Published as a conference paper at ICLR 2026

ES-DLLM: EFFICIENT INFERENCE FOR DIFFUSION
LLARGE LANGUAGE MODELS BY EARLY-SKIPPING

Zijian Zhu Fei Ren

Tsinghua University Tsinghua University

zhuzj23@mails.tsinghua.edu.cn renf25@mails.tsinghua.edu.cn

Zhanhong Tan Kaisheng Ma *

Polar Bear Tech. Tsinghua University

tanzhhb515@gmail.com kaisheng@mail.tsinghua.edu.cn
ABSTRACT

Diffusion large language models (dLLMs) are emerging as a promising alterna-
tive to autoregressive models (ARMs) due to their ability to capture bidirectional
context and the potential for parallel generation. Despite the advantages, dLLM
inference remains computationally expensive as the full input context is processed
at every iteration. In this work, we analyze the generation dynamics of dLLMs
and find that intermediate representations, including key, value, and hidden states,
change only subtly across successive iterations. Leveraging this insight, we pro-
pose ES-dLLM, a training-free inference acceleration framework for dLLM that
reduces computation by skipping tokens in early layers based on the estimated im-
portance. Token importance is computed with intermediate tensor variation and
confidence scores of previous iterations. Experiments on LLaDA-8B and Dream-
7B demonstrate that ES-dLLM achieves throughput of up to 226.57 and 308.51
tokens per second (TPS), respectively, on an NVIDIA H200 GPU, delivering 5.6 %
to 16.8x speedup over the vanilla implementation and up to 1.85x over the state-
of-the-art caching method, while preserving generation quality. The source code
is available at https://github.com/zhuzj19/ES-dLLM.

1 INTRODUCTION

Autoregressive models (ARMs) have been the dominant paradigm in large language models (LLMs),
achieving remarkable success in a wide range of applications (Cao et al., 2023). ARMs generate text
in a left-to-right pattern, producing tokens sequentially. Recently, diffusion-based LLMs (dLLMs)
have emerged as a promising alternative. Unlike ARMs, dLLMs generate text through an iterative
denoising process over a sequence of mask tokens, enabling bidirectional attention and offering the
potential for parallel decoding (Yu et al.,|2025)). Industrial dLLMs such as Mercury (Inception Labs
et al.,[2025) and Gemini Diffusion (Deepmind, |2025) have drawn significant attention for their ultra-
fast generation speed. Despite this progress, open-source dLLMs, such as LLaDA (Nie et al., [2025))
and Dream (Ye et al.| 2025)), remain far less efficient, even slower than ARMs of comparable size.

A key factor contributing to the inefficiency of dLLMs is that each iteration processes the entire
sequence as input, introducing substantial computational overhead. To mitigate this cost, recent
studies (Ma et al.| [2025;|Wu et al.| [2025] |Liu et al., |2025) have proposed techniques such as caching
and parallel decoding mechanisms to improve generation efficiency. Nevertheless, more opportuni-
ties remain for further acceleration. In each iteration during dLLM generation, only one or a few
tokens with the highest confidence are unmasked, while the majority of mask tokens are processed
without producing useful results. Moreover, since the inputs of adjacent iterations differ only in
the positions of newly unmasked tokens, the intermediate states of most tokens remain almost un-
changed. Despite this redundancy, conventional inference procedures still compute logits for all
token positions, leading to excessive and unnecessary computation.

*Corresponding Author.

https://github.com/zhuzj19/ES-dLLM

Published as a conference paper at ICLR 2026

To better understand these inefficiencies, we conduct a series of experiments to analyze the charac-
teristics during the dLLM generation process. The results reveal that both intermediate tensors and
confidence scores exhibit only subtle variation across successive iterations. Therefore, we identify
opportunities to predict the importance of token positions and to eliminate redundant computation
in early layers for tokens that contribute little to the outcome.

Motivated by these observations, we propose ES-dLL a training-free inference acceleration
framework designed for diffusion LLMs. Specifically, it focuses on optimizing redundant token
computation in each iteration, estimating token importance using intermediate variations and prior
confidence scores, and skipping low-importance positions in early layers of the inference process.
ES-dLLM consists of two key components:

* Importance Score Estimation: ES-dLLM skips irrelevant token positions by estimating
their importance scores in early layers of the model, based on the variation of intermediate
tensors and confidence from previous iterations. Using importance scores, only the top-k
positions are selected for further inference, while the remaining positions are skipped in
the current iteration.

* Partial Cache Update and Early Skip: ES-dLLM maintains intermediate tensors as
caches to be reused in subsequent iterations, including key and value tensors for atten-
tion layers and hidden states as the indicator for variation estimation in importance score.
Since only a subset of tokens passes through the inference, caches corresponding to the se-
lected positions are updated with an in-place scatter operation, while the others are reused
without recomputation.

The experimental results show that ES-dLLM substantially accelerates inference, achieving through-
put of up to 226.57 and 308.51 tokens per second (TPS) on the LLaDA-8B and Dream-7B models,
respectively, using an NVIDIA H200 GPU, without compromising generation quality.

In summary, this paper makes the following contributions:

1. We analyze the characteristics during the dLLM generation process and observe that inter-
mediate tensors and confidence scores of most positions exhibit only minor variation
across iterations, thereby revealing opportunities to eliminate redundant computation.

2. We propose ES-dLLM, a training-free inference acceleration framework that reduces
per-iteration computation by early-skipping low-importance token positions.

3. We conduct extensive experiments and ablation studies, demonstrating that ES-dLLM
achieves significant speedups of 5.6 x-16.8 x over the original implementation and up
to 1.85x compared to state-of-the-art caching methods, all without sacrificing gener-
ation quality.

2 PRELIMINARY ON DIFFUSION LARGE LANGUAGE MODELS

Diffusion large language models introduce a new paradigm in natural language processing that
adopts the diffusion mechanism. Unlike traditional autoregressive models, which generate text se-
quentially in a token-by-token manner, dLLMs go through a series of denoising iterations, progres-
sively unmasking tokens appended to the input.

Let V denote the vocabulary that includes a special mask token [mask]| € V. Given an input sequence
x = (x1,x9,...,x,) where z; € V, text generation begins by appending [mask tokens to form
x©) = (z1,,...,2,,[mask], ..., [mask]), where [specifies the desired generation length. In the
t-th iteration, a Transformer-based token predictor f is used to estimate the probability distribution
over the vocabulary for all token positions (rather than just the next token as in ARMs) in the
sequence.

pe(c;;(t)@(tfl)) — f(m(tfl); 0)

'The name is inspired by early-exit (EE) (Chen et al., 2024), which accelerates inference by exiting “easy”
tokens early via trained EE layers. In contrast, ES-dLLM early-skip (ES) irrelevant positions without additional
training.

