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Figure 1: Comparison between single-view HMR datasets and our proposed MVMP-HMR dataset.
The left shows 1mages from GTA-Human (Cai et al.|[2024b), EHF (Pavlakos et al, 2019), AGORA
, and BEDLAM (Black et al.|[2023) datasets from top to bottom. Our multiview
images and ground truth meshes are shown on the right, containing larger scenes and more persons.
The red box indicates areas with severe occlusions.
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ABSTRACT

Human mesh recovery (HMR) refers to recovering the human 3D meshes from
images. Most existing HMR tasks focus on multi-person from a single image
or a single person from multiple views. And the evaluation benchmarks used
in these methods usually contain quite small numbers of humans or under small
scenes, which is unreliable for real applications with severe occlusions. Thus,
we present Multiview Multi-Person HMR (MVMP-HMR), a multiview model for
multi-person whole-body human mesh recovery from multi-view images under
occluded scenes. Specifically, MVMP-HMR first fuses multiple views to obtain
a 3D feature volume for all persons, and then the pelvis joint from a 3D pose
estimation net is utilized to acquire the human query of each person from the
3D feature volume. Finally, the human queries are cross-attentioned with the
3D feature volume and integrated to decode each person’s 3D meshes. Besides,
two novel losses are put forward to further enhance the model performance: the
orientation loss and the 3D joint density loss, dealing with the orientation and pose
ambiguities in the mesh predictions under the occluded scenes. Furthermore, a
large synthetic MVMP-HMR dataset is proposed, which consists of 15 multiview
scenes with up to 50 camera views and 30 persons. Experiments demonstrate that
the existing state-of-the-art (SOTA) HMR methods cannot perform well on the
proposed large MVMP-HMR benchmark, and the proposed MVMP-HMR model’s
advantages over existing SOTAs under large scenes with severe occlusions.
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1 INTRODUCTION

Human mesh recovery (HMR) predicts the human 3D meshes from images or image crops, which
has important applications in autonomous driving, digital games, or AR/VR, etc. Most existing HMR
methods focus on recovering human meshes for scenes with a quite limited people number (usually
< 15 in total), either with a single person from single images or multi-crops, or multi-persons from
single images. Besides, the evaluation benchmarks used in the latest methods are usually under
small scenes, with few occlusions (see Figure[I]left). This is not practical for real-world applications
where there might be massive crowds in large scenes with severe occlusions. Thus, the existing
HMR methods have not been evaluated under more complicated conditions with both larger human
numbers and more severe occlusions, whose performance is not ensured.

To solve the problem and extend the HMR task to more complicated scenes, in this paper, we present
MVMP-HMR (as in Figure[2), a novel model for multi-person whole-body human mesh recovery
from multi-view images, which fuses multiview clues to handle the severe occlusions in large scenes
with more humans. Specifically, MVMP-HMR extracts single-view features and projects them to the
3D space, and then the projected multi-view features are averaged to obtain a complete 3D feature
volume for the whole scene. Besides, a 3D pose estimation branch is adopted to predict the pelvis
joint location of each person, and the predicted pelvis joint is used to acquire the human queries by
sampling at the locations from the previously fused 3D feature volume. Then the human queries and
the 3D feature volume are both fed into the human transformer block (HTB) where both are fused via
cross-attention layers. Finally, the output of HTB is decoded to regress the SMPL-X parameters.

To deal with the human orientation and pose ambiguities in the predicted SMPL-X parameters under
the occluded scenes, in addition to common parameter regression losses used in single-view HMR
SOTA (Baradel et al 2024), we put forward two novel losses: the orientation loss and the 3D
joint density loss. The orientation loss L is the supervision of the human mesh’s orientation
in the real-world coordinates. The 3D joint density loss Lgey 34 supervises the 3D joints in the
predicted human mesh via 3D joint density maps instead of direct joint coordinate regression. Both
provide stronger supervision in the 3D space and handle the orientation and pose ambiguities in
the MVMP-HMR task better, further enhancing the model performance (see results in Sec. {.4).
Furthermore, we also propose a large synthetic multiview multi-person HMR dataset that contains
more people, more camera views, and scene variations (see Table [I] for reference) compared to
existing datasets.

In summary, the contributions of the paper are:

* As far as we know, this is the first study on the multiview multi-person HMR task under
large scenes with severe occlusions. No existing research has focused on the issue in the
HMR area. Besides, we propose a large MVMP-HMR dataset for studying the topic.

* We propose the MVMP-HMR model, which is the first multiview multi-person HMR model
for reconstructing multiple persons with multiple views under large scenes. In addition, we
propose two novel losses for better MVMP-HMR performance.

* Experiments demonstrate that existing methods cannot perform well under the new multiview
multi-person HMR benchmark with severe occlusions, and the proposed MVMP-HMR
method outperforms both existing single-view HMR state-of-the-arts (SOTAs) and 3D HPE
with multi-view settings.

