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ABSTRACT

A recent line of work has shown remarkable behaviors of the generalization error
curves in simple learning models. Even the least-squares regression has shown
atypical features such as the model-wise double descent, and further works have
observed triple or multiple descents. Another important characteristic are the
epoch-wise descent structures which emerge during training. The observations
of model-wise and epoch-wise descents have been analytically derived in lim-
ited theoretical settings (such as the random feature model) and are otherwise
experimental. In this work, we provide a full and unified analysis of the whole
time-evolution of the generalization curve, in the asymptotic large-dimensional
regime and under gradient-flow, within a wider theoretical setting stemming from
a gaussian covariate model. In particular, we cover most cases already disparately
observed in the literature, and also provide examples of the existence of multiple
descent structures as a function of a model parameter or time. Furthermore, we
show that our theoretical predictions adequately match the learning curves obtained
by gradient descent over realistic datasets. Technically we compute averages of
rational expressions involving random matrices using recent developments in ran-
dom matrix theory based on "linear pencils". Another contribution, which is also
of independent interest in random matrix theory, is a new derivation of related fixed
point equations (and an extension there-off) using Dyson brownian motions.

1 INTRODUCTION

1.1 PRELIMINARIES

With growing computational resources, it has become customary for machine learning models to
use a huge number of parameters (billions of parameters in Brown et al. (2020)), and the need for
scaling laws has become of utmost importance Hoffmann et al. (2022). Therefore it is of great
relevance to study the asymptotic (or "thermodynamic") limit of simple models in which the number
of parameters and data samples are sent to infinity. A landmark progress made by considering these
theoretical limits, is the analytical (oftentimes rigorous) calculation of precise double-descent curves
for the generalization error starting with Belkin et al. (2020); Hastie et al. (2019); Mei & Montanari
(2019), Advani et al. (2020), d’Ascoli et al. (2020), Gerace et al. (2020), Deng et al. (2021), Kini &
Thrampoulidis (2020) confirming in a precise (albeit limited) theoretical setting the experimental
phenomenon initially observed in Belkin et al. (2019), Geiger et al. (2019); Spigler et al. (2019),
Nakkiran et al. (2020a). Further derivations of triple or even multiple descents for the generalization
error have also been performed d’Ascoli et al. (2020); Nakkiran et al. (2020b); Chen et al. (2021);
Richards et al. (2021); Wu & Xu (2020). Other aspects of multiples descents have been explored in
Lin & Dobriban (2021); Adlam & Pennington (2020b) also for the Neural tangent kernel in Adlam &
Pennington (2020a). The tools in use come from modern random matrix theory Pennington & Worah
(2017); Rashidi Far et al. (2006); Mingo & Speicher (2017), and statistical physics methods such as
the replica method Engel & Van den Broeck (2001).

In this paper we are concerned with a line of research dedicated to the precise time-evolution of
the generalization error under gradient flow corroborating, among other things, the presence of
epoch-wise descents structures Crisanti & Sompolinsky (2018); Bodin & Macris (2021) observed in
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Nakkiran et al. (2020a). We consider the gradient flow dynamics for the training and generalisation
errors in the setting of a Gaussian Covariate model, and develop analytical methods to track the
whole time evolution. In particular, for infinite times we get back the predictions of the least square
estimator which have been thoroughly described in a similar model by Loureiro et al. (2021).

In the next paragraphs we set-up the model together with a list of special realizations, and describe
our main contributions.

1.2 MODEL DESCRIPTION

Generative Data Model: In this paper, we use the so-called Gaussian Covariate model in a teacher-
student setting. An observation in our data model is defined through the realization of a gaussian
vector z ∼ N (0, 1

dId). The teacher and the student obtain their observations (or two different views
of the world) with the vectors x ∈ RpB and x̂ ∈ RpA respectively, which are given by the application
of two linear operations on z. In other words there exists two matrices B ∈ Rd×pB and A ∈ Rd×pA
such that x = BT z and x̂ = AT z. Note that the generated data can also be seen as the output of a
generative 1-layer linear network. In the following, the structure of A and B is pretty general as long
as it remains independent of the realization z: the matrices may be random matrices or block-matrices
of different natures and structures to capture more sophisticated models. While the models we treat
are defined through appropriate A and B, we will often only need the structure of U = AAT and
V = BBT .

A direct connection can be made with the Gaussian Covariate model described in Loureiro et al.
(2021) which suggests considering directly observations x̄ = (xT , x̂T )T ∼ N (0,Σ) for a given
covariance structure Σ. The spectral theorem provides the existence of orthonormal matrix O and
diagonal D such that Σ = OTDO and D contains d non-zero eigenvalues in a squared block D1 and
pA + pB − d zero eigenvalues. We can write D = JTD1J with J = (Id|0pA+pB−d). Therefore

if we let z = 1√
d
D
− 1

2
1 JOx̄ which has variance 1

dId, then upon noticing JJT = Id and defining

(A|B)T =
√
dOTJTD

1
2
1 we find (A|B)T z ∼ N (0,Σ).

The Gaussian Covariate model unifies many different models as shown in Table 1. These special
cases are all discussed in section 3 and Appendix D

Table 1: Different matrices and corresponding models

Target Matrix B Estimator Matrix A Corresponding Modelr√d
pIp 0

0 σ
√

d
q Iq

 (√
d
pIp

Oq×p

) Ridgeless regression with signal r
and noise σ


√

r2d
p Iγp 0 0

0
√

r2d
p Iγ′p 0

0 0
√

σ2d
q Iq



√

d
γpIγp

O(1−γ)p×γd
Oq×γd

 Mismatched ridgeless regression
withz signal r and noise σ and mis-
match parameter γ with γ+ γ′ = 1


Iγd 0 0 0
0 Iγd 0 0

0 0
. . .

...
0 0 . . . Iγd




1
α0 Iγd 0 0

0
. . .

...
0 . . . 1

α
p−1
2

Iγd


non-isotropic ridgless regression
noiseless with a α polynomial dis-
torsion of the inputs scalings

r
√

d
pIp Op×q

ON×p ON×q

Oq×p σ
√

d
q Iq


µ
√

d
pW

ν
√

d
pIN

Oq×N


Random features regression of a
noisy linear function with W the
random weights and (µ, ν) describ-
ing a non-linear activation function

√
ω1 0 · · · 0
0

√
ω2 · · · 0

...
...

