InterLoRA: An Adaptive LoRA Structure Based on The Mechanistic
Interpretability of Transformer

Jihao Gu'? Zelin Wang'? Yibo Zhang'? Zhisong Bie !>

Abstract

With the escalating costs associated with fine-
tuning large pre-trained models, the significance
of parameter-efficient fine-tuning (PEFT) meth-
ods has become increasingly evident. Among
these methods, we focus on LoRA, which in-
troduces parallel trainable parameters in the
multi-head attention component and has demon-
strated promising results. However, previous re-
search may have overlooked the mechanistic inter-
pretability of the transformer architecture, espe-
cially since PEFT methods are built upon this
framework. Drawing on this insight, we pro-
pose InterLoRA, which integrates LoRA with
feature adaptation mechanism into both the atten-
tion layer, considering the varying importance of
multiple heads, and the Feed-Forward Network
(FFN) layer, acknowledging the memory storage
characteristics. Experiments conducted on a va-
riety of complex generation tasks highlight the
effectiveness of InterLoRA in jointly fine-tuning
both components while efficiently managing pa-
rameter memory.

1. Introduction

With an increasing number of large language models, such
as GPT-J (Wang & Komatsuzaki, 2021) and LLaMA (Tou-
vron et al., 2023), subsequently appeared and the cost of
fine-tuning pre-trained models has become increasingly bur-
densome with the growing size of the models. Consequently,
to address these challenges, Parameter Efficient Fine-Tuning
(PEFT) methods become more important (Houlsby et al.,
2019; Li & Liang, 2021). These methods typically focus on
transformer models, where during training, the pre-trained
parameters are frozen, while a small set of parameters is
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introduced available for fine-tuning. For example, the LoRA
(Hu et al., 2021) method fine-tunes by introducing learnable
matrices alongside the multi-head attention mechanism. Our
work focuses on LoRA, which demonstrates high perfor-
mance across a wide range of tasks.
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Figure 1. A diagram of the InterLoRA with the transformer struc-
ture on the left and our proposed improvement on the right. Here, h
corresponds to the number of attention’s heads, and o corresponds
to the size of the LoRA’s output.The white bar for g; represents
Zero.

In prior research, the study by He et al. (2022) has shown
that LoRA can achieve effective fine-tuning not only in
the multi-head attention layers but also in the FFN layers.
However, previous works have largely overlooked the differ-
ences in transformer mechanistic interpretability between
these two components. Specifically, Chefer et al. (2021a;b)
have demonstrated that each attention head captures distinct
short-term information and exhibits varying levels of impor-
tance. Meanwhile, Geva et al. (2020); Dai et al. (2021) have
highlighted that the FFN layers, in addition to acquiring
more complex information through non-linear transforma-
tions, store the majority of the pre-trained model’s long-term
memory. Based on these observations, we argue that ap-
plying different LoORA methods, tailored to their respective
interpretability, to both the attention and FFN layers dur-
ing fine-tuning will better leverage the potential of LoRA
techniques.

Building upon the aforementioned insights, we propose a
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simple yet effective InterLoRA method that can adaptively
combine fine-tuning in both the attention (atten) and FFN
sections of the transformer. Our method employs gating
units to independently modulate the multiple heads in the
attention mechanism and the memorized neurons in the FFN.
Specifically, as illustrated in figure 1, for the attention sec-
tion, we introduce an MLP layer that transforms the input
into gate units. These gate units serve as weights correspond-
ing to each multi-head. As for the FEN section, we utilize an
MLP to transform the input into the LoRA’s corresponding
output dimension. Through a ReLU activation function, we
selectively filter out neurons that retain pre-trained mem-
ory without fine-tuning. The parameter « is employed to
balance the filtered results. Subsequently, these results are
multiplied with the computed original LoRA values.

We conduct extensive experiments using LL.Ms with zero-
shot learning which demonstrates a significant performance
improvement in different situations with our approach on
mathematical tasks and commonsense inference tasks, indi-
cating its advantage in leveraging generative capabilities to
address complex tasks which is in line with the trend of us-
ing large language models. Additionally, empirical evidence
supports the effectiveness of our approach in combining the
benefits of LoRA fine-tuning in both attention and FFN
sections while selectively fine-tuning memory units.

