feature
11: X(l+1) ← AdaRes layer(X(l), α(l), β(l)) ▷ Use Eq. 3
12: else
13: // Perform original transformer layer for the input feature
14: X(l+1) ← original layer(X(l))
15: end if
16: // 3. Update probe representations for the next layer’s estimation of α(l+1) and β(l+1)

17: C(l+1) ← original layer(C(l))
18: Z(l+1) ← original layer(Z(l))
19: end for
20: Logits← LMHead(X(L))
21: return Decode(Logits)

challenge is to obtain a clean signal of how much the query Z relies on the context C versus the
model’s internal knowledge, without these signals interfering with each other. To address this,
AdaRes employs a three-stream forward pass strategy (See Lines 11-13, Line 17 and Line 18 in
our algorithm). The primary stream processes the main input X and is the sole pathway where our
adaptive residual is ultimately applied to produce the final output. Crucially, running in parallel are
two auxiliary “probe streams”, which process the context and query in isolation (See Line 17 and
Line 18). These probe streams are not used for the final prediction, and their sole purpose is to
generate pure, unentangled representations of the context and query at every layer. As the model
computes layer by layer, these clean probe representations are used to dynamically calculate the trust
scores α(l) and β(l). Armed with these instance-specific trust values, AdaRes then intervenes in the
primary stream’s computation for a selected set of layers (see Line 11). This design, while requiring
parallel computations, ensures that our trust calibration is guided by clear and disentangled signals,
facilitating a more robust and principled reconciliation of knowledge conflicts at inference time.

F THE Λ FOR SYNERGISTIC KNOWLEDGE FUSION: SCENARIO #1

While the asymmetric scaling function (Appendix G) is optimized for decisive conflict resolution,
a different design is needed to better handle Scenario #1: Synergistic Knowledge Fusion. In this
scenario, the contextual and parametric knowledge sources are not in direct conflict but are
complementary. The goal is not to choose one over the other, but to dynamically and smoothly
blend them based on their relative relevance.

For such tasks, a Normalized Linear Interpolation function is more appropriate. Its design pri-
oritizes stability and calibrated blending, particularly when the trust in both sources is balanced,
formulated as:

Λ(A(l),F (l);α(l), β(l)|H) = 2 ·
(

α(l)

α(l) + β(l)

)
A(l) + 2 ·

(
β(l)

α(l) + β(l)

)
F (l) (11)

The properties of this function are distinct and ideal for fusion tasks:
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• High Confidence Behavior: In extreme cases where one source is highly trusted over the
other (e.g. α(l) ≫ β(l)), this function behaves similarly to our primary design in Section 3.2.2,
approximating 2 ·A(l) and strongly amplifying the trusted source.

• Balanced Trust Behavior (Key Property): The crucial difference lies in its behavior under
uncertainty or balanced trust (α(l) ≈ β(l)). In this case, the terms α(l)/(α(l) + β(l)) and
β(l)/(α(l) + β(l)) both approach 0.5. The function then becomes 2 · 0.5 ·A(l) +2 · 0.5 ·F (l) =
A(l)+F (l). This property, which we term graceful recovery, allows the function to seamlessly
revert to the original vanilla residual block when the model is uncertain.

This design avoids imposing an aggressive bias when one is not needed, making it a more stable
and suitable choice for tasks requiring nuanced integration of information rather than hard selection.
The exploration of such scenario-adaptive Λ functions remains a promising direction for future
work, as discussed in Appendix B.

G DISCUSSION ON THE DESIGN OF LAMBDA FUNCTION

The primary role of the Λ function in this work is to serve as a robust mechanism for decisive
conflict resolution. In this targeted scenarios (Scenario #2 and #4), the model is not asked to blend
knowledge, but to make a firm choice between two conflicting sources. The core challenge in this
setting is the potential for noisy or unreliable trust scores (α(l), β(l)). A naive re-weighting function
could be brittle: if the trust score for the truly correct source is erroneously estimated to be low, the
function might incorrectly suppress this vital information, leading to failure.