Published as a conference paper at ICLR 2026

From this distribution, a subset of mask tokens is replaced with sampled tokens, producing the up-
dated sequence =(*). Several replacement strategies exist, and a widely used approach is to unmask
positions with the highest confidence (Yu et al., 2025)), where confidence for each position is defined
as the maximum probability over the vocabulary. This iterative process continues until all mask
tokens are replaced.

Compared to ARMs, which condition predictions solely on preceding tokens, dLLMs leverage the
entire sequence context in each iteration. This enables them to capture bidirectional dependencies
and generate more coherent text. However, it also introduces computational challenges due to bidi-
rectional attention and flexible, non-sequential generation order. At the same time, computing entire
logits creates opportunities for parallel decoding [Wu et al.| (2025).

3 RELATED WORKS FOR DLLM INFERENCE ACCELERATION

Semi-autoregressive Generation. LLaDA (Nie et al., [2025) adopts a semi-autoregressive genera-
tion strategy that partitions the output sequence into multiple blocks, each generated in a diffusion
manner while preserving sequential order across blocks. This approach constrains the generation
order, but provides better performance. Furthermore, |Arriola et al.| (2025) trained the BD3-LM
model, which applies unidirectional attention between output blocks. This design enables lossless
Key-Value (KV) caching of previous blocks, but sacrifices the ability to exploit bidirectional context.

Accelerating using KV Caching. In ARMs, KV caching is a common technique (Pope et al.,[2023),
where intermediate key and value tensors are stored and reused across decoding steps, since atten-
tion depends solely on past tokens. In diffusion LLMs, however, the situation is more challenging
due to the bidirectional attention: newly unmasked tokens can influence all preceding tokens. To
mitigate computational cost, several works have explored approximate KV caching strategies. dKV-
Cache (Ma et al.l [2025) delays the KV update for newly unmasked tokens to reduce errors, while
dLLM-Cache (L1u et al.l 2025]) caches all intermediate tensors and adaptively updates them in each
layer using a V-verify mechanism. However, these methods do not leverage the semi-autoregressive
generation paradigm, which is beneficial for both efficiency and generation quality. Fast-dLLM (Wu
et al.| 2025) proposed DualCache for semi-autoregressive generation, which maintains separate KV
caches for context on both sides and computes attention only for the current block during inference.

Sparse Attention. Recent works such as Sparse-dLLM (Song et al.| [2025) and DPad [Chen et al.
(2025) exploit sparsity in attention scores and accelerate inference by modifying the set of attended
tokens, either by sparsifying historical tokens or dropping distant suffix tokens. The techniques are
orthogonal to our approach, which optimizes the set of processed tokens.

Parallel Decoding. In diffusion LLMs, logits are computed for all token positions in each iteration,
allowing multiple tokens to be unmasked simultaneously. |Wu et al.| (2025]) proposed confidence-
aware parallel decoding, which dynamically adjusts the number of tokens to be unmasked per itera-
tion based on a confidence threshold. This strategy effectively reduces the number of iterations for
generation while preserving quality.

4 OBSERVATIONS ON DIFFUSION LLM CHARACTERISTICS

We conduct a series of experiments to analyze the characteristics of diffusion LLMs during gener-
ation, with particular attention to variations across successive iterations. For this study, we use two
pre-trained diffusion LLMs, LLaDA-8B-Instruct (Nie et al.|[2025) and Dream-7B-Instruct (Ye et al.,
2025 and perform inference on sequences sampled from widely used benchmark datasets.

4.1 CONFIDENCE VARIATION ACROSS ITERATIONS

In dLLM generation, a common strategy for selecting tokens to be unmasked is to choose posi-
tions with the highest confidence (i.e., the maximum softmax probability over the vocabulary for
each position). Figure [[a] visualizes the confidence variation, measured as the absolute difference
between consecutive iterations, during generation for a sample from the BBH dataset using LLaDA-

?Results for Dream-7B-Instruct are provided in Appendix

Published as a conference paper at ICLR 2026

1 1.0 100 020
51 08 1071
E
-2
§ 101 ue@ glo
@ 5 310
2151 042 [
2 = 2
8 1074
201 02
1075
251 0.0
0 50 100 150 200 250 0.0 0.2 0.4 0.6 0.8 1.0
Position Confidence Diff.
(a) Single-sample heatmap. (b) Log-scale distribution.
0.25
0.20
c
20.15
£
o
Q
o0
0.05
0.00

51 101 151
Iteration

201 251
(c) Proportion of variation > 0.05 at each iteration.

Figure 1: Confidence variation statistics using LLaDA-8B-Instruct. (a) uses a sample from the BBH
dataset, while (b) and (c) present results using 100 samples from multiple datasets.

8B-Instruct. We observe that the confidence variation is subtle for most cases. To quantify this
observation, Figures [Tb] and [Ic| present the distribution of confidence changes across all positions
and iterations, and the proportion of positions with confidence variation greater than 0.05 at each
iteration, based on 100 samples from multiple datasets. The results reveal that confidence changes
approximately follow an exponential distribution, with the majority concentrated near zero. Except
for some initial iterations, fewer than 10% of positions show confidence variation greater than 0.05.

The results suggest that most tokens experience only minimal confidence fluctuations across itera-
tions. Consequently, confidence scores from previous iterations can serve as reliable predictors,
helping identify the positions that are likely to be unmasked in the current iteration.

4.2 HIDDEN STATE VARIATION

1 o
107
51 .
E: 10-2
>
21073
<10
z
-4
g 10
s
k 10-
10-
251 00 1077
200 400 00 800

0 1000 0.0 0.

-
2

._.
o
2

Iteration
Hidden State Diff.

151

~N
S
2

1.0

6 2 04 06 08
Position Hidden State Diff.

(a) Single-sample heatmap. (b) Log-scale distribution.

Figure 2: Hidden state variation in layer 10 using LLaDA-8B-Instruct. (a) uses a single sample
from the BBH dataset, while (b) presents results using 100 samples from multiple datasets. The
red vertical line in (a) separates prompt and output tokens, and the distribution in (b) includes only
output tokens.