. . .
...

0 0 · · · √ωd



√
ω1 0 · · · 0
0

√
ω2 · · · 0

...
...

. . .
...

0 0 · · · √ωd


Further Kernel methods

Learning task: We consider the problem of learning a linear teacher function fd(x) = β∗Tx with
x and x̂ sampled as defined above, and with β∗ ∈ Rp a column vectors. This hidden vector β∗
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(to be learned) can potentially be a deterministic vector. We suppose that we have n data-points
(zi, yi)1≤i≤n with xi = Bzi, x̂i = Azi. This data can be represented as the n× d matrix Z ∈ Rn×d
where zTi is the i-th row of Z, and the column vector vector Y ∈ Rn with i-th entry yi. Therefore,
we have the matrix notation Y = ZBβ∗. We can also set X = ZB so that Y = Xβ∗.

In the same spirit, we define the estimator of the student ŷβ(z) = βTx = zTAβ. We note that in
general the dimensions of β and β∗ (i.e., pA and pB) are not necessarily equal as this depends on the
matrices B and A. We have Ŷ = ZAβ = X̂β for X̂ = ZA.

Training and test error: We will consider the training error Eλtrain and test errors Egen with a
regularization coefficient λ ∈ R∗+ defined as

Eλtrain(β) =
1

n
‖Ŷ − Y ‖22 +

λ

n
‖β‖22 , Egen(β) = E

z∼N (0,
Id
d )

[
(zTAβ − zTBβ∗)2

]
(1)

It is well known that the least-squares estimator β̂ = arg minH(β) is given by the Thikonov
regression formula β̂λ = (X̂T X̂ + λI)−1X̂TY and that in the limit λ→ 0, this estimator converges
towards the β̂0 given by the Moore-Penrose inverse β̂0 = (X̂T X̂)+X̂TY .

Gradient-flow: We use the gradient-flow algorithm to explore the evolution of the test error through
time with ∂βt

∂t = −n2∇βE
λ
train(βt). In practice, for numerical calculations we use the discrete-time

version, gradient-descent, which is known to converge towards the aforementioned least-squares
estimator provided a sufficiently small time-step (in the order of 1

λmax
where λmax is the maximum

eigenvalue of X̂T X̂). The upfront coefficient n on the gradient is used so that the test error scales with
the dimension of the model and allows for considering the evolution in the limit n, d, pA, pB → +∞
with a fixed ratios n

d ,
pA
d ,

pB
d . We will note φ = n

d .

1.3 CONTRIBUTIONS

1. We provide a general unified framework covering multiple models in which we derive, in the
asymptotic large size regime, the full time-evolution under gradient flow dynamics of the training and
generalization errors for teacher-student settings. In particular, in the infinite time-limit we check that
our equations reduce to those of Loureiro et al. (2021) (as should be expected). But with our results
we now have the possibility to explore quantitatively potential advantages of different stopping times:
indeed our formalism allows to compute the time derivative of the generalization curve at any point
in time.
2. Various special cases are illustrated in section 3, and among these a simpler re-derivation of the
whole dynamics of the random features model Bodin & Macris (2021), the full dynamics for kernel
methods, and situations exhibiting multiple descent curves both as a function of model parameters
and time (See section 3.2 and Appendix D.2). In particular, our analysis allows to design multiple
descents with respect to the training epochs.
3. We show that our equations can also capture the learning curves over realistic datasets such as
MNIST with gradient descent (See section 3.4 and Appendix D.5), extending further the results of
Loureiro et al. (2021) to the time dependence of the curves. This could be an interesting guideline for
deriving scaling laws for large learning models.
4. We use modern random matrix techniques, namely an improved version of the linear-pencil
method - recently introduced in the machine learning community by Adlam et al. (2019) - to derive
asymptotic limits of traces of rational expressions involving random matrices. Furthermore we
propose a new derivation an important fixed point equation using Dyson brownian motion which,
although non-rigorous, should be of independent interest (See Appendix E).

Notations: We will use Trd [·] ≡ limd→+∞
1
dTr [·] and similarly for Trn [·]. We also occasionally

use Nd(v) = limd→+∞
1
d‖v‖2 for a vector v (when the limit exists).

2 MAIN RESULTS

We resort to the high-dimensional assumptions (see Bodin & Macris (2021) for similar assumptions).
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Assumptions 2.1 (High-Dimensional assumptions) In the high-dimensional limit, i.e, when d→
+∞ with all ratios n

d , pAd , pBd fixed, we assume the following

1. All the traces Trd [·], Trn [·] concentrate on a deterministic value.

2. There exists a sequence of complex contours Γd ⊂ C enclosing the eigenvalues of the random
matrix X̂T X̂ ∈ Rd×d but not enclosing −λ, and there exist also a fixed contour Γ enclosing the
support of the limiting (when d→ +∞) eigenvalue distribution of X̂T X̂ but not enclosing −λ.

With these assumptions in mind, we derive the precise time evolution of the test error in the high-
dimensional limit (see result 2.1) and similarly for the training error (see result 2.4). We will also
assume that the results are still valid in the case λ = 0 as suggested in Mei & Montanari (2019).

2.1 TIME EVOLUTION FORMULA FOR THE TEST ERROR

Result 2.1 The limiting test error time evolution for a random initialization β0 such thatNd(β0) = r0

and E[β0] = 0 is given by the following expression:

Ēgen(t) = c0 + r2
0B0(t) + B1(t) (2)

with V ∗ = Bβ∗β∗TBT and c0 = Trd [V ∗] and:

B1(t) =
−1

4π2

∮
Γ

∮
Γ

(1− e−t(x+λ))(1− e−t(y+λ))

(x+ λ)(y + λ)
f1(x, y)dxdy +

1

iπ

∮
Γ

1− e−t(z+λ)

z + λ
f2(z)dz

(3)

B0(t) =
−1

2iπ

∮
Γ

e−2t(z+λ)f0(z)dz (4)

where f1(x, y) = f2(x) + f2(y) + f̃1(x, y)− c0 and:

f̃1(x, y) = Trd
[
(φU + ζxI)−1(ζxζyV

∗ + f̃1(x, y)φU2)(φU + ζyI)−1
]

(5)

f2(z) = c0 − Trd
[
ζzV

∗(φU + ζzI)−1
]

(6)

f0(z) = −
(

1 +
ζz
z

)
(7)

and ζz given by the self-consistent equation:

ζz = −z + Trd
[
ζzU(φU + ζzI)−1

]
(8)

The former result can be expressed in terms of expectations w.r.t the joint limiting eigenvalue
distributions of U and V ∗ when they commute with each other.

