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Abstract: LiDAR Place Recognition (LPR) is a key component in robotic local-
ization, enabling robots to align current scans with prior maps of their environ-
ment. While Visual Place Recognition (VPR) has embraced Vision Foundation
Models (VFMs) to enhance descriptor robustness, LPR has relied on task-specific
models with limited use of pre-trained foundation-level knowledge. This is due
to the lack of 3D foundation models and the challenges of using VFM with Li-
DAR point clouds. To tackle this, we introduce ImLPR, a novel pipeline that
employs a pre-trained DINOv2 VFM to generate rich descriptors for LPR. To
the best of our knowledge, ImLPR is the first method to utilize a VFM for LPR
while retaining the majority of pre-trained knowledge. ImLPR converts raw point
clouds into novel three-channel Range Image Views (RIV) to leverage VFM in
the LiDAR domain. It employs MultiConv adapters and Patch-InfoNCE loss for
effective feature learning. We validate ImLPR on public datasets and outperform
state-of-the-art (SOTA) methods across multiple evaluation metrics in both intra-
and inter-session LPR. Comprehensive ablations on key design choices such as
channel composition, RIV, adapters, and the patch-level loss quantify each com-
ponent’s impact. We release ImLPR as open source for the robotics community.
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1 Introduction

Place recognition, encompassing both VPR and LPR, provides an initial localization estimate
when seeking to determine if a location has been previously visited, using a prior map of the
location. Early learning-based methods relied on specialized architectures trained on domain-
specific datasets [1–6]. While VPR has advanced by using VFMs [7–10], pre-trained on large-scale
datasets [11–13], LPR has been limited by the lack of suitable 3D foundation models and the modal-
ity gap when adapting VFMs to LiDAR data.

Efforts applying foundation models on LiDAR data can be characterized in two ways: developing
full 3D foundation models or converting LiDAR data into a format that can be used with VFM.
Existing 3D foundation models [14, 15], designed for object detection or indoor scene analysis, are
unsuitable for LPR due to their focus on specific tasks and the heavy computation required when
working with 3D data with large sets of parameters. On the other hand, converting 3D point clouds
into 2D images is a more straightforward approach for leveraging VFM for LPR. Two types of
image projection are typically used to create a 2D representation from a 3D point cloud, Bird’s-
Eye-View (BEV) and RIV, as shown in Fig. 1. However, a substantial domain gap exists between

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://github.com/minwoo0611/ImLPR


ImLPR (DINOv2)

LiDAR Representation

BEV

3D Points

RIV

Task-Specific Model Descriptor

(Domain-Specific)

ImLPR BEVPlace++ CASSPR MinkLoc3Dv2

Descriptor

(Domain-Agnostic)

Rep. Selection

: Irreversible : Reversible

Single-session

Multi-session

Recall@1

F1-Score Seq. Name

Pre-trained

Knowledge

Figure 1: Without using a foundation model, traditional LPR relies on domain-specific training with
3D point clouds, BEV, or RIV. To leverage a VFM, ImLPR uses RIV images to capture geometric
information while avoiding the information loss that the BEV projection induces. The radar chart
(right) highlights ImLPR’s superior performance in trained (black) and unseen (purple) domains.

natural images used to pre-trained VFMs and projected LiDAR images, particularly when using
single-channel [6] or overly large multi-channel inputs [16]. Previous approaches that rely on such
representations struggle to effectively leverage pre-trained three-channel vision models.

To tackle these issues, we present ImLPR, a novel pipeline for LPR that adapts DINOv2 [12], a
SOTA VFM with robust and transferable feature extraction capabilities. We have designed our sys-
tem to around a RIV which encodes point clouds using reflectivity, range, and normal ratio. This
allows RGB-pretrained VFM to extract discriminative LiDAR features Our empirical results show
that each proposed channel has a significant impact on LPR performance, highlighting the impor-
tance of channel design. Notably, the three-channel configuration proves more effective for RIV
than for BEV. Furthermore, by inserting and training lightweight adapters, we preserve most of the
pre-trained DINOv2 weights while adapting it effectively for LPR using RIV input images. Addi-
tionally, we propose the Patch-InfoNCE loss, a patch-level contrastive loss, enhancing discriminabil-
ity and robustness by ensuring consistent feature representations across corresponding RIV patches.
Combining LiDAR’s geometric precision and semantic information with DINOv2’s representational
power, ImLPR surpasses SOTA LPR methods. Our contributions include:

• ImLPR is the first LPR pipeline using a VFM while retaining the majority of pre-trained
knowledge. Our key innovation lies in a tailored three-channel RIV representation and
lightweight convolutional adapters, which seamlessly bridge the 3D LiDAR and 2D vi-
sion domain gap. Freezing most DINOv2 layers preserves pre-trained knowledge during
training, ensuring strong generalization and outperforming task-specific LPR networks.

• We introduce the Patch-InfoNCE loss, a patch-level contrastive loss, to enhance the local
discriminability and robustness of learned LiDAR features. We demonstrate that our patch-
level contrastive learning strategy achieves a performance boost in LPR.

• ImLPR demonstrates versatility on multiple public datasets, outperforming SOTA methods.
Furthermore, we also validate the importance of each component of the ImLPR pipeline.

2 Related Work

2.1 Traditional LiDAR Place Recognition

Numerous works have studied LPR. Early methods like PointNetVLAD [17] used PointNet for fea-
ture extraction, while others [18, 19] refined descriptors with MLPs. Efficiency-driven approaches,
such as OverlapTransformer [20] and CVTNet [21], projected point clouds into range images for
2D convolutions. Sparse convolution methods [3, 4] optimized 3D processing, while BEV pro-
jections [22] have been used to capture the global contour of a scene. Recent efforts, like SE(3)-
equivariant networks [23], leverage rotation-invariant features, and SeqMatchNet [24] uses con-
trastive learning with sequence matching for robustness. However, these methods, trained on spe-
cific datasets, struggle to adapt to scene variations and exhibit reduced performance when tested in
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Figure 2: The point cloud is projected into a RIV image containing reflectivity, range, and normal
channels. A pre-trained DINOv2 model, adapted via MultiConv adapters (MCAs), extracts rich
patch-level features. Patch-InfoNCE loss enhances local feature discriminability, while SALAD
aggregates features into a global descriptor. This effectively leverages the VFM for use with LiDAR.

different domains. Their domain-specific descriptors struggle with diverse outdoor conditions, hin-
dering broad applicability. Inspired by the progress of VPR [7, 8], we address these limitations by
introducing VFMs to the task of LPR, leveraging the rich, robust descriptors of foundation models
to overcome the traditional domain-specific constraints described above.

2.2 Vision and 3D Foundation Models for 3D Data

VFMs [11–13] excel in VPR due to their robust feature representations [7, 9]. In particular, DINOv2
was pre-trained on massive datasets containing 140 million images. In contrast, 3D foundation mod-
els like PTv3 [14] and Sonata [15] are trained on smaller datasets with 23-139 thousand point clouds,
and focus on object-level tasks, limiting their generality for outdoor LPR. Recently, researchers have
attempted to apply VFM to point clouds [25, 26]. However, they focus on object detection or reg-
istration, and still rely on visual images, diverging from LPR. Instead, to adapt LiDAR data for use
with image-based networks, traditional methods project point clouds into 2D formats like BEV [22]
or RIV [16], and then use these images with ImageNet-pretrained CNNs such as ResNet [27]. How-
ever, compared to VFM, these methods lack the expressiveness needed for diverse outdoor scenes
and are limited by their small training datasets and simple architectures. Additionally, domain differ-
ences between LiDAR images and visual images hinder the direct application of VFMs. Fine-tuning
the entire model such as LIP-Loc [28], can lead to catastrophic forgetting, reducing generalization
by forgetting pre-trained knowledge. To address these challenges, we utilize DINOv2 with a Multi-
Conv adapter to bridge domain differences while preserving almost the entire pre-trained knowledge
within the VFM network. We adopt the RIV projection, which captures denser geometric detail and
is more similar to normal visual images compared to the sparser BEV images [6, 22].

3 Methodology

3.1 Overview of ImLPR

ImLPR first renders the scan as an RGB-style image I ∈ RH×W×3 and then computes a global
representation g ∈ Rt through the mapping function Ω = h ◦ f . The VFM-based encoder f :
RH×W×3 → RH′W ′×C (H ′ = ⌊H/14⌋, W ′ = ⌊W/14⌋) extracts patch features, which are then
pooled into the descriptor g by the aggregator h : RH′W ′×C → Rt. Metric learning optimizes Ω
such that, if the spatial distance D(q, i) < D(q, j), then the descriptor distance dg(q, i) < dg(q, j),
enforcing this relationship at both the feature and global descriptor levels.