Since the inputs of adjacent iterations differ only by the token that has just been unmasked, we
further analyze how this input change affects the intermediate tensors. Specifically, we measure the
variation of hidden states (i.e., the output after the feed-forward of a Transformer block) in a selected

Published as a conference paper at ICLR 2026

Transformer layer between consecutive iterations. The variation is quantified as the normalized L1-
norm of the difference, consistent with the latter term in Equation

As shown in Figure [2] the variation is minor for most positions, and only a small fraction of
positions exhibit noticeable changes. This indicates that input changes generally have a limited
impact on intermediate states. Consequently, it is feasible to skip computation for tokens with small
variations without degrading generation quality. Similar patterns are observed for other layers and
intermediate tensors, as detailed in Appendix [A.T]

5 METHODOLOGY

CEEEEEEEEEEEEEE NEEN l |
Transformer Layer 31 : Transformer Layer 31 : Transformer Layer 31
H | H | :
EEENNENNNEENEN | EEER I [
Transformer Layer 8 : Transformer Layer 8 : Transformer Layer 8
H | H | H
EENNNENNNEENER | EEER | |
Transformer Layer 4 : Transformer Layer 4 : Transformer Layer 4
H | H | H
CEEEEEEEEEEEEK [] I NEEN
Transformer Layer O : Transformer Layer O : Transformer Layer O
ENEEEERERERERN! EREN | (LI
Pompt Boko Bkl Btz | |BProcessedToken | CachedToken | Reused Position Skipped Position |
(@Vanila (b)Dualcache ~ (JEsdum

Figure 3: Illustration of ES-dLLM compared with the vanilla implementation and DualCache, as-
suming block-1 is under processing. The figure presents only 4 tokens per block, while the actual
block length can be much larger (e.g., 32 or 64).

Motivated by the observations in Section] we propose ES-dLLM, a training-free inference ac-
celeration framework for diffusion LLM. ES-dLLM reduces computational overhead by selectively
skipping redundant token computations during inference. Specifically, it estimates the importance
score for each token position using both the confidence from previous iterations and the variation
of intermediate tensors, and applies an early-skip mechanism to bypass tokens with low importance
in early layers. To enable this process, ES-dLLM maintains a cache that stores the necessary in-
termediate tensors and confidence scores for all positions. The cache is partially updated only for
non-skipped tokens in each layer, while the others are reused directly. Figure [3| compares the in-
ference process of ES-dLLM with the vanilla implementation and the state-of-the-art DualCache
method. DualCache caches key and value tensors for tokens outside the current processing block,
thus computing for the entire block. In contrast, ES-dLLM further reduces computation by skipping
unimportant positions within the block at selected Transformer layers, achieving efficiency gains
beyond DualCache.

5.1 IMPORTANCE SCORE ESTIMATION

We estimate the importance score of each position to determine which tokens to retain for computa-
tion. The score is calculated based on two criteria: First, mask tokens with higher confidence scores
are more likely to be selected for unmasking in subsequent iterations; thus, we prefer to compute the
results for these positions. Second, tokens that exhibit larger variations in intermediate tensors re-
flect semantic or positional dependencies on newly generated tokens; updating these positions helps
capture contextual changes and mitigate error accumulation.

Formally, let the confidence score of position ¢ at iteration ¢ be denoted by cgt). The intermediate

tensor, selected as the variation indicator, which can be query, key, value tensors, or hidden states
of position 7 in layer [at iteration ¢, is denoted as Hl(ti). In layer [, the importance score of position ¢

Published as a conference paper at ICLR 2026

at iteration ¢ is calculated as o (1)
t t—1
||Hl,i - Hl,i Hl
(t—1)

\/g' HHl,z' H2
where « is a hyperparameter that weighs two criteria and d is the hidden dimension of H. The
variation term is measured as the L1-norm of the difference in indicator tensors across adjacent
iterations, normalized by the L2-norm in the last iteration and by v/d to align the scale. In this work,
we adopt the hidden state of each Transformer layer as the indicator tensor H. Section also
provides an ablation study that compares the choices of the variation indicator.

Li=a- Y (1-a)

3

)

5.2 PARTIAL CACHE UPDATE AND EARLY SKIP

Algorithm 1 ES-dLLM Inference Process within Transformer Block [

Require: Layer input x® on position set S, skip ratio r;, caches of key, value, hidden states, and
confidence Ck, Cv, CH, C¢, layer index [

Ensure: Layer output x(+1) on updated position set S’, updated caches

Xnorm Norm(x(l))

QS» KS? VS — Q,pl"Oj (xnorm)a K,proj (Xnorm)a V,pl"Oj (xnorm)

Update caches Ck[l|s < Ks, Cy[l]s + Vs for positions in S using scatter operation

K7 V CK[Z],Cv[l]

AttnOutgs < Attention(Qs, K, V)

AttnOutg < AttnOuts + x*)

Hs < FFN(Norm(AttnOuts)) + AttnOutg

Update cache Cy[l]s < Hs

Initialize importance score list I + []

10: for position i in S do

11: Calculate Ifi] = I; ; using Equation with cgtfl) = Ce¢;, Hl(ifl) = Cul[l]s, Hl(tl) =H;

12: end for

13: Select tokens of top-k (k = (1 — 7;)|S|) importance based on I, denote positions as S’

14: X(H'l) < HS/

15: return xS/

RN AR

°

We apply skipping for positions with low importance scores to reduce computational overhead;
hence, only a subset of tokens is processed in each Transformer block. Therefore, we need to
compute importance scores for position selection and update caches for subsequent usage. The
inference process of a Transformer block with early-skipping is outlined in Algorithm [I] Given
the input tensor X(*) and the corresponding token position set S fed into layer I, we first project the
normalized input to query, key, and value tensors. We use them to update the KV cache for positions
in S and then retrieve the full KV for attention. The attention output is passed through the feed-
forward layer to obtain hidden states Hg, which are also used to calculate importance scores. We
select the positions with top-(1-r;)|S| scores, where r; is the skip ratio that controls the fraction of
skipped tokens at layer . The output tensor, coupled with the updated position set, is propagated to
the next layer.

The pseudo-code illustrates the case where hidden states are used as the variation indicator for im-
portance score calculation. If other tensors, such as query, key, or value, are chosen, the importance
computation and cache update steps are adjusted accordingly.

The early-skip mechanism can reduce the size of intermediate tensors by a ratio of r;, which propor-
tionally decreases the computational cost of matrix multiplication in all subsequent layers. There-
fore, skipping in the earlier layer could save more FLOPs, but the reliability of tensor variation is
generally better in deeper layers. We discuss this trade-off in Appendix [C.2]

During generation, the cache is initialized by performing a full forward pass for all prompt and
output tokens. In subsequent iterations, the model is only fed with tokens of the current block for
unmasking, applying early-skipping in designated layers to skip unimportant positions and reduce
overhead. To prevent error accumulation, we periodically refresh the cache for prompt tokens or the
current block, where these tokens go through the entire inference process without skipping.

Published as a conference paper at ICLR 2026

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

The experiments are conducted on an NVIDIA H200 GPU. We evaluate ES-dLLM on two repre-
sentative diffusion LLMs: LLaDA-8B and Dream-7B. Performance is assessed in terms of both
generation quality and throughput improvement across five benchmark datasets spanning diverse
LLM tasks: GSMS8K (Cobbe et al., [2021) and MATH (Hendrycks et al) 2021)) for mathematical
questions, HumanEval (Chen et al.l 2021)) and MBPP (Austin et al.}|2021) for code generation, and
BBH (Suzgun et al.| 2022) for commonsense reasoning. All evaluations are carried out using the
LM-Eval framework (Gao et al.| [2024).

