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ABSTRACT

Sparsely activated Mixture-of-Experts (MoE) models are widely adopted to scale
up model capacity without increasing the computation budget. However, vanilla
TopK routers are trained in a discontinuous, non-differentiable way, limiting their
performance and scalability. To address this issue, we propose ReMoE, a fully dif-
ferentiable MoE architecture that offers a simple yet effective drop-in replacement
for the conventional TopK+Softmax routing, utilizing ReLU as the router instead.
We further propose methods to regulate the router’s sparsity while balancing the
load among experts. ReMoE’s continuous nature enables efficient dynamic allo-
cation of computation across tokens and layers, while also exhibiting domain spe-
cialization. Our experiments demonstrate that ReMoE consistently outperforms
vanilla TopK-routed MoE across various model sizes, expert counts, and levels of
granularity. Furthermore, ReMoE exhibits superior scalability with respect to the
number of experts, surpassing traditional MoE architectures.

1 INTRODUCTION

Transformer models (Vaswani et al., 2017) consistently improve performance as the number of
parameters increases (Kaplan et al., 2020). However, scaling these models is constrained by compu-
tation resources. Sparsely activated Mixture-of-Experts (MoE) (Shazeer et al., 2017) mitigates this
challenge by employing a sparse architecture that selectively activates a subset of parameters during
both training and inference. This conditional computation allows MoE models to expand model ca-
pacity without increasing computational costs, offering a more efficient alternative to dense models.

The key component in MoE is the routing network, which selects the experts to activate for each
token. Various routing methods (Bengio et al., 2013; Shazeer et al., 2017; Lewis et al., 2021; Roller
et al., 2021; Zhou et al., 2022) have been proposed, with TopK routing (Shazeer et al., 2017) being
the most commonly adopted. However, the vanilla TopK router introduces a discrete and non-
differentiable training objective (Shazeer et al., 2017; Zoph et al., 2022), limiting the performance
and scalability.

Recent works on fully-differentiable MoE aim to overcome this limitation. Soft MoE (Puigcerver
et al., 2024) introduces token merging, while SMEAR (Muqeeth et al., 2023) proposes expert merg-
ing. However, both approaches break token causality, making them unsuitable for autoregressive
models. Lory (Zhong et al., 2024) improves upon SMEAR and is applicable to autoregressive mod-
els. But it underperforms vanilla MoE with TopK routing.

In this work, we address the discontinuities by introducing ReMoE, an MoE architecture that in-
corporates ReLU routing as a simple yet effective drop-in replacement for TopK routing. Unlike
TopK routing, which computes a softmax distribution over the experts and calculates a weighted
sum of the largest K experts, ReLU routing directly controls the active state of each expert through
a ReLU gate. The number of active experts is determined by the sparsity of the ReLU function. To
maintain the desired sparsity, we propose adding a load-balancing refined L1 regularization to the
router outputs, with an adaptively tuned coefficient. This approach ensures that ReMoE maintains
the same computational costs as TopK-routed MoE.

Compared to TopK routing, ReLU routing is continuous and fully differentiable, as the ReLU func-
tion can smoothly transition between zero and non-zero values, indicating inactive and active. Ad-
ditionally, ReLU routing manages the “on/off” state of each expert independently, offering greater
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Figure 1: Compute flows of vanilla MoE with TopK routing and ReMoE with ReLU routing. Posi-
tive values are shown in orange, and negative values in blue, with deeper colors representing larger
absolute values. Zeros, indicating sparsity and computation savings, are shown in white. The red
dash arrows in TopK routing indicate discontinuous operations. Compared with TopK routing MoE,
ReMoE uses ReLU to make the compute flow fully differentiable.

flexibility. Moreover, the number of activated experts can vary across tokens and layers, enabling
a more efficient allocation of computational resources. Further analysis reveals that ReMoE effec-
tively learns to allocate experts based on token frequency and exhibits stronger domain specializa-
tion.

Our experiments on mainstream LLaMA (Touvron et al., 2023) architecture demonstrate that ReLU
routing outperforms existing routing methods including TopK routing and fully-differentiable Lory.
Through an extensive investigation across model structures, we find that ReMoE consistently out-
performs TopK-routed MoE across a broad range of model sizes (182M to 978M), expert counts (4
to 128), and levels of granularity (1 to 64) (Krajewski et al., 2024). Notably, in terms of scaling
behavior, we observe that ReMoE exhibits a steeper performance improvement as the number of
experts scales up, surpassing traditional MoE models.

2 PRELIMINARIES

2.1 MOE FOR DECODER-ONLY TRANSFORMER

A typical decoder-only Transformer model consists of L layers, each containing a Self-Attention
module and a Feed-Forward Network (FFN) module. MoE modifies this structure by replac-
ing each FFN module with an MoE module, which comprises a small router and several experts
FFN1, . . . ,FFNE , where each expert is equivalent to the original FFN and E denotes the number of
experts. Given the input xl = (xl

t)
T
t=1 ∈ RT×d of the layer l, where T is the number of tokens in a

batch and d is the hidden size, the output yl = (yl
t)

T
t=1 is computed as:

yl
t =

E∑
e=1

R(xl
t)eFFNe(x

l
t; dffn) (1)

Here, R(·) represents the routing function, and dffn is the intermediate size of the FFN, typically
set to dffn = 4d.