2 RELATED WORK

Single-person HMR. Human mesh recovery (HMR) predicts the human 3D meshes from images.
The early HMR methods were based on optimization, and they were easily stuck at local minima
(Hasler et al.||2010; [Lin et al., 2023} [Moon et al., 2022} |Pavlakos et al.}|2019)). Instead of estimating
the human meshes as in 3D reconstruction, (Kanazawa et al., 2018) proposed to predict SMPL
parameters of the shape and 3D joint angles to represent human meshes from a cropped image.
SMPLIify-X (Pavlakos et al.,|2019) followed SMPLIify to estimate the 2D joints and optimize model
parameters to fit them, and then improved over SMPLify with a new DNN trained on a larger dataset.
In addition, many regression-based methods were proposed (Cai et al.,|2024a; |Choutas et al., 2020;
Feng et al.| 2021;|Moon et al., [2022; Rong et al., [2021} Zhang et al.| 2023 |Zhou et al.,[2021)), which
is focused on single-person estimation. Furthermore, many methods tried to utilize multi-crops to
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Table 1: The statistics of the proposed MVMP-HMR dataset, Single-view HMR, and 3D HPE datasets.
MVMP-HMR dataset contains more persons, more scenes with multiviews, and more complexities.

Task Dataset Area SceneNum Subjects Occlusion Views Frames GT Format
GTA-Human - - 1 Simple 1 1.4M SMPL, J3D
Sinale-view HMR EHF - - 1 Simple 1 100 SMPLX, J3D
gle-vie AGORA - - 5~15 Medium 1 17K SMPLX, SMPL, Mask
BEDLAM - - 1~10  Medium 1 380K SMPLX
Human3.6M 4mx3m 7 1 Simple 4 3.6M SMPL, J3D, Depth
3D HPE 3DPW - - 1~2 Simple 1 51K SMPL
CMU Panoptic 5.49mx4.15m 1 3~8 Medium 65 1.5M J3D, Depth
MVMP-HMR Ours 30mx30m 15 10~30  Severe 50 63K SMPLX, J3D, Mask, Depth

enhance the HMR performance (Choutas et al., 2020; [Feng et al.| 2021} [Moon et al., 2022} |Lin et al.}
2023 |Cai et al., 2023)). In summary, single-person HMR is limited to images with few persons, making
it impractical for real-world scenarios with multiple people, larger scenes, and severe occlusion.

Multi-person HMR. Compared to single-person HMR, multi-person HMR (Choi et al., 2022a};
Goel et al.| 2023} [Kolotouros et al., 2019} |Q1u et al.| 2022} Zhang et al.,2021a) needs to predict the
human meshes of multiple persons in the images. Multi-person HMR usually adopts a two-stage
procedure: detect all humans in the image first (He et al., 2017 |Liu et al.l |2016; Redmon et al.,
2016)), and then perform HMR (Kim et al., 2023} [Ma et al.| 2023 |Yoshiyasu, 2023} Zheng et al.,
2023)) for each detected person with crops. The two-stage process is not end-to-end and the occlusion
in images may hurt the human detection accuracy, thus limiting the whole pipeline’s performance.
In contrast, single-stage methods have also been proposed (Sun et al.| 2021} |Qiu et al., [2023f |Sun
et al.| 2022). Recent methods Multi-HMR (Baradel et al.,|2024) and AiOS (Sun et al.| 2024} adopted
the DETR architecture for multi-person human mesh recovery. Multi-HMR (Baradel et al., [2024)
detects 2D people locations using features of a ViT backbone and predicts their whole-body pose,
shape, and 3D location using a cross-attention module. AiOS (Sun et al., 2024) performs human
localization and SMPL-X estimation in a progressive manner, which consists of body localization,
body refinement, and a whole-body refinement stage to regress SMPL-X parameters. Even though
existing multi-person HMR methods can accurately estimate human meshes for several persons in
single images, they are only evaluated on small scenes containing a small number of persons, eg,
< 15. Tt is not clear whether they can be applied to scenes with larger sizes and severe occlusions.
Thus, we propose MVMP-HMR, which fuses multiple camera views to deal with severe occlusions.
As far as we know, this is the first study for multi-person HMR with multiviews, and we also propose
a large synthetic MVMP-HMR dataset, which shall advance the HMR task to more complicated
conditions.

Single-view HMR and 3D HPE Datasets. While numerous datasets have been proposed for
Human Mesh Recovery (HMR) and other 3D human tasks (eg., 3D Human Pose Estimation (HPE)),
they have distinct human number, area size, and environmental complexity limitations compared
with our dataset, as shown in Table Single-view HMR Datasets like GTA-Human (Cai et al.,
2024b), AGORA (Patel et al., 2021, and BEDLAM (Black et al.| 2023) all employ synthetic data
generation through game engines, and EHF (Pavlakos et al.| |2019) is collected in the laboratory.
Though providing SMPL-family parametric labels, they fundamentally suffer from depth ambiguity
in monocular capture and lack real-world scene complexity. The number of people appearing in
their scene is quite small, mostly just one person or at most 15 people in the scene, which is not
practical in the real outdoors. Besides, since their scenes are quite simple with no other obstacles in
the environment, the occlusion levels of the scenes are quite low. Therefore, existing HMR datasets
are mainly based on single-view images, which are not applicable to more complicated scenes
with large sizes and severe occlusions. Compared to Single-view HMR datasets, our MVMP-HMR
dataset provides a greater variety of views and a larger number of people. So, MVMP-HMR is more
applicable in severe occlusion scenes.