Unless otherwise specified, the skip ratio in ES-dLLM is set to 0.5 at positions of 1/8 and 1/4 of all
layers (i.e., 74 = rg = 0.5 for LLaDA and r4 = r7 = 0.5 for Dream, while other r; = 0). This
configuration reduces approximately 60% of total FLOPs during inference. The parameter « is set to
0.5, assigning equal importance to confidence and tensor variation. To mitigate error accumulation
across iterations, we refresh the caches for all preceding tokens or all tokens in the current block
with a specific period, respectively, motivated by [Liu et al.[(2025). The settings of generation length
and block length for each benchmark refer to those in LLaDA. And we use a batch size of 8 for
better weight reuse and hardware utilization. More details are provided in Appendix

We compare ES-dLLM with two baseline methods. The first is the original implementation of
LLaDA and Dream. The second is DualCache from Fast-dLLM (Wu et al., 2025), which maintains
KV caches for tokens outside the current block to allow cache reuse in the attention layer and
refreshes the entire cache after processing each block.

6.2 MAIN RESULTS

Table 1: Performance comparison using LLaDA-8B-Instruct on five benchmark datasets. TPS (to-
kens per second) measures throughput, calculated as the generated token count divided by total time.
Speedup reports relative throughput improvement in terms of TPS compared to the vanilla imple-
mentation (i.e., LLaDA). Performance score in percentage indicates the accuracy or pass rate. The
number in parentheses of each benchmark indicates the number of shots for evaluation. Bold num-
bers highlight the best performance on each benchmark.

Benchmark | Method | TPS | Speedup | Performance Score
LLaDA 8.56 1.0x 76.72
GSMSK(5) | DualCache | 112.15 | 13.1x 76.35
ES-dLLM 143.93 16.8x 76.95
LLaDA 14.04 1.0x 28.14
MATH(4) DualCache 56.02 4.0x 26.94
ES-dLLM 103.63 7.4x 27.24
LLaDA 11.06 1.0x 56.75
DualCache 130.14 11.8x% 53.29
BBH®) ES-ALLM | 159.89 | 14.5x 5451
ES-dLLM* | 133.48 12.1x 56.66
LLaDA 23.65 1.0x 36.59
HumanEval(0) | DualCache 176.85 7.5% 35.37
ES-dLLM 226.57 9.6 37.8
LLaDA 8.98 1.0x 41
MBPP(3) DualCache | 117.85 | 13.1x 38.4
ES-dLLM 145.99 16.3x 394

Tables [T] and [2] present the performance comparison of ES-dLLM with the baselines on LLaDA-
8B-Instruct and Dream-7B-Instruct, respectively. ES-dLLM achieves substantial efficiency gains,
with speedups ranging from 5.6 to 16.8x over the original implementations and from 1.20x to

Published as a conference paper at ICLR 2026

Table 2: Performance comparison using Dream-7B-Instruct on five benchmark datasets. Metrics
and notations are the same as in Tablem

Benchmark | Method | TPS | Speedup | Performance Score
Dream 19.80 1.0x 79.00
GSMSK(5) DualCache 209.88 10.6 x 77.94
ES-dLLM 267.13 13.5% 77.94
Dream 26.38 1.0x 33.94
MATH(®4) DualCache 86.38 3.3x 33.60
ES-dLLM 147.44 5.6x 33.44
Dream 24.84 1.0x 61.48
DualCache 226.89 9.1x 58.27
BBHG) ES-dLLM | 29223 | 11.8x 57.84
ES-dLLM* | 196.50 7.9x 60.36
Dream 44.34 1.0x 46.95
HumanEval(0) | DualCache | 258.10 5.8x 45.12
ES-dLLM 308.51 7.0x 45.12
Dream 21.68 1.0x 60.4
DualCache 214.14 9.9x 56.8
MBPP(3) ES-dLLM | 27612 | 12.7x 57
ES-dLLM#* | 130.49 6.0x 59

1.85x over DualCache. In terms of generation quality, ES-dLLM generally matches DualCache and
even surpasses it on several benchmarks. This result suggests that frequent updates of a larger set
of tokens may not always be beneficial and may introduce noise. These findings highlight both the
computational redundancy inherent during dLLM generation and the effectiveness of ES-dLLM’s
early-skip strategy.

Moreover, we observe that DualCache suffers from a degraded accuracy on the BBH and MBPP
datasets compared to the original implementation, which we attribute to error accumulation in
the KV cache of the prompt region. To address this, we evaluate ES-dLLM with more frequent
KV cache refreshment for prompt tokens (i.e., multiple times within each block), denoted as ES-
dLLM*. As reported in the tables, this adjustment effectively mitigates the accuracy drop while
retaining decent speedups. Overall, ES-dLLLM delivers a speedup of at least 5.6 x, with accuracy
differences ranging between -1.83 and +1.21 compared to the vanilla implementations, demon-
strating both the efficiency and robustness of ES-dLLM in accelerating diffusion LLM inference.

6.3 ABLATION STUDY

Effect of « in Importance Score Estimation. The parameter « in Equation [I]is used to weigh the
contributions of confidence and variation in importance scores. We evaluate different o values on
LLaDA-8B-Instruct across multiple benchmarks, with the results shown in Figure @ It indicates
that combining both factors (o = 0.5) achieves the best overall performance, while relying on one of
them leads to noticeable accuracy degradation, particularly when using the confidence score alone
(o = 1), which likely stems from neglecting contextual updates from previously generated tokens.
Interestingly, o = 0 (i.e., using only variation scores) performs well on the MATH dataset, even
surpassing the original baseline, suggesting that the generation process may not strictly follow the
confidence order for this task.

Selection of Intermediate Tensors for Variation Indicator. In our main experiments, we use hid-
den states as the variation indicator. To evaluate the sensitivity of this choice, we compare alternative
indicators, including key, query, and value tensors, in Figure The results show that generation
quality is generally robust to the choice of variation indicator. Hidden states provide slightly bet-
ter performance overall, but key and value tensors achieve comparable results with lower memory
overhead, offering a practical alternative.

Published as a conference paper at ICLR 2026

100 100
a=0.0 Hidden
90 a=0.5 90 Key
80 a=1.0 80 Query
Value

70 70

60 60
50 50
40 40

30 30

Performance Score (%)
Performance Score (%)

20 20

10 10
0 0
GSM8K MATH BBH HumanEval MBPP GSM8K MATH BBH HumanEval MBPP
Datasets Datasets
(a) Effect of a. (b) Effect of variation indicator.

Figure 4: Ablation studies on importance estimation configurations using LLaDA-8B-Instruct.