3.2 Input Data Processing

To convert raw LiDAR point clouds into structured images, we map each point pi = (xi, yi, zi) ∈ P
to RIV pixel coordinates (ui, vi) via:(

ui

vi

)
=

(
0.5 [ 1− arctan(yi, xi)/π] ·W

[ 1− (arcsin(zi/ri) + fup)/f ] ·H

)
, (1)
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where W and H denote the image width and height, ri is the range from the origin to pi, fup is the
upper bound of the vertical field of view (FOV), and f denotes the total vertical FOV. To further
enrich the image with geometric information, we include the three LiDAR channels—reflectivity,
range, and normal ratio—in each pixel. Reflectivity offers semantic distinction between objects with
different surface properties, while range encodes geometric features of the scene, such as object dis-
tance and depth variation. The normal ratio is derived from the singular value ratio of the covariance
matrix for the k-nearest neighboring points of pi. Singular Value Decomposition (SVD) is applied to
this covariance matrix, and the logarithmic ratio of the largest to smallest singular values encodes the
normal information. This scalar effectively summarizes local geometric variations—such as surface
planarity and edge-like structures—into a single channel, offering a computationally efficient alter-
native to multi-channel normal vectors [16]. This multi-channel image is used as input for ImLPR,
as depicted in Fig. 2.

3.3 Feature Extraction with Adapted DINO ViT

We adopt a DINO ViT-S/14 model pre-trained on RGB images and tailor it to LiDAR RIV images
by fine-tuning only the final two transformer blocks of the model. Similar to SelaVPR++ [29], we
bridge the gap between the DINO pre-training RGB dataset and new LiDAR data by postprocess-
ing the per-patch DINO features using lightweight MultiConv adapter layers. Concretely, we insert
these adapters at regular intervals among the frozen layers, allowing them to refine intermediate
patch representations while keeping most of the network frozen. This design preserves the rich
pre-trained capabilities of the model while facilitating LiDAR-specific adaptation with lower com-
putational overhead compared to full end-to-end fine-tuning. Since MultiConv adapters are placed
at k regular intervals, this further optimizes memory and computation. Formally, let xl represent the
intermediate DINO feature of the l-th transformer block, comprising both patch features xpatch

l and
token features xtoken

l . We define the adapter-refined patch features yi as:

yi =

Adapter
(
xpatch
i + xpatch

ik

)
+ xpatch

i , i = 1

Adapter
(
ypatch
i−1 + xpatch

ik

)
+ ypatch

i−1 , 2 ≤ i ≤ ⌊L/k⌋
(2)

where L is the total number of transformer blocks. The token features xtoken
l remain untouched. By

focusing on the refined patch features, our method efficiently leverages strong generalizable visual
representations from the pre-trained model while accommodating LiDAR-specific structures.

3.4 Feature Aggregation with Optimal Transport

We aggregate the refined patch features into a global representation using an optimal transport ap-
proach similar to SALAD [8]. Let F ∈ RH′W ′×C be the local features derived from the adapter-
refined patch features. A convolutional layer first maps F to a score matrix S ∈ Rn×m, representing
the assignment probabilities of local features to m learnable cluster centers. We then apply opti-
mal transport, specifically the Sinkhorn algorithm [30], to obtain an optimized assignment matrix
R ∈ Rn×m by iteratively normalizing the rows and columns of the exponentiated score matrix.
The aggregated feature V ∈ Rm×l is computed as Vj,k =

∑n
i=1 Ri,j F̄i,k, where F̄ denotes the

intermediate feature embeddings obtained by applying a convolution layer to the original feature F.

To capture global structural context, we generate a compact global embedding G ∈ Re via lin-
ear layers. The global token passes through two linear layers to compress and capture global
context. The final descriptor combines flattened local features and the global embedding as
g = [V.f latten(),G] ∈ Rm×l+e. This fusion of clustering-based local features and global em-
bedding captures both detailed local patterns and robust global structure.

3.5 Patch-level Contrastive Learning

To encourage learning both locally (patch feature-level) and globally (descriptor-level), we introduce
a patch-level contrastive loss in addition to the global objective. This promotes effective gradient
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Figure 3: Patch correspondence pipeline aligns two RIV images by transforming their point clouds
to a shared coordinate system using known poses and Iterative Closest Point (ICP). Positive patch
pairs are validated based on spatial overlap and range similarity, while negatives ensure large spatial
separation. This process supplies pairs for Patch-InfoNCE loss to train discriminative local features.

flow throughout the network. For patch-level supervision, we mine positive and negative patch pairs
from two RIV range images based on geometric consistency.

Positive Patch Mining: We transform both range images into 3D point clouds using their RIV
geometry and align them in a common world frame using ground truth poses refined by ICP. Points
from the second scan are reprojected onto the first RIV to identify candidate patch correspondences,
as illustrated in Fig. 3. Positive pairs are selected based on pixel overlap and range similarity. A
patch pair (p1, p2) is considered positive if the ratio of valid overlapping pixels Pov, containing
range values in both patches, exceeds ρvalid = 0.5. For all pixels in Pov, we compute the per-pixel
range differences di = r1,i − r2,i. An adaptive threshold τr is computed using the median absolute
deviation (MAD): τr = median(di) + k · MAD, ensuring robustness to measurement noise. A pair
is confirmed positive if the mean range difference ∆r = 1

|Pov|
∑

i∈Pov
|r1,i − r2,i| is less than τr.

This ensures that spatially consistent, range-coherent positive patch pairs are selected.

Negative Patch Mining: To select negative patch pairs, we enforce large vertical and horizontal
distances (vdist and hdist) from the positive patches to avoid spatial overlap. The cylindrical geometry
is considered, ensuring that patches near the 0◦ and 360◦ boundaries are treated as spatially distant.

To supervise patch-level contrastive learning, we propose Patch-InfoNCE, an extension of the In-
foNCE loss [13] for local features. Unlike global descriptor losses, Patch-InfoNCE operates on local
embeddings from features F1,F2 ∈ RH′W ′×C of two adjacent RIV images. It supports multiple
positive patch pairs (p1, p2) per image and computes their cosine similarity. For each positive pair
F p1

1 and F p2

2 , we select hard negatives: n1 from F1 relative to p2, and n2 from F2 relative to p1.
The Patch-InfoNCE loss is defined as:

LP = − 1

|P|
∑

(p1,p2)∈P

log

(
exp(sp/τl)

exp(sp/τl) +
∑

j exp(sn,j/τl)

)
, (3)

where P is the set of positive pairs, τl is the temperature, and sp, sn,j denote the cosine similarities
of positive and negative pairs, respectively. This loss encourages consistent local features at corre-
sponding spatial locations across RIV images, enabling discriminative patch-level embeddings for
LPR. The final objective combines both local and global terms as Lfinal = LP + λLTSAP, where λ
balances their ratio. Details of LTSAP [4] are provided in the appendix. This dual-loss formulation
captures both fine-grained context and global semantics, improving overall LPR performance.

4 Experiment

4.1 Experimental Setup

Implementation Details: ImLPR was implemented in PyTorch using a DINO ViT-S/14, training
only the last two transformer blocks and inserting MultiConv adapters every three blocks. The size
of the RIV image used is H ×W = 126× 1022. Additional details are available in the appendices.
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Table 1: Performance Comparison in Intra-Session Place Recognition
Method Round01-O Round02-O Round03-O Town01-O Town02-O Town03-O Average

R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1

LoGG3D-Net 0.425 0.740 0.257 0.475 0.542 0.806 0.101 0.274 0.135 0.256 0.151 0.299 0.269 0.475
MinkLoc3d v2 0.933 0.968 0.856 0.937 0.908 0.959 0.847 0.925 0.834 0.922 0.907 0.957 0.881 0.945
CASSPR 0.940 0.969 0.883 0.943 0.942 0.972 0.803 0.892 0.789 0.882 0.862 0.935 0.870 0.932
BEVPlace++ 0.975 0.988 0.926 0.962 0.962 0.983 0.946 0.975 0.942 0.973 0.961 0.980 0.952 0.977
ImLPR 0.992 0.996 0.974 0.988 0.992 0.997 0.981 0.990 0.950 0.977 0.966 0.984 0.976 0.989
(Round: Roundabout, Bold: Best and Underline: Second-Best
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Figure 4: Trajectory from two sequences, with red lines marking false positives (fewer red lines
indicate better performance). It highlights ImLPR having fewer errors compared to SOTA methods.

Datasets & Evaluation Metrics: ImLPR is evaluated on HeLiPR (O: OS2-128 and V: VLP-
16C) [31], MulRan (OS1-64) [32], and NCLT (HDL-32E) [33] datasets, with scans sampled at
3m intervals. From HeLiPR, we use sequences Roundabout01-03 and Town01-03, where the
suffix O or V indicates the LiDAR used. From MulRan, we use the DCC01-03 sequences for evalu-
ation. We use nine HeLiPR sequences with the Ouster for training: DCC04-06, KAIST04-06, and
Riverside04-06. To handle varying point cloud density, 3D sparse convolution methods down-
sample to 8192 points, while other parameters retain default settings. ImLPR is compared against
LoGG3D-Net [3], MinkLoc3Dv2 [4], CASSPR [5], and BEVPlace++ [6], using Recall@1 (R@1)
and maximum F1 score. All methods are trained under the same conditions. Positive pairs are
defined as matches within 10 m, assuming a four-lane highway. During training, negative pairs are
sampled beyond 30 m, while during evaluation, pairs outside the 10 m range are treated as negatives.