3D HPE Datasets include Human3.6M (Ionescu et al., 2013)), 3DPW (Von Marcard et al., 2018)),
and CMU Panoptic (Joo et al.|2015a). While they capture real-world data through camera arrays
and mocap systems, they still have three key limitations: 1) Limited human count: Typically each
scene contains <10 subjects, failing to represent crowded real-world environments; 2) Constrained
scene sizes and type: They are all captured in studio environments or small indoor spaces ( leq50
m?), lacking large-scale outdoor variations, their background type is limited in the indoor scene, and
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Figure 2: The pipeline of our proposed MVMP-HMR method, which consists of 3 main steps:
Single-view Feature Extraction, Multi-view Feature Projection and Fusion, and 3D Decoding. We
first extract single-view features with a ViT backbone, and then the single-view features are projected
to the 3D space and averaged to obtain the 3D feature volume of the whole scene. Finally, with the
joints outputted from a 3D pose estimation branch (at the bottom), we extract human queries for
each person and feed them into a human transformer block (HTB) for 3D decoding and SMPL-X
parameters prediction. In addition to losses previously used in single-view HMR SOTAs, we also
put forward two novel losses, eg., orientation loss Lo and 3D joint density 10ss Lgey, 34, for better
orientation and pose accuracy in meshes.

they cannot cover the light or time change outdoors; 3) Simplistic occlusion patterns: Due to the
limited number of people, they primarily contain light inter-person occlusion. 3D HPE datasets have
a fixed environment setting, while our MVMP-HMR dataset can simulate changes in lighting and
provide more expansive scenes. MVMP-HMR also offers more extensive annotation than 3D HPE
Datasets. These strengths make our dataset more representative of real-world scenarios and better
suited for practical applications.

3  MULTIVIEW MULTI-PERSON HMR (MVMP-HMR)

We now introduce our multiview multi-person whole-body human mesh recovery task. Given
multiview input RGB images I = {I,I5,...,I¢} (C is the view number), our model (denoted
as f), directly predicts a group of N centered whole body SMPL-X parameters such as pose 6 €
RN*53x3 “shape f € RNV>*1x10 and expression a € RV*1X10 along with their associated 3D
spatial translation T,,;; € R *1%3 in the world coordinate system. It outputs expressive 3D human
meshes M = SMPL-X(0, 3, v, T 1q) € RV X10475%3;

Compared to single-view human mesh recovery (Single-view HMR), MVMP-HMR task obtains
human meshes with absolute locations in 3D world coordinates, rather than relative positions in the
camera-view coordinates, because single-view prediction has depth, orientation, pose, and occlusion
ambiguities. Thus, MVMP-HMR utilizes multiple views for better multi-view fusion and multi-
person mesh recovery to deal with these ambiguities and severe occlusions in practical applications.
We require the multiple cameras to be calibrated and synchronized in the setting. As in Figure[2] the
proposed MVMP-HMR model consists of three modules: Single-view Feature Extraction, Multi-view
Feature Projection and Fusion, and 3D Decoding, whose details are as below.

3.1 SINGLE-VIEW FEATURE EXTRACTION

Our MVMP-HMR framework employs the Vision Transformer-Large (ViT-L) (Dosovitskiy et al.,
2021)) architecture as the backbone single-view feature extractor: F; = ViT-L(/, z‘)z‘e{l,.i.,c}’ where
¢ denotes the view id, F; denotes the feature map of view I;, and C is the number of views. To
validate backbone selection, we conduct comprehensive experiments comparing various transformer-
based architectures, with detailed ablation studies presented in the Appendix [A] The ViT-L model
demonstrates superior performance in capturing global contextual features critical for multi-view
fusion. Thus, we use ViT-L as the feature extractor.
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In parallel with the ViT-L backbone, we use an HRNet (Sun et al.| [2019) for 2D pose heatmap
predictions H;.After the single-view feature extraction, we obtain feature maps { F; } and heatmaps
{H;} of all views. They are forwarded to the next step for fusion.

3.2 MULTI-VIEW FEATURE PROJECTION AND FUSION

The extracted single-view features are projected to a constructed 3D volume for multiview feature
fusion. The constructed 3D volume size is 300 x 300 x 20, each voxel dimension representing
100mm in the physical 3D world. So the volume’s spatial dimensions are 30m x 30m X 2m in
the real world. In the feature projection, we employ perspective geometries to map each 3D voxel
coordinate p,, = (7,9, 2) to 2D image coordinates of multiple views: p = KO RO |t®)]p,,,
where intrinsic K and extrinsic [R | t] matrices are provided in the MVMP-HMR dataset, and 4
denotes the camera view index. We project each view’s feature map F; into a 3D volume through
this perspective-aware coordinate projection, and each view’s 3D feature volume is denoted as F';.
Then, we fuse the projected multi-view feature volumes via a mean operation, and the fusion result is
denoted as Fryse.

2D heatmaps H; are projected into a 3D volume, then fed into a modified RootNet (Tu et al.,2020) to
generate 3D probability heatmaps H (encoding pelvis joint likelihoods in world coordinates). Fusion
of these heatmaps yields the coarse 3D grid location Pgq of the primary (pelvis) joint.

3.3 3D DECODING

The fused 3D feature volume Fg,e 1s decoded

with a Human Transformer Block (HTB) to Context K/V: 3D Feature Volume
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Figure 3: The details of the HTB: human queries
are updated first via the self-attention layer (SA),
the cross-attention layer (CA) integrated with flat-
tened 3D features, and the FeedForward (FFN)
Figure 3| shows the details of the Human Trans- layer, and then decoded via MLPs for SMPL-X
former Block. The full flattened vectors are used parameter regression.

as cross-attention keys K and values V. The hu-

man queries () are updated with a stack of D HTB. Then, three MLPs are introduced to regress each
human’s SMPL-X parameters 6, 3, and a with the updated human queries Q’.