Additional analyses, including results on Base models, ablations on skip ratio and position, and the
compatibility of ES-dLLM with sparse attention and parallel decoding techniques, are presented in
Appendix [C]

7 DISCUSSION

Memory Overhead of ES-dLLM. ES-dLLM maintains caches for key, value, and variation indica-
tor (e.g., hidden state) tensors for each token. The cache of the variation indicator is only needed for
output positions in layers where skipping is applied. Therefore, the additional memory overhead of
ES-dLLM is 528KB for LLaDA-8B and 70KB for Dream-7B per output token in BF16 format, of
which hidden states contribute only 16KB and 14KB, respectively. Considering a sample with 1024
prompt tokens and a generation length of 256, the total memory overhead of ES-dLLM is 644MB
for LLaDA-8B and 73.5MB for Dream-7B per sample. This cost is modest and with negligible over-
head beyond the KV caches, which is acceptable for modern GPUs with large memory capacities,
especially in comparison to the over 10GB required for model weights.

Speedup Potential of ES-dLLM. With the chosen skip configuration, ES-dLLM reduces FLOPs
by approximately 60% compared to DualCache. However, the observed speedup ranges from 1.20x
to 1.85x, smaller than the theoretical computation reduction. This discrepancy can be attributed to
the fact that LLM inference with fewer tokens (e.g., the decode phase in autoregressive LLM) is
often memory-bound rather than compute-bound. According to the roofline model (Williams et al.,
2009), efficiency is constrained by memory bandwidth and operational intensity. While ES-dLLM
lowers FLOPs by skipping computation, memory accesses for model weights and KV tensors re-
main largely unchanged, shifting the workload from compute-bound to memory-bound. Therefore,
this provides opportunities for system-level optimizations (Patel et al., 2024; |Agrawal et al., [2024)
that better integrate compute-bound and memory-bound workloads, potentially unlocking the full
speedup potential of ES-dLLM.

Limitation and Future Work. Although ES-dLLM effectively exploits redundancy in token com-
putation, the estimation of the importance score relies on simple heuristics, and partial KV updating
diverges from the training process for dLLM that assumes complete state updates. Future work
could explore more sophisticated importance estimation and skipping methods, such as training a
lightweight model to predict token importance, adaptively adjusting skip ratios based on real-time
variation, and investigating training strategies that align with the early-skipping mechanism to fur-
ther enhance both efficiency and generation quality.

8 CONCLUSION

In this work, we propose ES-dLLM, a training-free inference acceleration framework for diffusion
large language models that reduces computational overhead by selectively skipping redundant com-

Published as a conference paper at ICLR 2026

putations in early layers. ES-dLLM achieves up to 16.8 x speedup over the original implementation
and up to 1.85x speedup compared to the state-of-the-art DualCache method on LLaDA-8B and
Dream-7B models, while maintaining comparable generation quality. Our results reveal redundancy
in token computation during dLLM generation, and ES-dLLM provides a practical direction to op-
timize the inference process of dLLM.

REPRODUCIBILITY STATEMENT

For reproducibility, we open-source our code inhttps://github.com/zhuzj19/ES-dLLV,
accompanied by a README file with detailed instructions. The experimental settings are described
in Section[6.T]and Appendix[B.I] In addition, we provide bash scripts in the supplementary material
for reproducing the main results reported in this paper.

REFERENCES

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm infer-
ence with sarathi-serve. In 18th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 24), pp. 117-134, 2024.

Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A com-
prehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt.
arXiv preprint arXiv:2303.04226, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinhua Chen, Sitao Huang, Cong Guo, Chiyue Wei, Yintao He, Jianyi Zhang, Hai ”"Helen” Li, and
Yiran Chen. DPad: Efficient Diffusion Language Models with Suffix Dropout. arXiv e-prints,
art. arXiv:2508.14148, August 2025. doi: 10.48550/arXiv.2508.14148.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: large-scale training
and inference of early-exit large language models with 3d parallelism. In Proceedings of the 41st
International Conference on Machine Learning, pp. 7163-7189, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Deepmind. Gemini diffusion, 2025. https://deepmind.google/models/
gemini-diffusion/.

10

https://github.com/zhuzj19/ES-dLLM
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/

Published as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, fﬁigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118—
132. IEEE, 2024.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
In D. Song, M. Carbin, and T. Chen (eds.), Proceedings of Machine Learning and Systems, vol-
ume 5, pp. 606-624. Curan, 2023.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction. arXiv
e-prints, art. arXiv:2508.02558, August 2025. doi: 10.48550/arXiv.2508.02558.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65-76, 2009.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
A survey. arXiv preprint arXiv:2506.13759, 2025.

11

Published as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS ON DLLM GENERATION CHARACTERISTICS

A.1 INTERMEDIATE TENSOR VARIATION IN LLADA

In addition to hidden states, we also examine the variation of other intermediate tensors, namely
the key, value, and query tensors inside the attention. As shown in Figure [5] their variations are
relatively small for most tokens in most iterations, consistent with the observations on hidden states
discussed in Section @2

We further plot the variation distribution of hidden states in other layers in Figure [6] which shows
exponential distributions as those observed for layer 10 in the main text. We perform normalization
for values greater than 1, producing a slight spike at 1 in the distribution for layer 30. The variation
tends to increase in deeper layers, likely because of multiple interactions among tokens in attention,
which can amplify variation in intermediate results. Nevertheless, even in the layer approaching the
end, a large portion of positions still exhibit small variations.

Key Diff. Heatmap Key Diff. Log Frequency

s 9
21 0.6 7 S
5 2. 8103
ol 4 o
2 g g
02 - 10°
0.0
400 600 02 06 08
Position Key Diff.
Value Diff. Heatmap 1o 100 Value Diff. Log Frequency
08 .
s E
L1 060
® o
gt 043
- 027
0.0
400 600 ¥ 02 0.4 06 08
Position Value Diff.

Query Diff. Heatmap Query Diff. Log Frequency

Iteration

600 0.4 0.6
Position Query Diff.

Figure 5: Variation statistics of key, value, and query tensors in layer 10 using LLaDA-8B-Instruct.
Left: single-sample heatmap from BBH; red line separates prompt and output tokens. Right: log-
scale distribution for output tokens using 100 samples from multiple datasets.

Layer 10 Layer 20 Layer 30

2

Frequency

02 08 X 02 08 X 02 08 10

04 056
Hidden State Diff.

04 6
Hidden State Diff.

0.4 06
Hidden State Diff.

Figure 6: Log-scale distributions of hidden state variation in layers 10, 20, and 30 using LLaDA-
8B-Instruct.

