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Abstract

We demonstrate that learning procedures that rely on aggregated labels, e.g., label infor-
mation distilled from noisy responses, enjoy robustness properties impossible without data
cleaning. This robustness appears in several ways. In the context of risk consistency—when
one takes the standard approach in machine learning of minimizing a surrogate (typically
convex) loss in place of a desired task loss (such as the zero-one mis-classification error)—
procedures using label aggregation obtain stronger consistency guarantees than those even
possible using raw labels. And while classical statistical scenarios of fitting perfectly-
specified models suggest that incorporating all possible information—modeling uncertainty
in labels—is statistically efficient, consistency fails for “standard” approaches as soon as a
loss to be minimized is even slightly mis-specified. Yet procedures leveraging aggregated
information still converge to optimal classifiers, highlighting how incorporating a fuller view
of the data analysis pipeline, from collection to model-fitting to prediction time, can yield
a more robust methodology by refining noisy signals.

1 Introduction

Consider the data collection pipeline in a supervised learning problem. Naively, we say that we collect pairs
(X5, Y;), of features X; and labels Y, fit a model, and away we go (Hastie et al.,[2009)). But this belies the
complexity of modern datasets (Deng et al., 2009; Krizhevsky and Hinton) [2009; |[Russakovsky et al., 2015)),
which require substantial data cleaning, filtering, often crowdsourcing multiple labels and then denoising
them. The crowdsourcing community has intensively studied such data cleaning, especially in the context
of obtaining “gold standard” labels (Dawid and Skenel 1979; [Whitehill et al., |2009; Welinder et al., [2010;
[Vaughan, 2018; [Platanios et al) [2020). We take a complementary view of this process, investigating the
ways in which data aggregation fundamentally and necessarily improves the consistency of models we fit.

In a sense, this paper argues that label cleaning, or aggregating labels together, provides robustness that is
impossible to achieve without aggregating labels. There are two faces to this robustness. First, we improve
consistency of estimation: when minimizing a surrogate loss (e.g., the multiclass logistic loss) instead of a
task loss (e.g., the zero-one error), procedures that use aggregated labels can achieve consistent and optimal
prediction in the limit when this is impossible without data aggregation. Second, even in finite-dimensional
statistical problems, this aggregation can provide consistent classifiers when standard methods fail.

Important contributions to the theory of surrogate risk consistency trace to the 2000s (Zhang), [2004c} [Lugosil
land Vayatis, 2004; [Steinwart, 2007)), with Bartlett, Jordan, and McAuliffe (2006)) characterizing when fitting
a model using a convex surrogate is consistent for binary classification for the zero-one error. Since this
work, there has been an abundance of work on surrogate risk consistency, including on multi-label classifi-
cation (Zhang 2004a; Tewari and Bartlett| |2007; |Gao and Zhou, [2011; |Zhang and Agarwal, [2020; |Awasthi
et all, [2021)), ranking problems (Duchi et al. [2010; 2012} [Pires et al., 2013)), structured prediction (Osokin
et all 2017, [Cabannes et all [2020; Nowak-Vila et al. 2020), ordinal regression (Pedregosa et al. 2017),
restricted hypothesis class (Awasthi et al.l |2022azb; Mao et al., |2024a; 2025)) and general theory (Steinwart,
. On the one hand, these analyses, which consider the standard supervised learning scenario of data
pairs (X,Y’), enable us to fully exploit the entire statistical theory of empirical processes
[and Wellner}, |1996} [Bartlett et al., [2005; [Koltchinskii, 2006} [Bartlett et al., [2006). On the other, they do not
address the data aggregation machinery now common in modern dataset creation.
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It is thus natural to ask about the interaction between consistency and data aggregation—to begin with, do
we need to aggregate at all? If we can achieve surrogate consistency without data aggregation, we should
perhaps just rely on our mature theoretical understanding of processes with (X,Y") pairs. Going one step
further, if we aggregate, does aggregation help consistency, and in what sense does it help? These main
questions motivate this paper.

To further underpin the importance of studying consistency and aggregated labels, we propose concrete
examples—in ranking and binary- and multiclass-classification with linear estimators—where estimators us-
ing only pairs (X,Y") necessarily fail, but label aggregation methods yield consistency. We develop new
notions and theory for surrogate consistency with data aggregation. In fully nonparametric scenarios, we
show how the number of samples aggregated combine with noise conditions to improve consistency. Aggre-
gation will also allow us to demonstrate surrogate risk consistency under only weak conditions the surrogate
loss; in the language of the field, losses using aggregated labels admit (approximate) linear comparison
inequalities. Additionally, in contrast to conventional risk consistency theory, which requires taking a hy-
pothesis class F consisting of all measurable functions, we will show results in classification problems where
aggregating labels guarantees consistency even over restricted hypothesis classes, which may fail without
aggregation.

2 Preliminaries

We first review classical surrogate risk minimization. Let A be the input space and ) be the output space,
with data (X;,Y;)", € X x Y drawn i.i.d. P. Consider learning a scoring function f : X — R that maps an
input x € X to a score s € R4 for some d > 1, where a decoder d : R% — Y determines the final prediction
viag=do f(z). Given aloss £: Y x Y — R, and hypothesis class F, the goal is to minimize the task risk
over f € F

R(f) = Ep [(do f(X),Y)]. (1)

For example, in binary classification, d = 1, d(s) = sgn(s), and {(y,y’) = 1{yy’ <0}, yielding R(f) =
P(Y f(X) < 0). The challenge of minimizing R(f) is that the task loss £ can be nonsmooth, nonconvex,
and—even more—uninformative: the loss landscape of the 0-1 loss is flat almost everywhere. This makes
even practical (e.g., first-order) optimization impossible. We will consider a slightly more sophisticated
version of the problem , where instead of the loss £ being defined only in terms of the instantaneous label
Y, we will allow it to depend on P(Y € - | X), so that we investigate

R(f) =Ep[(do f(X), P(-| X)), (2)

whose minimizers frequently coincide with the original problem , but which allows more sophistication.
(For example, in multiclass classification, Y € {1,...,k}, and taking £(y, P) = >° P(Y = y)1{y # y}, the
risk coincides with the standard 0-1 error rate.)

Instead of the task loss ¢, we thus consider an easier to optimize surrogate ¢ : R? x ) — R. Then rather
than attacking the risk directly, we minimize surrogate risk

Ro(f) :=Ep[p(f(X),Y)].

For this to be sensible, we must exhibit some type of consistency with the task problem . In this paper,
we particularly study in two scenarios, which we will make more formal:

(i) The “classical” case of Fisher consistency, where F contains all Borel functions;

(ii) Statistical scenarios in which the hypothesis class F is parametric but may be mis-specified.

Our main message is that label aggregation improves consistency in both scenarios, demonstrating the
robustness of label cleaning.
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2.1 Label aggregation

Instead of obtaining (X;,Y;) pairs, consider the case that we replace the output Y with a more abstract
variable Z € Z. For example, in the motivating scenario in the introduction in which we collect multiple
(say, m) noisy labels for each example X, we take Z = (Y7,...,Y;,) € Y™. Mao et al.| (2024a)) consider
similar multilabeled data structure for multilabel losses, while we focus on the label aggregation pipeline.
For an abstract “aggregation space” A, let A : Z — A be an aggregating function (e.g., majority vote), and
let ¢ : RY x A — R, be a surrogate loss defined on this aggregation space. We then define the aggregated
surrogate risk

Roa(f) :=E[p(f(X), A(Z))], 3)

asking when minimizing the surrogate problem is sufficient to minimize the actual task risk . Two
concrete examples may make this clearer.

Example 1 (Majority vote): In the repeated sampling regime, data collection takes the form Z =
Y, Y)Y | X =2 Y Py|x—5. Define A,,(Z) to be the empirical minimizer

A(Z) = A{Yq, ..., Yu)) = argn)l;inz ((y,Y)).
vey o

When ¢(y,y) = 1{y # 3}, this corresponds exactly to majority vote; the more general form allows more
abstract procedures. <

We can also (roughly) capture K-nearest neighbor aggregation procedures:

Example 2 (K-nearest neighbors): Consider an abstract repeated sampling scenario in which an example
X comes with a label Y and an additional draw (X;,Y;)™, B P, where m is the number of additional
examples, so Z = (Y, (X;,Y;)i%,). Let dist : & x X — R, be a distance metric on X. Let {X(),..., X(m)}
order the input sample {X;}{, by distance, dist(X, X(1)) < ... < dist(X, X)) (and let Xy = X). For

K > 0, we can aggregate the K-nearest neighbors of X, for example, by choosing

K

Am.x(2) = argminZE(y, Yu))-
veY 1=

In Appendix [C] we leverage the results in the coming sections to move beyond this population-level scenario
to address aggregation from a single sample (X;,Y;)" ;. <

3 Surrogate consistency

The standard framework for surrogate consistency (Steinwart, 2007) assumes that J consists of all Borel
measurable functions f : X — R?. Working in the abstract setting in the preliminaries, define the conditional
task risk R(s | ) and the conditional surrogate risk R, (s | ), s € R? by

R(s|z)=4{(dos,P(Y €-| X =2)) and Ry(s|z):=E[p(s,Y) | X =2z].
We then define the pointwise excess risks

1) =R — inf R(s' d0p(s,2) =R — inf R,(s' ,
o(s, ) (s]2)— inf R(s"|z), p(8,2) = Ry(s | z) — Inf Ry(s'|z)
as well as the minimal risks R* := inf;c 7 R(f) and R}, := infc 7 R, (f). We follow the standard (Steinwart,
2007; [Bartlett et al., [2006; [Zhang), [2004c) that consistency requires at least (i) Fisher consistency and,

if possible, a stronger and quantitative (ii) uniform comparison inequality: respectively, that for all data
distributions P,
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(i) For any sequence of functions f, € F, Ry(fn) — Ry, implies R(f,) — R*.
(ii) For a non-decreasing ¢ : Ry — Ry, Y(R(f) — R*) < R,(f) — R, for all f € F, where ¢ satisfies
¥(e) > 0 for all € > 0,

In the case of binary classification when ¢ is margin-based and convex, the two consistency notions coin-
cide (Bartlett et al.,2006). The stronger uniform guarantee ({i)) need not always hold, the calibration function
1) provides a canonical construction through the excess risk:

P(e,x) = Sién]gd {8,(s,2) | 60(s,2) > €} and ¢P(e) = gcig/fvw(e,x).

Consistency and comparison inequalities follow from the calibration functions (see 2004c, Prop. 25)
and 2007, Thm. 2.8 and Lemma 2.9)):

Corollary 3.1. The surrogate ¢ is Fisher consistent (i) for £ if and only if ¢ (e,z) > 0 for all x € X and
e > 0. Let ¢ be the Fenchel biconjugate of 1. Then 1b(e) > 0 if and only if ¥(e) > 0, and for all measurable

f7
V(R(f) — R") < R,(f) — R

In the general risk minimization problem we would like at least a Fisher-consistent @ surrogate for £,
so that minimizing R, (f) = E[e(f(X),Y)] would imply minimizing R(f). Given such a result, using only
paired observations (X,Y") rather than tuples (X,Y7,...,Y,,), we could bring the entire theory of empirical
processes and related statistical tools (van der Vaart and Wellner} 1996 Bartlett et al. [2005} Koltchinskiil
[2006; Bartlett et al., 2006) to bear on the problem. Moreover, data collection procedures would be simpler,
necessitating only single pairs (X,Y") for consistent estimation. Unfortunately, such results are generally
impossible, as we detail in the next extended example, necessitating the necessity of a theory of aggregation
that we pursue in Sec.