Result 2.2 Besides, when U and V ∗ commute, let u, v∗ be jointly-distributed according to U and
V ∗ eigenvalues respectively. Then:

f̃1(x, y) = Eu,v∗
[
ζxζyv

∗ + f̃1(x, y)φu2

(φu+ ζx)(φu+ ζy)

]
, f2(z) = c0 − Eu,v∗

[
ζzv
∗

φu+ ζz

]
(9)

ζz = −z + Eu
[

ζzu

φu+ ζz

]
(10)

Notice also that in the limit t→∞:

B1(+∞) = f1(−λ,−λ)− 2f2(−λ) = f̃1(−λ,−λ)− c0, B0(+∞) = 0 (11)

which leads to the next result.

Result 2.3 In the limit t→∞, the limiting test error is given by Ēgen(+∞) = f̃1(−λ,−λ).
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Remark 1 Notice that the matrix V ∗ is of rank one depending on the hidden vector β∗. However,
it is also possible to calculate the average generalization (and training) error over a prior distri-
bution β∗ ∼ P∗. Averaging Eβ∗∼P∗ [Ēgen] propagates the expectation within Eβ∗∼P∗ [B0(t)] and
Eβ∗∼P∗ [B1(t)], which propagates it further into the traces of Eβ∗∼P∗ [f̃1] and Eβ∗∼P∗ [f2]. In fact
we find:

EP∗ [f̃1(x, y)] = Trd
[
(φU + ζxI)−1(ζxζyEP∗ [V ∗] + EP∗ [f̃1(x, y)]φU2)(φU + ζyI)−1

]
(12)

Eβ∗∼P∗ [f2(z)] = c0 − Trd
[
ζzEP∗ [V ∗](φU + ζzI)−1

]
(13)

In conclusion, we find that Eβ∗∼P∗ [Ēgen] follows the same equations as Ēgen in result 2.1 with
Eβ∗∼P∗ [V ∗] instead of V ∗. In the following, we will consider V ∗ without any distinction whether it
comes from a specific vector β∗ or averaged through a sample distribution P∗.

Remark 2 In the particular case where U is diagonal, the matrix V ∗ can be replaced by the
following diagonal matrix Ṽ ∗ which, in fact, commutes with U :

Ṽ ∗ =


[V ∗]11[β∗]21 0 . . . 0

0 [V ∗]22[β∗]22 . . . 0
...

...
. . .

...
0 0 . . . [V ∗]dd[β

∗]2d

 (14)

This comes essentially from the fact that given a diagonal matrix D and a non-diagonal matrix A,
then [DA]ii = [D]ii[A]ii. This is particularly helpful, and shows that in many cases the calculations
of f̃1 or f2 remain tractable even for a deterministic β∗ (see the example in Appendix D.3) .

Remark 3 Sometimes U = AAT and V = BBT are more difficult to handle than their dual
counterparts U? = φATA and V? = φBTB together with the additional matrix Ξ = φATB. The
following expressions are thus very useful (See Appendix C):

f1(x, y) = Trn
[
(U? + ζxI)−1((Ξβ∗β∗TΞT ) + f̃1(x, y)U?)U?(U? + ζyI)−1

]
(15)

f2(z) = Trn
[
(Ξβ∗β∗TΞT )(U? + ζzI)−1

]
(16)

ζz = −z + Trn
[
ζzU?(U? + ζzI)−1

]
(17)

In fact, when x = y = −λ (which corresponds to the limit when t → ∞), these are the same
expressions as (59) in Loureiro et al. (2021) with the appropriate change of variable λ(1 + V )→ ζ

and f̃1 → ρ+ q − 2m.

2.2 TIME EVOLUTION FORMULA FOR THE TRAINING ERROR

Result 2.4 The limiting training error time evolution is given by the following expression:

Ē0
train(t) = c0 + r2

0H0(t) +H1(t) (18)

with:

H1(t) =
−1

4π2

∮
Γ

∮
Γ

(1− e−t(x+λ))(1− e−t(y+λ))

(x+ λ)(y + λ)
h1(x, y)dxdy +

1

iπ

∮
Γ

1− e−t(z+λ)

z + λ
h2(z)dz

(19)

H0(t) =
−1

2iπ

∮
Γ

e−2t(z+λ)h0(z)dz (20)

where h1(x, y) = h2(x) + h2(y) + h̃1(x, y)− c0 and with ηz = −z
ζz

:

h̃1(x, y) = ηxηy f̃1(x, y), h2(z) = ηz(c0f0(z) + f2(z)), h0(z) = ηzf0(z) (21)

Eventually, in the limit t→∞ we find:

H1(+∞) = h1(−λ,−λ)− 2h2(−λ) = h̃1(−λ,−λ)− c0, H0(+∞) = 0 (22)
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Result 2.5 In the limit t→∞, we have the relation Ē0
train(+∞) = η2

−λĒgen(+∞)

We notice the same proportionality factor η2
−λ =

(
λ

ζ(−λ)

)2

as already stated in Loureiro et al. (2021),
however interestingly, in the time evolution of the training error, such a factor is not valid as we have
h2(z) 6= ηzf2(z).

3 APPLICATIONS AND EXAMPLES

We discuss some of the models provided in table 1 and some others in Appendix D.

3.1 RIDGELESS REGRESSION OF A NOISY LINEAR FUNCTION

Target function Consider the following noisy linear function y(x) = rxTβ∗0 + σε for some constant
σ ∈ R+ and ε ∼ N (0, 1), and a hidden vector β∗0 ∼ N (0, Ip). Assume we have a data matrix
X ∈ Rn×p. In order to incorporate the noise in our structural matrix B, we consider an additional
parameter q(d) that grows linearly with d and such that d = p + q. Let φ0 = n

p . Therefore
φ = n

d = n
p
p
d = φ0ψ. Also, we let β∗T = (β∗T0 |βT1 ) ∼ N (0, Ip+q) and we consider an average V ∗

over β∗. We construct the following block-matrix B and compute the averaged V ∗ as follow:

B =

r√d
pIp 0

0 σ
√

d
q Iq

 =⇒ V ∗ =

(
r2 1
ψ Ip 0

0 σ2 1
1−ψ Iq

)
(23)

Now let’s consider the random matrix Z ∈ Rn×d and split it into two sub-blocks Z =
(√

p
dX|

√
q
dΣ
)
.