A.2 EXPERIMENTS ON GENERATION CHARACTERISTICS IN DREAM

We perform the same set of experiments on Dream-7B-Instruct to validate the generality of the ob-
servations presented in Section[d] The results are shown in Figures[7]and[8] The confidence change
and intermediate tensor variation are slightly larger, but follow trends similar to those observed in
LLaDA-8B-Instruct, demonstrating that the characteristics are consistent across different diffusion
LLMs. For the specific sample presented in the heatmaps, we observe a pronounced confidence
variation at the iteration corresponding to the generation of the EOS token, which also influences
the intermediate tensor variation in subsequent iterations.

12

Published as a conference paper at ICLR 2026

1 1.0
51 0.8
£
(=) >
g 101 06 g 2
2 = E
@ 3 g
S5 = 2
o
&)
201 0.2
251 0.0
0 50 100 150 200 250 0.0 0.2 0.4 0.6 0.8 1.0
Position Confidence Diff.
(a) Single-sample heatmap. (b) Log-scale distribution.
0.35
0.30
0.25
c
o
£0.20
o
Q
©0.15
o
0.10
0.05
0.00
1 51 101 151 201 251

Iteration

(c) Proportion of variation > 0.05 at each iteration.

Figure 7: Confidence variation statistics using Dream-7B-Instruct. (a) uses a sample from the BBH
dataset, while (b) and (c) present results using 100 samples from multiple datasets.

Hidden State Diff. Heatmap Hidden State Diff. Log Frequency

Iteration
S
Frequency

600 800 0.8

Position
Key Diff. Heatmap

02

04 06
Hidden State Diff.
Key Diff. Log Frequency

Iteration
Frequency

0 200 400 600 800 0.2 0.8

Position

04 06
Key Diff.

Value Diff. Heatmap Value Diff. Log Frequency

Iteration
e
Frequency

g

H
2

800 02 0.8

0.4 0.6
Value Diff.

600
Position
Query Diff. Heatmap

10
107
08, 5
= 91072
060 <
> S
04 g @‘ 10~
029 T
00 107

0 200 400 600 800 1000 1200 00 01 02 03 04 05 06 O
Position Query Diff.

Query Diff. Log Frequency

Iteration

’

Figure 8: Variation statistics of hidden states and key, query, and value tensors in layer 10 using
Dream-7B-Instruct. Left: single-sample heatmap from BBH; red line separates prompt and output
tokens. Right: log-scale distribution for output tokens using 100 samples from multiple datasets.

A.3 CORRELATION BETWEEN VARIATIONS OF INTERMEDIATE TENSOR AND CONFIDENCE

We further analyze the relationship between intermediate tensor variation and confidence difference
using 100 samples from multiple datasets. As shown in Table[3] the correlation coefficients range
from 0.15 to 0.66, reflecting a positive correlation. The correlation tends to be stronger in later
layers, which is expected since the final predictions rely on the hidden states of the last layer. How-

13

Published as a conference paper at ICLR 2026

Table 3: Pearson correlation between intermediate tensor variation and probability change (confi-
dence is the maximum probability) for all mask tokens in selected layers using LLaDA-8B-Instruct.

Layer | O | 4 | 8 | 16 | 24 | 31

Hidden | 0.15 | 0.22 | 0.27 | 0.38 | 0.48 | 0.51
Query | N/A | 0.18 | 0.24 | 0.39 | 0.45 | 0.66
Key N/A | 0.18 | 0.24 | 0.38 | 0.42 | 0.66
Value N/A | 0.16 | 0.25 | 0.43 | 0.45 | 0.65

ever, applying skipping in earlier layers could save more computation, creating a trade-off between
efficiency and the reliability of tensor variation as an indicator. We further discuss this trade-off by
evaluating different skipping positions in Appendix [C.2] Notably, the correlation is not applicable
for query, key, and value tensors in layer 0, as they are directly projected from the input embeddings
without inter-token interaction, thus only differ in the newly generated tokens.

B EXPERIMENT DETAILS
B.1 PARAMETER SETTINGS

Table 4: Generation length and block length for each benchmark.

Benchmark | Generation Length | Block Length

GSM8K 256 64
MATH 256 256
BBH 256 64
HumanEval 512 64
MBPP 512 64

In addition to the parameters described in the main text, we provide more details of the experimental
settings to ensure reproducibility. Following [Nie et al.| (2025), we adopt their choices of genera-
tion and block lengths for each benchmark, with some adjustments. The specific configurations are
listed in Table] Although Dream does not inherently employ a semi-autoregressive generation
strategy, we found that constraining the generation order with a block length can improve perfor-
mance. Therefore, we adopt the same semi-autoregressive block setting for both models.

Table 5: Cache refresh periods in ES-dLLM for each benchmark and model.

(a) LLaDA-8B-Instruct (b) Dream-7B-Instruct
Benchmark | Prompt | Block Benchmark | Prompt | Block
GSMSK 64 16 GSMSK 64 8
MATH 256 8 MATH 256 4
BBH 64 4 BBH 64 8
HumanEval 64 4 HumanEval 64 2

MBPP 64 4 MBPP 256 2

Table 6: Cache refresh periods in ES-dLLM* for each benchmark and model.

Model | Benchmark | Prompt | Block

LLaDA | BBH | 32 | 4
D BBH 16 4
ream MBPP 8 2

14

Published as a conference paper at ICLR 2026

Moreover, as mentioned in the main text, we periodically refresh the cache for the prompt tokens or
for the entire current block during generation. We employ different cache refresh frequency settings
for each benchmark and model to achieve better performance, as listed in Table@ On the BBH and
MBPP datasets, we observe a performance gap between DualCache and the original implementation.
This difference arises because DualCache intrinsically applies a prompt refresh period equal to the
block size and a block refresh period of 1, whereas the original implementation updates both at every
step (i.e., period of 1). To mitigate this accuracy loss, we increase the prompt refresh frequency in
ES-dLLM, resulting in a variant denoted as ES-dLLM* in the main text. The specific refresh period
configurations of ES-dLLM* are listed in Table 6]

For the sampling strategy, we adopt low-confidence remasking for LLaDA and maskgit-plus with
top-k (k = 50) and top-p (p = 0.95) sampling for Dream. The temperature is set to 0 for both mod-
els. For evaluation metrics to get the performance score of each dataset, we use exact _match for
GSME8K and BBH (with GSMS8K using the flexible-extract filter), math_verify metric
for MATH, and pass_at_1 for the two coding datasets HumanEval and MBPP.

B.2 IMPLEMENTATION DETAILS

We implement ES-dLLM and the DualCache baseline on top of the open-source codebases of
LLaDA (Nie et al., [2025) and Dream (Ye et al., [2025). To enable the early-skipping mechanism,
we modify several modules, including tensor caching, importance score computation, and position
selection logic. For LLaDA, we extend the framework to support batch inference. KV caching is ap-
plied after the RoPE operation to reduce the computation overhead. We notice that operating on full
logits consumes a significant portion of memory during generation, especially for top-k sampling.
To alleviate this issue, we truncate the logits of prompt tokens before sampling. In addition, we ob-
serve that the EOS token is sometimes generated prematurely, producing incomplete outputs across
all baselines. To address this, we disallow EOS generation when the last token is still a mask token
to improve stability, which we found beneficial for the performance, especially on coding datasets.