3.1 Fisher consistency failure without label aggregation: ranking

Consider the problem of ranking k items using pairwise comparison data (Keener, |1993; Dwork et al.,
[2001} Duchi et al., [2012; Negahban et al., |2016]), where the space Y consists of all pairwise comparisons of
these items, Y = {(i,7) : ¢ # 4,1 <i,j < k}. The (population) rank aggregation problem is, for each z, to
transform the probabilities p;; = P(Y = (¢, j) | «) into a ranking of the k items. While numerous possibilities
exist for such aggregation, we consider a simple comparison-based aggregation scheme (cf. [1993);
similar negative results to the one we show below hold for more sophisticated schemes. Define the normalized
transition matrix C, € Rﬁ_Xk with entries (C;); = 0 and

(Cr)ij = L fori # 7,
Z# 5 PLj
where we let 0/0 = 1/(k — 1) so that C, is stochastic, satisfying CT1 = 1. We then rank the items by the
vector C,1 € Rﬁ, which measures how often a given item is preferred to others. (One may also take higher
powers CP1 or Perron vectors ; similar results to ours below hold in such cases.) Tacitly
incorporating the decoding d into the task loss ¢, we

0(s,C) = max 1{(s; — sj)(e; —e;)TC1 <0, (e; —e;)"C1 # 0},
i<j

which penalizes mis-ordered scores between s and C. The population task risk is thus

R(f) =P (f(X) and Cx1 order differently) (4)

Now consider a convex surrogate ¢ : R¥ x ) — R. We restrict to s € R* for which s”1 = 0, a minor
restriction familiar from multiclass classification problems (Zhang} [2004b}; [Tewari and Bartlett] [2007)), which
is natural as for decoding a ranking we require only the ordering of the s;. Unfortunately, there is no convex
Fisher-consistent surrogate for the problem @ (see Appendix [A.1)).
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Proposition 1. Consider the ranking problem with task risk over k > 3 outcomes. If p : RF x Y — R
s convex in its first argument, it is not Fisher consistent.

Nonetheless, a reasonably straightforward argument yields consistency when we allow aggregation methods
as soon as m, the number of collected comparisons, satisfies m > k. The idea is simple: we regress predicted
scores f(x) on frequencies of label orderings. We assume multiple independent pairwise comparisons Z =
(Y1,...,Yn) conditioned on X, and letting m;; = > ym H{y = (i,7)} and m; = Zle m;j, we define the
aggregation

A(Z) = {*, if m; = 0 for some j in [k],

B (il 4 22 oo Sk, otherwise, de. if my > 0 for all j € [K].

Regressing directly on A(Z) when A(Z) # * yields consistency, as the next proposition demonstrates (see
Appendix for a proof):

Proposition 2. Define o(s,q) = ||S—Q||§ for s,q € R¥ and ¢(s,x) = 0. Then if m > k, ¢ is Fisher
consistent for the ranking risk .

3.2 Label aggregation obtains stronger surrogate consistency

The extended ranking example in ranking suggests potential benefits of aggregating labels, and it is natural
to ask how aggregation interacts with surrogate consistency more generally. Thus, we present two results
here: one that performs an essentially basic extension of standard surrogate-risk consistency, and the second
that shows how aggregation-based methods can “upgrade” what might nominally be inconsistent losses into
consistent losses, as Proposition [2] suggests may be possible.

3.2.1 Basic extensions of surrogate consistency

We begin by making the more or less obvious generalization of calibration functions for standard cases,
extending the classical comparison inequalities in Corollary [3.I] For an arbitrary aggregation method A :
Z — A, define the conditional surrogate risk with data aggregation

Ryoa(s | @) == E[p(s, A(Z)) | X =a].
As in the non-aggregated case, the pointwise excess risk
Op,a(8,2) = Ry, a(s | @) — inf Ry a(s|z)
then defines the pointwise and uniform calibration functions

P 4(e,z) == inf {0p,4(s,2) | de(s,xz) > €} and P 4(€) == inf 4 (e, ). (5)
scRd se€Rd

A consistency result then follows, similar to Corollary under appropriate measurability conditions (we
will leave these tacit as they are not central to our results). Then more or less as a corollary of|Steinwart| (2007,
Thm. 2.8), we have the following consistency result. (We include a proof for completeness in Appendix )

Proposition 3. Assume there exists b: X — Ry with [ b(x)dP(x) < oo such that d,(f(x),x) < b(z). The
surrogate p is Fisher consistent (i) for the task risk if and only if 1 4(e,x) > 0 for all z € X and e > 0.
Additionally, if 1a = (Y 4)** is the Fenchel biconjugate of ¥ 4, then

Ya(R(f) = R*) < Ry a(f) — R 4-

The result captures the classical consistency guarantees—mnothing particularly falls apart because of
aggregation—but it provides no specific guarantees of improved consistency. We turn to this now.
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3.2.2 Identifying surrogates and consistency

We now turn under essentially minimal conditions on the surrogate, there is a generic aggregating strategy
that (asymptotically in the number of observations y) guarantees consistency for any task loss that seeks
to minimize ¢(f(x),y), i.e., R(f) = E[¢(f(X),Y)]. We assume that card(Y) = k < oo, and we impose a
minimal identifiability assumption on the surrogate loss.

Definition 3.1 (Identifying surrogate). A surrogate ¢ : R* x A — R is (Cy 1, Cy 2)-identifying for Y,
0 < Cypa1 < Cuo < oo if there exist {ay}ycy C A and vectors {sy,}yecy such that d(s,) =y and for which for
ally # vy,

©(8y,ay) +Cp1 < inf (s, a,), (6a)
dos#y
@(sy,ay) —Cpa < Sieand o(s,ay). (6b)

Inequality captures that for each class y € ), there exists a parameter a, € A such that the minimizer
of (-, ay) identifies y. A finite C,, o exists for if (-, a) has a finite lower bound. Notably, Definition
does not require that (-, a) is convex or that it is consistent when A =) and Z =Y, i.e., without label
aggregation.

Example 3: Consider the binary hinge loss ¢(s,a) = max{l — sa,0} for A =) = {£1}. For y € {—1, 1},
take a, = s, = y, so that ¢(s1,a1) = ¢(s_1,a_1) = 0, while infs,<¢ ¢(s,a) = 1. Similarly, ¢(s1,a-1) =
w(s_1,a1) = 2, so the hinge loss is (1, 2)-identifying. <

Given an identifying surrogate with parameters {a,},cy, we consider a naive aggregation strategy: the
generalized majority vote

Am(yla B ym) = Qg for § = argn;}inzg(ya yi) (7)
yeY =1

(breaking ties arbitrarily). As m — oo, because Y is finite, whenever Y; are i.i.d. there necessarily exists a
(random) M < oo such that m > M implies

argmin 0y, Y;) p Cy*(x) =argminE [{(y,Y) | X = x].
{2 )

yey i—1 yey

From this, we expect that as m — oo, the surrogate ¢(-, A,,) ought to be consistent. In fact, we have the
following corollary of our coming results, guaranteeing (asymptotic) consistency:

Corollary 3.2. Let m =m(n) — oo and ¢ be identifying (Def.[3.1). Then

Ry, (fn) — R;)Am — 0 dmplies R(f,) — R* — 0.

3.2.3 Identifying surrogates and consistency amplification

In cases with low noise in the labels, the aggregation strategy @ allows an explicitly improved comparison
inequality ¥ (R(f) — R*) < R,(f) — R*, in that 9 is linear over some range of ¢ > 0—and linear growth is
the strongest comparison inequality possible (Osokin et al.l |2017; Nowak-Vila et al., 2020]). More generally,
strict comparison inequalities, such as those present in Proposition [3, can be too narrow, as it can still be
practically convenient to adopt inconsistent surrogates (Liu, 2007; |Osokin et al.| [2017; Nowak-Vila et al.|
2020). Thus, we follow |Osokin et al.| (2017) to introduce (&, () consistency, which requires a comparison
function v to grow linearly only for € > £, so that the surrogate captures a sort of “good enough” risk.

Definition 3.2. The surrogate loss ¢ and aggregator A yield level-(€, () consistency if there exists 1 satis-
fying ¥(€) = Ce for e = &, and Y(R(f) — R*) < Ry a(f) — R 4.

In the following discussion, we show under minimal assumptions, label aggregation can achieve level-
(0m (1), ) consistency even if the surrogate is Fisher inconsistent.
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We introduce a quantifiable noise condition, adapting the now classical Mammen-Tsybakov noise condi-
tions (Mammen and Tsybakov, [1999) (see also (Bartlett et al., [2006)). Define

A(z) : min (s, ), (8)

d(s)gy* (2)

the minimal excess conditional risk when making an incorrect prediction. In binary classification problems
with Y = {£1}, one obtains A(z) = |2P(Y =1 | X = z) — 1|, and more generally, we expect that consistent
estimation should be harder when A(x) is closer to 0. We can define the Mammen-Tsybakov conditions
(where the constant Cyt > 0 may change) as

P(do f#do f*) < Cut (R(f) — R*)® for all measurable f, (Na)
where we refer to condition (N,|) as having noise exponent a, and
P(A(X) <€) < (Cure)? for e > 0. (Mpg)

Here, a € [0,1] and 3 € [0,00], so that conditions (N,|) and (Mg always trivially hold with o = 8 = 0,
moreover, as in the binary case (Bartlett et all 2006, Thm. 3), they are equivalent via the transformation

B = 1% . (See Appendix )

Notably, in the recent work of (Mao et al. [2025), the authors consider the exact same noise statistic for
H-consistency in multiclassification—while they operate under structural assumptions of the surrogate and
hypothesis class to enable a global convex lower bound, we consider the generic setup with minimal structural
constraint, which requires us to introduce the noise condition number in the following.

Maxg(s)-£y+ (z) 0¢(8, T)
Ming(s)y+(z) 0¢(8, )’

k(zx) =

9)

which connects the noise statistic A(x) and the pointwise excess risk via A(xz) > d¢(s,z)/k(z) for all s such

that d(s) # y*(z), allowing more fine-grained analysis. In binary classification, we have x(x) = 1 so long as
P(A(X) > 0) = 1.

The noise statistic A(z) and condition number () will allow us to show how (generalized) majority vote (7)),
when applied in the context of any identifiable surrogate (Definition [3.1)), achieves level-(¢, ) consistency.

Define the error function
2 4k(Cp1 + Cy2)
m(t) =ty —1 St L L . 2 L2 10
() \/mog( - (10)

which roughly captures that if k(z) = ¢, then majority vote A,, is likely correct if m is large enough that
em(t) < 1. We then have the following theorem, which provides a (near) linear calibration function; we
prove it in Appendix [B23]

Theorem 1. Let the surrogate loss ¢ be (Cy 1, Cy 2)-identifying with parameters {ay}ycy, and A, be the
magjority vote aggregator . Assume the task loss satisfies 0 < ¢ < 1 and P satisfies condition (N,
with noise exponent a € [0,1]. Then for any M > 0 and f € F such that R(f) — R* > 2P(k(X) >
M) + (4Curen(M)) T,

16

R(f) =R < e (Bpa,(f) = Ba,,) -
@,1

Said differently, under the conditions of the theorem, ¢ with aggregation provides level (£, () consistency

(Def. with ¢ = 2P(k(X) > M)+ (4Cyrem(M))T= and ¢ = Ci"él : Theoremalso provides an immediate

proof of Corollary that is, an asymptotic guarantee of consistency. Indeed, define

ém 1= inf {2P(r(X) > M) + (4Curen (M) T},
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which satisfies &,, — 0 as m — 0o, because P(k(X) > M) — 0 as M 1 oo and for any fixed M, e,,(M) — 0
as m grows. Corollary [3:2] then follows trivially by taking o = 0.

Theorem [I]is a somewhat gross result, as the identifiability conditions in Def. [3:1]are so weak. With a tighter
connection between task loss ¢ and surrogate ¢, for example, making the naive majority vote more likely
to be correct (or at least correct enough for ), we would expect stronger bounds. We do not pursue this
here.

To provide a somewhat more concrete bound, we optimize over M in Theorem [I} using the crude bound
k(z) < 1/A(z) on the condition number. By taking M = 1 for card()) = k = 2 and optimizing M for k > 3,
we may lower bound &,  in the level (&, , ¢)-consistency (Def. 3.2)) that in Theorem [1| promises, setting

1
2 Ty
f . <32;MT 10g (8((:4761:1(:%2))) 2= , ifk=2
m,k = " _a
4. (3251“” log <4k(C%1+1C%2)>) 20220 Gtherwise.
N

Making appropriate algebraic substitutions and manipulations (see Appendix [B.4]), we have the following
corollary.