2.2 TOPK ROUTING

TopK routing (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022) is the most commonly
used method for defining the routing function R(·). It introduces sparsity in the MoE computation

2
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by forcibly zeroing out smaller elements:

R(xl
t) = TopK(Softmax(xl

tWl), k) (2)

where Wl ∈ Rd×E is the router’s weight matrix, and TopK(·, k) retains the top k largest values
while setting the rest to zero. This mechanism allows for skipping the computation of the FFNe

functions corresponding to the zeroed-out R(xl
t)e values in both the forward and backward passes.

3 OUR METHOD: REMOE

3.1 MOTIVATION: FROM TOPK TO RELU

For a given token x = (xe)
E
e=1 after Softmax, TopK introduces a jump discontinuity at the k-th

largest value, denoted as x[k], by zeroing out the values smaller than x[k]. This can be expressed as:

TopK(x, k)e = xe · 1{xe ≥ t(x, k)}, t(x, k) = x[k] (3)

0 𝑥!

ReLU 𝒙 !

0 𝑥!

TopK 𝒙, 𝑘 !

𝑥 "

Figure 2: Comparison between TopK and ReLU.

where 1{·} is the indicator function, returning
1 if the condition is met and 0 otherwise.

As shown in Figure 2, the jump discontinu-
ity can be eliminated by setting the breakpoint
t(x, k) ≡ 0, which actually corresponds to the
ReLU function:

ReLU(x)e = xe · 1{xe ≥ 0} (4)

At a high level, ReLU improves upon TopK by
aligning the breakpoints of all inputs and setting them to 0. This ensures that the output is continuous
at 0, where the experts transition between active and inactive. As a result, the training pipeline
becomes fully differentiable.

3.2 DIFFERENTIABLE RELU ROUTING

We define the ReLU routing function as follows:

R(xl
t) = ReLU(xl

tWl) (5)

with (1− k
E ) being the desired sparsity of ReLU, where k is the number of active experts and E is

the total number of experts. This ensures that the computational cost remains equivalent to that of
TopK routing.

In vanilla TopK routers, the Softmax outputs sum to 1, representing the probabilities of selecting
each expert, after which TopK eliminates those with lower probabilities. In contrast, ReLU routers
discard the Softmax function, relying on ReLU’s naturally non-negative outputs. The outputs of
ReLU routers represent the weights assigned to each expert, which can include 0. Instead of hard-
coding expert selection with a discontinuous TopK function, ReLU allows the router to learn which
experts to activate (i.e., when to produce 0s) in a fully differentiable manner.

Another key difference is that in TopK routing, each token is routed to exactly k experts, whereas
in ReLU routing ReMoE, the routing decisions are independent, allowing tokens to be routed to a
variable number of experts. This flexibility is advantageous, as not all tokens have the same level of
difficulty. ReMoE can allocate more computational resources to more challenging tokens, a dynamic
allocation strategy that we explore further in Section 5.1.

TopK routing introduces a discrete loss function when the set of activated experts changes, whereas
ReLU routing remains continuous and fully differentiable. For instance, in a two-expert Top1-
routing model, a small weight update that alters the softmax result from x1 = (0.51, 0.49) to
x2 = (0.49, 0.51) shifts the TopK output from (0.51, 0) to (0, 0.51), creating a discontinuity. In
contrast, ReLU routing only changes the activated experts when the routing output is near zero.
For example, an output shift from (0.01, 0) to (0, 0.01) remains continuous. Further details on the
stability analysis of these two routers can be found in Appendix A.

A comparison of the compute flow between ReMoE and MoE is shown in Figure 1.

3
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3.3 CONTROLLING SPARSITY VIA ADAPTIVE L1 REGULARIZATION

ReMoE controls computational costs by managing the sparsity of the ReLU output, targeting a
sparsity level of (1− k

E ). However, directly training the ReLU router often results in lower sparsity,
as the model tends to activate more experts to increase capacity. To meet the desired budget, we
need to enforce higher sparsity in the ReLU output.

We achieve this by introducing a regularization loss, Lreg, to the loss of language model, Llm:

L = Llm + λiLreg, (6)

where λi is an adaptive coefficient based on the current training step i. Initially, we set λ0 to a small
value and employ a simple zeroth-order algorithm to update it:

λi+1 = λi · αsign((1− k
E )−Si) (7)

Here, α > 1 is a preset update multiplier, and Si denotes the average sparsity of all router outputs at
the step i:

Si = 1− 1

LTE

L∑
l=1

T∑
t=1

E∑
e=1

1{R(xl
t)e > 0} (8)

The idea behind Equation 7 is that when the average sparsity Si falls below the target sparsity
(1 − k

E ), we increase λi by a factor of α, strengthening the regularization and encouraging higher
sparsity. Conversely, if the sparsity exceeds the target, λi is reduced. We heuristically set λ0 = 1e−8

and α = 1.2 in all our experiments, and demonstrate the robustness of these hyperparameters in
Appendix B.

The regularization term Lreg uses the L1-norm, following prior work (Li et al., 2023; Song et al.,
2024), to effectively encourage sparsity:

Lreg =
1

LT

L∑
l=1

T∑
t=1

∥∥R(xl
t)
∥∥
1
=

1

LT

L∑
l=1

T∑
t=1

E∑
e=1

R(xl
t)e (9)

The second equation holds because the output of the ReLU function is non-negative.
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Figure 3: The sparsity of ReMoE with E =
8, k = 1 is effectively maintained around the de-
sired target. Sparsity values for all steps are plot-
ted without averaging or sampling. The mean
and standard deviation are calculated excluding
the first 100 warm-up steps.

The term Lreg represents the average value of
all router outputs, including zeros. By taking
the derivative of λiLreg, we observe that the
regularization effect adds λi

LT to the gradient of
each non-zero router output, effectively driving
the outputs toward zero and enhancing sparsity.