2. Methodology
2.1. LoRA

The transformer consists of two crucial components, namely,
multi-head attention and FFN. The formulas for these two
sections are as follows:

T

Vd
FFN(z) = ReLU (zWyp + 01)Waouwn + b2 (2)

Attention(Q, K, V) = softmax(

oo

For LLaMA, the calculation formula for its FFN section is
slightly different:

FFNLLaMA (33) = (Swzshl (l‘Wgate) ® qup)Wdown
(3)

In the LoRA method, two matrices, W, € R@hidden X gpd
Wy € Rr*dnidden  are added next to Q and V in the multi-
head attention. For example, the calculation formula for Q
is as follows:

Q = Z‘(WQ + /\W1W2) 4)

2.2. InterLoRA

For the multi-head attention section, to dynamically adjust
LoRA based on the input from each layer through gate units

corresponding to the number of attention heads, we first
transform the input into one dimension through a linear
layer, followed by another linear layer to obtain the dimen-
sion corresponding to the number of heads, denoted as h
For each layer and each head, the gate g a¢+ten=[91,92..-91]
with values in the range (0,1) is computed as follows:

JAtten = mean(Singid(mWAttenWh)) (5)

Here, x represents the input from the previous layer with
a length of m and dimension d, W e, € R%idden*1 and
W), € R1*dnead gre learnable parameters, ‘mean’ denotes
taking the average along the sentence dimension, (i.e., av-
eraging for each word in the sentence) to ensure that each
word vector corresponds to the same gate at the same head.
Subsequently, the calculated result of LoRA is divided into
multiple heads (I g¢ten=[1,l2..-{1,]), and each is multiplied
with the corresponding g; The modified LoRA for each head
in the attention section is calculated as follows:

li=1;®g (6)

For the FFN section, previous research has indicated that
each parameter in the FFN of a pre-trained model corre-
sponds to the model’s memory unit (Dai et al., 2021). There-
fore, during fine-tuning, we believe that some parameters
need adjustment while others should remain unchanged. To
achieve this fine-grained fine-tuning, we transform the input
through two linear to match the dimensions of the LoRA
output. We apply the ReL.U activation function to set some
parameters to 0, aiming to fine-tune only the memory pa-
rameters that are needed. Subsequently, we introduce a
trainable parameter «, to balance the values obtained by
ReLU, preventing them from being too small. The final gate
grFN € RmX*doutputs g calculated as follows:

grrn = o(relu(hWrprpnW,)) @)

Here, h represents the input to the FEN layer after pass-
ing through attention, with a length of m and dimension d.
Wrepy € Rinidien Xl gnd W, € R1Xdowtputs are learnable
parameters. Afterward, the computed LoRA [y is mul-
tiplied element-wise with the gate in the output dimension.
Through experimental validation (in Section 3.3), we choose
to apply LoRA to the downsampling matrix W, of the
FFN. The modified matrix formula is as follows:

Wiown = Waown + lrFN ® grrN (8)

3. Experiment
3.1. Experimental Setup

In line with the trend of using large language models, we
conduct hundreds of experiments across 13 datasets related
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LLMs Params SVAMP AQuA AddSub MultiA SingleEQ GSMSK Avg.
LLaMA-7b  LoRA 5.24M 58.50 23.53 75.95 92.73 88.24 24.24 60.53
Adapter 201.33M  53.50 23.53  74.68 86.36 75.49 20.08 55.61
prefix 7.86M 42.50 23.53 58.23 60.00 66.67 15.91 44.47
InterLoRA  4.78M 60.50 2549 79.75 91.82 85.29 25.38 61.37
LLaMA-13b LoRA 8.19M 66.00 21.57 82.28 95.45 89.22 36.74 65.21
Adapter 314.57TM  55.00 31.37 7342 78.18 69.61 17.05 54.10
prefix 12.29M  58.00 29.41 72.15 78.18 82.35 22.73 57.14
InterLoRA  7.48M 69.50 3137 84.81 96.36 89.22 38.26 68.25
GPT-J-6b LoRA 4.59M 47.00 5.88 65.82 72.73 76.47 11.36 46.54
Adapter 117.44M  43.00 13.73 56.96 76.36 64.71 9.85 44.10
prefix 6.88M 41.50 9.80 67.09 75.45 71.57 9.85 45.88
InterLoRA  4.93M 48.50 23.53  67.09 80.91 77.45 13.26 51.79
Table 1. The accuracy results on six mathematical reasoning datasets.(bold: the best score)
LLMs Params ARC-¢c ARC-e Boolg WinoG PIQA SIQA OBQA Avg.
LLaMA-7b  LoRA 5.24M 61.43 77.86 64.37 6322 7590 6945 71.80 69.15
Adapter 201.33M  46.08 63.34 4196  53.67 1523  50.82  50.60 45.96
prefix 7.86M 49.74 66.20 62.14 5091 66.21 57.68 51.60 57.78
InterLoRA  4.78M 61.95 79.59 63.49 63.46 71.55 69.60 74.40 69.15
LLaMA-13b LoRA 8.19M 68.77 83.80 68.81 68.59 80.25  72.77  76.60 74.37
Adapter 31457 50.17 65.66 62.17  50.59 68.88 6433 6240 60.60
prefix 12.29M  59.90 77.15 64.46 6227 7486  66.33 6640 67.34
InterLoRA  7.48M 67.15 83.54 68.78  67.88 78.56 7149 78.20 73.66
GPT-J-6b LoRA 4.59M 13.82 16.50 62.17 4751 43.09 3332 21.80 34.03
Adapter 117.44M  33.96 49.45 62.17 50.99 52.01 4550 35.60 47.10
prefix 6.88M 15.61 17.13 0.03 0.24 2573 8.5 5.60 10.44
InterLoRA  4.93M 45.48 62.96 61.13 48.54 61.75 5542 54.60 55.70