Corollary 3.3. Under the conditions of Theorem for any f such that R(f) — R* > &mk,

R(f) - R* < Cl—ﬁ (R, (f) = Ry a,,) -

.1

The above corollary and Corollary [3.2] provide evidence for the robustness of label cleaning: with minimal
assumptions on the surrogate, data aggregation can still yield consistency. As the noise exponent « ap-
proaches 1 in Corollary the sample size m required for the comparison inequality to hold for a fixed
score function f shrinks. Notably, if o = 1, whenever

4k(Con + Cp2)
C%l
we have &, 1, = 0, yielding the uniform comparison inequality with linear comparison. The noise level of

the learning problem itself affects the aggregation level needed for consistency—an “easier” problem requires
less aggregation to achieve stronger consistency.

m > 32max{C¥t,Cyr} - log < ) = O(logk),

3.3 Surrogate consistency examples with majority vote

We collect several examples, of varying levels of concreteness, that allow us to instantiate Theorem [I] and
Corollary Throughout, we shall assume that P has a noise exponent « € [0, 1], though this is no loss
of generality, as Condition (N,|) always holds with o = 0. We defer proofs for each result in this section to

Appendix
3.3.1 Binary classification with a nonsmooth surrogate

Consider the binary classification problem with a margin-based surrogate o(f(z),y) = ¢(yf(x)), where ¢ is
convex; Bartlett et al.| (2006]) show that ¢ is consistent if and only if ¢’(0) < 0. Here, we show a (somewhat
trivial) example for the robustness data aggregation offers by demonstrating that even if ¢ is inconsistent
without aggregation, it can become so with it. Note, of course, that one would never use such a surrogate,
so one ought to think of this as a thought experiment. Assume that the subgradient set d¢(0) C (—o0,0)
and ¢ is convex with lim; ., ¢(t) = 0.

Lemma 3.1. For any 6 >0, ¢ is (Cy. 1, Cy 2)-feasible with
Ceo1 =0(0) —¢(0) >0 and Cy,o = ¢(—0).

Corollary [3.3] thus applies with k = 2, so if f : X — R satisfies

oo (382G |, (B(6(=8) + 6(0) = 6(6)) ) T
ip - > (0o (MR EES ) )
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then
16

R =1 < 557 =40)

(Rp.a,,(f) = R 4,,)-

3.3.2 Bipartite matching

In general structured prediction problems (Nowozin and Lampert,, 2011), an embedding map v : J — R?
encodes structural information about elements y € ), where ) is some “structured” space, which is typically
large. Using decoder d(s) = argmax,cy(s,v(y)), for a loss £: Y x Y — Ry with £(y,y) = 0, the maximum-
margin surrogate (generalized hinge loss) (Taskar et al. 2003; Tsochantaridis et al., [2004; |Joachims, [2006)
takes the form

(s, y) = max (((§,y) + (v(@) —v(y). 5)) (11)
Notably, the loss is typically inconsistent, except in certain low noise cases (Osokin et al., 2017; Nowak-
Vila et al., 2020).

Before discussing structured prediction broadly, we consider bipartite matching. A bipartite matching con-
sists of a graph G = (V, E) where the vertices V' = V; U V, partition into left and right sets V4 = {1,..., N}
and Vo = {N+1,...,2N}, while the N edges F each connect exactly one (unique) node in V; and V5. Letting
Y be the collection of all bipartite matching between V; and Va, we evidently have k = card()) = N!. For
any graph G, the embedding map

v(G) = (1{(u,v) € E}) ey, ver, €RY

indexes edges, yielding d = N?2. The task loss counts the number of mistaken edges,

w) — vy, = y1) — v(ya)ll3 .

1 1
oSN [[v( N [[o
In this case, the max-margin (structured hinge loss) surrogate is identifying:

e(ylv yZ) =

Lemma 3.2. For the bipartite matching problem on 2N wvertices, the structured hinge loss (L1|) surrogate ¢
is (Cy,1, Cyp 2)-identifying (Def. with

1
Co1 = N and Cg,o = 2.

The important consequence of Lemma is that even when k = card()) = N!, aggregation-based meth-
ods can yield consistency (via the structured hinge loss) once m, the number of aggregated labels, exceeds
O(Nlog N). As one specialization, substituting these constants into Corollary for k > 3, for all measur-
able f: X — R? such that

2Ck P
R(f)—R*>4- <3m“” log (4k(2N + 1))) ,

one has

R(f) — R* <16N(Ry a,(f) — R} 4,)-
3.3.3 Structured prediction

We return to the more general structured prediction setting, as at the beginning of the preceding subsection.
Suppose the decoder d can pick any class y € Y, in that for each y € ), the collection

S(y) = {s: (v(y), s) > (v(9),s), for § # y}
of selecting s is non-empty. For each y € ), define the identifiability gap

14 —v(y_
7(y) == inf max (y+.9) ) (v(y) —vly )a5>.
ses() v -7y (V(Y) = v(y+), 9) (y-,y)
We have the following identifiability guarantee.
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Lemma 3.3. For the structured prediction problem, the max-margin surrogate ¢ is (Cyp1,Cop2)-
tdentifiable with

Cyp1 = minf(9,y), Cp2=max7(y)+ 1.
o1 = Min (g, y) p2 = M3 7(y)

In particular, if v(y) € {0,1}¢ and £(7,y) = 2—1d lv(g) —v(y)lly, 7(y) =1 for ally and C, o = 2.

Completing the example, as in the binary matching case, we see that nontrivial consistency guarantees hold
once m > logcard()). As 0 < {(-,-) < 1, Corollary applies, which yields for all measurable f : X — R?

that
4 X Femres)
m ming., £(4,y)

implies
8

R(f)-R"<——°
) = B < ey 65.9)

(Ro.a,,(f) = R} 4,,)-

4 Robustness and consistency for models

The previous section builds off of the now classical theory of surrogate risk consistency, which assumes
F to be the class of all measurable functions. The results there show that aggregation can allow us to
“upgrade” consistency so that even if a surrogate ¢ is inconsistent for paired (non-aggregated) data (X,Y),
we can achieve level-(¢, () consistency (Def. with sufficient aggregation. Here, we take a different
view of the problem of consistency, considering the consequences of optimizing over a restricted (often
parametric) hypothesis class F. Of course, in a well-specified model, obtaining consistency with such a
restricted hypothesis class is no issue, but it is unrealistic to assume such a brittle condition. This gives
rise to the long-standing challenge of quantifying surrogate consistency when the hypothesis class contains
only a subset of the measurable functions (Duchi et al.l 2016; Nguyen et al., |2009). We point out a line of
recent work develops H-consistency bounds that link excess target risk to surrogate regret within a regret
hypothesis class H, covering various setups (Awasthi et al |2022a3b; [Mao et al., |2023; 2024a; [2025). These
results are primarily surrogate-centric. Our contribution is orthogonal, less hinged on the specific class and
surrogate, and instead study how label aggregation improves consistency itself. We tackle some of the issues
around this, showing that aggregating labels allows consistent estimates in scenarios where consistency might
otherwise fail.

4.1 Consistency failure for binary classification in finite dimensions

To see how restricting the hypothesis class can change the problem substantially even in well-understood
cases, we consider binary classification. In this case, ) = {£1}, and we take the zero-one error £(d(s),y) =
1{ys < 0}. We consider a margin-based surrogate ¢(s,y) = ¢(sy), where ¢ : R — R is convex, and as we
have discussed, ¢ achieves both Fisher (i) and uniform consistency when F consists of all measurable
functions if and only if ¢'(0) < 0 (Bartlett et al. |2006).

Now we proceed to consider a restricted hypothesis class, showing in this simple setting that classical con-
sistency fails even when optimal classifiers lie in F, in particular, when P is optimally predictable using F,
meaning that

sgn(f(z)) =sgn(P(Y =1| X =2) —1/2). (12)

Let X = R? and take F = {fq | fo(x) = (0, 2)}ycra to be the collection of linear functionals of . When P is
optimally predictable from using F, there exists 6* satisfying sgn((0*,z)) =sgn(P(Y =1 | z) — %), and fg«
minimizes R(f) across all measurable functions. In this case, we say that P is optimally predictable along
0*. One might expect a margin-based surrogate ¢ achieving Fisher consistency in the classical setup should
still consistent. This fails. Even more, for any nonnegative loss ¢, there is a data distribution P on (X,Y)
such that 0, = argming Ep[p(fp(X),Y)] is essentially orthogonal to 6*:

10
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Proposition 4. For any ¢ > 0 and nonzero vector 0* € R?, there exists an (X,Y) distribution P, optimally
predictable along 0%, such that for all

0, € argér)nin R,(fo) = arggninIE [o(fo(X),Y)],
we have R(fo,) > R(fo+) and |cos Z(0y,0%)| = [(0p, 0%)|/ (0,1l [[07[|5) < e

We postpone the proof to Appendix [D-1}

Data aggregation methods provide one way to circumvent the inconsistency Proposition [4] highlights. To
state the result, define the approximate minimizers

e-argmin g = e-argmin g(f) = {0 | g(0) < ir;fg(@) + e}.
0

Suppose the data collection consists of independent samples Z = (Y7,...,Y,,) and we take A,,(Z) to be
majority vote. For a sequence €, take

O € em-argmin Ry, 4, (fo) = em-argminE [¢(A,, (Y1, ..., Vi) fo(X))].
9 0

Then as a corollary to the coming Theorem [2 fy, are asymptotically consistent when m — oo.

Corollary 4.1. Let P be optimally predictable along 8*. Then if €,, — 0 as m — oo, R(fs,,) = R(fo+) and
€08 Z(0,0*) — 1.

So without aggregation, surrogate risk minimization is (by Proposition [4)) essentially arbitrarily incorrect
when restricting to the class of linear predictors, while with aggregation, we retain consistency.

4.2 Aggregation, consistency, and restricted hypothesis classes

As Proposition [4] shows, surrogate risk consistency reposes quite fundamentally on F containing all measur-
able functions. We now consider multiclass classification problems, where Y = {1,...,k}, and in which F
forms a linear cone satisfying

f(2)T1=0 and tf € Ffort>0if f € F.

We consider the zero-one loss /(y,y’) = 1{y # y'} and d(s) = argmax,c(y sy, making the restriction to
predictors normalized to have f(x)T1 = 0 immaterial. Assume the surrogate ¢ : R¥ x [k] — R, is Fisher-
consistent (fif) and satisfies the limiting loss condition

@(s,y) =0 if s, —s; = +oo for all j # y. (13)

Many familiar surrogate losses are Fisher consistent and satisfy , including the multiclass logistic loss
o(s,y) = log(Z§=1 €% %) and any loss of the form

e(s,y) =D sy — si)
i#y
for ¢ convex, non-increasing with ¢’(0) < 0, and inf; ¢(¢) = 0. |Zhang| (2004b, Thm. 5) shows that any such
loss is consistent over the class F = {f : X — R¥ | 1Tf = 0}. Clearly, the margin-based binary setting
in Sec. falls into this scenario when we take f(z) = (g(z), —g(z)) for a measurable g. Additionally,
in a parametric setting when X = R?, if F consists of linear functions f(z) = ((61,2),..., {0k, z)) with
Zle 6; = 0, then F is a (convex) cone.

Extending the definition of optimal predictability in the obvious way, we shall say F can optimally
predict P if there exists f € F, f : X — R¥, for which

argmax fy(z) € argmax P(Y =y | X =z) for all z.
y y

The next theorem shows if Z = Y™, we aggregate via majority vote A,,, and there is a unique y*(z) =
argmax, P(Y =y | z), then surrogate risk minimization is consistent whenever F can optimally predict P.

11
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Theorem 2. Let F be a cone that optimally predicts P, and assume that the minimal excess risk satisfies
P(A(X)>0)=1. Let €, > 0 satisfy €,, = 0. Then for any sequence

fm € €m-argmin Ry, 4, (f) = em-argminE [o(f(X), A (Y1,...,Ym))],
fer fer

we have R(fm) — R*.

See Appendix [D.2] for a proof.