Human queries () are also fed into a 3D offset prediction net to estimate the offset Azy of humans.
Combining the primary joint location Pgq in the 3D heapmap and As,, we can get the final location
of the human’s primary location, denoted as translation T,;q = P3q + Asy. Finally, we input
the SMPL-X parameters and the translation T,,;4 to the SMPL-X layer (Pavlakos et al., 2019) for
acquiring humans’ mesh vertices and joints locations in world and camera view coordinates.

3.4 TRAINING LoOSS

Overall, we adopt five losses to train the proposed MVMP-HMR model. The first three types of losses
are similar as in the prior work (Baradel et al.,|2024)): the detection loss for localizing the human
queries, the SMPL-X parameter regression loss, and the mesh loss for supervising 3D joints and
vertices coordinate regression in human mesh format. Besides, since our task is in the 3D coordinates
system, with orientation and pose ambiguities under the occluded scenes, we propose two novel
losses to further enhance the model performance: the orientation loss for better orientation prediction
instead of the direct SMPL-X parameters predictions, and the 3D joint density loss supervising the
predicted 3D joints from the human meshes in 3D density format instead of direct 3D joint coordinate
regressing. The details of each loss are as follows.



Under review as a conference paper at ICLR 2026

Detection loss. With the help of the heatmap prediction branch HRNet (Sun et al.,[2019), we can
get the 3D heatmap H of the primary joint of each human in the scene. Then we construct a 3D
volume to present the occupancy of people as H with GT joints location. We also obtained the 3D
offset Asy in the grid to get a more refined coordinate. So we have the detection loss L£p as follows:
Lp=|H- ﬁ| |2 + |Aszq — A3d|. where H and A, are the ground truth 3D heatmap and location
offset of the joints, respectively.

Parameter regression loss. All SMPL-X parameters predicted by the model are computed with Ly
regression losses. We integrate the body model parameters (pose 6, shape 3, expression «) into loss

function as follows: £, = | — 8| + |8 — | + |a — @/, where 6, 3, and & are the GT parameters.

Mesh loss. After predicting SMPL-X parameters, we can construct human meshes from a SMPL-X
layer. Then we extract 3D joints J3p and vertices V3p from the human meshes and project these 3D
points onto the 2D multi-image planes. The mesh loss supervises the 3D/2D vertices and joints:

Lsp = |Jsp — Jap| + |Vap — Vap|, Lop =|mi(Jap) —mi(Jap) |+ (m:i(Vap) —m:(Vap)|, (1)

where j3 p and Vg, p are the ground truth 3D joints and vertices, 7; is the camera projection operator,
and 7;(J3p) and 7;(Vsp) refer to the ground truth 2D joints and vertices projected from the 3D

ground truth. And the mesh loss L5, combines the two losses: Lesn = M1 L3p + % Zil Lop.
Loss weight \; adjusts the weight for the two loss terms and we use a fixed value A\; = 100 in all
experiments. In addition to these losses, we propose two novel losses:

Orientation loss. The global orientation (a low-
dimensional vector) in SMPL-X parameters cannot ef-
fectively supervise the orientation of the generated human
mesh. Thus, we define the orientation of the human mesh

Head:

through the joint points for better human mesh orientation Spine

supervision (see Figure E]) Specifically, a human’s left Pelvis

hip thw and right hip Jrth can prov1de the direction of / R —
the x-axis, and a human’s pelvis Jpelms and spine Jsp”w Orientation

can offer the direction of the y-axis. We use the cross Right-hip Left-hip

product of the x-axis vector and the y-axis vector to ob-
tain the ground truth orientation O of the human body:

O = (Jinip = Jrnip) X (Jspine — Jpetvis). In this way, W Figure 4: The orientation (green arrow)
compute the orientation loss Lo between the prediction  jefined from human joints.

joints O and ground-truth joints Oas: Lo = |O — @|

3D joint density loss. We use 3D Gaussian kernels to generate a density map of 3D joints from GT

jg p and prediction J3p. Unlike the direct L; loss of 3D joint locations (as in mesh loss), we use
mean square error loss (MSE) for the 3D density map regression:

R 2
Laenjza = |Gau(J3p) — Gau(Jszp)|l,, 2

where Gau stands for the Gaussian smoothing step, which generates a 3D Gaussian probability map
centered around the joint locations. The 3D joint density loss Lgen ;34 is conducted elemental-wisely
in 3D space and provides stronger supervision for the pose of the human mesh, handling the pose
ambiguities better in the MVMP HMR task under occlusions.

In total, the whole training loss is: £ = Lp + Ao Lp 4+ Lynesn + A3Lo + AaLgenjza. We set Ag = 10,
A3 = 5 and A4 = 1 in our experiments.

4 EXPERIMENTS AND RESULTS

4.1 DATASET

We perform the experiments on 3 datasets: MVMP-HMR collected by us, Panoptic (Joo et al.,[2015b)),
and Human3.6M (lonescu et al.,|2013). The collection process of MVMP-HMR is as follows.