The framework of the paper yields the following output vector:

Y = ZBβ∗ = rXβ∗0 + σξ (24)

where ξ = Σβ∗1 is used as a proxy for the noise ε.

Estimator Now let’s consider the linear estimator ŷt = xTβt. To capture the structure of this model,
we use the following block-matrix A and compute the resulting matrix U :

A =

(√
d
pIp

0q×p

)
=⇒ U =

(
1
ψ Ip 0

0 0q×q

)
(25)

Therefore, it is straightforward to check that we have indeed: Ŷt = ZAβt = Xβt.

Analytic result In this specific example, U and V ∗ obviously commute and the result 2.2 can thus
be used. First we derive the joint-distribution of the eigenvalues:

P
(
u =

1

ψ
, v =

r2

ψ

)
= ψ P

(
u = 0, v =

σ2

1− ψ

)
= 1− ψ (26)

In this specific example, we focus only on rederiving the high-dimensional generalization error
without any regularization term (λ = 0) for the minimum least-squares estimator. So we calculate

ζ = ζ(0) as follows: ζ = ψ
ζ 1
ψ

φ
ψ+ζ

+ 0 implies ζ2 + φ0ζ = ζ so ζ ∈ {0, 1− φ0}. For f̃1 we get:

f̃1 = ψ
f̃1

φ
ψ2

( φψ + ζ)2
+ ψ

r2

ψ

ζ2

( φψ + ζ)2
+ (1− ψ)

σ2

1− ψ
ζ2

(ζ)2
(27)

In fact, the expression can be simplified as follow (without the constants φ, ψ):(
1− φ0

(φ0 + ζ)2

)
f̃1 = r2 ζ2

(φ0 + ζ)2
+ σ2 (28)

Using both solutions ζ = 0 or ζ = 1− φ0 yields the same results as in Hastie et al. (2019); Belkin
et al. (2020) using 2.3:

Egen(+∞) =

{
σ2 φ0

φ0−1 (ζ = 0)

r2(1− φ0) + σ2 1
1−φ0

(ζ = 1− φ0)
(29)
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3.2 NON-ISOTROPIC RIDGELESS REGRESSION OF A NOISELESS LINEAR MODEL

Non-isotropic models have been studied in Dobriban & Wager (2018) and then also Wu & Xu (2020);
Richards et al. (2021); Nakkiran et al. (2020b); Chen et al. (2021) where multiple-descents curve
have been observed or engineered. In this section, we extend this idea to show that any number of
descents can be generated and derive the precise curve of the generalization error as in Figure 1.

Target function We use the standard linear model y(z) = zTβ∗ for a random β∗ ∼ N (0, Id).
Therefore, we consider the matrix B = Id and thus V ∗ = Id such that Y = ZBβ∗ = Zβ∗.

Estimator: Following the structure provided in table 1, the design a matrix A is a scalar matrix with
p ∈ N∗ sub-spaces of different scales spaced by a polynomial progression α−

1
2 i. In other words, the

student is trained on a dataset with different scalings. We thus have U = A2 and Ŷt = ZAβt.

Analytic results We refer the reader to the Appendix D.2 for the calculation. Depending if φ is
above or below 1, ζ is the solution of the following equations: ζ = 0 or 1 = 1

p

∑p−1
i=0

1
φ+αiζ . In the

over-parameterized regime (φ < 1), the generalisation error is fully characterized by the equation:

Ēgen(+∞) = φ(1− φ)

(
1

p

p−1∑
i=0

αiζ

(φ+ αiζ)2

)−1

− φ (30)

In the asymptotic limit α → ∞, ζ can be approximated and thus we can derive an asymptotic
expansion of Ēgen(+∞) for φ ∈ [0, 1] \ kpZ where clearly, the multiple descents appear as roots of
the denominator of the sum:

Ēgen(+∞) =
1

p

p−1∑
k=0

φ(1− φ)(
φ− k

p

)(
k+1
p − φ

)1] kp ; k+1
p [(φ)− φ+ oα(1) (31)

Figure 1: Example of theoretical multiple descents in the least-squares solution for the non-isotropic ridgeless
regression model with p = 3, λ = 10−7 (left) and p = 4, λ = 10−13 (right), and α = 104 in both of them.

Interestingly, we can see how these peaks are being formed with the time-evolution of the gradient
flow as in Figure 2 with one peak close to φ = 1

3 and the second one at φ = 2
3 . (Note that small λ

requires more computational resources to have finer resolution at long times, hence here the second
peak develops fully after t = 104). It is worth noticing also the existence of multiple time-descent, in
particular at φ = 1 with some "ripples" that can be observed even in the training error.

Figure 2: Example of theoretical multiple descents evolution in the non-isotropic ridgeless regression model
with p = 3, λ = 10−5, α = 100 with φ = 1 on the left and a range φ ∈ (0, 1) on the right heatmap.
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The eigenvalue distribution (See Appendix D.2.1) provides some insights on the existence of these
phenomena. As seen in Figure 3, the emergence of a spike is related to the rise of a new "bulk"
of eigenvalues, which can be clearly seen around φ = 1

3 and φ = 2
3 here. Note that there is some

analogy for the generic double-descent phenomena described in Hastie et al. (2019) where instead of
two bulks, there is a mass in 0 which is arising. Furthermore, the existence of multiple bulks allow
for multiple evolution at different scales (with the e−(z+λ)t terms) and thus enable the emergence of
multiple epoch-wise peaks.

Figure 3: Theoretical (log-)eigenvalue distribution in the non-isotropic ridgeless regression model with
p = 3, λ = 10−5, α = 100 with φ = 1 on the left and a range φ ∈ (0, 1) on the right heatmap.