Theorem [2] shows that for a broad class of surrogate problems with a hypothesis class F that forms a linear
cone, we can achieve consistency asymptotically by aggregation as m — oo. In contrast, as Proposition
shows, even in the “simple” case of binary classification, consistency may fail over subclasses F, even when
they include the optimal predictor, and the surrogate can be arbitrarily uninformative.

4.3 On finite-dimensional multiclass classification

The final technical content of this paper considers a multiclass scenario in which X = R%, Y = [k], and we
use linear predictors, but where the predictive model may be mis-specified. These results will provide a more
nuanced and specialized view of the situation than the negative results in Proposition [ and the consistency
guarantee in Theorem [2} We will show that even when the problem is optimally predictable and the linear
model is well-specified on all except an e-fraction of data, surrogate risks based only on (X,Y) pairs are
inconsistent; majority vote-based methods, however, will recover the optimal linear predictor.

To set the stage, let © = [0 -+ Ox_1] € R¥>*k=1 " and let the labels follow a categorical distribution
Y | X =z ~ Cat(pe(z)), where pe(z) € R satisfies 17 pg(z) =1 and

_ O'(<091,$>,"' 7<9 _1,$>)
Po(®) = |1 1T oty 2, - (B )

for a link o : RF-1 — Rffl? 170 < 1. We assume o satisfies the consistency condition that for ¢t € RF~1,
setting t;, = 0 and o, (t) = 1 — 1" o(t),

b= gt iand only i 0y(8) = g, o0 "

One standard example is multiclass logistic regression, where

eti

Ir
Ul() 1+ett .- 4 etk

Let the multilabeled dataset be {(X;; (Y14, -, Yim)) oy with repeated sampling Y;; | X; i Cat(po- (X)),
and Yi+ = An(Yi,---,Y,) be the majority vote with ties broken arbitrarily. Then Y, | X; ~

3
Cat(poe+,m(X;)), where if p,,(t) denotes the distribution of majority vote on m items with initial proba-

bilities o(t) € RE!, then

m(<e 755)"" 7<9 - 7‘/17))
p@,fﬂ(‘r) = |:1 —p]_Tpml(<91,£C>, .. Ii <ék17x>):| :

It is evident that p,, satisfies link consistency . Consider fitting a logistic regression with loss
k—1
p(©'z,y) = —(0,,7) +log <1 +) " exp((6;, x>)> , (15)
i=1

with the convention that 6 = 0, and let L,,(0) = E[p(© " X, Y,})] be the logistic loss with m-majority vote.
Then

Vo, p(©2,y) = —(l{y =i} — 07" (0 1)),

12
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so that the ©,, minimizing L,, satisfies

VeolLmn(©m) =E [X (a“(@;X) - pm(@*TX)> T} —0.

Standard results in statistics guarantees both consistency and efficiency when the model is well-specified
without aggregation, and when m > 1 and k = 2, |Cheng et al.| (2022 Prop. 3) show there exists ¢,, > 0 such
that ©,, = t,0* if X ~ N(0, I;) even with a mis-specified link. This implies that in binary classification,
even if the link function is incorrect, we can still achieve consistent classification regardless of the aggregation
level m, as the direction ©*/ ||©*||, determines consistency. However, as soon as k > 3 and the true link is
slightly mis-specified, risk consistency fails. Fixing a set 7. C R¥~! with Lebesgue measure ¢, consider

of(t) =" () 1L{t & T} + %1 St e Ty,

which defines a distribution on Y € {1,...,k} conditional on t € R¥~! that samples Y ~ o' (¢) if t € 7. and
uniformly otherwise. Clearly o€ satisfies the link consistency condition and is optimally predictable .
For € > 0, define

Line(©) = E[Eq [p(0T X, V1) | X]]

to be the (population) logistic loss, based on m-majority vote, when YV | X =z ~ 0¢(0* ' z). Let ©,,(¢) =
argming L, .(©). Evidently, ©1(0) = ©*; nonetheless, the next result shows that for arbitrarily small € > 0,
consistency fails without aggregation.

Proposition 5. Let k > 3, ¥ = I. Assume that for Z ~ N(0,Iy_1), the linear mapping M — DM :=
E[Z(Vo™(0* T Z)MZ)T] is invertible. Then there exists g > 0 such that for any € € (0, €), there is a set
Te with Lebesgue measure at most € and for which

O1(e)/ [O1(e)]| # ©7/[[07]].

We postpone the proof to Appendix

Majority vote, however, can address this inconsistency as m — oo without any assumptions on the true link
o except that it satisfies the consistency condition (I4). Indeed, letting Ly, ,(©) = E[E,[0(©T X, Y,}) | X]]
and ©,, = argmin L,, ,(©), we have the following

Theorem 3. Let ©* have decomposition ©* = U*T*, where U* € R¥™>* =1 s orthogonal and T* €
RE-Dx(k=1) g nonsingular. Then there exists T, € RE-DX(k=1) gych that O,, = U*T,, for every m,
and as m — 0o,

[Tl = 00 and T /|| To| — T/|T™]].

See Appendix [E-2] for a proof.

Theorem [3| shows more evidence for the robustness properties of label aggregation, providing asymptotic
consistency even in mis-specified models so long as there is some link function describing the relationship
between X and Y. The robustness is striking when & > 3: as Proposition [5| highlights, methods without
label aggregation are generally inconsistent.

5 Numerical illustrations

In this section, we provide two experiments that corroborate the theory: (i) a non-parametric example
where aggregation amplifies surrogate consistency, and (ii) a finite-dimensional multiclass example where
aggregation recovers asymptotic consistency under link mis-specification.

13
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Surrogate consistency amplification for truncated quadratic loss. In binary classification, consider
the classical margin-based surrogate ¢(f(z),y) = ¢(yf(z)) where ¢(d) = max{l — 6,0} is the truncated
quadratic loss. By (Bartlett et all 2006, Example 2), the calibration function ¢ in Corollary is exactly
(e) = €2. Leveraging label aggregation through majority vote with m labels, we can apply Lemma
taking § = 1. In the regime with no low-noise condition (i.e. « = 0,Cyut = 1), taking

_ 9(0) — ¢(6) 32 8(¢(—6) + ¢(0) — ¢(9)) _ 1 /32
wm(e)—w<e—\/mlog< 500) = 6(0) >>+—16<e— mlog40> ,

+

we have parallel comparison inequalities for non-aggregated data and majority-vote aggregation as

V(R(f) = R") < R,(f) — R,  ¢m(R(f) = R") < Rpa,,(f) = R{ 4,

Numerically (cf. Fig. , the aggregated curve transitions from quadratic toward linear behavior as m — oo,
showing label aggregation upgrades surrogate consistency. Nonetheless, 1, are generally conservative as
they are from the general result in Theorem

0.0030
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0.0020 1

0.0010 A

0.0005

0.0000

0.00 0.01 0.02 0.03 0.04 0.05

Figure 1: Numerical illustrations for truncated quadratic surrogate ¢(8) = max{1 — d, 0}2, showing compar-

ison inequalities for non-aggregated data 1 (optimal) vs. majority vote aggregation 1, (suboptimal) when
m € {216 220 224 228 232}_

Asymptotic consistency for mis-specified logistic model. In the second example, we consider logistic
regression in Sec. when k = 3 and d = 2. Let the loss function ¢ be the logistic loss in Eq. , with a
corrupted logistic link defined as

5(t) = o (Ol < r} + o™ (at) 1 {|[t]] > r},

a piecewise link that matches softmax near the origin and shrinks scores outside a radius r. The numerical
results are in Fig. [2] showing asymptotic consistency as m — oo with synthetic dataset from the corrupted
link.

14
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Figure 2: Numerical illustrations for mis-specified logistic models when d = 2 and k = 3. The true parameters
are 07 = (0,1)7,05 = (1,1)T. The corrupted link parameters are r = 3 and o = 0.1. The plot shows the
error of classification rule ||| 15| — T*/||T*|||| vs. number of labels m € {1,4, 16,64, 256, 1024}. For each m,
the synthetic dataset consist of n = 10,000 multilabeled data points (X, (Y1, -, Yim)) from 6. We report
a 95% error bar on T = 100 trials for each n.

6 Discussion and future work

The question of whether and how to clean data has animated much of the research discussion around dataset
collection. |(Cheng, Asi, and Duchil (2022)) provide a discussion of these issues, highlighting that there appears
to be a phenomenon that using non-aggregated data—all available labels—leads to better statistical efficiency
when models have the power to fully represent all uncertainty, but otherwise, data cleaning appears to be
more robust. In a similar vein, Dorner and Hardt| (2024) argue that, in a validation setting of comparing
binary classifiers, it is better to use more noisy labels rather than cleaned variants. This paper contributes
to this dialogue by providing evidence for both fundamental limits to using un-cleaned, un-aggregated label
information in supervised learning while highlighting robustness improvements that come from label cleaning.
Nonetheless, many questions remain.

Finite m results and fundamental limits. Many of the consistency results we present repose on taking
a limit as m, the number of labels aggregated, tends to infinity. While at some level, the purpose of this
paper is to highlight ways in which label aggregation can improve robustness, it is perhaps unsatisfying to
rely on this asymptotic setting. In the context of ranking (Sec. , we can provide explicit consistency
guarantees at a finite m, but developing this further provides one of the most natural and (we believe)
important avenues for future work. Providing a surrogate consistency theory that depends both on the loss
pairs (¢, ) and the available label count m would be interesting; for example, in the context of ranking in
Sec. if we wish to look at second or third-order comparisons of items (e.g., powers C?, as |Keener| (1993)
suggests), do we require increasing label counts m? Precisely delineating those problems that require label
cleaning and aggregation from those that do not represents a central challenge here.

Fundamental limits of the noise condition number. Our work relies on the noise condition num-

ber @, k(X), to characterize comparison inequalities for multiclassification problems, hinting at the difficulty
beyond binary classification, where trivially x(X) = 1. The condition number can still be large even when
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the Mammen-Tsybakov noise level is low—i.e. @ ~ 1—in cases beyond binary classification. This is
a consequence of the minimal assumptions on the surrogate in our setting, and it would be beneficial to
identify connections between the loss £ and surrogate ¢ that more closely capture problem difficulty. A more
precise delineation of fundamental limits by constructing explicit failure modes will also yield more insights
into fitting predictive models.

Behavior in mis-specified models. Our results on mis-specified models, especially those in Section
require optimal predictability , that is, that a Bayes-optimal classifier lie in F. While classical surrogate
consistency results provably fail even in this case—and methods based on aggregated labels can evidently
succeed—moving beyond such restricted scenarios seems a fruitful and interesting direction. [Nguyen et al.
(2009)), followed by [Duchi et al. (2016, identify one direction here, showing that in binary and multiclass
classification (respectively), jointly inferring a predictor f and a data representation for x requires that
surrogates ¢ take a particular form depending on the task loss £. These still repose on infinitely powerful
decision rules f, however, so we need new approaches.

Restricted class comparison inequality with label aggregation. Our paper investigates how la-
bel aggregation mitigates regret induced by surrogate losses through comparison inequalities in the non-
parametric setting, and establishes statistical consistency in the parametric regime. Motivated by recent
developments in H-consistency (Awasthi et al., [2022a; Mao et al., |2024ajb; [2025)), it would be intriguing to
extend these techniques to analyze comparison inequalities under restricted hypothesis classes. In particu-
lar, [Mao et al.| (2024b)) shows that for smooth convex loss, quadratic growth of 4 is rate optimal—it will be
interesting to apply aggregation and upgrade consistency in the context of H-consistency. Such an extension
could offer a unified framework linking the advantages of aggregation across parametric and non-parametric
settings, while shedding light on how the “size” of the hypothesis class F influences the effectiveness of
aggregation.
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A Proofs related to the ranking examples (Sec. [3.1)

A.1 Proof of Proposition [1]

The proof relies on a few notions of variational convergence of functions (Rockafellar and Wets, [1998]), which
we review presently. Recall that for a sequence of sets A, C R¥,

limsup A, = {Jc € R* | liminf dist(x, A,,) = 0} = {z | there are y,, € Ay, s.t. Yp(m) — T}
n

n

and that for a function g, we define
e-argming = {s | g(s) < inf g+ €}

It will be important for us to discuss convergence of minimizers of convex functions, and to that end, we
state the following consequence of the results in [Rockafellar and Wets| (1998), where R = RU {+oc0}.