Table 2. The accuracy results on the seven commonsense inference datasets.(bold: the best score)

to complex mathematical reasoning and commonsense in-
ference using the understanding capabilities of three large
language models through zero-shot methods, mainly ref-
erencing the prior work (Hu et al., 2023) with pre-trained
parameters from Hugging Face’s (Wolf et al., 2020) large
language models, including LLaMA-7b/13b (Touvron et al.,
2023), and gpt-j-6b (Wang & Komatsuzaki, 2021). The
datasets for mathematical reasoning are (1) the SVAMP (Pa-
tel et al., 2021), (2) the AQuA (Ling et al., 2017) dataset,
(3) the AddSub (Hosseini et al., 2014) dataset, (4) the Multi-
Arith (Roy & Roth, 2016) dataset, (5) the SingleEQ (Koncel-
Kedziorski et al., 2015) dataset, and (6) the GSM8K (Cobbe
et al., 2021) dataset. The commonsense inference tasks are
as follows:(1) the ARC-c and (2) the ARC-e are the Chal-
lenge Set and Easy Set of ARC (Clark et al., 2018), (3) the
Boolq (Clark et al., 2019), (4) the WinoGrande (Sakaguchi
et al., 2021), (5) the PIQA (Bisk et al., 2020), (6) the SIQA
(Sap et al., 2019), and (7) the OBQA (Mihaylov et al., 2018)

Since concurrently parallelizing LoRA in both the atten-
tion and FFN layers would double the parameter count, we
set the LORA parameter 7 in our method to 4, half of the
baseline, and initialize the learnable parameters o to 10.
We compare our method and conduct comparisons with the
LoRA (Hu et al., 2021), Adapter (Houlsby et al., 2019) and

Prefix (Li & Liang, 2021) methods in our experiments.

3.2. Experimental Results

We present the experimental results on mathematical rea-
soning and commonsense inference tasks in Tables 1 and 2,
respectively. It is evident that our method achieves better
performance on almost all datasets. Excluding the poor
performance of the GPT-J model using the prefix method in
commonsense inference tasks, compared with other meth-
ods, our approach can achieve up to a 38% improvement
in mathematical reasoning tasks and up to a 50% improve-
ment in commonsense inference tasks. On LLaMA-13b
the number of trainable parameters is less than that of the
baseline, leading to a slight decrease in commonsence infer-
ence datasets’ performance. However, this does not affect
our method’s ability to achieve better results on LLaMA-
7b and GPT-J. Although the trainable parameter count for
the adapter method is larger than that of our method, our
method still exhibits superior performance. The Appendix
C.1 provides a low-resource performance of reducing the
size of r in LoORA. These experiments collectively demon-
strate the effectiveness of our method across various tasks.
Our method has fewer parameters in all LLaMA models.
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Settings SVAMP AQuA AddSub MultiA SingleEQ GSMSK Avg.