4.2 Intra-session Place Recognition

Scans within 60 seconds of the query are excluded to prevent intra-session matching (i.e., match-
ing within the same trajectory), and processing begins only after 90 seconds to ensure a sufficient
database. As shown in Table. 1 and Fig. 4, ImLPR surpasses all baselines on Roundabout-O and
Town-O. LoGG3D-Net exhibits lower recall due to the domain shift between training and testing.
BEVPlace++ ranks second, capturing scan contours but underperforms ImLPR in narrow alleys and
small-scale environments, as ImLPR leverages RIV representations for fine-grained feature extrac-
tion. 3D sparse convolution methods like MinkLoc3Dv2 and CASSPR rank third, limited by the
absence of large-scale pre-trained models. ImLPR achieves the highest R@1 and F1 score, demon-
strating robust and discriminative intra-session LPR performance.

4.3 Inter-session Place Recognition

Table. 2 and Table. 3 show inter-session results (i.e., between scans collected at different times)
for Roundabout-O and Town-O. Each result is shown in the format Database-Query. ImLPR
outperforms other methods across both environments, adapting to session-induced variations. BEV-
Place++ achieves the second-highest Recall@1, but its lower F1 score indicates reduced precision.
We believe this is due to the simple network consisting of 2D convolution without additional mecha-
nisms such as attention. Furthermore, its BEV representation, projecting all data into a single plane,
limits its ability to distinguish subtle session-specific variations. As shown in Fig. 5, BEVPlace++
has a lower F1-Recall curve than MinkLoc3Dv2 and CASSPR, despite higher recall. Since the F1-
Recall curve captures the trade-off between precision and recall across thresholds, a lower curve
suggests a higher false positive rate. MinkLoc3Dv2 and CASSPR follow ImLPR in F1 score with
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Table 2: Performance Comparison in Inter-Session Place Recognition (HeLiPR Roundabout-O)
Method Round01-02 Round01-03 Round02-01 Round02-03 Round03-01 Round03-02 Average

R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1

LoGG3D-Net 0.610 0.847 0.610 0.847 0.577 0.801 0.637 0.844 0.617 0.855 0.681 0.859 0.622 0.842
MinkLoc3Dv2 0.930 0.970 0.955 0.981 0.931 0.968 0.954 0.979 0.965 0.985 0.952 0.981 0.948 0.977
CASSPR 0.939 0.970 0.961 0.981 0.945 0.972 0.968 0.985 0.962 0.982 0.964 0.986 0.957 0.979
BEVPlace++ 0.963 0.918 0.970 0.947 0.956 0.948 0.973 0.963 0.979 0.964 0.970 0.949 0.969 0.948
ImLPR 0.984 0.992 0.991 0.996 0.989 0.995 0.991 0.996 0.994 0.997 0.992 0.997 0.990 0.996

Table 3: Performance Comparison in Inter-Session Place Recognition (HeLiPR Town-O)
Method Town01-02 Town01-03 Town02-01 Town02-03 Town03-01 Town03-02 Average

R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1

LoGG3D-Net 0.282 0.546 0.281 0.478 0.280 0.538 0.332 0.568 0.272 0.482 0.330 0.587 0.296 0.533
MinkLoc3Dv2 0.948 0.975 0.962 0.981 0.960 0.980 0.958 0.980 0.950 0.976 0.960 0.980 0.956 0.979
CASSPR 0.916 0.958 0.912 0.957 0.939 0.970 0.947 0.975 0.924 0.963 0.934 0.967 0.929 0.965
BEVPlace++ 0.960 0.954 0.966 0.960 0.974 0.953 0.983 0.972 0.971 0.972 0.982 0.989 0.973 0.967
ImLPR 0.989 0.995 0.991 0.996 0.988 0.996 0.988 0.994 0.985 0.993 0.990 0.995 0.989 0.995
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Figure 5: F1-Recall curve for inter-session place recognition. ImLPR consistently outperforms all
baselines across all sequence pairs. BEVPlace++ exhibits a low F1 hindered by the projection-
induced information loss. This highlights ImLPR’s superior balance of precision and recall.

inconsistent results across sequences. This variability highlights the benefit of using large-scale
pretrained models for consistent results. LoGG3D-Net ranks lowest due to domain mismatches.
ImLPR’s RIV representations precisely capture fine-grained details as shown in Fig. 6(b), and its
network design ensures top inter-session LPR performance.

Table 4: Generalization Assessment
Method DCC NCLT Roundabout-V Average

AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

LoGG3D-Net 0.094 0.214 0.149 0.434 0.131 0.394 0.125 0.347
MinkLoc3Dv2 0.722 0.870 0.622 0.808 0.513 0.764 0.619 0.814
CASSPR 0.683 0.851 0.652 0.810 0.630 0.793 0.655 0.818
BEVPlace++ 0.678 0.839 0.850 0.922 0.655 0.790 0.728 0.850
ImLPR 0.865 0.943 0.834 0.927 0.712 0.852 0.804 0.907

AR@1: Average Recall@1, AF1: Average F1 score

Table 5: Performance Impact of RIV Image Channels
Method Image Channel Roundabout-O Town-O DCC Average

CH1 CH2 CH3 AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

ExpA-1 ✔ 0.946 0.973 0.956 0.979 0.773 0.884 0.892 0.945
ExpA-2 ✔ ✔ 0.975 0.989 0.980 0.990 0.901 0.951 0.952 0.977
ExpA-3 ✔ ✔ ✔ 0.979 0.990 0.985 0.993 0.945 0.970 0.970 0.984

CH1: Reflectivity, CH2: Range, CH3: Normal Ratio

4.4 Ablation Studies

Model Generalization Assessment: To assess the generality of ImLPR, we conducted intra-session
LPR on MulRan DCC, NCLT (2012-01-08, 01-15, 01-22), and HeLiPR Roundabout-V with-
out additional training. As these datasets lack a reflectivity channel, normalized intensity was used.
For NCLT and Roundabout-V, all methods were validated using accumulated scans as both query
and database. The average performance across three sequences is reported in Table. 4, with dataset-
specific details provided in the appendix. In DCC, while all methods experienced performance de-
clines, ImLPR demonstrated the most robust performance, excelling in handling sensor differences
and temporal shifts. In NCLT and Roundabout-V, it effectively generalized to unseen sensors and
environments. Although discrete and noisy intensity from NCLT degraded the semantic quality of
RIV images (Fig. 8(b)), ImLPR still attained the highest F1 score by leveraging geometric cues.
Unlike competing methods that showed inconsistent rankings across datasets—reflecting sensitiv-
ity to specific domains—ImLPR consistently maintained best performance as shown in Fig. 1 and
Table. 4. This stability highlights its strong generalization, enabled by RIV and VFM with adapter.

Image Channels: ImLPR uses three image channels—reflectivity, range, and normal ratio—to rep-
resent LiDAR point clouds. To assess their individual contributions, we evaluate three configura-
tions: reflectivity only (ExpA-1), reflectivity and range (ExpA-2), and all three channels (ExpA-3),
excluding Patch-InfoNCE loss since it relies on the range channel. We average inter-session place
recognition results across all sequences, as shown in Table. 5. Each added channel improves AR@1
and AF1. Reflectivity provides a strong semantic baseline, while range adds geometric depth and
significantly boosts performance. The normal ratio further improves accuracy by capturing local
3D structure, though its effect is smaller due to the similarity with range, as both channels encode
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Table 6: Ablation Study on Input Representation, Loss Function, and Adapter for Inter-Session LPR
Method Input Adapter Loss Roundabout-O Town-O DCC Roundabout-V Average

AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

ExpB-1 BEV ✓ LTSAP 0.945 0.977 0.923 0.968 0.901 0.966 0.869 0.942 0.911 0.965
ExpB-2 RIV ✓ LTSAP 0.979 0.990 0.985 0.993 0.945 0.970 0.844 0.920 0.938 0.968
ExpB-3 RIV ✗ LP ,LTSAP 0.850 0.925 0.833 0.913 0.850 0.943 0.645 0.809 0.795 0.898
ExpB-4 RIV ✓ LP ,LTSAP 0.990 0.996 0.989 0.995 0.942 0.973 0.888 0.948 0.952 0.978

(a) Feature Visualization with BEV (b) Feature Visualization with RIV
Figure 6: Feature visualizations comparing BEV and RIV from Roundabout01-O positives. (a)
BEV distorts feature shapes (yellow) and misidentifies empty pixels as features (orange), causing
inconsistency. (b) RIV shows consistent features between scans, even with a missing car (white).
geometric information. These results demonstrate that each channel contributes distinct, comple-
mentary features that collectively strengthen the performance of ImLPR.