With this L1 regularization, we can control the
sparsity around the desired level of (1− k

E ) with
only minor fluctuations, as shown in Figure 3.
Consequently, ReMoE ensures that, on average,
tokens are routed to k experts across different
layers and tokens, maintaining the same FLOPs
as vanilla TopK-routed MoE from a statistical
perspective. Our benchmarking results in Ap-
pendix D demonstrate that ReMoE can achieve
nearly identical training and inference through-
puts as conventional MoE, providing an effi-
cient alternative without compromising speed.

3.4 INTEGRATE LOAD BALANCING INTO L1 REGULARIZATION

Load imbalance is a significant issue in MoE design, potentially leading to routing collapse (Shazeer
et al., 2017; Muennighoff et al., 2024) and uneven computational distribution across multiple de-
vices. The L1 regularization in Equation 9 treats the router output for each expert e and each layer l
equally, which can contribute to load balancing problems.
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Figure 4: Natural Three Stage Training in ReMoE.

To address this, we introduce a load-balancing refinement to the L1 regularization:

Lreg,lb =
1

LT

L∑
l=1

T∑
t=1

E∑
e=1

fl,eR(xl
t)e (10)

fl,e =
E

kT

T∑
t=1

1{R(xl
t)e > 0} (11)

Here, fl,e is non-differentiable and represents the average activation ratio of expert e in layer l,
relative to the desired ratio k

E . This serves as a weight for the corresponding router output, modifying
the added gradient of non-zero router outputs to fl,eλi

LT . This mechanism penalizes experts receiving
more tokens by driving their router outputs toward zero more rapidly.

Although derived from regularization, this formulation is identical to the load-balancing loss in
vanilla TopK routing (Fedus et al., 2022). In TopK routing, the outputs of Softmax sum to 1, giving
the loss a lower bound of 1. In contrast, ReLU routing outputs can be arbitrarily small, making
Lreg,lb trivially bounded at 0. Therefore, unlike in MoE, we cannot fix the coefficient λi in ReMoE,
as this would lead to routing collapse toward 0. Thanks to the adaptive update of λi, we can balance
sparsity control and load balancing within a single formulation, as given in Equation 10.

Further discussion on load balancing in ReMoE can be found in Section 5.2, and we adopt this
load-balancing refined L1 regularization in our later experiments.

3.5 NATURAL THREE-STAGE TRAINING IN REMOE

With the regularization scheme described above, we observe a clear and naturally occurring three-
stage separation during the training of ReMoE as is depicted in Figure 4.

The first stage is the warm-up stage, or the dense stage. During this stage, λi is small, while Llm is
large and decreases rapidly. Training ReMoE at this stage is nearly equivalent to training its dense
counterpart with the same total number of parameters. Each expert processes more than half of the
tokens, allowing the experts to diversify from their random initializations.

The second stage is the sparsifying stage, or the dense to sparse stage. At this point, the sparse
regularization term λiLreg becomes significant, causing the ReLU routers to activate fewer experts.
This forces the experts to become more diverse without causing an increase in Llm.

The third stage is the stable stage, or the sparse stage. In this phase, the sparsity Si stabilizes at
the preset target. During this stage, Llm is optimized while being softly guided along the sparse
subspace by Lreg. Both Lreg and λi change very slowly, with Lreg gradually decreasing and λi

gradually increasing. However, the overall regularization term, λiLreg, remains relatively constant.

It should be noted that Stages I and II introduce additional computational cost and memory con-
sumption since more experts are activated. However, the time overhead is negligible since they gen-
erally require only a few hundred iterations (∼0.17% of the total steps in our setting). The memory
overhead can be minimized with activation checkpointing technique that avoids storing intermediate
results of activated experts by recomputing them on-the-fly during the backward pass.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
#Tokens(B)

2.0

2.2

2.4

2.6

Tr
ai

n 
Lo

ss

Dense
Hash
Lory
SparseMixer-v2
EC
dMoE
ReMoE

Figure 5: Training curves of dif-
ferent routing methods.

Model ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.

Dense 19.45 43.35 54.40 28.61 31.09 61.97 28.52 38.20

Hash 19.28 45.45 54.95 29.68 31.44 63.06 27.66 38.79

Lory 20.31 42.97 49.54 28.75 32.35 62.24 27.75 37.70

SparseMixer-v2 19.80 46.72 45.96 30.24 34.12 62.89 29.00 38.39

EC 18.86 42.97 60.21 29.14 29.26 61.92 27.37 38.53

dMoE 20.05 45.16 57.83 29.83 32.97 63.55 28.33 39.67

ReMoE 20.22 46.68 54.16 30.26 35.94 63.55 29.38 40.03

Table 2: Zero-shot accuracy of different routing methods on
downstream tasks.

4 EXPERIMENTS

4.1 SETUP

Infrastructure We leverage Megatron-LM (Shoeybi et al., 2020) as our code base and implement
ReLU routing as a drop-in replacement for the original TopK routing, supporting all forms of model
parallelism: Data, Tensor, Pipeline, and Expert Parallelism (Shoeybi et al., 2020; Narayanan et al.,
2021; Korthikanti et al., 2022).

Model Architecture. We experiment with the mainstream LLaMA (Touvron et al., 2023) archi-
tecture, featuring grouped query attention (GQA) (Ainslie et al., 2023), SwiGLU (Shazeer, 2020)
activation function, RoPE (Su et al., 2021) position embedding, and RMSNorm (Zhang & Sennrich,
2019). The context length is set to 1024, and the batch size is 512. We experiment with three dif-
ferent dense backbone sizes as shown in Table 1. For vanilla MoE we adopt a load balancing loss
of weight 0.01 following Fedus et al. (2022). For ReMoE we use the adaptive load balancing L1

regularization in Equation 10.