C SUPPLEMENTARY EXPERIMENTS
C.1 MAIN RESULTS ON BASE MODELS

Table 7: Performance comparison using LLaDA-8B-Base on five benchmark datasets. Metrics and
notations follow Table

Benchmark | Method | TPS | Speedup | Performance Score
LLaDA 9.20 1.0x 71.11
GSMBSK(5) DualCache | 116.46 12.7x 66.19
ES-dLLM | 14045 | 15.3x 67.63
LLaDA 15.12 1.0x 32.38
MATH(4) DualCache | 57.89 | 3.8x 30.48
ES-dLLM | 94.46 6.2% 30.60
LLaDA 11.68 1.0x 45.26
BBH(@3) DualCache | 133.95 11.5% 43.59
ES-dLLM | 162.30 | 13.9x 44.08
LLaDA 23.84 1.0x 32.32
HumanEval(0) | DualCache | 177.40 7.4 32.32
ES-dLLM | 232.66 9.8 x 31.71
LLaDA 9.53 1.0x 39.6
MBPP(3) DualCache | 120.12 12.6x 38.6
ES-dLLM | 158.81 16.7 x 38

We further evaluate ES-dLLM using the base models LLaDA-8B-Base and Dream-7B-Base across
five benchmark datasets, with results reported in Tables [/| and ES-dLLM achieves speedups

15

Published as a conference paper at ICLR 2026

Table 8: Performance comparison of Dream-7B-Base on five benchmark datasets.

Benchmark | Method | TPS | Speedup | Performance Score
Dream 21.12 1.0x 74.15
GSMBSBK(5) DualCache | 211.67 10.2x 73.16
ES-dLLM | 282.67 | 13.4x 73.92
Dream 27.98 1.0x 40.90
MATH(4) DualCache | 86.58 3.1x 40.10
ES-dLLM | 167.03 6.0% 39.60
Dream 25.94 1.0x 49.65
BBH(3) DualCache | 228.09 8.8 45.34
ES-dLLM | 281.65 | 10.9x 44.28
Dream 44.26 1.0x 42.07
HumanEval(0) | DualCache | 257.42 5.8% 40.24
ES-dLLM | 305.37 6.9 % 38.41
Dream 22.73 1.0x 55
MBPP(3) DualCache | 216.09 9.5 56.2
ES-dLLM | 30143 | 13.3x 55.2

of up to 16.7x and 1.93x over the original implementations and DualCache, respectively, while
maintaining comparable performance scores, demonstrating the effectiveness and generality of ES-
dLLM on base models.

C.2 ABLATION STUDY ON SKIP RATIO AND POSITION

Table 9: Ablation study of skip ratio and position configurations on MATH using LLaDA-8B-
Instruct. No skipping represents the DualCache baseline. Speedup is calculated against the TPS
of DualCache, and the FLOPs proportion is normalized to the no-skipping baseline.

Skip Ratio & Position | FLOPs Prop. | TPS | Speedup | Performance Score

No skipping 100% 56.02 | 1.0x 26.94
ra=rg =05 40% 103.63 | 1.85x 27.24
rs = 0.75 46% 9526 | 1.70x 27.26
rs = 0.5 64% 77.66 | 1.39x 27.36
rs = 0.25 82% 6349 | 1.13x 27.58
ro = 0.5 52% 89.40 | 1.60x 26.76
ry =05 58% 83.17 | 1.48x 27.28
rs = 0.5 64% 7766 | 1.39x 27.36
16 = 0.5 77% 63.50 | 1.22x 27.52

Table 10: Ablation study on skipping times across five datasets using LLaDA-8B-Instruct.

Skip Ratio& Position | FLOPs Prop. | GSM8K | MATH | BBH | HumanEval | MBPP

rqe = 0.7 40% 76.27 2744 | 53.95 35.98 39.4
14y =183 = 0.5 40% 76.95 27.24 | 54.51 37.8 394
r4 =18 = r12 = 0.405 40% 76.35 27.48 | 53.86 36.59 39.8

In the main experiments, we apply early-skipping at two positions (1/8 and 1/4 of all layers) with a
skip ratio of 0.5. To further investigate the impact of the skip ratio and skip position, we evaluate a
range of configurations, with results reported in Tables [9] and

16

Published as a conference paper at ICLR 2026

As shown in Table[9] varying the skip ratio at a fixed position reveals a trade-off between efficiency
and generation quality. Larger ratios yield greater speedup by saving more computation, but also
adversely affect performance. A similar trade-off is observed for skip position: applying skipping
in earlier layers brings greater speedup, but leads to performance degradation due to insufficient
intermediate information.

We also examine the effect of applying different times of skipping while keeping the overall FLOPs
proportion roughly the same (about 40%). As shown in Table [0} skipping at two positions (ry =
rg = 0.5) achieves the best balance, progressively refining token selection and avoiding overly
aggressive pruning in early layers. In contrast, applying too many skips could reduce the number of
remaining tokens in the final layer, which is also detrimental to performance.

C.3 INTEGRATION WITH EXISTING METHODS

Table 11: Performance comparison for parallel decoding using LLaDA-8B-Instruct. Speedup is
compared with the DualCache baseline without parallel decoding.

Benchmark | Method | TPS | Speedup | Performance Score
DualCache+PD | 172.02 1.53x 76.57
GSMBK() | gS.qLLM+PD | 201.60 | 1.80x 7574
DualCache+PD | 85.05 1.52x 26.94
MATH(#) ES-dLLM+PD | 15219 | 2.72x 27.48
BBH(3) DualCache+PD | 269.48 2.07 x 52.31
ES-dLLM+PD | 302.95 2.33x 53.26
HumanEval(0) DualCache+PD | 271.64 1.54x 34.76
ES-dLLM+PD | 349.26 1.97 % 37.8
DualCache+PD | 367.82 3.12x 38.4
MBPP(3) ES-dLLM+PD | 413.82 | 3.51x 378

Table 12: Performance comparison for parallel decoding using Dream-7B-Instruct.