BEV and RIV Representations with Patch-InfoNCE Loss: We evaluate the effectiveness of BEV
and RIV representations using three model variants: BEV without Patch-InfoNCE loss (ExpB-1),
RIV without the loss (ExpB-2), and RIV with the loss (ExpB-4), since Patch-InfoNCE is not com-
patible with BEV. As shown in Table. 6, RIV consistently outperforms BEV, even without Patch-
InfoNCE, and further improves with it by enhancing patch-level learning. Visualizations in Fig. 6
illustrate these differences. BEV struggles with feature representation: the yellow box shows dis-
torted DINO features—diagonal in scan 534 and linear in scan 1284. The orange box highlights
empty pixels misidentified as foreground, revealing DINOv2’s limitations. In contrast, RIV pro-
duces consistent features across both scans. In Fig. 6(b), white boxes remain stable even as a car
disappears in scan 1284, with the region correctly excluded. These results indicate that VFM per-
forms more reliably with RIV, which better retains spatial and semantic patterns.

MultiConv Adapter: Table. 6 shows the benefit of incorporating a MultiConv adapter (ExpB-3)
versus not using one (ExpB-4). Even when the same number of last transformer blocks are fine-
tuned, the presence of the adapter leads to significant performance improvements, notably increasing
both average AR@1 and AF1. This confirms the adapter’s effectiveness in addressing sensor domain
shifts while retaining the generalizable representations learned during pre-training. Additional and
detailed ablation studies are provided in the appendix.

5 Conclusion

In this paper, we introduced ImLPR, the first novel pipeline that adapts the DINOv2 VFM to bridge
the LiDAR and vision domains. The proposed approach utilized a RIV representation with three
channels, integrated MultiConv adapters, and employed Patch-InfoNCE loss for patch-level con-
trastive learning. Evaluations on the public datasets demonstrate that ImLPR outperforms SOTA
methods in both intra-session and inter-session LPR, achieving superior performance. Our approach
redefines LPR by moving beyond traditional 3D sparse convolution and BEV-based descriptors. In-
stead, we leverage VFM with RIV images, rather than BEV, for enhanced feature representation.
Future work could explore integrating ImLPR with other foundation models, such as segmentation
models, or developing hierarchical pipelines. These approaches could combine ImLPR’s patch-
based retrieval with a segmentation-driven re-ranking process, where local patch correspondences
are refined to improve matching accuracy, enhancing overall LPR performance.
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6 Limitation

While ImLPR achieves SOTA results on a variety of datasets, its application remains limited to ho-
mogeneous LPR, where the same type of LiDAR sensor is used for both query and database. It is
not yet suited for the emerging task of heterogeneous LPR [34], which requires matching across
different LiDAR sensor types with varying specifications and fields of view. Accumulating a batch
of scans, as adopted in our experiments, partially mitigates this limitation by improving robustness
across sessions, but significant discrepancies in sensor geometry prevent it from serving as a com-
plete solution. Furthermore, although we fine-tuned the DINOv2 vision foundation model with Mul-
tiConv adapters to better align with the LiDAR domain, effectively addressing heterogeneous LPR
or broader generalization still demands training on larger and more diverse datasets. Despite these
constraints, ImLPR’s VFM-based approach extends beyond traditional place recognition methods
by adapting pre-trained DINOv2 features to LiDAR RIV inputs. This VFM-based approach en-
ables future development of generalizable place recognition systems through integration with other
foundation models, such as those for segmentation [11] and multi-modal processing [13].
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Appendices

A Experimental Setup

Implementation Details: ImLPR is trained by fine-tuning the final two transformer blocks, with
MultiConv adapters integrated every three blocks. LiDAR point clouds are converted into images
with dimensions H × W = 126 × 1022. The image channels comprise reflectivity, range, and
normal ratio. Reflectivity acts as a semantic cue for scene segmentation. For LiDAR sensors without
reflectivity data, the intensity channel is utilized during inference, serving a comparable semantic
purpose. The singular value ratio is calculated using k = 8 nearest neighbors for the HeLiPR-
O dataset and k = 25 for the MulRan, NCLT and HeLiPR-V datasets. To ensure continuity in
cylindrical images, the leftmost and rightmost 28 columns (equivalent to 2 patches) are appended
to the opposite sides, maintaining seamless connectivity during both training and inference. Feature
aggregation uses parameters (m, l, e) = (128, 64, 256) to construct the descriptor. For the Patch-
InfoNCE loss, 192 positive and 128 negative patch pairs are sampled per image, with a temperature
τl = 0.2. Negative patches are selected based on patch distance thresholds vdist = 3 and hdist =
20. The Patch-InfoNCE loss is computed using only 1/8 of the positive image pairs within the
batch to optimize computational efficiency. To establish correspondence between two LiDAR scans
represented as RIV images, the RIV images are first converted into 3D point clouds and voxelized at
a 0.4-meter resolution, followed by precise alignment using the ICP alignment. For the TSAP loss,
a temperature τg = 0.01 is applied, truncated to the top four ranked descriptors, with a batch size
of 2048. The combined loss is weighted with λ = 2.0. Training proceeds for 100 epochs using the
AdamW optimizer, with a learning rate of 5× 10−4, a 1/10 warmup phase, and a cosine scheduler.
When performed on three NVIDIA GeForce RTX 3090 GPUs, this is completed in 12 hours.

Evaluation Metrics: We evaluate the performance using Recall@1 (R@1) and the maximum F1
score (F1). Recall@1 measures the percentage of queries where the top-1 retrieved scan is a correct
match (within 10 meters of the ground truth), defined as:

Recall@1 =
Number of queries with correct top-1 match

Total number of query candidates
(4)

The F1 score represents the optimal harmonic mean of precision and recall across all thresholds,
calculated as:

F1 score = 2× Precision × Recall
Precision + Recall

, Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(5)

where TP, FP, and FN denote the number of True Positives, False Positives, and False Negatives for
each threshold. The maximum F1 score is the highest F1 value obtained by varying the threshold
for positive matches. Additionally, we report average results, including Average Recall@1 (AR@1)
and Average maximum F1 score (AF1), computed as the mean values across multiple sequences to
provide a comprehensive assessment of ImLPR’s performance.

B Truncated SmoothAP Loss with Global Image Descriptor

To train ImLPR with the global descriptor, we adopt the Truncated SmoothAP (TSAP) loss [4].
Unlike the triplet and contrastive loss, TSAP optimizes Average Precision (AP) through a continuous
approximation, focusing ranking evaluation on top candidates to reduce computation. For a query
descriptor gq with positives in P+ and all batch descriptors in D, TSAP is formulated as:

LTSAP =
1

m

m∑
q=1

(
1− APq

)
, APq =

1

|P+|
∑
i∈P+

1 +
∑

j∈P+,j ̸=i H
(
dg(q, i)− dg(q, j); τg

)
1 +

∑
j∈D,j ̸=i H

(
dg(q, i)− dg(q, j); τg

) , (6)

where H
(
x; τg

)
=
(
1+ ex/τg

)−1
approximates a step function, with τg as a temperature parameter.

Summation over D uses a top-ranked subset to reduce computation. In large-batch training, TSAP
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Figure 7: Augmented image featuring yaw variation, square mask, cylindrical mask, and line mask.
The yellow line represents a leftward sign displacement, corresponding to horizontal pixel shifts
induced by yaw variation. Yellow boxes emphasize augmented areas, highlighting deviations from
the original image. In the line mask, the white box indicates noise from vacant line pixels caused by
point cloud projection, whereas our yellow box showcases augmentation similar to the original.

matches retrieval metrics such as Average Recall, boosting global descriptor performance. We also
apply multi-staged backpropagation [35] for efficient large-batch optimization.

C Data Augmentation in ImLPR

To enhance the robustness of ImLPR, RIV images are subjected to various data augmentations dur-
ing training. Images are randomly rotated through yaw, sampled uniformly from 0 to 2π radians,
using cyclic horizontal column shifts. This promotes robustness to orientation variations prevalent
in LiDAR scans. The reflectivity and normal ratio channels are scaled to the [0, 1] range by divid-
ing by 255, while the range channel is normalized by dividing by the LiDAR’s maximum range,
ensuring uniform input scales.

Three masking strategies are employed, as illustrated in Fig. 7. Random patch masking applies
square patches of varying sizes, occluding up to 40% of the image area based on a randomly de-
termined mask ratio. Cylindrical masking introduces a contiguous mask, spanning up to 30% of
the image width, with random starting positions and cylindrical wrapping to account for boundary
effects. These techniques address challenges such as occlusions and sparse scene representations.
Line-style masking incorporates randomly placed rectangular lines to emulate projection artifacts,
where multiple points collapse into a single pixel or horizontal lines appear vacant due to RIV pro-
jection. These augmentations bolster ImLPR’s robustness, significantly contributing to its superior
performance in both intra-session and inter-session place recognition.

D Datasets

To evaluate ImLPR, we utilize three public datasets: HeLiPR, NCLT, and MulRan. An example
scan from each dataset, represented as a RIV, is depicted in Fig. 8(a).