Training Settings. We train the models on The Pile (Gao et al., 2020), an 800 GB diverse corpus.
All models are trained for 60k steps (∼ 30B tokens), which exceeds the compute-optimal dataset
size predicted by Krajewski et al. (2024) and is enough to converge. The byte pair encoding (BPE)
tokenizer (Sennrich et al., 2016) is used. We adopt AdamW (Loshchilov & Hutter, 2019) as the
optimizer with β1 = 0.9, β2 = 0.999 with ZeRO optimization (Rajbhandari et al., 2020). The
learning rate is set to be 5e−4 with a cosine scheduler. All models are trained with 8 NVIDIA A100
GPUs.

Size #Parameters hidden size num layers num heads num groups GFLOPs
Small 182M 768 12 12 4 995

Medium 469M 1024 24 16 4 2873
Large 978M 1536 24 16 4 5991

Table 1: Configurations for the dense backbones. FLOPs are calculated with a single sequence
according to Narayanan et al. (2021).

4.2 COMPARISON WITH OTHER ROUTING METHODS

We compare ReMoE against the following methods: (i) Token-choice dropless TopK routing
(dMoE) (Gale et al., 2022) (ii) Expert-choice TopK routing (EC) (Zhou et al., 2022) (iii) Deter-
ministic hash routing (Hash) (Roller et al., 2021) (iv) Fully-differentiable expert-merging routing
(Lory) (Zhong et al., 2024) (v) TopK routing with improved gradient estimate (SparseMixer-v2) (Liu
et al., 2024).

The performance of these methods is evaluated with active parameters N = 182M and the expert
count E = 8. We fix the active expert count to k = 1 for straightforward comparison with the dense
counterpart. For the Hash method, we use mod E hashing function. And for Lory, the segment
length is set to 256, following the original paper.
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Figure 6: Scalability of ReMoE with respect to the number of parameters (N ), expert count (E),
and granularity (G). Default config is N = 182M, E = 8, G = 1, k = 1. The Y-axis represents the
validation loss of each model after training on 30B tokens. ReMoE consistently outperforms MoE
across all configurations.

These models are trained on 30B tokens, with the training curves shown in Figure 5, We evaluate
the zero-shot performance of the trained models on the following downstream tasks: ARC (Clark
et al., 2018); BoolQ (Clark et al., 2019); HellaSwag (Zellers et al., 2019); LAMBADA (Paperno
et al., 2016); PIQA (Bisk et al., 2020); RACE (Lai et al., 2017). The downstream accuracy results
are summarized in Table 2.

Our results show that all MoE models outperform the dense model. Deterministic hash routing
performs worse than the learned routing methods. Among the Top-K approaches, token-choice
dMoE outperforms expert-choice MoE and SparseMixer-v2 in evaluation. The differentiable routing
method Lory surpasses Hash routing in training but underperforms in downstream tasks, with both
methods falling short of the standard Top-K routing. Notably, ReMoE outperforms all methods,
including the mainstream Top-K routing, while benefiting from differentiability.

4.3 SCALABILITY OF REMOE

In this section, we compare ReMoE with state-of-the-art dMoE (hereinafter referred to simply as
MoE) across varying model parameters N , expert counts E, and granularity levels G to demonstrate
its scalability and universal superiority. We present the final validation losses in Figure 6, with
comprehensive downstream evaluation results available in Appendix E.

Scaling in active parameters N . To assess scalability with respect to the number of parameters
N , we fix E = 8 and k = 1, while varying active parameters N from 182M to 975M, corre-
sponding to the dense counterpart configurations in Table 1. The total parameters are 777M, 2.58B,
5.73B respectively. The results, shown in Figure 6a, indicate that ReMoE consistently outperforms
MoE across all model sizes. The performance gap does not diminish as the model size increases,
suggesting that ReMoE maintains its advantage at larger scales.

Scaling in expert count E. In this experiment, we fix the number of parameters at N = 182M
and set the number of active experts k = 1, while varying the total number of experts E from 4 to
128. The scaling curve in Figure 6b reveals that ReMoE consistently outperforms the standard MoE
across all configurations of E.

Moreover, a key observation is the steeper slope in ReMoE’s performance as E increases, compared
to MoE. This suggests that ReMoE scales more effectively with the number of experts and derives
greater benefits from larger expert pools. ReMoE’s differentiable routing strategy appears better
suited for leveraging large expert groups, leading to significant improvements in model expressivity
and generalization.

Scaling in granularity G. We also evaluate ReMoE and MoE in fine-grained settings. Fine-
grained MoE (Dai et al., 2024; Krajewski et al., 2024) with granularity G is constructed by dividing
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each expert into G smaller experts, as formulated below:

yl
t =

EG∑
e=1

R(xl
t)eFFNe(x

l
t; dffn/G) (12)

R(xl
t) = TopK(Softmax(xl

tWl), kG) (13)
Fine-grained MoE outperforms vanilla MoE from a scaling law perspective (Krajewski et al., 2024)
and has been adopted in subsequent works (Dai et al., 2024; Tan et al., 2024; Muennighoff et al.,
2024). For fine-grained ReMoE, the routing function remains identical to Equation 5, and the target
sparsity is still (1 − k

E ). The only distinction lies in the shape of the weight matrix, with Wl ∈
Rd×EG.