Dataset Generation. To study multiview multi-person human mesh recovery (HMR), we introduce
MVMP-HMR, a large-scale dataset generated using the virtual game platform GTA-V. The dataset
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Table 2: The result comparison on our MVMP-HMR, Human3.6M and Panoptic dataset. Rows
1-6 are single-view HMR SOTAs with multi-view fusion techniques, and Rows 7-8 are 3D pose
estimation methods modified for SMPL-X regression.

Dataset MVMR-HMR Human3.6M Panoptic
Method MPJPE | PVE | PA-PVE || MPJPE | PVE | PA-PVE || MPJPE | PVE | PA-PVE |
3DCrowdNet (Dist) 2212 2843 722 - - - - - -
AiOS (Dist) 873.6 6424 1105 156.8 1334 789 730.6 5509 1958
TokenHMR (Dist) 632.3 661.3 1915 1124 1225 589 6163 598.0 1944
Multi-HMR (Dist) 841.0 6514 710 98.5 973 46.3 568.7 4534 195.1
Multi-HMR (Avg) 7525 753.6  61.7 1103 99.8 52.7 5469 509.8 220.8
Multi-HMR (Fusion)| 602.4 529.5 111.4 129.7 122.8 654 5233 423.1 1926
VoxelSMPLX (Only)| 2254 262.0 240.6 - - - - - -
VoxelSMPLX (Joint)| 288.6 427.4 317.1 - - - - - -
MVMP-HMR (Ours)| 177.5 129.2  51.8 93.5 921 44.3 278.6 2345 953

features diverse everyday scenes (e.g., basketball courts, factories, streets) with varying numbers of
people (10-30 per scene), complex occlusions, and up to 50 camera views per scene. Using GTA-
VAPIs, we extract 98 3D body keypoints, depth maps, and semantic masks for each scene. In total,
MVMP-HMR contains 15 complex scenes, making it the first large-scale multiview multi-person
HMR dataset, designed to advance HMR research in challenging, real-world-like environments.

Dataset Annotation. Since GTA-V APIs do not provide 3D mesh labels, we adopt an HMR method
(Baradel et al., 2024) for SMPL-X annotation in 3D world coordinates. To obtain accurate SMPL-X
parameters, we first apply (Baradel et al.,[2024) on all views of a frame to obtain SMPL-X labels in
the camera coordinates of all people. Then, for each person, we match the ground-truth 2D keypoints
provided in GTA-V and the ones extracted from the predicted SMPL-X labels of all views. The
SMPL-X label with the lowest matching error is assigned as the ground truth of the corresponding
person. In contrast to the single-view HMR task, the MVMP-HMR task estimates the human meshes
in 3D world coordinates. Thus, we transform these ‘predicted’ ground-truth human meshes to world
coordinates via a rotation and translation matrix.

From the single-view HMR prediction, we obtain global orientation R, and translation 7., to
decide the directions and locations of the human mesh in camera coordinates. We then compute R, T'
between 3D joint points shared in predicted SMPL-X mesh format (camera coordinates) and GTA-V

(world coordinates). Then ground truth (GT) global orientation parameter Rffl 4 and translation

parameter Tugj 4 are formulated as: R;‘jfl 4= R-Rcam and Tf’vg 4 = Team +T. The SMPLX annotation
acquisition for the real dataset Panoptic (Joo et al., [2015b) is consistent with the above content.
SMPLX label in Human3.6m are obtained from Choi et al.| (2022b)

4.2 EXPERIMENT SETTINGS

Implementation. In experiments, we divide the 15 scenes in the dataset according to the distribution
of people numbers, and the ratio of the training/testing set is 2:1. We use VIT-L (Dosovitskiy et al.|
2021) as our model feature extraction backbone. We pre-train the posenet (Sun et al.| [2019) and
rootnet (Tu et al.| 2020) for 60 epochs on our dataset for detection. The input images are resized
to 1288 x 1288 with zero paddings. We adopt Adam as the optimizer with 5e-5 learning rate. The
training epoch is 50, and the training is conducted on 2 RTX6000 Ada GPUs, with a batch size of 1.

Comparison methods. We compare our MVMP-HMR method with multi-person HMR SOTAs
with multiview settings and 3D HPE method for HMR tasks. Single-view HMR SOTAs Multi-HMR
(Baradel et al., 2024)), 3DCrowdNet (Choi et al.,|2022b), AiOS (Sun et al., 2024)), and TokenHMR
(Dwivedi et al |, 2024) first conduct predictions of each view, then use a multi-view matching algorithm
to match the prediction results of each person under multiple views, and fuse the prediction results
of each person in the scene under multiple views into the final result. The fusion strategy includes
selecting the closest one as the prediction result based on the distance from the camera (denoted as
‘Dist’), using an average strategy to fuse the results of each view prediction (denoted as ‘Avg’), and
using a sub-network to predict the weight value corresponding to each view prediction to fuse the
final result (denoted as ‘Fusion’). We also compare with a multi-view 3D pose estimation method
VoxelPose (Tu et al., 2020). We sample human queries from the feature volume with the predicted
joint locations of VoxelPose (Tu et al., | 2020) and then estimate the SMPL-X parameters from the
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Figure 5: The top row is the multiview input, and each subsequent row is the 3D predictions of the
methods projected to view plane. Red boxes indicate that our method can better handle occlusions
than comparison methods. Blue boxes indicate our method achieves better posture than comparisons.

human queries with regression MLPs. There are two variants: use the pretrained VoxelPose and only
train the regression MLPs, denoted ‘VoxelSMPLX (Only)’; or jointly train VoxelPose and MLPs,
denoted as ‘VoxelSMPLX (Joint)’.