D.1 HeLiPR Dataset

The HeLiPR dataset comprises six distinct environments—Roundabout01-03, Town01-03,
Bridge01-04, DCC04-06, KAIST04-06, and Riverside04-06—captured using four LiDAR sen-
sors: Ouster OS2-128, Velodyne VLP-16C, Livox Avia, and Aeva Aeries II. Each sequence cov-
ers approximately 8.5 km, providing sufficient coverage for identifying multiple place recognition
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Figure 8: (a) Visualization of RIV images from four datasets across various LiDARs. HeLiPR with
Ouster (HeLiPR-O) delivers high-resolution point clouds with minimal empty pixels. MulRan ex-
hibits pronounced empty regions at the leftmost and rightmost edges, attributed to sensor occlusion.
Similarly, HeLiPR with Velodyne (HeLiPR-V) suffers from sparse point clouds, resulting in per-
sistent empty pixels despite scan accumulation. In contrast, NCLT scans, benefiting from slower
platform motion, display few empty pixels; however, their intensity distribution is markedly dis-
tinct, characterized by discrete and inverted values, yielding a predominantly blue appearance. (b)
Intensity distributions for each scans from HeLiPR, MulRan, and NCLT, with NCLT demonstrating
a significant distributional difference.

pairs. For training, we employ the Ouster OS2-128 sensor across the DCC04-06, KAIST04-06,
and Riverside04-06 sequences, yielding a total of 16,435 scans. The test set includes the
Roundabout01-03 sequences from both the Ouster OS2-128 and Velodyne VLP-16C sensors, and
the Town01-03 sequences from only the Ouster OS2-128 sensor, with a total of 15,375 scans
for the Ouster OS2-128 and 7,728 scans for the Velodyne VLP-16C. Sequences are labeled as
Sequence-Sensor (e.g., Roundabout01-O for Ouster, Roundabout01-V for Velodyne) to dis-
tinguish sensor-specific data.

For the Roundabout-V sequence, we aggregate 5 seconds of scan data to form a submap, which
is subsequently projected into a RIV image. To avoid redundant accumulation of static scans, we
exclude scans acquired during stationary periods, retaining only those captured during motion. This
strategy ensures consistent vertical image dimensions, partially mitigating the challenges posed by
sparse point clouds in lower-dimensional representations. However, as shown in Fig. 8(a), the inher-
ent sparsity of the LiDAR data results in persistent empty pixels, making this dataset a challenging
testbed for evaluating the robustness of LPR methods to incomplete representations.

D.2 MulRan Dataset

The MulRan dataset covers four urban environments—DCC, KAIST, Riverside, and Sejong—
each including three sequences (01-03) acquired with an Ouster OS1-64 LiDAR. For this dataset,
we focus exclusively on the DCC01-03 sequences, which span an average distance of 4.9km. The
dataset poses challenges due to the lower vertical resolution of this LiDAR sensor and occlusions
induced by a secondary sensor positioned behind the LiDAR, leading to 20% of RIV image pixels
remaining empty, as shown in Fig. 8(a). Point clouds are projected into RIV images of dimension
1022 × 64 and subsequently resized to 1022 × 128 via linear interpolation. Given that MulRan
intensity values exceed 255, we apply normalization to ensure compatibility. A total of 4,328 scans
are utilized as test sets for generalization experiments and ablation studies.

D.3 NCLT Dataset

The NCLT dataset comprises 27 sequences recorded in a college campus using a Velodyne HDL-32E
LiDAR mounted on a Segway platform. Owing to the sparse nature of the point clouds, we aggregate
scans using the methodology applied to HeLiPR-V dataset. The Segway’s reduced velocity, relative
to the vehicle used for HeLiPR, yields RIV images with fewer empty pixels, closely resembling the
high-resolution images of the HeLiPR-O dataset. Nevertheless, the intensity distribution markedly
differs from other datasets, exhibiting discrete values and a prevalence of high-intensity points, in
contrast to the predominantly low-intensity points typical of other datasets. This difference results in
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Figure 9: RIV images from HeLiPR (Left) and MulRan (Right) DCC sequence, taken 0.3m apart,
vary in appearance: occluded area (sensor location), hidden buildings (range), warped proportions
(FoV and sensor location), and shifted colors (intensity distributions).

0 10.5 
Recall

0.7

0.8

0.9

1

Pr
ec

is
io

n

DCC01

MinkLoc3Dv2 
CASSPR 
BEVPlace++ 
ImLPR

0 10.5 
Recall

0.5

0.6

0.7

0.8

0.9

1 DCC02

0 10.5 
Recall

0.5

0.6

0.7

0.8

0.9

1 DCC03
Table 7: Results in MulRan dataset

MulRan DCC (OS1-64)
Method 01 02 03 Average

R@1 F1 R@1 F1 R@1 F1 AR@1 AF1

LoGG3D-Net (D) 0.117 0.310 0.075 0.144 0.090 0.187 0.094 0.214
CASSPR (D) 0.813 0.943 0.607 0.793 0.629 0.818 0.683 0.851

MinkLoc3dv2 (D) 0.849 0.939 0.651 0.829 0.666 0.841 0.722 0.870
MinkLoc3Dv2 (R) 0.853 0.932 0.632 0.814 0.688 0.832 0.724 0.859

BEVPlace++ (D) 0.811 0.937 0.585 0.766 0.639 0.813 0.678 0.839
BEVPlace++ (R) 0.822 0.922 0.588 0.773 0.655 0.811 0.688 0.835

ImLPR (D) 0.909 0.965 0.861 0.945 0.825 0.918 0.865 0.943
ImLPR (R) 0.918 0.968 0.844 0.940 0.825 0.925 0.862 0.944

Figure 10: Performance of High-Resolution LiDAR-Trained Models on MulRan dataset (OS1-64)

blurrier NCLT RIV images as depicted in Fig. 8. To mitigate this, we invert and rescale the intensity
distribution. Despite these adjustments, the discrete and inaccurate intensity channel continues to
impair the semantic quality of RIV images, posing challenges for LPR. For generalization testing,
we utilize the first three sequences—2012-01-08, 2012-01-15, and 2012-01-22—encompassing
a total of 6,368 scans as test sets.

E Evaluation on Generalization Capability

Following the summarized generalization experiments in the main paper, here we further assess
the performance of the trained model in detail using three datasets. Consistent with the primary
evaluation, we conduct intra-session place recognition using the HeLiPR-O trained model without
additional fine-tuning. Scan accumulation follows the methodology outlined in §D. To ensure a fair
comparison, all methods are assessed using the same accumulated scans.

E.1 Evaluation on MulRan Dataset

We evaluate the generalization ability of ImLPR on the MulRan DCC01-03 sequences. Although the
training and test sets have spatial overlap, they differ substantially due to a four-year temporal gap,
differences in LiDAR hardware (OS1-64), and environmental changes such as occlusions. These
differences are illustrated in Fig. 9. For evaluation, LiDAR scans are projected into 1022× 64 RIV
images and resized to 1022× 126 to normalize vertical ray differences.

To ensure the robustness of our evaluation protocol and rule out the possibility of performance
inflation due to overlap, we additionally replace the original training sequences (DCC04-06) with a
geographically seperate sequence, Roundabout04-06, from the HeLiPR with Ouster. We retrain
three representative methods, MinkLoc3Dv2 (point-based), BEVPlace++ (BEV-based), and ImLPR
(RIV-based), on both training sets: the original (denoted as D) and the revised one (denoted as R).

As shown in Table. 7 and Fig. 10, all methods exhibit only minor differences in performance between
the two training sets, validating that the evaluation results are not overly dependent on spatial over-
lap. Moreover, all models experience performance degradation on the MulRan dataset compared
to high-resolution training data, highlighting the impact of domain shift. Among them, ImLPR
consistently achieves the highest performance, regardless of training configuration. These results
demonstrate that ImLPR generalizes robustly across datasets with different LiDAR sensors and en-
vironmental conditions. MinkLoc3Dv2 benefits from sparse convolution that avoids feature gener-
ation in occluded regions, ranking second. BEVPlace++ ranks lower, as BEV images tend to retain
features even in empty or occluded areas. ImLPR, by contrast, effectively handles low resolution
and occlusions through its robust RIV representation and powerful feature extractor. These results
demonstrate that ImLPR exhibits strong generalization on the MulRan dataset, even under substan-
tial domain shifts.
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Table 8: Performance of High-Resolution LiDAR-Trained Models on Low-Resolution LiDAR
NCLT (HDL-32E) HeLiPR Roundabout-V (VLP-16C) Average

Method 2012-01-08 2012-01-15 2012-01-22 Average 01 02 03 Average
R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1

LoGG3D-Net 0.173 0.568 0.141 0.416 0.132 0.318 0.149 0.434 0.038 0.358 0.052 0.133 0.302 0.690 0.131 0.394 0.140 0.414
MinkLoc3dv2 0.649 0.836 0.603 0.773 0.613 0.815 0.622 0.808 0.469 0.771 0.421 0.634 0.648 0.887 0.513 0.764 0.567 0.786
CASSPR 0.681 0.839 0.623 0.789 0.651 0.801 0.652 0.810 0.607 0.784 0.571 0.728 0.711 0.867 0.630 0.793 0.641 0.801
BEVPlace++ 0.861 0.928 0.838 0.915 0.850 0.923 0.850 0.922 0.624 0.769 0.575 0.731 0.767 0.870 0.655 0.790 0.753 0.856
ImLPR 0.817 0.920 0.830 0.930 0.854 0.932 0.834 0.927 0.765 0.884 0.617 0.781 0.753 0.892 0.712 0.852 0.773 0.890
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Figure 11: Precision-Recall curves for generalization assessment on NCLT and HeLiPR-V datasets.
ImLPR demonstrates robust and consistent performance across both datasets. Conversely, BEV-
Place++ yields strong results on NCLT but diminished performance on HeLiPR Roundabout-V.
Sparse 3D convolution methods, MinkLoc3Dv2 and CASSPR, exhibit variable performance across
the evaluated datasets.