We conduct experiments with N = 182M and E = 8, varying G from 1 to 64 for both fine-grained
MoE and fine-grained ReMoE. In addition to comparing these models against the dense baseline
with the same number of active parameters, we also evaluate their dense counterpart with the same
total number of parameters. This is achieved by expanding the intermediate size of the FFN by a
factor of E, which we denote as Dense×8. This configuration represents the strict upper bound for
MoE and ReMoE, as it is equivalent to a Mixture-of-Experts with all experts activated (Dai et al.,
2024).

As illustrated in Figure 6c, fine-grained ReMoE consistently outperforms fine-grained MoE. More-
over, fine-grained ReMoE of G = 32 and G = 64 reach the performance of the theoretical upper
bound, Dense×8, while requiring significantly fewer FLOPs during both training and inference. In
contrast, fine-grained MoE is unable to match in all settings, making ReMoE a more efficient and
effective choice.

5 DISCUSSION

5.1 DYNAMIC EXPERT ALLOCATION IN REMOE
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Figure 7: Correlation between expert
allocation and token frequency in Re-
MoE. X-axis is sorted by average active
expert count and token frequency is in
log-scale.

In ReMoE, each token dynamically activates a subset
of experts, allowing the model to adaptively allocate re-
sources. We evaluate the performance of the N =
182M, E = 8, k = 1 ReMoE model and analyze the rela-
tionship between token frequency and the average num-
ber of active experts. As illustrated in Figure 7, the model
tends to assign a higher number of experts to rarer to-
kens, such as ’©’, ’OTAL’, and ’@#’, while reducing
the number of active experts for more frequent tokens like
’ ’, ’\n’, and ’the’.

This adaptive behavior mirrors the principles of a Huff-
man tree Huffman (1952), where more frequent symbols
are assigned shorter codes, and rarer symbols are assigned
longer codes. Similarly, ReMoE tends to “cluster on”
common tokens by activating fewer experts, effectively
compressing the “representation” of these frequent to-
kens. In contrast, for rarer tokens, ReMoE activates a
more diverse set of experts, “encoding” them as a richer
linear combination at the expert level. This suggests that
ReMoE learns to dynamically allocate computational resources, achieving an efficient balance be-
tween resource usage and the model’s capacity, optimizing performance under a constrained expert
budget. Dynamic expert allocation is also evident at the domain level, as detailed in Appendix G.

5.2 THE ROLE OF LOAD BALANCING IN REMOE

Load imbalance can lead to routing collapse in the vanilla TopK-routed MoE, where the router tends
to assign the same expert to all inputs, in which scenario the training objective becomes continuous
and fully differentiable. As is shown in Figure 8a, there is a significant performance gap between
MoE models with and without load balancing (LB).
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Figure 8: Observations on the role of load balancing in MoE and ReMoE. White squares in (b)
represent inactive experts with fewer than 1/64 tokens routed to them.

While in ReLU routing, thanks to its differentiablity, even applying the L1 regularization from Equa-
tion 9 without load balancing yields comparable results with a well-tuned MoE with LB. However,
some experts in ReMoE without LB remain inactive, illustrated as white squares in Figure 8b which
shows the heat map of the average routed tokens ratio (i.e., the fraction of tokens routed to the e-th
expert in the l-th layer) over 50M tokens in test set. This inactivity can limit the model’s capacity.

When load balancing is incorporated into the refined L1 regularization (Equation 10), the experi-
ments show a more even distribution of token assignments across experts, with all experts being
utilized, as shown in Figure 8c. The final loss in ReMoE decreases after introducing load balancing.

Besides, we observe ReMoE with LB can produce a smoother sparsity distribution across layers as
depicted in Figure 8d. This is because fl,e is computed based on the absolute number of routed
tokens, meaning denser layers receive stronger penalties.

Note that even ReMoE with load balancing (LB) does not yield a perfectly even distribution. How-
ever, the trade-off between load balancing and performance can be easily adjusted by modifying
the L1 regularization in Equation 10. For instance, changing fl,e to f2

l,e would make the model
more sensitive to load imbalance. Additionally, device-level load balancing techniques, as proposed
in Dai et al. (2024), could also be employed. Since load imbalance in ReMoE does not lead to
severe routing collapse, it primarily becomes a hardware utilization issue. As such, we leave the
exploration of these variants for future work.
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Figure 9: Average routed tokens ratio for MoE and ReMoE across 12 layers and 8 experts in different
domains. The gray dashed lines indicate uniform distribution. ReMoE shows stronger domain
specialization.
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5.3 DOMAIN SPECIALIZATION IN REMOE

The differentiability and dynamic allocation strategy of ReMoE facilitates the development of di-
verse experts that specialize in different domains. This allows the router to effectively perform
ensemble learning by leveraging the expertise of various experts, as demonstrated in our experi-
ments.

In Figure 9, we plot the average routed tokens ratio across different experts, layers, and do-
mains—namely Arxiv, Books, C4, Github, Stackexchange, and Wikipedia—for MoE and ReMoE
models with N = 182M, E = 8. We focus on the first, middle, and last layers (with IDs 0, 5, and
11). The results for most experts in MoE (Figure 9a) show a roughly uniform distribution across
all domains. In contrast, experts in ReMoE (Figure 9b) exhibit clear domain specialization, being
activated with varying frequencies across different domains. For example, more than half of the
tokens from Arxiv, Github, and StackExchange—domains that emphasize structured, non-natural
languages like LaTeX and Python—are routed to Expert 6 in Layer 5, significantly more than in
other domains. A more detailed result of domain specialization can be found in Appendix F.