3.3 RANDOM FEATURES REGRESSION

In this section, we show that we can derive the learning curves for the random features model
introduced in Rahimi & Recht (2008), and we consider the setting described in Bodin & Macris
(2021). In this setting, we define the random weight-matrix W ∈ Rp×N where ψ0 = N

p such

that Wij ∼ N (0, 1
p ) and d = p + N + q and φ = n

d , ψ = p
d , and φ0 = n

p = n
d
d
p = φ

ψ (thus
q
d = 1− (1 + ψ0)ψ). So with Z =

(√
p
dX|

√
p
dΩ|
√

q
dξ
)
, using the structures A and B from table 1

we have: ZA = µXW + νΩ and ZB = X + σξ, hence the model:

Ŷ = ZAβ = (µXW + νΩ)β (32)
Y = ZBβ∗ = Xβ∗0 + σξβ∗1 (33)

With further calculation that can be found in Appendix D.4, a similar complete time derivation
of the random feature regression can be performed with a much smaller linear-pencil than the
one suggested in Bodin & Macris (2021). As stated in this former work, the curves derived from
this formula track the same training and test error in the high-dimensional limit as the model
with the point-wise application of a centered non-linear activation function f ∈ L2(e−

x2

2 dx) with
Ŷ = 1√

pf(
√
pXW )β. More precisely, with the inner-product defined such that for any function

g ∈ L2(e−
x2

2 dx), 〈f, g〉 = Ex∼N (0,1)[f(x)g(x)], we derive the equivalent model parameters (µ, ν)

with µ = 〈f,He1〉, ν2 = 〈f, f〉−µ2 while having the centering condition 〈f,He0〉 = 0 where (Hen)
is the Hermite polynomial basis.

This transformation is dubbed the Gaussian equivalence principle and has been observed and rig-
orously proved under weaker conditions in Pennington & Worah (2017); Péché (2019); Hu & Lu
(2022), and since then has been applied more broadly for instance in Adlam & Pennington (2020a).

3.4 TOWARDS REALISTIC DATASETS

As stated in Loureiro et al. (2021), the training and test error of realistic datasets can also be captured.
In this example we track the MNIST dataset and focus on learning the parity of the images (y = +1
for even numbers and y = −1 for odd-numbers). We refer to Appendix D.5 for thorough discussions
of Figures 4 and 5 as well as technical details to obtain them, and other examples. Besides the
learning curve profile at t = +∞, the full theoretical time evolution is predicted and matches the
experimental runs. In particular, the rise of the double-descent phenomenon is observed through time.
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Figure 4: Comparison between the analytical and experimental learning profiles for the minimum least-squares
estimator at λ = 10−3 on the left (20 runs) and the time evolution at λ = 10−2, n = 700 on the right (10 runs).

Figure 5: Analytical training error and test error heat-maps for the theoretical gradient flow for λ = 10−3.

4 CONCLUSION

The time-evolution can also be investigated using the dynamical mean field theory (DMFT) from
statistical mechanics. We refer the reader to the book Parisi et al. (2020) and a series of recent works
Sompolinsky et al. (1988); Crisanti & Sompolinsky (2018); Agoritsas et al. (2018); Mignacco et al.
(2020; 2021) for an overview of this tool. This method is a priori unrelated to ours and yields a
set of non-linear integro-differential equations for time correlation functions which are in general
not solvable analytically and one has to resort to a numerical solution. It would be interesting to
understand if for the present model the DMFT equations can be reduced to our set of algebraic
equations. We believe it can be a fruitful endeavor to compare in detail the two approaches: the one
based on DMFT and the one based on random matrix theory tools and Cauchy integration formulas.

Another interesting direction which came to our knowledge recently is the one taken in Lu & Yau
(2022); Hu & Lu (2022) and in Misiakiewicz (2022); Xiao & Pennington (2022), who study the
high-dimensional polynomial regime where n ∝ dκ for a fixed κ. In particular, it is becoming
notorious that changing the scaling can yield additional descents. This regime is out of the scope of
the present work but it would be desirable to explore if the linear-pencils and the random matrix tools
that we extensively use in this work can extend to these cases.
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A GRADIENT FLOW CALCULATIONS

In this section, we derive the main equations for the gradient flow algorithm, and derive and set of
Cauchy integration formula involving the limiting traces of large matrices. The calculation factoring
out Z in the limit d→∞ is pursued in the next section. First, we recall and expand the training error
function in 1:

Eλtrain(βt) =
1

n
‖Y − X̂βt‖22 +

λ

n
‖βt‖22 (34)

=
1

n
‖Y ‖22 −

2

n
Y T X̂T X̂βt +

λ

n
‖βt‖22 (35)

=
1

n
‖ZBβ∗‖22 −

2

n
β∗TBTZTZAβt +

1

n
βTt A

TZTZAβt +
λ

n
‖βt‖22 (36)

Let K = (X̂T X̂ + λI)−1 = (ATZTZA+ λI)−1 which is invertible for λ > 0. Therefore, we can
write the gradient of the training error for any β as:

n

2
∇βEtrain(β) = X̂T (X̂β − Y ) + λβ = (X̂T X̂ + λI)β − X̂TY = K−1β − X̂TY (37)

The gradient flow equations reduces to a first order ODE
∂βt
∂t

= −n
2
∇βEλtrain(βt) = X̃TY −K−1βt (38)

The solution can be completely expressed using Lt = (I − exp(−tK−1)) as

βt = exp(−tK−1)β0 + (I − exp(−tK−1))KX̃TY (39)

= (I − Lt)β0 + LtKX̃
TXβ∗ (40)

In the following two subsections, we will focus on deriving an expression of the time evolution of
the test error and training error using these equations averaged over the a centered random vector β0

such that r2
0 = Nd(β0)2.