E.2 Evaluation on NCLT Dataset

As reported in Table. 8, ImLPR and BEVPlace++ exhibit comparable performance across the evalu-
ated datasets. This similarity stems from the discrete and inaccurate intensity values, which diminish
pixel-level distinctions in RIV images and hinder semantic interpretation. Nevertheless, ImLPR sur-
passes 3D sparse convolution methods, such as MinkLoc3Dv2, by leveraging geometric information
from the range and normal ratio channels effectively. Although ImLPR’s Recall@1 and F1 score
for the 2012-01-08 sequence are marginally lower than those of BEVPlace++, the Precision-Recall
curve, shown in Fig. 11, reveals that ImLPR remains competitive with BEVPlace++ and achieves a
superior Area Under the Curve (AUC) for the 2012-01-22 sequence. Furthermore, despite the unre-
liable intensity channel, ImLPR attains the highest average F1 score and the second-highest Average
Recall@1, closely following BEVPlace++. These findings highlight ImLPR’s robust generalization
capabilities and its efficacy in facilitating LPR under challenging intensity conditions.

E.3 Evaluation on HeLiPR-V Dataset

ImLPR surpasses competing methods across nearly all of our evaluation metrics, securing the high-
est Recall@1 and F1 score for the Roundabout01-V and Roundabout02-V sequences, and deliv-
ering competitive performance in Roundabout03-V, as detailed in Table. 8. On average, ImLPR
achieves a performance improvement more than 10% better than the second-ranked method, BEV-
Place++, in both Recall@1 and F1 score. In contrast, other methods show significant performance
variability. This is primarily due to the different point cloud distributions which were unobserved
during training, which greatly hinder their generalization. Notably, the second-highest F1 scores
across the three HeLiPR-V sequences are inconsistent, each attained by a different method, high-
lighting the difficulty that existing methods have in achieving reliable performance. The Precision-
Recall curves presented in Fig. 11 indicate that for Roundabout03-V, ImLPR and MinkLoc3Dv2
yield comparable AUC, followed by CASSPR and BEVPlace++. For Roundabout01-V, however,
ImLPR markedly outperforms other methods, with CASSPR, MinkLoc3Dv2, and BEVPlace++
trailing in that order. These results underscore ImLPR’s consistently high performance across the
HeLiPR-V dataset.

Despite performance degradation across the MulRan, NCLT, and HeLiPR-V datasets due to domain
shifts, sensor disparities, inaccurate intensity values, and occlusions, ImLPR demonstrates robust
performance. This resilience stems from two key factors. First, ImLPR’s adept fusion of geometric
and semantic features included in RIV channels enables reliable LPR even with low-resolution or
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Table 9: Intra-session PR with different threshold in Roundabout01-O

Threshold 1m Threshold 3m Threshold 5m Threshold 7m Threshold 10m
Method R@1 F1 R@1 F1 R@1 F1 R@1 F1 R@1 F1

MinkLoc3Dv2 0.732 0.963 0.933 0.968 0.798 0.888 0.839 0.915 0.933 0.968
BEVPlace++ 0.913 0.959 0.904 0.951 0.909 0.953 0.921 0.959 0.975 0.988
ImLPR 0.965 0.987 0.933 0.970 0.975 0.988 0.960 0.980 0.992 0.996

unstable inputs. Second, its exceptional generalization performance, enabled by VFM, overcomes
the limitations of traditional domain-specific training, which struggles to achieve generalizability.
These observations underscore ImLPR’s potential as a robust framework for generalized LPR across
diverse and challenging environments.

F Performance Variations According to Different Thresholds

To rigorously evaluate spatial precision in place recognition, we analyze the impact of varying the
distance threshold used to define positive correspondences. While a default threshold of 10 m, which
roughly corresponds to the width of a four-lane road, is a reasonable setting, this choice often results
in uniformly high scores across methods. limiting discriminative insight. We therefore systemat-
ically tighten the thresholds, and evaluate intra-session performance on Roundabout01-Ouster

using three representative methods: MinkLoc3Dv2 (3D point cloud-based), BEVPlace++ (BEV
image-based), and ImLPR (RIV image-based).

As presented in Table. 9, ImLPR exhibits consistently superior performance across all threshold
levels. Notably, under the most stringent 1 m setting, it achieves an R@1 of 0.965 and F1 score
of 0.987, substantially outperforming both BEVPlace++ and MinkLoc3Dv2. This indicates that
ImLPR is capable of not only recognizing the correct place but also localizing it with high spatial
accuracy. BEVPlace++ maintains relatively stable performance across thresholds but shows limited
gains under stricter criteria, highlighting its reduced sensitivity to fine-grained spatial alignment. In
contrast, MinkLoc3Dv2 exhibits fluctuations due to the sparsity of true positives at lower thresholds,
which can degrade metric stability in absence of sufficient positive samples. These results reinforce
the robustness of ImLPR under varying spatial tolerances, confirming its capacity for precise place
recognition.

G Robustness to Yaw Variation

G.1 Place Recognition Performance under Yaw Variation

Descriptors for identical locations should maintain consistency despite sensor rotations, particularly
yaw angle variations, which frequently occur during scene revisit. To assess this, we applied yaw
rotations to database scans from the Roundabout-O and Town-O sequences and compared them
against unrotated query scans. The Average Recall@1, obtained from inter-session place recognition
experiments across all evaluated sequences, is depicted in Fig. 12.

As illustrated in Fig. 12, MinkLoc3Dv2 exhibits performance degradation with varying yaw an-
gles, reflecting limited robustness to such transformations. BEVPlace++ incorporates a rotation-
equivariant module to mitigate yaw variance. This module rotates the input image at a fixed angular
interval of θ = 45◦, processes each rotated image through a convolutional neural network, and
applies max pooling across the resultant features. While this approach enhances the yaw variation
robustness, performance fluctuates slightly when the variations deviate from the predefined discrete
angles used in max pooling. In contrast, ImLPR generates yaw-robust descriptors without additional
computational overhead, owing to its architectural design.

For a RIV image, yaw variation is equivalent to a horizontal shift. DINOv2, the vision transformer
we use, processes patch features via attention mechanisms that capture global inter-patch relation-
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Method Round-O Town-O

MinkLoc3Dv2 26.900 31.347
BEVPlace++ 0.420 0.389
ImLPR 0.064 0.047

Figure 12: Average Recall@1 and its standard deviation (σ) for inter-session place recognition
across yaw variations. ImLPR exhibits inherent yaw robustness, achieving the lowest σ.

ships. Since horizontal shifts reorder patches without modifying their content, the attention mecha-
nism yields nearly translation-equivariant feature representations, preserving the relational structure.
Consequently, vision transformers produce similar patch features that are shifted from the original
patch features, alongside consistent global tokens for both original and shifted images. Similarly,
the MultiConv adapter employs 2D convolutions, which are inherently translation-equivariant, en-
suring that a horizontal shift in the input image results in a corresponding shift in patch features
while maintaining their values. These refined patch features are aggregated using SALAD’s op-
timal transport approach, which is invariant to horizontal shifts, as demonstrated in §G.2. Data
augmentation strategies, including masking and random transformations, further bolster this stabil-
ity. However, positional encoding introduces a minor constraint: as yaw rotation shifts the image,
identical patches receive different positional encodings, leading to subtle differences in the vision
transformer’s output before and after rotation. Despite this, ImLPR achieves more consistent perfor-
mance than BEVPlace++ under yaw variation, as shown in Table. 10. This highlights the robustness
of ImLPR’s model architecture and RIV representation in handling yaw variations effectively.

G.2 Horizontal Shift Invariance in SALAD’s Optimal Transport Aggregation

In this section, we prove that SALAD’s optimal transport (OT) aggregation generates an iden-
tical global descriptor despite horizontal (column-wise) shifts in the input feature map. Let
F ∈ RH′W ′×C be the flattened local features derived from adapter-refined patch features, origi-
nating from an un-flattened feature map F′ ∈ RH′×W ′×C with n = H ′W ′ patches. A translation-
equivariant convolutional layer maps F′ to a score map S′ ∈ RH′×W ′×m, which is flattened to
S ∈ Rn×m, representing assignment probabilities of n patches to m learnable cluster centers. A
column shift in F′ (e.g., F′

p,q,c → F′
p,mod((q−s),W ′),c) induces an identical column shift in S′:

S′
p,q,m → S′

p,mod((q−s),W ′),m. Here, p ∈ [1, H ′] and q ∈ [1,W ′] denote the row and column in-
dices, and the function mod(a, b) = ((a − 1) mod b) + 1 ensures the result lies in [1, b]. After
flattening, this translates to a row shift in S: Si,: → Smod((i−s′),n),:, where s′ = s ×H ′. This pre-
serves the score values for each patch, only reordering their row indices, ensuring shift invariance in
the subsequent OT aggregation.