Lemma A.1l. Let g, : R — R be convex functions with pointwise limit g where g is coercive. Then gy
converges uniformly to g on compacta, g is convex, the g, are eventually coercive, and for any sequence
en 4 0 (including those with €, =0),

() # lim sup {€,-argmin g,,} C argmin g.
n

Proof First, we observe that g, — g pointwise implies that g, — ¢ uniformly on compacta, and g is convex
(see[Hiriart-Urruty and Lemaréchal (1993, Thm. IV.3.15) and [Rockafellar and Wets| (1998, Thm. 7.17)). This
is then equivalent to epigraphical convergence of g, to g (Rockafellar and Wets| (1998, Thm. 7.17). Moreover,
as g, — g uniformly on compacta, if x,, — « then g, (z,) — g(x). Thus, for any €, | 0, if for a subsequence
n(m) C N we have Z,(n) € €,(m)-argmin g,, and z,.,) — x, we certainly have g,(m)(Tn@m)) — 9(x).
Consequently (Rockafellar and Wets, (1998, Prop. 7.30) we have

lim sup {e,-argmin g, } C argmin g.
n

That the limit supremum is non-empty is then a consequence of (Rockafellar and Wets| 1998, Thm. 7.33),
as the convex functions g, must be coercive as they are convex and g is. O

We now outline our approach and leverage a few consequences of Lemma[A-I] Recall our restriction of ¢ to
the set s71 = 0. For probabilities p = (p;;)i,j<k, define

R,(s|p) =Ey~ple(s,Y)].

We argue that for appropriate p, R, is coercive, and then use Lemma @ to argue about the structure
of its minimizers. Assume for the sake of contradiction that ¢ is consistent. By considering a distribution
p supported only on the pair (i, j), appealing to standard results on surrogate risk consistency for binary
decision problems (Bartlett et al., [2006) shows that ¢(s, (4,7)) — oo whenever (s; —s;) — oo. Now,
consider any distribution p containing a cycle over all i € {1,..., k}, meaning that there exists a permutation
7 : [k] — [k] such that pr(;) @i+1) > 0 for all ¢ (where 7(k + 1) = 7(1)). Then

Rtp(s | p) Z g%ﬁpﬂ(i),ﬂ(i+l)§0(s7 (W(i)vﬂ(i + 1)))7

and without loss of generality, we assume 7(i) = i. If ||s|| — oo while 17s = 0 (recall the assumption in the
proposition), it must be the case that max;(s;+1 — s;) — 00, and so s — R,(s | p) is coercive whenever p
contains a cycle and the minimizers of R, (- | p) exist.

With these preliminaries, we turn to the proposition proper. We construct a distribution p € Rﬁ” for which
0 must be a minimizer of R,(s | p), and use this to show that 0 minimizes R, (s | (i,7)) for each pair,
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yielding a contradiction to Fisher consistency. Consider a distribution p € R’fk parameterized by ¢ € Ri T
i.e., ¢ > 0, satisfying 17¢ = 1. Then define p to have entries

a, if (z,5) = (1,1 + 1),
pij = Qk:17Q17"'7qk—1>07 lf(la]):(k71)a (16)
0, otherwise.
The corresponding normalized transition matrix C' := C(q,...,qr) then takes the form

o _Ju =ikt ()= k),
v 0, otherwise.

Evidently C'1 = 1.

If ¢ is Fisher consistent, we claim that 0 must minimize the conditional surrogate risk
k
Ro(s | p) =Eynp [p(s,Y)] = D (s, (1,14 1)), (17)
=1

To see this, fix an (arbitrary) permutation . We tacitly construct a sequence p™ — p with p™ € RT’“ ,

T
p(™" 1 =1, for which the comparison matrix C'™ with non-diagonal entries

(n)
o Pij

i (n)
Zl;ﬁi Dy

satisfies [C’(”)l],r(i) > [C’(”)l],r(iﬂ) for each i. (To perform this construction, take scalars vy > -+ > v > 0,
and add 2v; to each entry of row 7(i) in p, so that if v,—1 = (Vx=1(1)5 -+ Vr—1(k)), then pM = (p+
1 /n)/17 (p+ 10T, /n)1. Let n be large.)

The presumed Fisher consistency of ¢ means it must be the case that

(n)

(m,n)
x@) =S

x(i41) for each 1.

5" ¢ argmin R, (s | p™) satisfies s

Applying Lemma for each such sequence and permutation 7, we see that the set of minimizers
argmin, R, (s | p) of the conditional risk must, for each permutation =, include a vector s = s(m)
such that

Sr(1) 2 Sm(2) = 7 2 Sn(k)- (18)
As argmin, R, (s | p) is a closed convex set, we now apply the following

Lemma A.2. Let S C {s € R¥ | sT1 = 0} be a convex set containing a vector of the form for each
permutation w. Then 0 € S.

Proof We proceed by induction on k > 2. Certainly for k = 2, given vectors u = (s,—s) and v = (—t,t)
satisfying s > 0 and ¢ > 0, we solve

t
As+(1—=Xt=0 or A= e € [0,1],
giving the base of the induction. Now suppose that the lemma holds for dimensions 2,...,k — 1; we wish to
show it holds for dimension k. Let I = {1,...,k — 1} be the first k — 1 indices, and for a vector v € R¥ let
vr = (v;)ier. Consider any collection {v} C S covering the permutations (I8)); take two subsets V! and V?
of these consisting (respectively) of those v such that vy, < wv; for all j <k —1 and vy > v; for all j <k —1.
Then by the induction, there exist 7* € Conv(V?), i = 1,2 such that

ol = |:a]—k—1:| and 2 = |:b1k—1:| 7
S t
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where a(k — 1) +s =0 while s < @ and b(k — 1) + ¢ = 0 while t > b. As s <0 and t > 0, so setting A = -

gives Aol + (1 — \)v? = 0. O

In particular, we have shown that 0 minimizes the surrogate risk , and for any vector ¢ = (q1,...,qx) >0

defining p = p(q) and C in ,
ir;ng,(s | p) = R,(0 | p).

Notably, the minimizing vector 0 is independent of the parameters ¢, ..., q; defining p and C in . For
(i,7) € Y, let D;; = 0p(0, (i,7)) C R* be the set of subgradients at 0, which is compact convex and non-
empty. Then by the first-order optimality condition for subgradients and construction of the conditional
surrogate risk, there exist vectors g; € Dy 41 satisfying

k1 k1 S
> ag+ (1 - Z%) g =0 andso g = ——=I=L715 € Dy ;.

k—1
=1 =1 1= @
As the D;; are compact convex, by taking g 71 and (¢1,...,qx—1) — 0, we have

k—1
CLa
lgxlly < —=5i—— max sup |g]l, — 0.

k—1
1-— Zl:l q v geD;j;

As the D;; are closed convex, we evidently have 0 € Dy, 1, while parallel calculation gives 0 € D; ;4 for each
. A trivial modification to the construction to apply to cycles other than (1,2,...,k,1) then shows
that O minimizes (-, (¢,7)) for all pairs (4, j), violating Fisher consistency.

A.2 Proof of Proposition [2]

The proof relies on the fact when m > k, the event of observing a comparisons (4, j;) for each 1 < i < k has
nonzero probability. Conditional on this event, we can obtain an unbiased estimate of C;1. As ¢(s,x) =0,
it follows that
2
Ryals | @) = E [lls — A(Z)]13 HA(Z) # +}]

When m > k, P(A(Z) # x) > 0, yielding per-z minimizer

<m“+...+mik> | mi>0,...,mg>0]|.
1€[k]

s* =argmin R, a(s|2) =E

mi my
Conditioned on fixed positive values of myq,--- , my,
. P1j Dk
(maj,--- ,mg;) ~ Multinom (mj; - s =T ,
2 i1 Pij dic1 by

so E[m;;/m;] = pij/ Zle pij = (Cg)ij. As s* = C,1 is unique, Fisher consistency follows.

B Consistency proofs

B.1 Proof of Proposition [3]

Our only real assumption is that (s,z) — £(s, P(- | x)) is jointly measurable in s and x. Fix a function f.
Then for any € > 0,

Ry a(f) — Rip = /X bon(f(x), 2)dP(z) > /5 o, VAl TP
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Because 14(e,z) > 0 for each z, the measure defined by dv(z) = b(x)dP(z) is absolutely continuous with
respect to du(x) = ¥a(e,x)dP(x). That is, there exists 6 > 0 such that v(C) < € for all C C X satisfying
v(C) < 6. Assume now that Ry a(f) — R, 4 < 0, so that the set X == {z | d¢(f(2),z) > €}, which is

measurable by the joint measurability assumption, satisfies | +. b(x)dP(x) <e. We find

R(f) - B = / 5u(f,2)dP(x) + / 5u(f(x), 2)dP(x)
de(f(x),x)>e de(f(x),x)<e

< / b(z)dP(z) + € < 2e.

e

In particular, we have shown that R, a(f) — R}, 4 < ¢ implies R(f) — R* < 2¢, which gives the “hard”
direction of Fisher consistency. The converse is trivial by considering a single x.

To see the comparison inequality, note that by definition of the calibration function,

Ya(0e(f(2),2)) < ¥ a(0e(f(2), 7)) < dp,a(f (@), 2)

for all x € X. The result follows by integrating on both sides w.r.t. Px and applying Jensen’s inequality to
Pa.

B.2 The equivalence of the Mammen-Tsybakov conditions (N,)) and (Mjg))

We show the analogue of [Bartlett et al.| (2006, Thm. 3), essentially mimicking their proof, but including it
for completeness.

Lemma B.1. Let o € [0,1]. A distribution P satisfies condition (No) if and only if it satisfies condi-
tion (Mpg|) with 8 = %=, where the constant Cyt may differ in the inequalities.

a—17

Proof Let condition (N, hold. We let ¢ = Cyt for shorthand and assume for notational simplicity that
y*(z) = argmin, E[¢(y,Y") | X = ] is a singleton. Choose a measurable function f such that

fl@)=y*(x), if A(z) >e and 6(f(x),z2) = A(z) if A(z) <e.

For all o € [0,1], as d¢(f(z),z) = 0 if A(x) >,

*

P(AX) < ) > EAC){A(X) < }] = E[5(f(X), X)] = R(f) - R

Rearranging terms we see for the constant ¢ = cé,
P(0 < A(X) <€) < (e)/ (1),

so condition (Mg holds with 3 = $*~. (The result is trivial when a = 1, as P(A(X) <€) =0.)

Now assume condition holds for a value 0 < 8 < oo, that is, P(A(X) <€) < (ce)? for all € > 0. Recall
the definition of A(xz) = min{d,(s,z) | d(s) € y*(x)}, so that
R(f) = R* =E[l{do f(X) # do f*(X)} 6,(f(X), X)]
> B[1{do f(X) £do f*(X)} ACX)],

and again by Markov’s inequality for any € > 0,

E[{do f(X) #do fH(X)} A(X)] = eP(d o f(X) #do f*(X), A(X) >¢)
> e(Pdo f #do f) — PIA(X) < 6)) (19)
eP(do f#do f*)—cPettP,

%
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where the last inequality applies condition (Mg|). Maximizing the right hand side, we set

(et

we obtain

() — R 1<P(d0f7éd0f*)

c (1+5)
B

= (Bdof#dof) T
c(1+8)

)#(Mdo#dof*)P(dof%dof*))

(1+8)

Set ¢ = (c/ﬁ)$ (14 p), and recognize that log(1+ ) — % log 8 < log?2 (so that ¢’ is indeed a constant),
so that condition (N,|) holds with o = %:
P(do f #do f*) < (R(f) — R*)T7.

When = oo, Condition implies P(A(X) < 1/¢) =0, so taking € = 1/c in inequality
R(f)~R* > e(Bdo [ £dof*) ~ B0 < A(X) < ) = B(do [ £do )

That is, condition (N,|) with oo =1 holds. O

B.3 Proof of Theorem Il

The proof contains two parts. In the first, we provide a lower bound for the calibration function conditioning
on X = x. We then use the pointwise calibration function to prove a linear comparison inequality on the
data space XM := {z € X : k(z) < M} of points with low noise condition number, and then conclude the
proof via a coarse risk bound on X\&xM.