A.1 TEST ERROR

As above, the test error can be expanded using the fact that on N0 = N (0, 1
d ), we have the identity

Ez∼N0 [zzT ] = 1
dId:

Egen(βt) = Ez∼N0

[
(zTAβt − zTBβ∗)2

]
(41)

= (Aβt −Bβ∗)TEz∼N0 [zzT ](Aβt −Bβ∗) (42)

=
1

d
βTt Uβt −

2

d
β∗TBTAβt +

1

d
β∗TBTBβ∗ (43)

So expanding the first term yields

βTt Uβt = (βT0 (I − Lt) + β∗TXT X̃KLt)U((I − Lt)β0 + LtKX̃
TXβ∗) (44)

= βT0 (I − Lt)U(I − Lt)β0 (45)

+ β∗T (BTZTZA)KLtULtK(AZTZB)β∗ (46)

+ 2βT0 (I − Lt)ULtK(AZTZB)β∗ (47)

while the second term yields

β∗TBTAβt = β∗TBTA((I − Lt)β0 + LtKX̃
TXβ∗) (48)

= β∗TBTA(I − Lt)β0 + β∗TLtK(ATZTZB)β∗ (49)

Let’s consider now the high-dimensional limit Ēgen(t) = limd→+∞ Egen(βt). We further make the
underlying assumption that the generalisation error concentrates on its mean with β0, that is to say:
Ēgen(t) = limd→+∞ Eβ0

[Egen(βt)]. Let V ∗ = Bβ∗β∗TBT and c0 = Trd [V ∗], then using the former
expanded terms in 41 we find the expression

Ēgen(t) = c0 + r2
0Trd

[
AT (I − Lt)2A

]
(50)

+ Trd
[
ZTZAKLtULtKA

TZTZV ∗
]
− 2Trd

[
ALtKA

TZTZV ∗
]

(51)
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So Ēgen(t) = c0 + r2
0B0(t) + B1(t) with:

B0(t) = Trd
[
AT (I − Lt)2A

]
(52)

B1(t) = Trd
[
ZTZAKLtULtKA

TZTZV ∗
]
− 2Trd

[
ALtKA

TZTZV ∗
]

(53)

Let K(z) = (X̃T X̃ − zI)−1 the resolvent of X̃T X̃ , and let’s have the convention K = K(−λ)
to remain consistent with the previous formula. Then for any holomorphic functional f : U → C
defined on an open set U which contains the spectrum of X̃T X̃ , with Γ a contour in C enclosing the
spectrum of X̃T X̃ but not the poles of f , we have with the extension of f onto Cn×n: f(X̃T X̃) =
−1
2iπ

∮
Γ
f(z)K(z)dz. For instance, we can apply it for the following expression:

KLt = LtK = (I − exp(−tX̃T X̃ + tλI))(X̃T X̃ − λI)−1 (54)

=
−1

2iπ

∮
Γ

1− e−t(z+λ)

z + λ
(X̃T X̃ − zI)−1dz (55)

=
−1

2iπ

∮
Γ

1− e−t(z+λ)

z + λ
K(z)dz (56)

So we can generalize this idea to each trace and rewrite B1(t) and B0(t) with

B1(t) =
−1

4π2

∮
Γ

∮
Γ

(1− e−t(x+λ))(1− e−t(y+λ))

(x+ λ)(y + λ)
f1(x, y)dxdy +

1

iπ

∮
Γ

1− e−t(z+λ)

z + λ
f2(z)dz

(57)

B0(t) =
−1

2iπ

∮
Γ

e−2t(z+λ)f0(z)dz (58)

where we introduce the set of functions f1(x, y), f2(z) and f0(z)

f1(x, y) = Trd
[
ZTZAK(x)AATK(y)ATZTZV ∗

]
(59)

f2(z) = Trd
[
AK(z)ATZTZV ∗

]
(60)

f0(z) = Trd
[
AK(z)AT

]
(61)

Let G(x) = (UZTZ − xI)−1, using the push-through identity, it is straightforward that AK(z)A =
G(z)U = UG(z)T . This help us reduce further the expression of f1 into smaller terms which will be
easier to handle with linear-pencils later on

f1(x, y) = Trd
[
ZTZUG(x)TG(y)UZTZV ∗

]
(62)

= Trd
[
(G(x)−1 + xI)TG(x)TG(y)(G(y)−1 + yI)V ∗

]
(63)

= Trd
[
(I + yG(y))V ∗(I + xG(x))T

]
(64)

= c0 + yTrd [G(y)V ∗] + xTrd [G(x)V ∗] + xyTrd
[
G(x)V ∗G(y)T

]
(65)

Similarly with f2 and f0, they can be rewritten as

f2(z) = Trd
[
G(z)UZTZV ∗

]
(66)

= Trd
[
G(z)(G(z)−1 + zI)V ∗

]
(67)

= c0 + zTrd [G(z)V ∗] (68)
f0(z) = Trd [G(z)U ] (69)

Hence in fact the definition f̃1(x, y) = xyTrd
[
G(x)V ∗G(y)T

]
such that

f1(x, y) = f2(x) + f2(y) + f̃1(x, y)− c0 (70)

At this point, the equations provided by 57 are valid for any realization Z in the limit d→∞. We
will see in the next section how to simplify these terms by factoring out Z.
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A.2 TRAINING ERROR

Similar formulas can be derived for the training error. For the sake of simplicity, we provide a formula
to track the training error without the regularization term, that is to say E0

train(βt) (as in Loureiro
et al. (2021)) while still minimizing the loss Eλtrain(βt). So using the expanded expression 34, and
considering the high-dimensional assumption with concentration Ē0

train(t) := limd→+∞ Etrain(βt) =
limd→+∞ Eβ0

[Etrain(βt)] we have
Ē0

train(t) = Trn
[
ZTZV ∗

]
+ r2

0Trn
[
ATZTZA(I − Lt)2

]
(71)

+ Trn
[
ZTZAKLtA

TZTZALtKA
TZTZV ∗

]
(72)

− 2Trn
[
ZTZALtKA

TZTZV ∗
]

(73)
First of all, standard random matrix results (for instance see Rubio & Mestre (2011)) assert the result
Trd
[
ZTZV ∗

]
= Trd

[
ZTZ

]
Trd [V ∗] = φc0. This result can also be derived under our random

matrix theory framework, for completeness we provide this calculation in C.2. Therefore, we can
defineH0(t) andH1(t) such that

Ē0
train(t) = c0 + r2

0H0(t) +H1(t) (74)
where we have the traces
H0(t) = Trn

[
ATZTZA(I − Lt)2

]
(75)

H1(t) = Trn
[
ZTZAKLt(A

TZTZA)LtKA
TZTZV ∗

]
− 2Trn

[
ZTZALtKA

TZTZV ∗
]

(76)
And using the functional calculus argument with Cauchy integration formula over the same contour Γ
we find

H1(t) =
−1

4π2

∮
Γ

∮
Γ

(1− e−t(x+λ))(1− e−t(x+λ))

(x+ λ)(y + λ)
h1(x, y)dxdy +

1

iπ

∮
Γ

(1− e−t(z+λ))