To mitigate this risk, we designed the Asymmetric Scaling function (as shown in Eq.5) with a key
principle in mind: to be robust to worst-case trust estimations by providing a protective floor for the
prioritized contextual knowledge source. To further explore why we designed the function Λ like
Eq.5, let us analyze its behavior in extreme circumstances:

• Best Case (High Contextual Trust): When the context is correctly identified as highly trust-
worthy (α(l) ≫ β(l)), the term α(l)/(α(l)+β(l)) approaches 1. The function then approximates
2 ·A(l) + 0 · F (l), strongly amplifying the contextual stream while completely suppressing the
conflicting parametric stream. This achieves the ideal outcome.

• Worst Case (Low Contextual Trust): If the trust estimation fails and yields a very low score
for the context (α(l) ≪ β(l)), the term α(l)/(α(l) + β(l)) approaches 0. The function then
approximates 1·A(l)+1·F (l). This is the crucial protective mechanism: instead of penalizing or
suppressing the contextual information, the function gracefully degrades to the original vanilla
residual block. This ensures that the prioritized knowledge source is never actively suppressed,
even with unreliable trust scores.

This design guarantees that the coefficient for the prioritized source is bounded within [1, 2], while
the suppressed source’s coefficient is bounded within [0, 1]. This intentional asymmetry provides
a robust bias towards the desired outcome in a conflict scenario, making it highly effective for the
hard-selection tasks investigated in this paper.

Moreover, another aspect worth discussing is how to steer the model to trust its internal parametric
knowledge. Homoplastically, the design in Eq. 5 can be adapted into the following form:

Λ(A(l),F (l);α(l), β(l)|H) = (1− β(l)

α(l) + β(l)
)A(l) + (1 +

β(l)

α(l) + β(l)
)F (l), l ∈ H (12)

This scaling scheme now functions to protect the internal knowledge, which is not only fully consis-
tent with the previous discussion on safeguarding contextual knowledge but also forms a symmetric
counterpart to Eq. 5. This further demonstrates the highly generic and compatible nature of our
method. We term this scaling mechanism the Lambda Function, intending to highlight its con-
venience and ease of use, much like lambda expressions in programming languages such
as Python, which allow for concise and flexible function definitions.
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H DETAILED DISCUSSION OF RELATED WORK

H.1 ANALYSIS: LLMS’ BEHAVIOR UNDER CONFLICTS

Contextual knowledge injection typically materializes as retrieval-augmented generation, which
conditions generation on retrieved information (Wu et al., 2024b; He et al., 2024; Wang et al.,
2025b). It is important to know when discrepancies between contextual and parametric knowledge
arise, how does the model behave? since unpredictable results degrade reliability. Early inves-
tigations in extractive and open-domain QA reported divergent outcomes. Longpre et al. (2021)
examine models under QA scenarios and find a tendency to over-rely on parametric knowledge.
Revisiting a similar setup, Chen et al. (2022) observe the opposite pattern in their best-performing
configurations, namely a predominant reliance on contextual evidence. For LLMs, more recent stud-
ies further nuance this picture. Tan et al. (2024) examine how LLMs blend retrieved context with
generated knowledge in the open-domain QA setup and report that models often favor parametric
knowledge when retrieval yields incomplete evidence, particularly under conflicting sources. In con-
trast, by generating controlled conflicts between memorized facts and curated external context, Xie
et al. (2024) show that models can be highly receptive to contextual information, even against their
parametric beliefs. Complementarily, Qian et al. (2024) evaluate interactions between parametric
knowledge and external knowledge graphs and find that models frequently deviate from parametric
recall when confronted with direct conflicts or fine-grained contextual changes. Farahani & Johans-
son (2024) indicate that in cases where the model can choose between both types of information
(parametric and nonparametric), it relies more on the context than the parametric knowledge. Under
interactive, multi-turn settings, Xu et al. (2024a) find a preference of LLMs for logically structured
presentations, even when such structure conflicts with factual accuracy. Taken together, what is the
conclusion? The literature indicates no universal rule for whether an LLM prioritizes contextual or
parametric knowledge (Xu et al., 2024b). These findings motivate mechanisms that adapt reliance
on external versus parametric sources at inference time, rather than enforcing a fixed policy.