Part 1: lower bounding the pointwise calibration function. Before using properties of majority
vote A,,, we start by assuming a general aggregation method A : Z — {a,}ycy. To obtain the desired
comparison inequality connecting excess surrogate risk and task risk, we recall the pointwise calibration

function (),
Talerw) = ind {85.4(5,2): 00(5,) = e}
To lower bound 1 4 (e, ), we need to lower bound &, 4(s,z) provided that §¢(s,z) > €. Because d;(s,z) >

e > 0, it must hold that d(s) # y*, which makes the following general lower bound, which applies for any
aggregation method and identifiable loss, useful:

Lemma B.2. Let ¢ be (C, 1, C, 2)-identifable (Def. with parameters {ay}ycy and assume that d(s) #

*

y*. Then for any aggregation method A,
dp,a(8,2) > Cpi — (Cp1 + Cu2)P(A(Z) # ayr). (20)
Proof For the ground truth label y* = y*(x), d(sy+) = y* by Definition and
Ry a(sy | ) > i1;1f R, a(s | ).
This allows us to bound the excess surrogate risk by

0p,4(5,2) = Ry a(s | x) — iI;fR%A(s | ) > Ry a(s | x) — Ry a(sys | x)

= P(A(Z) = ay+) (p(s, ay-) = @(syer ay2)) + Y P(A(Z) = a5) (5, 05) — (542, 05)) -
J#y*
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Because by assumption d(s) # y*, the (C, 1, Cy, 2)-identifiability of ¢ implies

(8, ay+) — @(syr, ay+) > g inf (s, ay) — @(sy,a,+) > Cy1,
osAY*

@(57 aj) - (P(Sy*vaj) Z Hs}f <p(85 aj) - @(Sy*aaj) Z _Ccp727
and therefore

dp,a(s,2) 2 P(A(Z) = ay)Cpr — (1 = P(A(Z) = ay+))Cy 2
= Con — (Cp1 + Cp2)P(A(Z) # ay),

which is the lower bound . O

Equation shows that to lower bound d,, 4(s, z) when d(s) # y*, it is sufficient to show that A(Z) = a,-
with high probability. For the majority vote , as the number of labelers m grow, the probability that
P(A,.(Z) = ay») — 1 by standard concentration once we recall the definition of the excess risk A(z) =

Miny(s)oy* () 0e(s,x).
Lemma B.3. Let card()) = k. For all s € RY, x € X such that §y(s,z) > e,

P(A,(Z) # ay) < 2kexp (—mA(z)?/2).

Proof Applying Hoeffding’s inequality, simultaneously for each y € ),

1 & Az

1 22 YD) Bl Y) | X =i < 550
with probability at least 1 — 2k exp (—mA(z)?/2) as € € [0,1]. As &;(s,z) = E[((d(s),Y) —€(y*,Y) | X = ],
we have for all y # y* that

1 — 1 &«
[t M=
Clearly the majority vote method A,,(Z) = ay~ in this case. O

We can then substitute Lemma into and obtain a lower bound. To also incorporate the condition
8¢(s,x) > €, we recall the noise condition number (9)), which guarantees A(z) > &(s, z)/k(z) for all s € R%
This implies

mA ()2 _ miy(sx)?

(S@VAW(S, .Z‘) > C¢71 — 2k(C%1 =+ C¢72)67 2 > C¢71 — 2k(C%1 =+ C¢72)6 2 ()2

and thus

Pale, ) > Cpy — 2k(Cuy + Cpa)e 27,

Part 2: restricting to XY™. Now it becomes clear why the error function e,,(t) takes the form in Eq. ,

as whenever
26(z)2 4k(Cy1 + Cop2)
> em = 1 - : )
€2 enls(2)) ¢ o (22

we must have

4k(Cp,1+Cy 2)

_ — lo
Yale,) > Coy — 2k(Cyq + Cua)e ( Conl ) > Cu1/2,
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which further implies a pointwise convex lower bound ¥ 4(e,x) > Cy 1(e — €y (k()))4 /2. Restricting to
v € XM ={z € X |kr(x) < M}, we clearly have

1 _

5Conle—em(M)], <9 u(e ).

i, () =5

Now, we proceed with an argument similar to those Bartlett et al| (2006) use to provide fast rates of
convergence in binary classification using w%m (€) and applying over a restricted data space X™.

Lemma B.4. Let M > 0 and for f € F, define D(f,M) = R(f) — R* — P(k(X) > M). Whenever
D(f, M) =0
D(f, M)'~

cMTD(f,M)“w%( (chT )SR%AM,(]C) bl

Proof We begin with some generalities. By condition (N,|), for any function f and € > 0,

E[1{d o f(X) # d o f*(X),0e(f(X), X) < e} b:(f(X),X)] < Cure- (R(f) — R")?,
so that

R(f) = R =E[l{do f(X) # y"(X)} e (f(X), X)]
< Cure- (R(f) — R")* + E[1{6,(f(X), X) = e} de(f(X), X)] . (21)

Consider the second term in the bound . For any convex function 0 < ¢ with ¥(0) = 0, € — ¥ (e)/e is
non-decreasing on € > 0 (cf. (Hiriart-Urruty and Lemaréchall [1993, Ch. 1)). This implies

P(e) Y(0(f (), 7))
Tl{5é(f(l‘)a$) > e} < m,

where we take 0/0 = 0, and so ¢(€)d¢(f(z), 2)1{de(f(x),z) > €} < e-1(0e(f(x),)). Leveraging the calibra-
tion function (), if ¢ (e) < Yy a,,(€), then we evidently have

(R [1{de(f(X), X) = €} - e (f(X), X)]
< e E(0e(f(X), X)) < € E[dp,a,, (f(X), X)] =€ (Rpa, (f) = B a,,) - (22)

With these generalities in place, consider the function fM(x) = f(z)1{x € XM} + f*(x)1{z ¢ XM}
Substituting this in inequality yields

R(fM) = R* < Cure- (R(fM) = R)* + E[L{o(f*(X), X) = e} 6,(f (X), X)) (23)
for all € > 0. Because the truncated calibration function w%m is convex, inequality yields
Vi, (OEL{0:(fM(X), X) = e} - 0u(fM(X), X)] < e E[yx] (e(fY(X), X)))-
Because 0 < w%ﬂ < a,, = @*A*m, we evidently obtain

E [y, 0:(FY(X), X))] < Rpoa,(F) = By 4,
By inequality (23)), we therefore have

R(f™) — R*

€

— Curr (RU™M) = B < ZE[1{B:( £ (X), X) 2 e} 3£ (X), X)),
and so multiplying by w%” (e),
MY _ px
v¥ (0 (W - Cur(R(s™) ~ 7))

1“( E [1{6:(f (X), X) > e} - 6e(f(X), X)] < Rpoa, (f¥) = R} 4, (24)
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Finally, we use that € was arbitrary. Taking e = (R(fM) — R*)!=2/(2Cut) in inequality gives

X, (©Cut(R(fYM) = R)* < Ry a,, (fY) — R, 4, Using that

D(f,M) = R(f) = R* = P(x(X) > M) < R(f") - R*
completes the proof of the lemma. O

We have nearly completed the proof of Theorem By the condition R(f) — R* > 2P(k(X) > M) +
(4CMTem(M))ﬁ we have D(f, M) > (R(f) — R*)/2, while at the same time

D(f, M)~
W > 2em(M).

By convexity, 4! (€)/e is non-decreasing in €, so we further have

a D(f7M)17a . '(/)%m(Qem(M»
2CMT 26m(M)
. CoalR(f) ~ RY)

Pl = 16 '

M (D(faM)la

CutD(f, M)y, 5Conr ) > CutD(f, M)

1 1
— _D(f, M) -C
Substitute the above display into Lemma [B.4}

B.4 Proof of Corollary [3.3]

Recall that k = card(Y) < co. For the binary case that k = 2, we simply take M = 1 and as

32C2 8(C, 1+ C e
4CMT€m(1) = ( mMT IOg ( ( 807(1: : @,2))) _ fm,z,
©,

Theorem [1| implies the conclusion.

For the general multiclass case, we can bound the tail probability by using x(X) < 1/A(X) and the low
noise condition (N,)), as P(k(X) > M) <P(A(X) < 1/M) < (Cut/M)T=. Therefore, using Theorem we
only need to prove

o 1 2C} 4 2 a?)
inf{2 - (Cur/M)T25 + (4Cwrem (M) ™7} < 4- (3 Cur log ( k(Co + Cm))) _
M m Co1

Indeed, we choose the M such that 2(Cyt/M)T™= = (4(:,\/|-|-em(M))ﬁ7 which, by substituting in Eq. (10)),
is equivalent to

M T — glo 4k(Cy,1 + Cy2) 7= Gt
m & C%l 2 ’

and thus we choose

11—«

M= (32 log (4/6((:%1 + C¢,2)>)2“+“> ) (CMT)1+u ’
m C%l 2
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With this choice

2 (Cut/M)T5 4 (4Curem(M)) ==
= 2. (4CuTem(M))T=

2 2(1—a) *m “T=
—92. (32CMT log (4]“(@071 + C%?))) . (32 log <4k(C%1 + C@M))) ) <CMT>
m C%l m C%l 2

1

1
2 4k(C C 2(0-2) 2 4k(C C T2 e)(d-a) 1
_ 21-‘1-1_*_% . <§n 1og < ( ©,1 + @72)>> . (i:n log < ( ©,1 + W12)>) . C[\lﬂ:ra I+ta

Co Co
32 4k(C 1+C 2) sioad) 20
<4.(=1 L) ®, L Clroe
- (m 0g< Cot MT
32C% 4k(Cyq + C 2%
—4. ( MT IOg ( ( 1 + 4,0,2))) _ 5’m,k~
m C%l

B.5 Proofs for the identifiable surrogate losses

B.5.1 Proof of Lemma [3.1]

That ¢(d) < 0 is immediate because ¢ is non-increasing by assumption, and the monotonicity properties of
convex functions (Hiriart-Urruty and Lemaréchal, 1993, Ch. 1) guarantee it strictly decreases near 0. For
y € {£1}, we take s, = 0y and a, =y, and

P(sy,ay) + Cp1 = ¢(0) + Cyp1 = ¢(0) = d(isr)liy ©(s,ay)
Qp(sya afy) - Cgo,2 < ¢(_6) - Ccp,2 =0= Zg{g@(sa ay)‘
by direct evaluation.

B.5.2 Proof of Lemma

For each y € ), we choose (sy,ay) = (v(y)/N,y). Observe that for each graph y € V,

gey

_ 1 21 2
~ s (5 103 - 5 1o)IE)

207

syn) = ma (535 10() = oI+ 0) — () o)/

where we use ||v(y)||§ = N for all y € Y. If d(s) # y, then there exists some y’ # y € Y such that

(v(y') —v(y),s) = 0.
This implies

5.0 = ol5:9) = (g 1o0) = ol + (00) = 00,3} ) = 50 106 = o)l > 57

because distinct bipartite matchings differ on at least two edges. This then implies condition holds with
Cy,1 = 1/N. The second condition holds for C, 2 = 2 as

P(syr,ay) = p(v(y')/N,y) = max (2}\, [v(@) — o)y + (@) —v(y), v(y’)/N>> <2

whenever vT1 = N.
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B.5.3 Proof of Lemma[3.3

By definition of 7(y), for any ¢ > 0 and ecach y € Y, we can take s, € S(y) (by using homogeneity and
scaling) such that

max ((§,y)/(v(y) —v(§),sy) =1 and minl(g,y)/(v(y) —v(g), sy) > m(y) +e

(25)
We take a, = y.

Controlling C, ;. Because by assumption maxg., £(9,y)/(v(y) — v(g),s) =1,
©(sy,y) = max (g, y) + (@) —v(Y), sy))

= max {<’U(y) — U(gj), 8y> : (é(z%y)/@(y) - U(:lj), 3y> - 1)—0—} =0.