Table 3: Loss term ablation study. The first row does not use any new loss, the second row only adds
the orientation loss, the third row only adds the 3D joint density loss, and the last row adds both new
losses (our method).

Loss | MPIPE| PVE| PA-PVE]
Lpo+XoLp+Lomesh 217.1 161.7 120.4
+5.0Lo 187.9 144.8 89.0
+1.0Lgen;j34d 180.7 132.4 50.2
+Both (Ours) 177.5 129.2 51.8

4.3 MVMP HMR RESULTS

We comprehensively evaluate our MVMP-HMR model against state-of-the-art approaches on three
benchmarks: MVMP-HMR (synthetic), Human3.6M, and CMU Panoptic Dataset in Table[2] The
comparison includes six single-view HMR baselines enhanced with multi-view fusion techniques,
such as 3DCrowdNet (Dist), AiOS (Dist), TokenHMR (Dist), Multi-HMR (Dist), Multi-HMR (Avg),
and Multi-HMR (Fusion), and a 3D human pose estimation (3D HPE) method added with SMPL-
X regression net, eg., Voxel SMPLX (Only) and VoxelSMPLX (Joint). According to Table |2| we
conclude that the proposed MVMP-HMR model achieves much better results than all comparisons.
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Table 4: Feature fusion method ablation study. Table 5: Primary joint ablation study.
Fusion Method ‘ MPIPE| PVE| PA-PVE] Primary Joint ‘ MPIPE| PVE| PA-PVE]
Deformable 261.3 207.2 80.6 Head 280.6 172.3 68.2
Max 2452 193.5 74.8 Spine 190.2 146.9 86.1
Mean (Ours) 177.5 129.2 51.8 Pelvis (Ours) 177.5 129.2 51.8

The reason is that these comparison methods are primarily designed for single-view HMR or 3D
HPE in simple scenes with only a few humans. The former cannot effectively fuse multiview clues to
handle occlusions, while the latter cannot accurately estimate human meshes solely from 3D poses,
lacking useful shape information. This demonstrates the advantages of the proposed MVMP-HMR
model in handling severe occlusions and human orientation or pose ambiguities in complex scenes.

As visualized in Figure [5] our proposed method outperforms all comparison methods, in terms
of predicting completeness (no person is missed) and pose accuracy. The red boxes indicate our
method can handle occlusions well and estimate meshes accurately for occluded persons, while all
comparisons neglect the occluded persons or produce wrong shapes. The blue boxes indicate our
method achieves more natural and realistic human poses, with better limb positioning and alignment
compared to comparison methods that produce unrealistic limb orientations and poses (such as flying
pose in the first row, fourth column of 3DCrowdNet (Dist), hugging posture in the six row, third
column of Multi-HMR (Fusion), or Voxel SMPLX).

4.4 ABLATION STUDY

Loss term ablation study. We conduct ablation studies on two novel losses—orientation Loss
Lo and 3D joint density Loss Lgey,j3q4 —by incorporating them individually or together with three
standard single-view HMR losses. As shown in Table[3] both new losses improve the performance
of our MVMP-HMR model, and using both together achieves the best results, demonstrating their
effectiveness in reducing orientation and pose ambiguities in multiview multi-person HMR. Notably,
Lgenj3q contributes more significantly, providing stronger 3D supervision and greater performance
gains. See detailed loss term weight ablations in Table (8| of the Appendix.

Feature fusion method ablation study. We also perform ablation studies on the feature fusion
method, using three different methods: Deformable attention, Max, and Mean. As in Table E], the
performance using the mean operation to fusion multi-view features achieves marginally superior
performance than using deformable attention or max. The possible reason is that the mean method
is simple and efficient, suitable for global information fusion, but max is suitable for highlighting
key features, but is susceptible to noise interference. And the deformable attention has a high
computational overhead. In our setting, the mean operation is better for our environment to aggregate
multi-view features. Thus, in our experiments, we use the mean as the feature fusion method.

Primary joint selection ablation study. To determine the optimal primary joint for our model, we
conducted an ablation study comparing three different primary joints: the pelvis, head, and spine.
As in Table[5] the results show that the use of the pelvis for localisation produces marginally better
performance. This can be attributed to the pelvis’s stability across various viewpoints and its central
location, which allows for more complete human body information to be captured in the model’s
queries. Consequently, we chose the pelvis as the primary joint for all subsequent experiments. See
model architecture and view number ablations in the Appendix.

5 CONCLUSION

In this paper, we propose a novel multi-person whole-body human mesh recovery model from
multiview images and a new large multiview HMR benchmark with more persons in large occluded
scenes. As far as we know, this is the first study on multiview-multiperson-based (MVMP) HMR
tasks and the first large MVMP-HMR benchmark in this area. Besides, two novel losses are put
forward to further enhance the model’s performance: the orientation loss and the 3D joint density
loss, handling the orientation and pose ambiguities in the mesh predictions under the occluded scenes.
The experiments validate that the MVMP-HMR model can deal with the occlusion issue better than
existing single-view HMR SOTAs. The proposed model and benchmark shall extend the HMR task
to more complicated scenes with wider application scenarios.
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ETHICS STATEMENT