(z + λ)
h2(z)dz

(77)

H0(t) =
−1

2iπ

∮
Γ

e−2t(z+λ)h0(z)dz (78)

Where we use the traces (which only contain algebraic expression of matrices):
h1(x, y) = Trn

[
ZTZAK(x)AZTZATK(y)ATZTZV ∗

]
(79)

h2(z) = Trn
[
ZTZAK(z)ATZTZV ∗

]
(80)

h0(z) = Trn
[
ZTZATK(z)AT

]
(81)

The expression of h1 can be reduced to smaller terms as before with f1

φh1(x, y) = Trd
[
ZTZUG(x)TZTZG(y)UZTZV ∗

]
(82)

= Trd
[
(G(x)−1 + xI)TG(x)TZTZG(y)(G(y)−1 + yI)V ∗

]
(83)

= Trd
[
ZTZV ∗

]
+ xTrd

[
G(x)TZTZV ∗

]
+ yTrd

[
ZTZG(y)V ∗

]
(84)

+ xyTrd
[
ZTZG(y)V ∗G(x)T

]
(85)

= c0φ+ xTrd
[
ZTZG(x)V ∗

]
+ yTrd

[
ZTZG(y)V ∗

]
(86)

+ xyTrd
[
ZTZG(y)V ∗G(x)T

]
(87)

and similarly with h2

φh2(z) = Trd
[
ZTZG(z)UZTZV ∗

]
(88)

= Trd
[
ZTZG(z)(G(z)−1 + zI)V ∗

]
(89)

= Trd
[
ZTZV ∗

]
+ zTrd

[
ZTZG(z)V ∗

]
(90)

= c0φ+ zTrd
[
ZTZG(z)V ∗

]
(91)

and similarly with h0

φh0(z) = Trd
[
ZTZG(z)U

]
(92)

= Trd
[
G(z)(G(z)−1 + zI)

]
(93)

= 1 + zTrd [G(z)] (94)

We can also define the term h̃1(x, y) = xyTrn
[
ZG(y)V ∗G(x)TZT

]
so that:

h1(x, y) = h2(x) + h2(y) + h̃1(x, y)− c0 (95)

15



Under review as a conference paper at ICLR 2023

B TEST ERROR AND TRAINING ERROR LIMITS WITH LINEAR PENCILS

In this section we compute a set of self-consistent equation to derive the high-dimensional evolution of
the training and test error. We refer to Appendix E for the definition and result statements concerning
the linear pencils.

We will derive essentially two linear-pencils of size 6× 6 and 4× 4 which will enable us to calculate
the limiting values for f̃1, f2, f0 for the test error, and h̃1, h2, h0 for the training error. Note that these
block-matrices are derived essentially by observing the recursive application of the block-matrix
inversion formula and manipulating it so as to obtain the desired result.

Compared to other works such as Bodin & Macris (2021); Adlam & Pennington (2020a), our approach
yields smaller sizes of linear-pencils to handle, which in turn yields a smaller set of algebraic equations.
One of the ingredient of our method consists in considering a multiple-stage approach where the
trace of some random blocks can be calculated in different parts (See the random feature model for
example in Appendix D.4). However, the question of finding the simplest linear-pencil remains open
and interesting to investigate.

B.1 LIMITING TRACES OF THE TEST ERROR

LIMITING TRACE FOR f̃1 AND f0

We construct a linear-pencil M1 as follow (with Z the random matrix into consideration)

M1 =


0 0 0 −yI 0 ZT

0 0 0 0 Z I
0 0 0 U I 0
−xI 0 U −xyV ∗ 0 0

0 ZT I 0 0 0
Z I 0 0 0 0

 (96)

The inverse of this block-matrix contains the terms in the traces of f̃1 and f0. To see this, let’s
calculate the inverse of M1 by splitting it first into other "flattened" blocks:

M1 =

(
0 BTy
Bx D

)
=⇒M−1

1 =

(
−B−1

x DBT−1
y B−1

x

BT−1
y 0

)
(97)

Where Bx and D are given by

Bx =

−xI 0 U
0 ZT I
Z I 0

 D =

(−xyV ∗ 0 0
0 0 0
0 0 0

)
(98)

then to calculate the inverse of Bx, notice first its lower right-hand sub-block has inverse(
ZT I
I 0

)−1

=

(
0 I
I −ZT

)
(99)

Which lead us to the following inverse using the block-matrix inversion formula (the dotted terms
aren’t required):

B−1
x =

 G(x) −G(x)U G(x)UZT

−ZG(x) . . . In − ZG(x)UZT

ZTZG(x) . . . . . .

 (100)

With g〈ij〉d the trace of the squared sub-block (M−1
1 )〈ij〉 divided by the size of the block (ij), we find

the desired functions

f̃1(x, y) = lim
d→+∞

−g〈11〉
d (101)

f0(x) = lim
d→+∞

−g〈15〉
d OR f0(y) = lim

d→+∞
−g〈51〉

d (102)
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Let’s now consider g the limiting value of gd, and calculate the mapping η(g):

η(g) =


0 0 0 0 φg〈26〉 0
0 0 0 0 0 g〈15〉

0 0 0 0 0 0
0 0 0 0 0 0

φg〈62〉 0 0 0 φg〈22〉 0
0 g〈51〉 0 0 0 g〈11〉

 (103)

So we can calculate the matrix Π(M1) such that the elements of g are the limiting trace of the squared
sub-blocks of (Π(M1))−1 (divided by the block-size) following the steps of the result in App. E:

Π(M1) =


0 0 0 −yI −φg〈26〉I 0
0 0 0 0 0 (1− g〈15〉)I
0 0 0 U I 0
−xI 0 U −xyV ∗ 0 0

−φg〈62〉I 0 I 0 −φg〈22〉I 0
0 (1− g〈51〉)I 0 0 0 −g〈11〉I

 (104)

Therefore, there remains to compute the inverse of Π(M1). We split again Π(M1) as flattened
sub-blocks to make the calculation easier

Π(M1) =

(
0 B̃Ty
B̃x D̃

)
=⇒ Π(M1)−1 =

(
−B̃−1

x D̃(B̃−1
y )T B̃−1

x

(B̃−1
y )T 0

)
(105)