9eY
For any s such that d(s) # y, there must exist § # y such that (v(y) — v(§),s) > 0 and thus

o(s,y) = £(9,y) + (v(y) —v(9),s) > ryr;gf(y oY) = g}r;gf( Y) + ©(5y, ).

Thus we can take C, 1 = ming, £(7,y).

Controlling C, 2. For any 3’ # y, the s, satisfying inequality yields

(W) —v(Y), sy) = (WG —v¥),8y) + (0(Y) —0v(y),sy) < (W) —v(Y),8y) = £5,Y)
< (@) +e) -y, y') — U0, y),

By the normalization 0 < ¢ < 1, we have

P(sy, ay) = max (UG, y) + (@) —v(¥),sy)),
< max L(@y) +(T(y) +€) - Ly, y)), <7(y) +1+e.

As € > 0 was arbitrary, we can take C, o = max,ey 7(y) + 1.

The special case of /, task loss. Finally we are left to show if v(y) € {0,1}* and £(g, y) = = 15—yl
we have 7(y) = 1 for all y. This is trivial in this case, as we can take s, = 2v(y) — 1, and for § # y,

((y) —v(@), sy) = ((y) —v(g),20(y) — 1) = (v(y) — v(5), 20(y)) — [[v(K)5 + @3
= [lo(y)ll — 2(v(y),v(@)) + oD
= [lo(y) = (@)l = lo(y) — v(@)ll, = 2d6(g. ),

where we again use the fact that for 0-1 features, ||v(y) — v(§) Hg = ||v(y) — v(9)|l,. We see that £(7,y)/(v(y)—
v(9), sy) is a constant and thus 7(y) =1 for all y € V.

C K-nearest-neighbors and general aggregation methods

In this section, we adapt the results in Section [3.2]to demonstrate a consistency result for K-nearest-neighbor
methods using an analogue of majority vote labeling. We assume the surrogate ¢ is (Cy 1, Cy, 2)-identifiable
(Def. with parameters {a,},ecy and that k& = card()) < oco. Given a sample (X;,Y;)?_; and a point
r € X, sort the indices so that dist(X(y),r) < dist(X(g),2) < ---dist(X,,z) (and label Y(;)) similarly.
Then the nearest-neighbor aggregator of a point z is

K
Ank(z) =ag §= argrr)l}in > Uy, V), (26)
yeY =1
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and we define the surrogate risk

Rgo,n,K(f) = Elp(f(X), An x (X))],

where A,, i implicitly depends on an imagined sample (X;,Y;)? ;. We warn the reader that, at some level,
the surrogate consistency guarantee we provide will implicitly essentially show that K-nearest-neighbors is
consistent so long as K — oo while K/n — 0, a familiar result for multiclass classification and regression
problems (Stone| 1977, [Devroye et al., {1996).

We will demonstrate the following theorem.

Theorem 4. Let the loss ¢ be identifiable (Definition[3.1), assume the excess risk satisfies P(A(X) >
0) =1. Let K = K(n) and n satisfy K/n — 0 and K — 0o as n — co. Then for all € > 0, there exists N
and § > 0 such that for alln > N,

Rgp,n,K(f) - R;,n,K < d ZTTLplZ@S R(f) - R <e
for all measurable f.

The theorem more or less follows from the following comparison inequality.

Lemma C.1. Let ¢ be (Cy, 1, Cy, 2)-identifiable, v > 0 satisfy v < and define the set

Coo1
2(C¢,1+C¢,2)’
XT’Z,K = {LC eX ‘ P(AH,K(I') 7é ay*(m)) < ’7}'

Then for all measurable f,

R(P) =R < o (Romic() = Rypscl ) + BOX 2 2] ).
@,

Proof For n, K € N, define the pointwise risk gap
590,7L,K(3a z) = E[p(s, An ik (7))] — i?,fE [p(s, An, ik (2))],

where the expectation is over the nearest-neighbor aggregation , and for € > 0 define the pointwise
calibration function

wn’K<€7 .”L') = glRfd {(SW,R’K(& 33) | 54(‘97 :L‘) > 6} :
Because Lemma (in the proof of Theorem [1)) holds for any aggregation method, we see that

Yok (6,7) > Cu1 — (Co1 + Co2)P(Ap k (7) # Ay (a))

for all z € X and € > 0. Let A7 = XTZK for shorthand. Then in particular, because v > 0 is small enough

that (Cy 1 +Cy2)y < Cy.1/2, we have ¢y, i (€,2) > %C%l for x € X7. As a consequence, we can expand the
risk

R(f) = R* = E[6,(f(X), X)]

< E[6(f(X), X)1{0e(f(X),X) > €} + €
< E[6(f(X), X)1{8(f(X), X) > 6, X € X} + P(X & X7) +e.

As we assume £ < 1, we see that ¢, x (6¢(f(z),2),2) > 2Co1 - 6¢(f(z),z) when 6¢(f(x),x) > € and z € X7,
giving the upper bound

R(f) = R* < B lbnx(Bi(7(X), X)X € X)) 4+ P(X ¢ X7) +

2

< (Bon i () = Ry ic(f) +P(X € X7) +e.
@,1
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As € > 0 was arbitrary we obtain the lemma. O

By Lemma it is therefore sufficient to show that for any fixed v > 0, P(X ¢ XTZK) — 0. But for this,
we can simply rely on the results of (Stone| (1977): by his Theorems 1 and 2, because ) is finite, K-nearest
neighbors (when K = K(n) satisfies K — oo and K/n — 0) is consistent for estimating the conditional
distribution of P(Y =y | X = x). Because A(X) > 0 with probability 1, we see that P(A,, k() # ay«(x)) —
0 for all z except perhaps a null set, and so Stonefs results imply P(X ¢ Xl}() — 0.

D Proofs associated with model-based consistency

D.1 Proof of Proposition [4]

We begin by considering the distribution P, ,,, whose X-marginal is supported only on two data points
{z1,22} C X. The key idea is that by carefully choosing x1, x5 and the conditional distribution of Y | X = z,
the conditional surrogate losses

Ry(t| 2) = Elp(fio (X),Y) | X =2,] = E[p(Y (t6*, X)) | X =], i=1,2,

attain their minima at distinct ¢, and if their is a 8 ¢ span{0*} for which E[p(fo(X),Y) | X = z;] =
inf; E[¢p(Yt) | X = z;] for each 4, then fp would attain less surrogate risk than any point in span{6*}. To
guarantee that R(6) = P(Y(X,6) < 0) has a unique up to scaling—that only points in span{f*} minmize
R—we perturb Py, ., slightly by defining P to have X-marginal

1-96
where 8, denotes a point mass at x and § > 0 is a value to be chosen.

The construction of P,, ,, and P. Without loss of generality, we take 6* = ey, the first canonical basis
vector. For a value 8 > 0 to be defined, define the Y conditional probability

nsla) = P(Y = 1] X =) = min{B + ) (Bl ea)| + 1) ,1}
+

which projects 1 + (z,e1)(8|(z,e2)| + 1) onto [0,1] and satisfies ng(z) < 3 if and only if (z,e;) < 0 and
ng(x) > 3 if and only if (z,e;) > 0. With this construction, * = e; is evidently the unique unit vector
u € S 1 satisfying sgn({z, u)) = sgn(ns(z) — 1/2) for all z, so for any 0 ¢ span{6*},

R(fo) > R(fo-).

We can now provide the explicit construction of the distribution P. Assume we may take the two points
x1, w2 to satisfy ng(z1) = 2 and ng(x2) = &. Then defining

9o(6) = 56(0) + 30(-1),

which is a coercive convex function (and so has a compact interval of minimizers), we write the surrogate
risk of a vector @ for Py, ., (recalling that P(Y =y | ) = ng(x)) as

B,y 0, 000 (X), V)] = 500((6,22)) + 306(~ (6,22)).

By direct calculation, for any a > % and 3 > 0, the choices

1 d 1 +2a—1
1 =—-e; and g =——e
1= 54 2 1201 3

€2 (27)

Wl

guarantee ng(z1) = % and ng(x2) =
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Minimizing surrogate risk along certain direction. We wish to show that the surrogate attains its
minimum along a direction u nearly perpendicular to span{#*}. Let u € S9~! have coordinates u; = (u, €;).
We shall prove the following lemma:

Lemma D.1. Let z1,25 have definition , B > 0, and P be defined as above. Then 0* = ey yields
R(fp+) = R* =inf; R(f), and there is a constant Cy depending only on ¢ such that if |ug| < CyBlur], then

inf E[¢(Y t(u, X))] > inf E[p(Y (8, X))].

We turn to the proof of the lemma. Using the choices of 21 and x5 and defining 1 = (u,z,) = %ul and
53 = (u,z2) = 75=, it follows that for any ¢ € R,

Br.,. 000 (0 0] = 5 (S0 (ts0) + 30 (-ts0)) + 5 (Sots0) + o (-ts0))

= 2 (06(t51) + golt2)).

For wy,wy € R, define the parameterized function

1,
hg(wr,we) = 5 inf {90 (tw:) + gg(twa)},

which corresponds to the minimal value of the risk ¢ — Ep, . [¢p(Y (0, X))] when w; = (0, 21) and wy =

(0, 2) for some vector § € R%. The convexity and coercivity of g, imply that hg (w1, w2) is continuous on
R?\ {0}, it is homogeneous in that hg(twy, tws) = hg(wy,ws) for all ¢ # 0, and by construction,

inf B, [6(Y (tu, X))] = ho(s1,52).

Moreover, it is immediate that

. . o1 .
gy = 1Igfg¢(t) = inf 11;1f 5 {go(tw1) + gp(tw2)} = inf  hg(wr,ws).

2 2_ 2 2_
w1+w2_1 wy +w2_1

Let G = [a,b] = argmin, g4(t), where we must have 0 < a < b < 0o as ¢/(0) < 0. Then we set the value

o = 3 > 1 in the definition (27)) of the points x1,xs. Let wy < éwl; then if wy € G, we must have
Wy < g = a, and so ws € G, and so at least one of wy,ws € G. Enforcing the strict inequality ws < éwl, we
see that
Cp o= inf ho(wr,w2) > inf  he(wi,ws) = g.
0 W ion Y o ) W o( ) =95

w1 >0,wa < 2wy
Rewriting this in terms of the unit vector u we have been considering, whenever |us| < %,
Uy 200 — 1 Buy Uy 3

<Y . <M _ 5
25Tt T %a@a-1) " 8a 4V

and in this case

inf Ep, ., [¢(Y(tu, X))] = he(s1,52) > inf hg (w1, w2) = Cyp.a > g,
teR w%-{-wg:l,
w1>0,we < P wy

Now we restruct u € S?7! to the collection of vectors satisfying |ua| < g )|u1|, and show that if

24a(2a—1
6 € span{u}, the surrogate risk cannot attain its minimum. Indeed, recalling the construction , the

matrix

1/6  —1/(12a)
0 (2a-1)/B
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is invertible and we can find a  such that (6,21) = ¢, {0, 22) = —c for some value ¢ € G = argmin g,,
implying

inf B [(Y (tu, X)) = (1= 8) inf Ep,, _, [6(Y (1, X))] = (1-6)Cy
elenu{d IEP [¢(Y<97 X>)] < EP [¢(Y<§7 X>)] = (1 - 5).9;5 + 5EN(0,L1) [¢(Y<§7 X>)] .

By taking ¢ sufficiently small and using Cy o > g7, we conclude that Lemma holds with Cy = m

and recognizing that o > % was otherwise arbitrary.

Controlling the angle between 6, and 6*. By Lemma there exists a constant Cy such that for
any 3 > 0, we can construct a distribution P for which any minimizer 6, of the surrogate risk must satisfy

(0, e2)| = T8 - [0, €1)| and [(f,,e2)[ > 0.

Now we specify the parameter (3, taking 8 = C%M / }2 — 1. Then evidently

Onnes 2 (5 1) - nr)?

€

which combined with 6* = e; implies

1
‘COSZ(@SD,H*H _ |<9LP’61>| < |<980761>| < _
16 1l2 VIO, e)? + 10, e2) 2 \/1+6l2_1

€.