This work introduces a framework for multiview multi-person human mesh recovery (MVMP-HMR)
using a synthetic dataset generated with the GTA-V engine and publicly available benchmarks
such as Human3.6M (lonescu et al.l 2013)) and CMU Panoptic (Joo et al., 2015b)), all of which
contain no personally identifiable information. SMPL-X annotations are derived automatically using
existing HMR models, reducing the need for manual labeling and associated privacy concerns. Our
research advances human mesh recovery with potential benefits in motion analysis, human-computer
interaction, and safety-critical applications. While we are not aware of negative societal impacts
specific to our method, we acknowledge broader ethical considerations related to surveillance, fairness,
and potential misuse, and emphasize responsible and transparent deployment.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our MVMP-HMR architecture, including the ViT-L (Dosovitskiy;
et al., 2021)) backbone, multi-view feature fusion, and Human Transformer Block, along with
the proposed orientation and 3D joint density losses. Implementation details such as training
configuration, hyperparameters, and dataset splits are reported in Section 4.2. Experiments are
conducted on 2 NVIDIA RTX 6000 Ada GPUs, and we will release the MVMP-HMR dataset, source
code, pre-trained models, and training logs upon acceptance, ensuring reproducibility and facilitating
future research.
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A APPENDIX

A.1 METRIC DETAILS.

We evaluate the HMR predictions with metrics MPJPE, PVE, and PA-PVE, but in 3D space, not in
camera view as previous single-view HMR tasks.

* MPJPE: Mean Per Joint Position Error measures the average Euclidean distance between
predicted 3D joints and ground truth 3D joints.

* PVE: Mean Per-vertex Error is defined as the average point-to-point Euclidean distance
between predicted mesh vertices and ground truth mesh vertices. It is proposed to calculate
in the world space.

* PA-PVE: Procrustes-aligned PVE is calculated according to PVE after executing Procrustes
Analysis to align predicted mesh vertices with ground truth mesh vertices.

MPIJPE and PVE are the main metrics in our task.

A.2 MAIN FEATURES OF MVMP-HMR vs SOTA HMR AND HPE METHODS.

As shown in Table[6] we have compared over 10 human mesh recovery and human pose estimation
methods. It is easy to see that our method is the only one that focuses on the multiview multi-person
human mesh recovery task.

Table 6: Comparison of existing HMR and HPE Methods. None of them meets our setting without
revision.

Method Multi-view Multi-person 3D Pose Mesh

HMR(Kanazawa et al.,|2018)
PyMAF-X(Zhang et al.|[2021a)
OSX(Lin et al.|[2023)
SMPLer-X(Cai et al., [2023)

3D CrowdNet(Choi et al., [2022b)
AiOS(Sun et al.|[2024)

TokenHMR (Dwivedi et al.| [2024)
Multi-HMR (Baradel et al.,|2024)
U-HMR(Yu et al.,[2022)
HeatFormer(Matsubara & Nishinol [2025)

VoxelPose(Tu et al., [2020)
Faster VoxelPose(Ye et al.,|2022)
MVP(Wang et al.| [2021)

MVMP-HMR (Ours)
Note: v indicates supported, x indicates not supported.

NTRNSNSN]TRAX X X X | X X X X
Llaaax x aaaa]x x x x
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A.3 DATASET

The GTA-V game engine demonstrates exceptional authenticity and has been widely adopted for
dataset generation across various research fields, including GTA-Human (Cati et al.| [2024b)) and the
multi-view counting dataset CVCS(Zhang et al.,[2021b)), offering highly realistic scenes, dynamic
weather systems, comprehensive lighting variations, and diverse human activities such as walking,
phone usage, drinking, smoking, listening to music, and social interactions. Our dataset shows a strong
bias toward clear/sunny conditions (78.12%) with overcast coverage (12.78%) and adverse weather
(9.09%), while temporal distribution exhibits pronounced daytime bias (79.73% between 6:00-18:00)
with activity peaks during commuting hours and sparse nighttime coverage (20.27%). Compared to
traditional 3D HPE datasets that are primarily collected in controlled laboratory settings, our GTA-
V-generated dataset focuses on outdoor practical application scenarios with broader scene diversity
and enhanced ecological validity, better representing the complexity and variability encountered in
real-world conditions. More detailed dataset analysis to be added to the paper.
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Figure 6: The visualization examples of the other scenes in the dataset. Red joints mean the keypoints
of humans. The red line means the skeleton of people.
A.4 MORE VISUALIZATIONS OF OUR MVMP-HMR DATASET

We have introduced the dataset MVMP-HMR in the main text. Now we will show some other scenes
in our dataset with their cooperation 3D joints, which are also key points for our dataset annotation.
Figure [6] shows three scenes in our dataset. We can see the details of the 2D key-points location with
red color. In our setting, the one who can’t be seen completely at this view, their keypoint location
will be dropped. These 2D keypoints are all projected from 3D keypoints. We can also provide
precise keypoint locations for the multiview pose estimation task.

A.5 MODEL PARAMETERS AND INFERENCE TIME

In addition to the results displayed in the dataset compared with other methods, we also made
comparisons regarding model parameters and inference speed in Table[7} Our model parameters
only count the model parameters during testing. Our inference time calculation is to run the model
for 100 sample inputs and then test the entire test set for an average test time. From our model
framework, it can be seen that the 3D voxel features constructed from multi-view feature projections
and fusion, as well as the subsequent network processing, are very resource-intensive. However, our
model’s parameters and inference speed achieve a moderate result compared to single-view HMR and
multi-view HPE methods. Although the HPE method has a simpler network architecture, resulting in
lower estimated model parameters and inference speed than ours, the HPE method can’t achieve good
results on our MVMP-HMR dataset. Single-view HMR does not involve the fusion of multi-view
features, so its model parameter count is smaller than ours. Additionally, the efficiency of detecting
directly on 3D voxel features is higher than that of multi-view matching, leading to shorter inference
times for our method.