H.2 SOLUTIONS: HANDLING CONFLICTS

To reconcile contextual and parametric knowledge, prior works can be organized into four cate-
gories Xu et al. (2024b): context-first alignment, parametric-preservation strategies, conflict detec-
tion with a dual-response strategy, and evidence fusion. Context-first alignment align generation
with the provided context and explicitly prioritize external evidence. Gekhman et al. (2023) main-
tain factual consistency with source documents by annotating model-generated summaries using
LLM-based teachers. Xue et al. (2023) improve alignment with factual knowledge through direct
knowledge enhancement and reinforcement learning. Zhou et al. (2023) design specialized prompt-
ing strategies that strengthen adherence to contextual evidence and yield gains on context-sensitive
tasks. Shi et al. (2024) introduce Context-aware Decoding to amplify the distributional difference
between decoding with and without context, thereby encouraging reliance on the injected evidence.
Parametric-preservation strategies preserves the model’s internal memory when conflicts arise,
either by modifying parameters or by reducing misinformation in the context. Knowledge editing
methods directly rewrite parameters to replace or refine stored facts, eliminating specific discrepan-
cies (Meng et al., 2022; 2023; Wang et al., 2024a; Xu et al., 2025; Zhai et al., 2025a; Fang et al.,
2025). Although effective, such changes are persistent and may introduce collateral effects. To keep
predictions faithful to internal knowledge without editing, several works reduce contextual noise or
verify parametric beliefs before answering. Examples include misinformation detection and vigilant
prompting defenses (Pan et al., 2023), and a system prompt that instructs the model to verify mem-
orized knowledge prior to response generation in interactive settings (Xu et al., 2024a). Credibility-
aware attention modification further adjusts influential attention heads using document credibility
estimates to downweight low-quality retrieved content (Deng et al., 2025). Dual-response strat-
egy first detect the presence and type of conflict, then invoke tailored resolution strategies. Wang
et al. (2024b) develop a three-step process that identifies conflicts and produces distinct, informed
responses according to the detected discrepancy. Fusion methods aim to merge information from
both sources. Zhang et al. (2023) train discriminators on silver labels to pair compatible generated
and retrieved passages for joint use. Jin et al. (2024a) propose a contrastive decoding algorithm that
maximizes differences between logits under conflicting inputs and calibrates confidence toward the
truthful answer.
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Figure 8: Code directory of our implementation.

I IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the proposed method and specific configurations
used in our experiments to ensure full reproducibility. Our source code, built upon PyTorch and the
Hugging Face Transformers library, is attached to the supplementary material. A map of the code
directory structure is also provided in Figure 8.

I.1 MODELS AND ENVIRONMENT

Our experiments leverage a diverse suite of publicly available large language models to demon-
strate the broad applicability of AdaRes. All models were used with their original pre-trained
weights without any further fine-tuning. The specific models are: meta-llama/Meta-Llama-3-8B,
Qwen/Qwen2.5-7B, meta-llama/Llama-3.3-70B-Instruct, Qwen/Qwen3-32B, microsoft/Phi-3-
mini-4k-instruct (3.8B), microsoft/Phi-3-medium-4k-instruct (14B), google/gemma-3-4b-it,
google/gemma-3-12b-it. Our experimental environment was configured with Python 3.9,
PyTorch 2.4, and Hugging Face Transformers 4.55. All experiments were conducted
on NVIDIA A100 GPUs with 80GB of VRAM.

I.2 SUMMARY OF ADARES CONFIGURATIONS OF THIS PAPER

The core hyperparameters for AdaRes are the set of layersH (i.e. where it is applied) and the number
of query tokens used for trust estimation Top-n. We summarize the specific configurations for each
model in Table to ensure our results are easy to reproduce. The only one configuration need to clarify
is Layer Selection (H) which determines which layers are selected to apply the AdaRes. We tested
different settings on different LLMs to seek the optimal performance, which are listed as follows:

• Llama3 (8B): H = {6, 16, 17, 25} for ZSRE, H = {3, 12, 17, 25} for COUNTERFACT, H =
{6, 10} for ConflictQA-PopQA,H = {9, 17} for ConflictQA-StrategyQA.