Because 0, ¢ span{0*}, we see that R(fg_ ) > R(fo-) = inf; R(f), completing the proof of Proposition

D.2 Proof of Theorem
Let P, = {p € R% | (1,p) = 1} by the probability simplex in R¥. For p € Py, define the risk gaps

Op(s,0) = Eplip(s, V)] = inf Ep[ip(s, Y)] and de(s, p) == Ep[l(d(s), V)] — inf E,[¢(d(s), V)]

and the gap functional

1/&,0(6717) = ir;f {04(5,p) | 0¢(s,p) > €}.

By the assumption that ¢ is consistent, it is immediate (Steinwart], [2007) that @w(e,p) > 0 for all p € Py
and € > 0. Moreover, consistency implies (Zhang, |2004b)) that if p;) > p2) > -+ > p(x) denotes the order
statistics of p € Pi, when we define the subset

Pr,c = 1{p € Pr | pa) > P2y + ¢}
of well-separated distributions, then for all ¢ > 0 we have the strict inequality

pelI%{L io(e,p) >0 when e > 0.

For m € N, let P,,(- | ) denote the induced distribution on the majority vote Y, = Majority(Y;™) for
y; % P(Y € -| X =), so that if A(z) > 0 we see that Y} — y*(x) with probability 1. Then

6¢(s, Pou(- | @) =Ep, [1{d(s) £ Y,} } | 2] — (1 = P(Y,} =y*(x) | x))
0 if d(s) = y*(x)
P(Y;F =y*(x) |z) — P(Y,} =d(s) | ) otherwise.

m

m
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In particular, for P-almost-all z, we see that d;(s, P, (- | 2)) — 1{d(s) = y*(x)} as m — oco. Now, fix ¢ > 0
and define

Gyle) = inf Y,(ep) and dy(e) =1, (e),

PEPk,c

the convex conjugate of the gap functional on well-separated distributions. Then |[Zhang| (2004b, Prop. 25)
shows that E:;*(e) > 0 whenever 1), () > 0.

We now consider the gaps in the surrogate risk Ry a,,(f) — R, 4, - Letting ¢ > 0, define
Xem ={2 | Pp(Y,} €| X =2) € Pr}
to be those z € X for which the majority vote is likely correct. Then

Ry oa, (f) — R 4,
= E[0,(f(X), P (- | X))]
> B[, (0c(f(X), Prn(- | X)), Pra(- | X))]
> E[1{X € Xem} ¢ (0e(f(X), P (- | X)) + H{X & X} 0, (00(f(X), P (- | X)))]
> E[H{X € Xem} e (0c(f(X), Pn(- | X)) -
Using Jensen’s inequality that for any convex h, random variable Z, and set A, E[1{Z € A} h(Z)] = E[h(Z) |
Z e AlP(Z e A) > hE[Z | Z € A])P(Z € A), we therefore obtain that

Rso,Am (f) R* VA > ¢Lp( [5€(f( ) wz( | X)) | X € XC,W]) P(X € XC,m)

_ R(f) = B* — E[6¢(f(X), P (- | X))H{X & Xem}]
=1, < PX € X > P(X € X m)
R(f)—R*—P(X & X
Let Ry oo(f) = Elp(f(X),y*(X))] = limp—eo E[p(f(X),Y,})]. Then if f* € F is any function with
argmax,, f;(z) = y*(z) (for P-almost all z), we evidently obtain

tlggo Rooo(tf”) =

by dominated convergence, as by assumption we have ¢(tf*(z),y*(z)) — 0 as t — oo for almost
all z. Let € > 0 be arbitrary and take any ¢ < oo large enough that R, o (tf*) < e. Then because
Ry A, (tf*) = Ry, o as m — 00, for the sequence f,, € €,-argmin R, 4, , we obtain

m?

R%Am(fm) < Rtp,m(tf*) +em — Rso,OO(tf*) <e

Substituting into inequality , we have

() ~ B~ P(X ¢ e,
( PX & %)

Because P(X & X, m) — 0 by assumption, if limsup,, R(f,) — R* = > 0, we would obtain
€ 2 1y (0).
But ¢,(6) > 0 for § > 0, and € > 0 was arbitrary, so it must be that limsup,, R(fn) = R

€ > limsup Ry 4,, — R, 4, > limsup ¢, ) P(X € X.m).

E Proofs for mis-specified models

E.1 Proof of Proposition [5]

We assume the result of Theorem [3] as its proof does not depend on the current proposition. To simplify the
proof and work with square matrices, we assume w.l.0.g. that ©* = U*T*, where U* € R (=1 i5 orthogonal,
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and we may w.l.o.g. take T* to be diagonal, with T* = diag(t},...,t;_,), and let ©(e) = U*T(¢). It suffices
to show that T (e)/ ||Ti(e)|| # T*/||T*||. For simplicity, we suppress the dependence on m = 1 and write
T(e) = Ti(e), O(e) = O1(e), and let T;;(e) denote the entries of T'(e). As X ~ N(0, I;), it follows that
U*T X ~ N(0,I)_1), so that the stationary conditions for ©(e) equivalently state that for Z ~ N(0, I_1),

VaLi(6(0) =B |2 ((1(072) - o7 2)) | = 0,

Let 7 C R¥~! be a set to be chosen, and write o(t) = o™ (¢)1{t ¢ T} + " - 1{t € T}, where o™ = 11
denotes the uniform distribution. Then equivalently,

E [z (alr(T(e)TZ) - a“(T*TZ))T] +E {Z <alf(T*TZ) . a““i)T 1{T*TZ e T}] —0.

=:A(T)

For small € > 0, we can always choose disjoint 7. and 7_. with P(T*TZ € 7;),P(T*TZ € T-¢) < e while
the matrices A(T:) and A(7_.) belong to distinct rays, that is, are not positive multiples of one another.
Indeed, as the rank one matrix T* " Z(o™(T* " Z) — 0" T is non-constant whenever k > 3, we can find a
matrix Q € RF=1x(k=1) gyuch that the sets

T = {T*Tz | tr (QTT*Tz(alr(T*Tz) - a“ni)T) > o}
T = {T*Tz | tr (QTT*Tz(Ulr(T*Tz) - o—uni)T) < o}

have positive Lebesgue measure. Then for any 7. C 73 and 7_. C 7, we must have tr(QTA(T)) > 0
and tr(QT A(T_.)) < 0, as desired, and we may take the sets 7. to have Lebesgue measure at most ¢. By
absolute continuity of Lebesgue integral, as e — 0 it follows A(7;) — 0 and A(7_.) — 0 uniformly with e.

Now we are ready to prove the lemma. Consider the tilted gradient function
T
F(T,A) =E {Z (a“(TTZ) - a“(T*TZ)> } + A,
which satisfies F/(T*,0) = 0, and for which the linear mapping

D(T) = VpF(T,0) : RE=DxG=1 _ pik=Ux(k=1) = p(T)[M] := E[Z(Ve™ (T T Z)MZ)"]

is invertible at D(T™). By construction of the matrices Ay, = A(T1c), we also know that there exist
solutions T'(+e) satistying F(T'(¢), Ac) = 0 and F(T(—¢), A_c) = 0. By the implicit function theorem and
that VA F(T, A) = Id, we thus obtain

T(e) = T* — D(T*) "'V AF(T*,0)A. + O(|| A||*)
=T" = D(T*) A + O(| Ad|I*),
and similarly T(—€) = T* — D(T*)"*A_.+ O(||A_c||*). Without explicitly computing the Jacobian, we may

still conclude that at least one of T'(¢) and T'(—¢) cannot align with T, as T'(¢) — T* and T'(¢) — T* belong
to distinct rays.

E.2 Proof of Theorem 3

We prove the theorem in two parts. In the first we verify the validity of the ansatz ©,, = U*T,,, and in the
second we show the claimed asymptotics of T,.

Part 1: Ansatz for the population loss. Let Z = U*'X ~ N(0, U*TEU*), and let A € RI* (k1)
satisfy

0=Cov(X — AZ,Z) = XU* — AU* ' $U*,
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ie., A=XU*(U*"SU*)~'. Then X — AZ and Z are independent. Consider the lower dimensional problem
in R¥=! with the covariates X replaced by Z and ©* replaced by T*, with associated loss (abusing notation)

Lo(T) = E [~ log Pr(V;} | 2)] =E [o(TTZ,Y;))]

where Y, denotes majority vote and Pr the logistic regression model. The loss L, is still strictly convex
and coercive, so it has unique minimum 7T}, € R*F=1Dx(#=1) gatisfying

VoLu(Tw) =E[2(a"(1;,2) — pu(T*T 2))] =0,

where we recall the notation that p,(v) = (P(Yf =1),..., P(Y = k)) when Y; % Cat(v).

m

We demonstrate 0,, = U*T,,, minimizes L,,. Indeed,
-
VoLn(O) = E|X ((17.2) - pul*72)) |

— AE [Z (alr(T;Z) - pm(T*TZ))T] +E [(X — AZ) (alr(T;Z) - pm(T*TZ))T]

=0 by stationarity of L,
Y E[X - AZ]-Ele"(T,)2) - pu(T* T 2)]T =0,
=0

where equality (%) uses the independence between X — AZ and Z.

Part 2: Asymptotics of T,,,. We prove ||T,,|| = oo and T,,,/|| T || — T*/||T*|| — O.

Lemma E.1. Under the conditions of the theorem, ©,, = argming Ly, (©) satisfies [|Om|l,, = | Tmll,, — o0
and Ly, (0,,) — 0.

Proof When |T[|,, <, for ©=U*T and i, € [k] we have

[(0; — 6, 2)| = (U T (e; — e5),2)| < llei = €5l IT Ny ey < V21 |l

Therefore we have pointwise lower bound for the loss
k
©(©"z,y) =log <Zexp(<9i - t%,x))) > log (1 + (k — 1) exp{—V2r Hx||2) > 0.
i=1

Letting g(r) := E[log(1 + (k — 1) exp(—v/2r || X||,))] > 0, which is a strictly decreasing function of r, we see

that for all m € N and [|©],, = [T, <7, Lin(©) = g(r).

On the other hand, for a real number R > 0, consider O = RO*/[|©*]|,,, whose columns 61,...,0 are
scaled multiples of those of ©*. It is clear from majority vote consistency that p,(©rx) — eyx(z) as m or
R — o0, and so

Lin(Or) = E[p(0£X,Y,1)]

k
log (Z exp((0; — 9y*(X)7X>)>‘|

=1

— E

mToo

< & [log (14 (= Doy (= Ruin |07 — 03], 11 /1771, )| = (R

We conclude that
lim sup ir@l)f L.,(©) < h(R)

m
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This implies for sufficiently large m, infg L,,(©) < 2h(R) and we must have ||©,,] > ¢~ 1(2h(R)). As both
g and h monotonically decrease to 0 on Ry, we see that [|©,,[ — co. The unitary invariance of |||, gives
that [|©ml,, = T ll,p, and that h(R) — 0 as R 1 oo implies Ly, (©y,) — 0.

op?

We now demonstrate the asymptotic alignment T, /||Tin || — T*/||T*|| — 0. Define the mis-aligned region
R(e) = AT [ IT/ITIl = T*/IIT*[I| = €} -

Let © = U*T for some T € R(e), and define the set
X(T) = {x € X | argmax(0y, ) # argmax(%,x)} .
y y

Then we have the lower bound

Ln(0) =E[p(0" X, Y,1)] > E[p(0" X, Y,1)1{X € X(T)}]

) m

>E e;*(X)pm(@*TX)log <1 + Z exp((8; — Gy*(X)7X>)>1{X e X(T)}
J#y*(X)

> log2 - E [e;(x)pm(@”xn{x e X(T)}} :
where we use that on the set x € X'(7T'), at least one column 6; satisfies (0; — 0+ (,), ) > 0. By dominated

convergence, as m — 0o,

liminf L,,(©) > log2- P(X € X(T)).

Because X (T') is a union of subspaces, T — P(X € X(T)) is continuous and homogeneous in ||T||, so that
infTeR(e) P(X S X(T)) > 0.

We have thus shown that liminf,, infgcy+r(e) Lm(©) > 0. However, Lemma shows that [|©,,] — oo
and L, (©,,) — 0, so we must have 6,,, € U*R(e) for large m, and so T,/ || T| — T/ || T*||-
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