InterLoRA 60.50 2549  179.75 91.82 85.29 25.38 61.37
InterLoRA* 54.50 31.37 7595 88.18 87.25 25.76 60.50
w/o gate on atten  58.50 13.73  74.68 93.64 87.25 29.17 59.49
w/o gate on FFN  55.50 2941  74.68 90.00 86.27 26.14 60.33

Table 3. Ablation experiments on the mathematical reasoning dataset, where ’InterLoRA*’ represents replacing the ReL.U activation
function in the method with sigmoid and removing the trainable parameter c.

Settings ARC-¢c ARC-e Boolgq WinoG PIQA SIQA OBQA Avg.

InterLoRA 61.95 79.59 63.49  63.46 71.55 69.60 74.40 69.15
InterLoRA* 58.28 78.41 63.27 61.25 76.06 6694 69.20 67.63
w/o gate on atten  59.22 78.32 64.74 63.61 74.54 6735 73.00 68.68
w/o gate on FFN  59.90 78.70 6297 62.98 75.52  68.42 72.00 68.64

Table 4. Ablation experiments on the commonsense inference dataset. Experiments are consistent with Table 3.

3.3. Analysis of the Role of Each W Matrix

Using LLaMA-7b with similar trainable parameter settings,
experiments are conducted on two tasks. We compare the
original LoORA method with variations where LoRA is indi-
vidually applied to the Wigwn, Wgate, and Wy, matrices in
FFN, as well as the separate application of these matrices
in FFN and attention sections using our joint method. As
shown in Figure 2, compared to the original LoRA method,
fine-tuning only the FFN part matrices does not lead to sig-
nificant improvement. In joint experiments, applying LoRA
to Wgown 1n the FEN demonstrates higher improvement and
better performance,and this configuration demonstrates its
superiority across various experiments in our study.

The average accuracy
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Figure 2. The average accuracy on two tasks with a similar train-
able parameter count. On the left side of the same color are results
with only individual matrix in FFN, and on the right side, shaded,
are results from our joint fine-tuning method applied to both the
attention and FFN section

3.4. Ablation Experiments

To verify the effectiveness of each component in our method,
we conduct ablation experiments using LLaMA-7b. We sep-

arately remove the gate mechanisms in the attention and
FFN sections and both of them. Additionally, for a more
granular validation of the role of the ReLU activation func-
tion in controlling the memory units during FFN fine-tuning,
we replace this activation function with the same sigmoid
as in the attention section, and remove the trainable parame-
ter a. The experimental results are shown in Tables 3 and
4. Tt can be seen that simply stacking LoRA in the atten-
tion and FFN sections does not achieve satisfactory results.
Both components are indispensable, jointly allowing the
model to simultaneously excel across multiple tasks and
achieve the best overall performance. Although not using
the ReLU activation mechanism can still yield good perfor-
mance in mathematical reasoning tasks, there is a significant
decline in performance on commonsense inference tasks. As
commonsense inference tasks require more model-specific
memory, this also illustrates the superiority of controlling
fine-tuning in FFN neurons.

4. Conclusion

In this paper, we have conducted a thorough investigation
and optimization of the LoORA method, proposing an en-
hanced InterLoRA. By concurrently applying LoRA to both
the attention and FFN sections of the transformer architec-
ture, we have leveraged the mechanistic interpretability of
the model, incorporating distinct feature adaptation mecha-
nisms tailored to each component. Through extensive exper-
iments across various tasks, we have not only validated the
effectiveness of our proposed method but also scrutinized
the performance of the LoRA method on the weight ma-
trices of the FFN layer and analyzed the roles of different
InterLoRA components. Collectively, these experiments
demonstrate that InterLoRA significantly extends the ca-
pabilities of the original LoRA method, highlighting the
potential of PEFT strategies that are grounded in a deep
understanding of transformer mechanistic interpretability.
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A. Experimental Details

Data Usage: The datasets and hyperparameter settings in this paper are mainly referenced from open-source code (Hu
et al., 2023). For the mathematical reasoning tasks, all six datasets are combined by randomly selecting 80% of each,
resulting in a total of 3260 data points for training. Testing is then performed on the remaining data for each dataset. For
commonsense inference tasks, considring the ressource, 15k version of this work(Hu et al., 2023) are used for training, and
testing is conducted on the seven datasets mentioned in the main text. During training and testing, a prompt is added to the
data: *Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.’