For OT aggregation, the Sinkhorn algorithm [30] solves an entropically regularized OT problem.
The score matrix S ∈ Rn×m represents assignment probabilities to m cluster centers. The cost
matrix is defined as M = −S/λ, where λ is the regularization parameter controlling the entropy
of the transport plan. A column shift in S results in a row shift in M. The Sinkhorn algorithm
iteratively updates dual variables u ∈ Rn and v ∈ Rm to satisfy marginal constraints, using uniform
log-weights log a and logb. Since log a is uniform across patches, u shifts consistently under a row
shift. Specifically, for patch i:

ui = log ai − log

m∑
k=1

exp(Mi,k + vk). (7)

A row shift (e.g., Mi,k → Mmod((i−s′),n),k) results in ui → umod((i−s′),n). The OT matrix is
computed as:

logRi,k = Mi,k + ui + vk. (8)
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Table 11: Ablation study for adapter and trained block

Method Adapter Trained
Block

Roundabout-O Town-O DCC Roundabout-V Average
AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

ExpC-1 0 0.321 0.530 0.379 0.553 0.376 0.555 0.249 0.464 0.331 0.526
ExpC-2 2 0.850 0.925 0.833 0.913 0.850 0.943 0.645 0.809 0.795 0.898
ExpC-3 ✔ 0 0.972 0.987 0.965 0.983 0.928 0.965 0.799 0.906 0.916 0.960
ExpC-4 ✔ 2 0.990 0.996 0.989 0.995 0.942 0.973 0.888 0.948 0.952 0.978
ExpC-5 ✔ 6 0.990 0.995 0.990 0.996 0.941 0.973 0.868 0.940 0.947 0.976
ExpC-6 ✔ 10 0.986 0.994 0.988 0.995 0.935 0.972 0.870 0.936 0.945 0.974

Consequently, the rows of logR shift identically to S, preserving assignment weights, yielding
R ∈ Rn×m. The aggregated cluster features are computed as a weighted sum of intermediate
feature embeddings F̄ ∈ Rn×l, derived by applying a convolutional layer to F′ and flattened from
F̄′ ∈ RH′×W ′×l:

Vj,k =

n∑
i=1

Ri,jF̄i,k, j = 1, . . . ,m, k = 1, . . . , l, (9)

producing V ∈ Rm×l. The feature matrix F̄ inherits the same column shift: F̄′
p,q,l →

F̄′
p,mod((q−s),W ′),l, or F̄i,: → F̄mod((i−s′),n),: after flattening. Since F̄i,k and Ri,j shift identically,

and summation is commutative, the aggregated features are invariant to column shifts:
n∑

i=1

Rmod((i−s′),n),jF̄mod((i−s′),n),k =

n∑
i=1

Ri,jF̄i,k. (10)

The global descriptor concatenates the flattened cluster features V ∈ Rm×l with the global em-
bedding G ∈ Re, processed independently via linear layers and unaffected by shifts, forming
g = [V.flatten(),G] ∈ Rm×l+e, ensuring horizontal shift invariance.

H Ablation Studies

To assess the impact of individual components in ImLPR for place recognition, we perform a series
of ablation studies. We evaluate performance using AR@1 and AF1 for inter-session place recog-
nition. These studies systematically analyze the contributions of key elements to ImLPR’s overall
effectiveness. The results provide insights into the significance of each component in achieving
robust and efficient LPR performance.

H.1 MultiConv Adapter and the Number of Trained Block in DINOv2

VFMs, such as DINOv2, leverage extensive pre-training on large-scale datasets to deliver robust
feature representations. To preserve these learned representations during adaptation for LPR, it is
essential to avoid catastrophic forgetting while effectively bridging the domain gap between natu-
ral vision images and RIV images. Fine-tuning multiple transformer blocks risks overwriting the
model’s general knowledge, whereas minimal fine-tuning with strategic adaptations can maintain
performance. Following the main evaluation, this section examines how the inclusion of the Mul-
tiConv adapter and varying the number of trained transformer blocks influence the performance of
ImLPR.

The results, presented in Table. 11, highlight the critical role of the MultiConv adapter. Without
the adapter and without fine-tuning (ExpC-1), the model fails to perform effective place recognition
due to the significant domain gap between natural images and RIV images. Fine-tuning without the
adapter (ExpC-2) also results in reduced performance, as the limited number of trainable parameters
hinders the model’s ability to extract robust features from RIV images. In contrast, incorporating
the MultiConv adapter while keeping most transformer blocks frozen (ExpC-3 and ExpC-4) signif-
icantly improves performance. This demonstrates the adapter’s ability to efficiently address domain
shifts, leveraging DINOv2’s pre-trained knowledge for enhanced place recognition.

Additionally, we analyze the effect of varying the number of trained transformer blocks alongside
the MultiConv adapter. For Roundabout-O and Town-O, performance remains stable across config-
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Table 12: Ablation study for yaw change and mask types
Method Yaw

Change
Line & Square

Mask
Cylindrical

Mask
Roundabout-O Town-O DCC Roundabout-V Average
AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

ExpD-1 0.937 0.972 0.943 0.973 0.905 0.966 0.781 0.893 0.892 0.951
ExpD-2 ✔ 0.980 0.990 0.958 0.980 0.896 0.983 0.821 0.927 0.914 0.970
ExpD-3 ✔ ✔ 0.984 0.992 0.975 0.989 0.894 0.985 0.837 0.928 0.923 0.974
ExpD-4 ✔ ✔ ✔ 0.990 0.996 0.989 0.995 0.942 0.973 0.888 0.948 0.952 0.978

urations, indicating that effective domain adaptation can be achieved with the adapter and minimal
fine-tuning of just a few transformer blocks. However, for DCC and Roundabout-V, performance
declines as more blocks are trained. This degradation likely results from overfitting to the training
dataset due to an increased number of trainable parameters, which compromises the model’s ability
to generalize. These findings highlight the critical role of preserving pre-trained knowledge and the
necessity of the MultiConv adapter in effectively balancing domain adaptation, ensuring robust LPR
performance with minimal fine-tuning.

H.2 Effect of Data Augmentation

We evaluate the impact of data augmentation on ImLPR’s inter-session place recognition perfor-
mance, with results presented in Table. 12. Without any augmentations (ExpD-1), the model
achieves baseline performance but struggles with orientation variability and projection artifacts in
RIV images, limiting its robustness. Applying random yaw rotation (ExpD-2) significantly im-
proves performance by introducing column shifts that enhance the model’s resilience to orientation
changes in LiDAR scans. Further improvement is observed with the addition of line and square
masking (ExpD-3). Both masks simulate sparse regions by introducing empty pixels in RIV images,
mimicking the effect of dropout and training the model to perform place recognition with partially
empty patch, thus boosting robustness to incomplete inputs.

The best performance is achieved when combining all augmentations—random yaw rotation, line,
square, and cylindrical masking (ExpD-4). The cylindrical mask also enhances the model’s ability
to handle the extreme occlusions by training it to rely on partial RIV images. This configuration
delivers superior results across all datasets, with notable gains on DCC and Roundabout-V, which
include occlusions in their scans. These results underscore the vital role of data augmentation in
enhancing ImLPR’s robustness, with the combined yaw rotation and masking strategies effectively
addressing orientation variability, projection artifacts, and scene sparsity in LPR.

H.3 Dimension of DINOv2

The impact of varying the DINOv2 backbone’s feature dimension on ImLPR’s inter-session place
recognition performance and computational efficiency is assessed in Table. 13. All experiments
here use a single NVIDIA GeForce RTX 3090 GPU to measure computation time. This ablation
study evaluates three DINOv2 configurations—ViT-S/14, ViT-B/14, and ViT-L/14—with feature
dimensions of 384, 768, and 1024, respectively, analyzing their place recognition efficacy and com-
putational cost. The final two transformer blocks are fine-tuned for all models to ensure consistent
adaptation, and computational efficiency is compared against other SOTA methods.