A.6 LOSS TERM WEIGHT ABLATION STUDY.

We conduct the loss term weight ablations for the proposed orientation loss (L) and 3D joint density
loss (Lgenjza) in Tablelgl The first row uses the loss usually used in prior work (Baradel et aI.L m:[)
Row 2-5 add the proposed orientation loss L» with different A3 weights, and the performance all
improved compared to without it, demonstrating the effectiveness of the Lo loss. A3 = 5.0 achieves
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Table 7: The model parameters and inference time compared to HMR and HPE SOTAs.

Method | Model Parameters (MB) | Inference Time (s) |
3DCrowdNet (Dist) (Choi et al., [2022b) 931.92 1.12
AiOS (Dist) (Sun et al.}[2024) 1122.28 0.97
TokenHMR (Dist) (Dwivedi et al.| [2024) 2598.57 2.44
Multi-HMR (Dist) (Baradel et al.,2024)) 1210.17 2.33
Multi-HMR (Avg) (Baradel et al., 2024) 1210.17 2.33
Multi-HMR (Fusion) (Baradel et al.}|2024) 1331.19 2.53
VoxelSMPLX (Only) (Tu et al., [2020) 404.45 1.00
VoxelSMPLX (Joint) (Tu et al.| [2020) 404.45 1.00
MVMP-HMR (Ours) | 1380.28 1.59

Table 8: Loss term weight ablation study. The Tfirst row does not use any new [0ss. Rows 2-5 add the
orientation loss, and Rows 6-11 add both the orientation and 3D joint density loss.

Loss ‘ MPJPE| PVE| PA-PVE|
Lo+ eLp+Lmesh 217.1 161.7 120.4
+2.0%x Lo 201.6 151.9 99.4
+5.0x Lo 187.9 144.8 89.0
+10.0 * Lo 195.1 149.2 80.7
+100.0 * Lo 195.0 150.0 71.8
+5.0 % Lo + 0.1 % Lienjza 190.2 144.5 89.4
+5.0%x Lo +0.2 Edenj?,d 190.7 149.7 83.3
+5.0 % Lo + 0.5 * Lienjza 187.6 147.4 87.9
+5.0 % Lo + 1.0 * Lgenjzqa (Ours) 177.5 129.2 51.8
+5.0 % Lo + 2.0 % Lienjza 293.3 149.5 69.6
+5.0 % Lo + 5.0 % Lenjza 368.8 160.0 69.4

the best results, and we use it as the loss weight of L in the experiments. Row 6-11 further add the
proposed 3D joint density 108 Lger 34 in the model training. A3 = 5.0, A4 = 1.0 achieves the best
results. When )y is too large, the 3D joint density loss may decrease the human mesh prediction
performance because Lge,, 53¢ might be too strong.

Table 9: The backbone ablation study and using ViT-L is the best

Backbone | MPIPE|, PVE| PA-PVE]
ViT-S (Dosovitskiy et al., [2021) 201.6 157.8 64.9
ViT-B (Dosovitskiy et al.| 2021) 185.7 141.8 61.6

ViT-L (Dosovitskiy et al.| 2021)) 177.5 129.2 51.8

A.7 FEATURE EXTRACTION BACKBONE MODEL

We also perform ablation studies on the feature extraction backbone models, using three different
feature extraction backbone models: ViT-S, ViT-B, and ViT-L (Dosovitskiy et al., 2021), differing in
model sizes: small, base, and large. As in Table@ the result of using ViT-L as the backbone model is
the best, which has more model parameters with stronger feature extraction ability. Therefore, we use
ViT-L as the feature backbone model in our MVMP-HMR model.

A.8 TESTING VIEW NUMBER ABLATION STUDY

Finally, we perform ablation studies on the input camera view number in the testing stage. The model
is trained with 5 camera views and tested with different camera views, ranging from 3-9 camera
views, shown in Table @} We observe that as the testing camera view number increases, the model’s
performance also improves. The reason is that with more camera views, more clues are provided,
and the proposed Multiview-HMR model can effectively fuse multiview information to handle the
occlusions in the scene. The model performance change is not quite large when the camera view
number decreases, also indicating our model’s robustness to different view numbers.
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Table 10: Testing camera view number ablation study: the model is trained on 5 views and tested
with 3-9 views.

ViewNum | MPJPE | PVE| PA-PVE |

3 193.6 137.6 50.9
5 177.5 129.2 51.8
7 171.0 125.2 48.2
9 168.1 122.0 479

A.9 LIMITATIONS

In our experimental setting, we require the input to be multiple cameras that have been calibrated
to obtain the internal and external parameters of the camera. Although this is difficult to obtain in
the real world, many existing excellent multi-view matching algorithms (such as (Schonberger et al.,
2016)) or VGGT (Wang et al., 2025) can perform camera calibration through multiple perspectives,
which provides great help for the future application of our method. In the future, we can consider how
to use multi-view without camera parameter calibration to perform multiview multi-person human
mesh recovery.
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