• Llama3 (8B) Instruct: H = {16, 30, 31} for ZSRE,H = {5, 9, 17, 31} for COUNTERFACT.

• Qwen2.5 (7B): H = {1, 4, 22} for ZSRE, H = {3, 24, 26, 27} for COUNTERFACT, H =
{5, 12} for ConflictQA-PopQA,H = {6, 16} for ConflictQA-StrategyQA.

• Qwen2.5 (7B) Instruct: H = {1} for ZSRE,H = {1} for COUNTERFACT.

• Phi3 (3.8B): H = {10, 15, 20, 26, 30} for ZSRE, H = {17, 20, 21, 26, 27, 30} for COUNTER-
FACT,H = {20} for ConflictQA-PopQA,H = {17} for ConflictQA-StrategyQA.

• Phi3 (14B): H = {0, 8, 16, 20, 28, 30, 36} for ZSRE, H = {16, 24, 25, 36, 37} for COUNTER-
FACT,H = {22} for ConflictQA-PopQA,H = {14} for ConflictQA-StrategyQA.

• Gemma3 (4B): H = {17} for ZSRE, H = {17} for COUNTERFACT, H = {7} for
ConflictQA-PopQA,H = {16} for ConflictQA-StrategyQA.

• Gemma3 (12B): H = {27} for ZSRE, H = {9} for COUNTERFACT, H = {19} for
ConflictQA-PopQA,H = {17} for ConflictQA-StrategyQA.
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I.3 REPRODUCE EXPERIMENTAL RESULTS

To facilitate direct replication of our main results, we provide execution scripts in the scripts/
directory of our supplementary code. Prior to execution, users should download the official model
weights from Hugging Face and update the corresponding paths in the provided configuration files.

J ADDITIONAL EXPERIMENTS

J.1 EXPERIMENTAL SETTINGS OF CONTEXT-FIRST EXPERIMENTS

J.2 EVALUATION METRICS ON ZSRE AND COUNTERFACT

After finishing all editing requests, each method is assessed on E . Following previous research, we
also adopt three fundamental editing metrics in this task for evaluation.

Efficacy computes the success rate of editing operations:

Efficacy(E|Θ∗) =
∑|E|

i=1
1(fΘ∗(xi) == y∗i ) / |E| (13)

where 1(·) measures the ratio at which the model predictions matched the desired outputs for each
editing.

Generality measures whether the edited model could proceed with the semantically equivalent
rephrase of each edit:

Generality(E|Θ∗) =
∑|E|

i=1
1(fΘ∗(x

′

i) == y∗i ) / |E| (14)

Locality refers to the degree to which other irrelevant knowledge has changed after editing:

Locality(K|Θ∗) =
∑|K|

j=1
1(fΘ∗(zj) == yj) / |K| (15)

where K is the knowledge set unrelated with E , and K ∪ E = ∅. zj is the textual prompt of one
specific knowledge ki in K, and yj is the original model prediction.

J.3 EVALUATION METRICS ON CONFLICTQA

For ConflictQA datasets, only the Efficacy is used, which has the same definition with Eq. 13.

J.4 BASELINE ON ZSRE AND COUNTERFACT

We use the EasyEdit3 toolkit for all baseline model editing operations, utilizing hyperparameters
recommended in its official documentation. The specific settings are detailed as follows:

J.4.1 FT-C

Knowledge editing of FT-C is executed at layer 21 for GPT-J, and Llama3, and 27 for Qwen 2.5
where optimization proceeds for 25 steps with a learning rate of 5e−4. The batch size is set to 1 and
weight decay is set to 0.

J.4.2 ROME

For ROME, Knowledge editing is performed at layer 5 for GPT-J, Llama3 and Qwen 2.5. The
learning rate is 5e−1, with the optimization proceeding 25 steps for Llama3 and Qwen 2.5, and 20
steps for GPT-J. The weight-decay is set to 1e−3 for Llama3 and Qwen 2.5, and 0.5 for GPT-J.
The KL factor is fixed at 0.0625 for three LLMs. Covariance statistics are collected in float32 on
Wikitext using a sample size of 100, 000.