6 RELATED WORKS

6.1 MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) was initially proposed in the early 1990s (Jacobs et al., 1991; Jordan
& Jacobs, 1994) and later introduced into large-scale neural networks as a sparse submodule for
efficiency (Shazeer et al., 2017). Advances like GShard (Lepikhin et al., 2020) and Switch Trans-
former (Fedus et al., 2022) integrated sparse MoE into Transformer models, achieving signifi-
cant results. More recently, MoE has been used in commercial-scale language models such as
Mixtral-8x7B (Jiang et al., 2024), DeepSeekMoE 16B (Dai et al., 2024), and Snowflake Arctic
17B (Snowflake, 2024).

6.2 ROUTING MECHANISMS IN MOE

Various routing methods have been developed for expert selection. Static routers, such as
BASE (Lewis et al., 2021), use predefined rules like combinatorial optimization, while Hash rout-
ing (Roller et al., 2021) relies on deterministic hash functions, and THOR (Zuo et al., 2021) assigns
experts randomly with regularization. Learned routers adaptively select experts based on token in-
put, using approaches like REINFORCE (Bengio et al., 2013; Schulman et al., 2016; Clark et al.,
2022) for reinforcement learning, and TopK routing (Shazeer et al., 2017; Zhou et al., 2022) for
token or expert selection, though TopK introduces discontinuities that hinder gradient estimation.

6.3 DIFFERENTIABLE MIXTURE-OF-EXPERTS

Recent work on fully differentiable MoE models addresses the challenges of discrete optimization,
basically through token merging and expert merging approaches. Soft MoE (Puigcerver et al., 2024)
uses token merging, assigning fixed slots to each expert as a linear combination of input tokens.
SMEAR (Muqeeth et al., 2023) merges experts into an ensemble via weighted averaging. However,
both methods require a full probability map of input tokens, making them unsuitable for autoregres-
sive models. Lory (Zhong et al., 2024) preserves autoregressiveness by segmenting sentences to
merge experts but underperforms compared to TopK routing.

7 CONCLUSION

In this paper, we propose ReMoE, a fully differentiable MoE architecture with ReLU routing. The
simple yet effective ReLU routing function acts as a drop-in replacement for the conventional
TopK+Softmax routing, offering (i) continuity and differentiability, and (ii) dynamic expert allo-
cation across tokens and layers. With the adaptive load balancing L1 regularization, ReMoE uni-
versally outperforms TopK-routed MoE across various model sizes, expert counts, and levels of
granularity, demonstrating sharper performance gains as the number of experts scales.
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A STABILITY ANALYSIS OF TOPK AND RELU

We introduce two metrics, “flip rate” and “flip count”, to evaluate the routing stability:

flip rate =

∑L
l=1

∥∥vec(M l
i −M l

i−1)
∥∥
1

LTE
(14)

flip count = E × flip rate (15)

where M l
i ∈ RT×E denotes the 0-1 mask matrix of the output of the router at layer l and training

step i, computed using a fixed calibration set of tokens.

The metric “flip rate” represents the percentage of expert activation states that change (from active to
inactive or conversely) in a single update, while “flip count” indicates the average number of experts
whose activation states change.

We measure the two metrics on MoE and ReMoE with N =182M and E ∈ {8, 16, 32} training for
10B tokens. The results are presented in Figure 10, indicating that the ReLU router is more stable
than the TopK router:

When E = 8, we find the flip rate of MoE is higher than ReMoE, though the gap narrows as training
progresses and the learning rate decreases. While for E = 16 and E = 32, the flip rate of MoE
remains consistently 2− 3× higher compared to ReMoE throughout training.

Moreover, the flip count of ReMoE is invariant with respect to E, whereas the flip count of MoE is
highly sensitive to the total number of experts and keeps increasing as E grows.
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Figure 10: Flip rate and flip count of MoE and ReMoE
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Notably, the flips in TopK-routed MoE are discontinuous (e.g.(0.51, 0) → (0, 0.51)), while those in
ReLU-routed ReMoE are continuous(e.g.(0.01, 0) → (0, 0.01)), further underscoring the superior-
ity of the ReLU router.

B INSENSITIVITY TO λ0 AND α

λ0 1e−16 1e−12 1e−8 1e−4 1

Valid Loss 2.031 2.029 2.032 2.036 2.032
Settling time 138 136 110 55 92†

† Overshoot observed in 8-92 steps.

Table 3: Valid loss and settling time for different
values of λ0 with α = 1.2.

α 1.05 1.1 1.2 1.3 1.5

Valid Loss 2.033 2.028 2.032 2.029 2.057∗

Settling time 414 211 110 80 52
∗ A large oscillation amplitude in sparsity is observed.

Table 4: Valid loss and settling time for different
values of α with λ0 = 1e−8.

The ReMoE adaptation algorithm in Equation 7 includes two hyperparameters: λ0 and α. Settling
time, defined as the total number of steps required in Stage I and Stage II (as outlined in Section 3.5),
is influenced by these parameters. For all experiments, we set λ0 = 1e−8 and α = 1.2, but we show
that performance remains stable as long as λ0 is small and α is close to 1.

Our experiments with N = 182M, E = 8, G = 1, and k = 1 ReMoE models trained for 20k steps
(∼10B tokens) reveal only minor variations in validation loss for different λ0 values (Table 3) and
α values (Table 4), except for α = 1.5 which caused rapid regularization changes and excessive
oscillation. Besides, although different λ0 and α values affect settling time, the impact is minor
compared to the overall training steps, proving the insensitivity.