Benchmark | Method | TPS | Speedup | Performance Score
DualCache+PD | 36448 | 1.74x 77.94
GSM8K(S) | gS.dLLM+PD | 42527 | 2.03x 78.01
DualCache+PD | 128.02 | 1.48x 33.58
MATH(4) ES-ALLM+PD | 215.61 | 2.50x 33.48
BBHG) DualCache+PD | 54651 | 2.41x 57.18
ES-ALLM+PD | 61551 | 2.71x 57.07
HumanEval(0) | DualCache+PD | 51385 | 199 4451
ES-ALLM+PD | 71033 | 2.75x 46.34
DualCache+PD | 829.71 | 3.87x 56.8
MBPP(3) ES-ALLM+PD | 1469.15 | 6.86x 57.4

As mentioned in Section 3] ES-dLLM is orthogonal and complementary to existing acceleration
techniques, including parallel decoding (Wu et al.,[2025) and sparse attention (Song et al., 2025). In
this section, we explore the compatibility and try to integrate ES-dLLM with these methods.

C.3.1 INTEGRATION WITH PARALLEL DECODING

In the main text, we evaluate ES-dLLM under the one-token-per-step generation scheme. How-
ever, dLLM has the potential to generate multiple tokens in parallel at each iteration, offering fur-
ther acceleration. To explore this, we integrate ES-dLLM with confidence-aware parallel decoding

17

Published as a conference paper at ICLR 2026

(PD) (Wu et al.| |2025), using a confidence threshold of 0.9. The cache refresh period settings for
ES-dLLM follow the same configuration as in Table[3]

Tables [IT] and [T2] present the results. We find that ES-dLLM can be seamlessly integrated with
parallel decoding, delivering additional speedups of up to 1.79x for LLaDA and 1.68 x for Dream
compared to DualCache with parallel decoding, while maintaining comparable performance scores.
These results confirm that ES-dLLM is fully compatible with parallel decoding and can further
enhance the efficiency of diffusion LLM inference.

C.3.2 INTEGRATION WITH SPARSE ATTENTION

Table 13: Performance comparison for sparse attention using LLaDA-8B-Instruct. Speedup is com-
pared to DualCache without sparse attention technique.

Benchmark | Method | TPS | Speedup | Performance Score
Sparse-dLLM 14026 | 1.25x 76.80
GSMBK() | gS.dLLM+Sparse | 172.55 | 1.54x 75.97
Sparse-dLLM 66.80 | 1.19x 28.10
MATH#) ES-dLLM+Sparse | 121.91 | 2.18x 28.06
BBHG) Sparse-dLLM 16035 | 1.23x 49.13
ES-dLLM+Sparse | 191.56 | 1.47x 51.13
Sparse-dLLM 207.95 | 1.18x 35.37
HumanEval0) | g g1 1. M+Sparse | 261.63 | 1.48x 3476
Sparse-dLLM 145.77 1.24x 40.2
MBPP(3) ES-dLLM+Sparse | 179.57 | 1.52x 38.8

Table 14: Performance comparison for sparse attention using Dream-7B-Instruct.

Benchmark | Method | TPS | Speedup | Performance Score
Sparse-dLLM 22768 | 1.08x 77.94
GSMBK() | gg.dLLM+Sparse | 287.68 | 1.37x 77.94
Sparse-dLLM 89.56 | 1.04x 35.60
MATH#) ES-dLLM+Sparse | 157.19 | 1.82x 36.10
BBHG) Sparse-dLLM 24335 | 1.07x 57.52
ES-dLLM+Sparse | 305.35 | 1.35x 57.09
Sparse-dLLM 270.53 1.05x 45.73
HumanEval0) | gg_q1 1. M+Sparse | 322.05 | 1.25x 46.95
Sparse-dLLM 233.86 | 1.09% 56.6
MBPP(3) ES-dLLM+Sparse | 309.74 | 1.45x 57.2

Sparse-dLLM (Song et al.,|2025) is another technique that accelerates dLLM inference by pruning
KV caching of less important tokens from being attended in the attention operation, while ES-
dLLM focuses on reducing the number of tokens going through inference using early skipping. To
investigate their compatibility, we integrate ES-dLLM with sparse attention, using the settings from
the original paper: a retention ratio of 0.5, a kernel size of 3, and a delayed step of 1.

The results in Tables[T3]and[14]show that ES-dLLM can be effectively combined with sparse atten-
tion, achieving additional speedup while maintaining comparable performance, further validating
the flexibility of ES-dLLM. Sparse-dLLM achieves less significant speedup on Dream-7B-Instruct
compared to LLaDA-8B-Instruct, likely due to Dream’s GQA mechanism that already reduces KV
cache overhead in attention, and the proportion of attention in the overall inference time is smaller.

18

Published as a conference paper at ICLR 2026

Table 15: Performance of ES-dLLM when combined with both parallel decoding and sparse atten-
tion.

Benchmark | GSM8K | MATH | BBH | HumanEval | MBPP
LLaDA-8B-Instruct

TPS 241.03 175.53 | 331.30 407.86 483.35
(vs. DualCache) 2.15x 3.13x 2.55% 2.31x 4.10x
Performance 74.30 28.46 52.17 34.76 38.6
(vs. DualCache) -2.05 +1.52 -1.12 -0.61 +0.2
Dream-7B-Instruct

TPS 459.63 | 228.00 | 645.27 763.21 1618.92
(vs. DualCache) 2.19x 2.64x 2.84x% 2.96x 7.56x
Performance 77.63 35.64 56.47 45.12 56.8
(vs. DualCache) -0.31 +2.04 -1.8 0 0

C.3.3 INTEGRATION WITH BOTH METHODS

Moreover, ES-dLLM can be integrated with both parallel decoding and sparse attention simultane-
ously to achieve full speedup potential. As shown in Tables [I3] this combined approach achieves
speedups of 2.15-4.10x on LLaDA-8B-Instruct and 2.19-7.56 x on Dream-7B-Instruct relative to
the DualCache baseline, while maintaining competitive performance scores. These findings demon-
strate that redundancy in vanilla dLLM inference can be effectively exploited from multiple dimen-
sions, and ES-dLLM serves as a versatile component that can be seamlessly combined with
other acceleration techniques to enable simple and efficient deployment.

D THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we employed LLMs to assist with paper writing. Specifically, GitHub
Copilot was used to help with some word and sentence drafting, and ChatGPT was used to refine
and polish the language.

19

	Introduction
	Preliminary on diffusion large language models
	Related works for dLLM inference acceleration
	Observations on diffusion LLM characteristics
	Confidence variation across iterations
	Hidden state variation

	Methodology
	Importance score estimation
	Partial cache update and early skip

	Experiments
	Experimental setup
	Main results
	Ablation study

	Discussion
	Conclusion
	Additional experiments on dLLM generation characteristics
	Intermediate tensor variation in LLaDA
	Experiments on generation characteristics in Dream
	Correlation between variations of intermediate tensor and confidence

	Experiment details
	Parameter settings
	Implementation details

	Supplementary experiments
	Main results on base models
	Ablation study on skip ratio and position
	Integration with existing methods
	Integration with parallel decoding
	Integration with sparse attention
	Integration with both methods

	The use of large language models