3Official Website: https://github.com/zjunlp/EasyEdit
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J.4.3 MEMIT

Knowledge updating of MEMIT is executed at layer [4, 5, 6, 7, 8] for Llama3 and Qwen 2.5, and
[3, 4, 5, 6, 7, 8] for GPT-J. Optimization proceeds for 25 steps with a learning rate of 5e−1 for three
models. The weight-decay is set to 1e−3 for Llama3 and Qwen 2.5, and 0.5 for GPT-J. The KL
factor is set to 0.0625 for three models. Covariance statistics are also collected in float32 precision
on Wikitext using a sample size of 100, 000.

J.4.4 KN

For KN, the lr scale = 1.0, n toks = 10, batch size = 1, num steps = 20, adaptive threshold = 0.1.

J.4.5 PMET

For PMET, Knowledge editing is executed across layers [3, 4, 5, 6, 7, 8] for GPT-J and [4, 5, 6, 7, 8]
for Llama3 and Llama2. The optimization process involves 30 steps for GPT-J and 20 steps for
Llama3. The learning rate is set to 2e−1 for GPT-J and 5e−1 for Llama3. The weight decay of three
models is configured to 0.5. The KL factor is set to 1 for GPT-J and 0.0625 for Llama3. Covariance
statistics are also collected in float32 on Wikitext using a sample size of 100, 000.

J.4.6 ALPHAEDIT

Knowledge updating of AlphaEdit is executed at layer [4, 5, 6, 7, 8] for Llama3 and Qwen 2.5, and
[3, 4, 5, 6, 7, 8] for GPT-J. Optimization proceeds for 25 steps with a learning rate of 1e−1 for GPT-J
and Llama3, 5e−1 for Qwen 2.5. The weight-decay is set to 0.5 for Llama3 and GPT-J, 1e−3 for
Qwen 2.5. The KL factor is set to 0.0625 for three models. Covariance statistics are also collected
in float32 precision on Wikitext using a sample size of 100, 000.

J.4.7 LORA

Knowledge editing of LoRA refers to AdaLoRA for all models, where optimization proceeds for
70 steps with a learning rate of 5e−4. The weight decay is set to 0, KL factor = 0, rank = 8,
LoRA Alpha = 32, and LoRA dropout = 0.1.

J.4.8 R-ROME

For R-ROME, Knowledge editing is performed at layer 5 for GPT-J, Llama3 and Qwen 2.5 models.
The learning rate is 5e−1, with the optimization proceeding 25 steps for Llama3 and Qwen 2.5, and
20 steps for GPT-J. The weight-decay is set to 1e−3 for Llama3 and Qwen 2.5, and 0.5 for GPT-J.
The KL factor is fixed at 0.0625 for both models. Covariance statistics are collected in float32 on
Wikitext using a sample size of 100, 000.

J.4.9 WISE

Knowledge editing is performed at layer 23 for Qwen 2.5 (7B). Hyperparameters are configured as
follows: mask ratio is set to 0.2 with edit lr = 1.0 and norm constraint = 1.0. The act margin is
set to [5.0, 20.0, 10.0] and act ratio = 0.88. The merge freq is set to 1000 with merge alg being
‘ties’. The densities is 0.53 and weights is 1.0.

J.4.10 GRACE

Knowledge editing is performed at layer 18 for Qwen 2.5 (7B). Additionally, edit lr and n iter are
1.0 and 50, respectively; with eps being 1.0. The dist fn is set to euc. val init is cold witt val train
being sgd. reg is early stop. The eps expand is set to coverage and num pert is 8.
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(a) Analysis of α(l) across layers for Phi3 (3.8B) (left) and Phi3 (14B) (right).

(b) Analysis of α(l) across layers for Gemma3 (4B) (left) and Gemma3 (12B) (right).

Figure 9: Trend of α(l) across layers for different LLMs.
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