H.3.1 Performance Analysis

The place recognition performance of ImLPR across different feature dimensions is detailed in Ta-
ble. 13, which presents results for multiple datasets. All three configurations—ViT-S/14 (ExpE-1),
ViT-B/14 (ExpE-2), and ViT-L/14 (ExpE-3)—exhibit similar performance, achieving robust place
recognition outcomes. This similarity indicates that higher feature dimensions do not always yield
proportional improvements in accuracy. Notably, the smallest model, ViT-S/14, demonstrates excep-
tional robustness, particularly on Roundabout-O, Town-O, and Roundabout-V, where it delivers
highly competitive results. These findings indicate that larger models may not always outperform
smaller ones, as their increased complexity can hinder effective training on diverse RIV images and
lead to overfitting on the training data.
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Table 13: Ablation study for feature dimension and computation time
Method Feature

Dim.
Runtime

(ms)
Roundabout-O Town-O DCC Roundabout-V Average
AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

ExpE-1 384 18.1 0.990 0.996 0.989 0.995 0.942 0.973 0.888 0.948 0.952 0.978
ExpE-2 768 23.3 0.989 0.995 0.988 0.994 0.943 0.973 0.861 0.942 0.945 0.976
ExpE-3 1024 58.0 0.989 0.995 0.986 0.994 0.957 0.979 0.873 0.944 0.951 0.978

0 10050

0.94

0.96

0.98

1

A
ve

ra
ge

 R
ec

al
l@

1

CASSPR
MinkLoc3Dv2

BEVPlace++

ImLPR

Inference Time (ms)

Figure 13: (Left) Table. 13 displays feature dimensions and inference times for ViT models, show-
ing comparable performance despite larger dimensions. (Right) The plot illustrates inference time
versus Average Recall@1 on Roundabout-O and Town-O, with ImLPR achieving the highest per-
formance and an inference time comparable to MinkLoc3Dv2 for descriptors.

Table 14: Average Results of Intra-session PR with Visual Place Recognition models
DINOv2 Runtime Roundabout-O Town-O Average

Method Backbone (ms) AR@1 AF1 AR@1 AF1 AR@1 AF1

SALAD ViT-B/14 21.3 0.841 0.919 0.771 0.874 0.806 0.896
BoQ ViT-B/14 22.7 0.934 0.967 0.896 0.947 0.915 0.957
SelaVPR (global) ViT-L/14 79.5 0.955 0.978 0.941 0.970 0.948 0.974
ImLPR ViT-S/14 18.1 0.986 0.994 0.966 0.984 0.976 0.989

H.3.2 Computational Cost

The computational efficiency is critical for real-world place recognition applications. As reported
in Table. 13, the time required for descriptor extraction scales with feature dimension: ViT-S/14
(ExpE-1) is the most efficient, followed by ViT-B/14 (ExpE-2), with ViT-L/14 (ExpE-3) incurring
the highest computational cost. All configurations achieve extraction times below 100ms, demon-
strating their suitability for real-time performance in LPR. As depicted in Fig. 13, we further com-
pare ImLPR against baseline methods using Average Recall@1 on Roundabout-O and Town-O.
BEVPlace++ requires 27.5ms for descriptor extraction, despite a smaller feature dimension of 128,
surpassing the runtime of ViT-S/14 and ViT-B/14, due to its reliance on multiple ResNet instances
for yaw invariance. MinkLoc3Dv2, utilizing 3D sparse convolution, achieves the fastest extrac-
tion time but yields the lowest Average Recall@1. In contrast, CASSPR’s attention-based networks
and per-point feature extraction lead to the longest computation time. ImLPR’s Vision Transformer-
based backbone inherently supports robustness to yaw variation and achieve a low latency of 18.1ms.
Furthermore, as shown in Fig. 13, ImLPR achieves the highest Average Recall@1, demonstrating
its suitability for real-time place recognition applications requiring minimal latency.

The balance between performance and computational cost is a critical factor in selecting an op-
timal backbone. The results suggest that overly large models, such as ViT-L/14, may introduce
unnecessary complexity without corresponding performance benefits, potentially due to overfitting
or challenges in training. Conversely, ViT-S/14 offers an optimal trade-off between model size,
computational efficiency, and the performance of place recognition, making it highly suitable for
practical deployment.

I Comparison with Visual Place Recognition Models

ImLPR employs a VFM and adopts image-based aggregation strategies, SALAD, similar to those
used in VPR. To assess whether RIV images—composed of reflectivity, range, and normal ratio
channels—can be effectively processed by conventional VPR models, we compare ImLPR with
recent VPR methods, including SALAD [8], BoQ [36], and SelaVPR [37]. To ensure fair compari-
son, all models were trained using the same RIV inputs and identical data augmentation strategies.
We also used the same loss function (TSAP loss) across all methods, and all feature encoders and
training hyperparameters were kept at their default settings.

Table. 14 reports average intra-session place recognition performance on Roundabout-O and
Town-O. While existing VPR methods achieve high accuracy in traditional visual tasks, they show
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Table 15: Performance Comparison of 2D and 3D Foundation Models

Method Params
(M)

Runtime
(ms)

Intra-session LPR Inter-session LPR
Roundabout-O Town-O Roundabout-O Town-O
AR@1 AF1 AR@1 AF1 AR@1 AF1 AR@1 AF1

PTv3+SALAD 46.3 55.0 0.927 0.964 0.938 0.969 0.969 0.985 0.970 0.985
ImLPR 25.7 12.9 0.986 0.994 0.966 0.984 0.990 0.996 0.989 0.995

limited performance when directly applied to RIV images. SALAD and BoQ, which use ViT-B/14
backbones trained with the TSAP loss, underperform compared to ImLPR across all metrics, indi-
cating that naive application of VPR pipelines to LiDAR-based images does not adequately handle
the sensor domain gap. SelaVPR, which integrates adapters and uses a larger ViT-L/14 backbone,
performs better than SALAD and BoQ but still falls short of ImLPR.

Despite using a smaller backbone (ViT-S/14), ImLPR outperforms all baselines by a notable mar-
gin and operates with the lowest runtime (18.1 ms). This highlights both the computational effi-
ciency and accuracy of the proposed method. The performance gap emphasizes the importance of
explicitly addressing the domain shift between camera and LiDAR data. In particular, the use of
adapters allows for better alignment with LiDAR-specific structures, as evidenced in both SelaVPR
and ImLPR, while our Patch-InfoNCE loss further enhances RIV feature learning by leveraging
range-aware supervision, which is unavailable in image-based models. These results demonstrate
that high performance on LiDAR images cannot be achieved by merely applying VPR models com-
posed of DINOv2 and an aggregation network to RIV inputs. Instead, effective place recognition
requires proper adaptation beyond simple fine-tuning, as well as LiDAR-aware feature learning.

J Comparison with 3D Foundation Model

In this section, we evaluate ImLPR against a 3D foundation model, specifically PointTransformerv3
(PTv3). Other 3D foundation models, such as Sonata, could potentially serve as feature extractors;
however, Sonata lacks a pre-trained model trained on outdoor datasets and requires color informa-
tion, which is incompatible with raw LiDAR scans. To align PTv3 with outdoor LPR, we re-train its
pre-trained model, originally trained on the nuScenes dataset1, with the HeLiPR-O dataset. This re-
training uses x, y, z coordinates and reflectivity from the point cloud. For consistency with ImLPR,
we aggregate PTv3’s output features using the SALAD. To ensure computational efficiency, we turn
on the flash attention for PTv3 and both methods are tested on a single NVIDIA GeForce RTX 4090
GPU. Additionally, we apply the same augmentation strategy used during the original training of
PTv3 on the nuScenes dataset.

As shown in Table. 15, ImLPR is more lightweight, with approximately half the parameters of
PTv3 and a runtime four times faster. Although PTv3 surpasses baselines like CASSPR and Min-
kLoc3Dv2 in Table. 1, Table. 2, and Table. 3 thanks to its ability of 3D foundation model, ImLPR
consistently outperforms PTv3 in both intra-session and inter-session LPR while maintaining supe-
rior computational efficiency. These results demonstrate that ImLPR’s adaptation of LiDAR data
to the vision domain delivers a more effective and efficient solution for LPR. By leveraging DI-
NOv2’s extensive pre-trained knowledge from millions of images, ImLPR outperforms PTv3, which
is trained on thousands of point clouds. This underscores the advantage of a VFM with a well-crafted
approach, enabling it to surpass 3D foundation models even within the LiDAR domain for LPR.

K Additional Qualitative Results

In this section, we analyze the retrieval distribution for inter-session place recognition, defining a
positive match as within 50 meters, using Roundabout01-O and Town01-O as the database and
queries from Roundabout02-O and Town02-O. As illustrated in Fig. 14, ImLPR retrieves nearly all
candidates closer to the query compared to other methods, indicating that its descriptors preserve

1https://www.nuscenes.org/
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Figure 14: We retrieved 20 locations from Roundabout01-O and Town01-O using queries from
Roundabout02-O and Town02-O. Each image, overlaid with trajectory and satellite imagery, in-
dicates the query with a green circle, true positives with green points, and false positives with red
points. Additionally, BEV images illustrate the sensing environments, marking the query location
in green and incorrect retrieved locations with a red square.

small feature distances for both the top-1 match and proximate locations. This demonstrates that
RIV images effectively project geometric space into the descriptor embedding space. In contrast,
other approaches generate multiple false positives at certain locations due to strong scene appearance
similarity with the query, leading to closely related descriptors and an inability to distinguish places.
For example, in the upper case of Town01-O, BEV images exhibit highly similar scene contours,
highlighting the challenge of differentiating locations based solely on geometric structure. This
emphasizes the value of multi-channel strategies like ImLPR, which enhance LPR by incorporating
diverse inputs beyond mere geometry.
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