Hyperparameter Settings: The learning rate for both our method and the original LoRA method is set to 3e-4, and the
regularization parameter A in Eq 4 of the main text is set to 2,and in figure2,3 and 5 the value of r for original LoRA was set
to 8 following the reference methods(Hu et al., 2023), while in the main experiment, the value of r for LORA in comparison
was set to 10 to demonstrate that the baseline method still could not achieve comparable results even with a higher parameter
count. For the prefix method, the learning rate is set to 3e-2, and the length of virtual tokens is set to 30. The bottleneck size
for the adapter method is set to 256. To ensure comparability and reproducibility of experiments, the random seed for all
experiments is set to 42 and all training epochs are set to 3.

Model Usage: In this paper, we utilize three large models: LLaMA-7b/13b (Touvron et al., 2023), and GPT-J-6b (Wang
& Komatsuzaki, 2021). All training and testing experiments are conducted using either a single Nvidia A40 or Nvidia
RTX4090.

B. Related Works

With the widespread adoption of large models, methods for fine-tuning entire models for downstream tasks become
increasingly expensive. The PEFT methods have gradually played a significant role and are becoming widely applied.
The most commonly used methods include Adapter (Houlsby et al., 2019), Prefix (Li & Liang, 2021), and LoRA (Hu
et al., 2021), all of which involve freezing pre-trained parameters in the transformer structure and introducing a portion
of trainable parameters. In the Adapter method, a trainable module is serially concatenated to both the attention and FFN
parts of the model. The Prefix tuning method introduces a certain length of virtual tokens before multi-head attention for
fine-tuning. The LoRA method, on the other hand, parallelly adds two trainable matrices to the attention part for fine-tuning
in downstream tasks.

Recently, adaLoRA (Zhang et al., 2023) simultaneously placed LoRA in both the attention and FFN sections, dynamically
allocating parameter budgets to the weight matrices based on importance scores, and validated its performance on language
understanding tasks. QLoRA (Dettmers et al., 2023) fine-tuned quantized models to 4 bits without compromising any
performance. Unlike the privoir methods, our commitment lies in effectively integrating LoRA fine-tuning in both attention
and FFN parts with the principles of transformer mechanistic interpretability, aiming to enhance the performance of PEFT.
Besides, in contrast to the majority of approaches that experiment with smaller models on understanding tasks, we conduct
experiments using zero-shot learning on LLMs.

C. Supplementary Experiments
C.1. Analysis under Low Resource Conditions

To investigate the applicability of our model under various low-resource scenarios, we reduce the parameter count using
LLaMA-7b and simultaneously reduce the r values for both LoRA and our method by almost 2 times. The experimental
results are shown in Table 5, indicating that even in these low resource conditions, our method still performs well.

C.2. Analysis of Fine-Tuning Other Matrices Combination

We also compare the fine-tuning of all W matrices in the FFN part as well as only fine-tuning Waown, Wyate, and Wy,
matrices using the LoORA method simultaneously with the LLaMA-7b model. The experimental method is the same as
described in Section 3.3 of the main text, comparing the LoORA method with the InterLoRA method proposed in this paper
under similar parameter conditions. The experimental results are shown in Figure 3. Although other methods have achieved
decent performance, the proposed InterLoRA method still achieves the best performance.
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Figure 3. The average accuracy on two tasks with a similar trainable parameter count. On the left side of the same pink color are results
with only individual matrix in FFN, and on the right side, shaded, are results from our joint fine-tuning method applied to both the
attention and FFN sections

Settings SVAMP AQuA AddSub MultiA SingleEQ GSMS8K Avg.
InterLoRA- 54.50 19.61  78.48 90.00 83.33 26.52 58.74
LoRA(r=5)  51.50 23,53 7342 90.91 87.25 23.48 58.35

Table 5. Comparative experiments with reduced parameter count on the mathematics datasets, where - denotes reducing the rank r by half

D. Scientific Artifacts

The datasets we use include the mathematical reasoning dataset SVAMP (Patel et al., 2021), AQuA (Ling et al., 2017),
AddSub (Hosseini et al., 2014), MultiArith (Roy & Roth, 2016), the SingleEQ (Koncel-Kedziorski et al., 2015), GSM8K
(Cobbe et al., 2021), and the commonsense inference dataset ARC (Clark et al., 2018), Boolq (Clark et al., 2019),
WinoGrande (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and OBQA (Mihaylov et al., 2018).
The pre-trained models we utilize are LLaMA-7b/13b (Touvron et al., 2023), and gpt-j-6b (Wang & Komatsuzaki, 2021).
All the aforementioned datasets and models are open-source, and our work is solely for scientific research purposes, aligning
with their original intent.