C PERFORMANCE FOR LONGER TRAINING

We conduct experiments of training MoE and ReMoE for a longer duration. We experiment with
N =469M, E = 8, k = 1 and train the models with a batch size of 4M tokens and training over
120B tokens. The results, as shown in Table 5, indicate that the superiority of ReMoE persists in
longer training.

Model Valid Loss ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.

MoE 1.716 23.62 52.40 53.94 35.43 43.64 68.34 31.48 44.12
ReMoE 1.689 25.34 55.22 55.96 36.76 45.82 68.93 30.43 45.49

Table 5: Performance of training N =469M, E = 8, k = 1 models for 120B tokens.

D SPEED COMPARISON OF REMOE AND MOE

We measure the end-to-end training time for MoE and ReMoE with models of N =469M training
over 120B tokens. The time consumption across stages is summarized in Table 6. We find Stage I
and Stage II account for ∼1.02% of the total training time and incur ∼0.58% overhead.

Model Stage I Stage II Stage III Total

MoE 0.12 0.41 119.12 119.65
ReMoE 0.32 0.91 119.25 120.48

Table 6: End-to-end training time comparison across stages (in hours). The time is measured on
N = 469M, E = 8, k = 1 models training over 120B tokens.

We further measure the throughput of ReMoE against TopK-routed MoE across different model sizes
and tensor parallel sizes during Stage III. The results, presented in Table 7, indicate that ReMoE
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# Parameters TP Model Train TFLOPS Train Diff. Infer TFLOPS Infer Diff.

182M 1 MoE 103.49 ↑1.82% 78.47 ↑2.19%ReMoE 105.38 80.19

469M 1 MoE 138.58 ↓1.37% 107.52 ↑3.89%ReMoE 136.69 111.71

978M 1 MoE 160.46 ↓1.77% 153.11 ↓0.23%ReMoE 157.61 152.76

978M 2 MoE 133.40 ↓0.68% 118.55 ↓1.08%ReMoE 132.49 117.27

978M 4 MoE 103.61 ↓2.29% 85.96 ↑2.33%ReMoE 101.23 87.96

Table 7: Throughput comparison between TopK-routed MoE and ReLU-routed ReMoE models. TP
indicates the tensor parallel size. Train Diff. and Infer Diff. indicate the relative TFLOPS difference
of ReMoE compared to MoE, where ↑ denotes ReMoE is faster, and ↓ denotes it is slower.

achieves comparable training and inference speeds with MoE, with a minor deviation ranging from
−2.29% to +3.89%. This speed consistency is desirable, as ReMoE introduces only a minimal
modification to the standard MoE architecture by adjusting the routing function, thereby avoiding
additional computational overhead.

E DOWNSTREAM EVALUATION RESULTS

This section provides the detailed downstream evaluation results for the main experiments of scala-
bility of ReMoE in Section 4.3 and ablations on load balancing in Section 5.2.

E.1 SCALING IN ACTIVE PARAMETERS N

The downstream evaluation results for scaling with respect to the parameter count N , as discussed
in Section 4.3, are presented in Table 8. These results highlight the performance comparison with
increasing model parameters.

Model N ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.

Dense
182M 19.45 43.35 54.40 28.61 31.09 61.97 28.52 38.20
469M 21.50 49.12 56.88 31.12 36.74 64.47 30.53 41.48
978M 21.93 50.88 60.24 32.42 41.06 67.46 31.77 43.68

MoE
182M 20.05 45.16 57.83 29.83 32.97 63.55 28.33 39.67
469M 22.61 50.63 60.40 32.95 39.82 66.27 29.95 43.23
978M 23.72 53.07 59.42 35.15 43.99 67.63 31.48 44.92

ReMoE
182M 20.22 46.68 54.16 30.26 35.94 63.55 29.38 40.03
469M 21.67 53.16 58.75 33.80 40.66 67.95 31.20 43.88
978M 24.06 55.26 57.28 35.93 44.42 68.99 30.43 45.20

Table 8: Downstream results of scaling in active parameters N .

E.2 SCALING IN EXPERT COUNT E

Table 9 contains the downstream evaluation results for scaling with respect to the expert count E, as
examined in Section 4.3. This analysis illustrates how varying the number of experts influences the
overall model effectiveness of MoE and ReMoE.
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Model E ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.
Dense - 19.45 43.35 54.40 28.61 31.09 61.97 28.52 38.20

MoE

4 21.25 44.15 60.06 29.16 31.69 62.89 28.71 39.70
8 20.05 45.16 57.83 29.83 32.97 63.55 28.33 39.67

16 20.82 45.58 44.46 30.56 33.42 64.64 28.42 38.27
32 19.37 47.18 50.76 31.04 36.02 64.53 28.52 39.63
64 20.39 48.95 58.96 31.45 36.37 65.51 28.23 41.41

128 20.99 46.93 57.58 31.90 35.96 65.29 27.56 40.89

ReMoE

4 19.88 46.46 57.43 29.64 33.57 62.95 27.66 39.66
8 20.22 46.68 54.16 30.26 35.94 63.55 29.38 40.03

16 20.90 49.28 53.36 30.85 37.09 65.83 30.05 41.05
32 20.56 48.11 59.54 31.42 37.84 65.18 28.42 41.58
64 20.82 50.51 57.80 32.17 36.74 65.78 27.46 41.61

128 19.97 51.05 56.97 32.40 37.92 66.70 29.86 42.12

Table 9: Downstream results of scaling in expert count E.

E.3 SCALING IN GRANULARITY G

The downstream evaluation results for scaling with respect to the granularity G are shown in Ta-
ble 10, based on the experiments in Section 4.3. These results demonstrate the superiority of fine-
grained ReMoE over fine-grained MoE.

Model G ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.
Dense - 19.45 43.35 54.40 28.61 31.09 61.97 28.52 38.20

Dense×8 - 22.78 48.11 59.66 31.11 35.65 65.02 29.57 41.70

MoE

1 20.05 45.16 57.83 29.83 32.97 63.55 28.33 39.67
2 21.33 46.89 54.74 30.06 32.72 64.20 28.71 39.81
4 20.48 46.34 54.86 30.56 35.46 64.36 28.61 40.10
8 21.16 47.14 59.69 30.61 36.77 65.23 26.99 41.08

16 19.62 48.82 56.54 30.66 35.90 64.74 28.80 40.73
32 21.08 48.82 58.29 31.18 37.34 64.74 28.04 41.36
64 20.56 48.15 60.98 31.01 37.40 64.25 28.13 41.50

ReMoE

1 20.22 46.68 54.16 30.26 35.94 63.55 29.38 40.03
2 20.14 47.39 57.95 30.60 34.52 63.71 28.52 40.40
4 20.39 47.94 55.35 31.04 36.11 64.64 29.00 40.64
8 20.82 48.36 60.49 30.90 36.06 63.87 28.90 41.34

16 21.25 49.41 56.06 30.91 36.23 64.91 29.95 41.25
32 20.90 48.86 55.81 31.14 36.58 64.69 30.05 41.15
64 20.65 48.74 60.06 31.56 36.43 65.40 29.00 41.69

Table 10: Downstream results of scaling in granularity G.

E.4 LOAD BALANCING ABLATIONS

Table 11 presents the downstream evaluation results for the load balancing ablations, as discussed in
Section 5.2. These results compare performance with and without load balancing, offering insights
into the different roles of load balancing in MoE and ReMoE.

F DETAILED RESULTS FOR DOMAIN SPECIFICATION

Figure 12 shows the average routed tokens ratio of MoE and ReMoE across all layers. ReMoE
demonstrates significantly stronger domain specialization compared to MoE, where certain experts

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model LB ARC-c ARC-e BoolQ HellaSwag LAMBADA PIQA RACE Avg.
Dense - 19.45 43.35 54.40 28.61 31.09 61.97 28.52 38.20
MoE × 19.20 44.74 50.80 28.60 30.18 62.24 27.94 37.67
MoE ✓ 20.05 45.16 57.83 29.83 32.97 63.55 28.33 39.67

ReMoE × 19.45 46.34 56.94 30.19 31.79 63.33 28.61 39.52
ReMoE ✓ 20.22 46.68 54.16 30.26 35.94 63.55 29.38 40.03

Table 11: Downstream results of training with or without load balancing.

are more frequently activated for specific domains. This suggests that ReMoE is better at learning
and exploiting the unique characteristics of different domains, allowing it to allocate computational
resources more effectively. In contrast, MoE exhibits a more uniform expert activation across do-
mains, indicating less differentiation in its expert specialization.

We further analyze the experts in Layer 5 of ReMoE and observe that certain highly related, domain-
specific vocabularies are consistently routed to the same expert. To investigate this, we calculate the
routing probabilities of different tokens based on their IDs, defined as the ratio of the number of
times a specific expert is utilized to the total occurrences of the token. The results are summarized
in Table 12.

Our findings reveal that the vocabularies exhibit clear specialization, reflecting domain-specific char-
acteristics. For example, Expert 1, which is more frequently assigned to natural language domains
(e.g., Books, C4), tends to route tokens such as husband, wife, and lover. In contrast, Expert
6, which is associated with non-natural language domains (e.g., Arxiv, Github, StackExchange),
predominantly routes code-related tokens like variable, env, and HEAD.

Expert ID Routed Tokens With High Probability

0 End(100%); folding(100%); Fill(100%); FILE(100%); NULL(100%);
byte(100%); Release(99.36%); Del(99.80%)

1 husband(100%); ife(100%); baby(100%); human(100%); lover(99.60%);
).(99.86%); ),(99.71%); )...(98.425%)

2 invest(100%); Fortune(100%); exec (100%); 0000(100%); Sorry(100%);
bye(97.82%); If(97.74%); ®(97.63%)

3 Conversely(100%); Methods(100%); flower(100%); Blossom(99.93%);
Argentina(100%); Georgian(100%); Uruguay(98.90%); African (100%)

4 Spring(100%); Summer(100%) Autumn(100%); Winter(100%);
seasons(99.02%); Temperature (100%); hot(97.98%); cold(100%)

5 è(100%); æ(99.80%); å(98.59%); Æ(97.67%)

6 ]);(100%); gif(100%); size(100%); variable(100%); env(100%);
begin(97.95%); HEAD(97.94%); |(97.83%)

7 Kuala(100%); Tus(100%); Lama(100%); Riley(98.94%)

Table 12: Routed tokens with high probability for experts in Layer 5 of ReMoE
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G DOMAIN-LEVEL DYNAMIC EXPERT ALLOCATION IN REMOE

We measure the average active expert count across different domains, as shown in Figure 11, and find
that the computation allocation in ReMoE also varies at the domain level. Furthermore, this variation
increases in deeper layers closer to the output. This is reasonable because deeper layers tend to
capture more abstract and domain-specific features, leading to more pronounced specialization in
expert activation.
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Figure 11: Domain-level dynamic expert allocation
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Figure 12: Detailed results of average routed tokens ratio for MoE and ReMoE in different domains.
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