With the three block-matrices

B̃x =

 −xI 0 U
−g〈62〉φI 0 I

0 (1− g〈51〉)I 0

 B̃y =

 −xI 0 U
−g〈26〉φI 0 I

0 (1− g〈15〉)I 0

 (106)

D̃ =

−xyV ∗ 0 0
0 −g〈22〉φI 0
0 0 −g〈11〉I

 (107)

A straightforward application of the block-matrix inversion formula yields inverse of B̃x

B̃−1
x =

 (φg〈62〉U − xI)−1 −U(φg〈62〉U − xI)−1 0
0 0 (1− g〈51〉)−1I

φg〈62〉(φg〈62〉U − xI)−1 −x(φg〈62〉U − xI)−1 0

 (108)

Therefore, we retrieve the following close set of equations:

g〈11〉 = Trd
[
(g〈62〉φU − xI)−1(xyV ∗ + g〈22〉φU2)(g〈26〉φU − yI)−1

]
(109)

g〈22〉 = g〈11〉(1− g〈15〉)−1(1− g〈51〉)−1 (110)

g〈26〉 = (1− g〈51〉)−1 (111)

g〈15〉 = −Trd
[
U(g〈62〉φU − xI)−1

]
(112)

These equations can be simplified slightly by removing g〈22〉, g〈26〉 and introducing q〈15〉:

g〈11〉 = Trd
[
(φU − xq〈15〉I)−1(xyq〈15〉q〈51〉V ∗ + g〈11〉φU2)(φU − yq〈51〉I)−1

]
(113)

q〈15〉 = Trd
[
(φU − xq〈15〉I + q〈15〉U)(φU − xq〈15〉I)−1

]
(114)

g〈15〉 = 1− q〈15〉 (115)

Let ζx = −xq〈15〉, or by symmetry ζy = −yq〈51〉, then using the fact that f̃1(x, y) = −g〈11〉 and
f0(x) = −g〈15〉 we find the system of equations

f̃1(x, y) = Trd
[
(φU + ζxI)−1(ζxζyV

∗ + f̃1(x, y)φU2)(φU + ζyI)−1
]

(116)

f0(x) = −
(

1 +
ζx
x

)
(117)

ζz = −z + Trd
[
ζzU(φU + ζzI)−1

]
(118)
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Remark: As a byproduct of this analysis, notice the term g〈62〉 = (q〈15〉)−1 = −x
ζx

. In fact we
have:

g〈62〉 = Trn
[
In − ZG(x)UZT

]
(119)

= 1− Trn
[
Z(AATZTZ − xI)−1AATZT

]
(120)

= 1− Trn
[
(ZAATZT − xI)−1ZAATZT

]
(121)

= 1− Trn
[
(X̂X̂T − xI)−1(X̂X̂T − xIn + xIn)

]
(122)

= −xTrn
[
(X̂X̂T − xI)−1

]
(123)

So if we let m(x) = Trn
[
(X̂X̂T − xI)−1

]
the trace of the resolvent of the student data matrix, we

find that m(x) = ζ−1
x . This can be useful for analyzing the eigenvalues as in Appendix D.2.1.

LIMITING TRACE FOR f2

As before, we construct a second linear-pencil M2 with Z the random matrix component into
consideration

M2 =

 I 0 0 0
−zV ∗ −zI 0 U

0 0 ZT I
0 Z I 0

 (124)

The former flattened block Bz can be recognized in the lower right-hand side of M2, thus we can use
the block matrix-inversion formula and get:

M−1
2 =

 I 0 0 0
zG(z)V ∗

−zZG(z)V ∗ B−1
z

zZTZG(z)V ∗

 (125)

Now it is clear that we can express f2(z) = c0 + limd→+∞ g
〈21〉
d . Following the steps of App. E we

calculate the mapping

η(g) =


0 0 0 0
0 0 0 0
0 φg〈34〉 0 0
0 0 g〈23〉 0

 (126)

Which in returns enable us to calculate Π(M2)

Π(M2) =


I 0 0 0

−zV ∗ −zI 0 U
0 −g〈34〉φI 0 I
0 0 (1− g〈23〉)I 0

 (127)

To compute the inverse of Π(M2), the block-matrix is first split with the sub-block B̃z defined as
follow

B̃z =

 −zI 0 U
−g〈34〉φI 0 I

0 (1− g〈23〉)I 0

 Π(M2) =

 I 0 0 0
−zV ∗

0 B̃z
0

 (128)

A straightforward application of the block-matrix inversion formula yields the inverse of B̃z:

B̃−1
z =

 (g〈34〉φU − zI)−1 −U(g〈34〉φU − zI)−1 0
0 0 (1− g〈23〉)−1I

g〈34〉φ(g〈34〉φU − zI)−1 −z(g〈34〉φU − zI)−1 0

 (129)

Hence we can derive the inverse

Π(M2)−1 =


I 0 0 0

z(g〈34〉φU − zI)−1V ∗

0 B̃−1
z

zg〈34〉φ(g〈34〉φU − zI)−1V ∗

 (130)
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Eventually, using the fixed-point result on linear-pencils, we derive the set of equations

g〈21〉 = Trd
[
zV ∗(g〈34〉φU − zI)−1

]
(131)

g〈34〉 = (1− g〈23〉)−1 (132)

g〈23〉 = −Trd
[
U(g〈34〉φU − zI)−1

]
(133)

g〈41〉 = Trd
[
zg〈34〉φ(g〈34〉φU − zI)−1V ∗

]
(134)

g〈22〉 = Trd
[
(g〈34〉φU − zI)−1

]
(135)

(136)

In fact, it is a straightforward to see that g〈23〉, g〈34〉 follows the same equations as the former
g〈15〉, g〈26〉 in the previous subsection, therefore g〈23〉 = g〈15〉 = 1 − q〈15〉 = 1 + ζz

z , and thus
g〈34〉 = − z

ζz
Eventually we get g〈21〉 = −Trd

[
ζzV

∗(φU + ζzI)−1
]

so in the limit d→∞:

f2(z) = c0 − Trd
[
ζzV

∗(φU + ζzI)−1
]

(137)

B.2 LIMITING TRACES FOR THE TRAINING ERROR

LIMITING TRACE FOR h1

A careful attention to the linear-pencil M1 shows that the terms in the trace of h̃1 are actually given
by the location g〈22〉. We have to be careful also of the fact that (M−1

1 )〈22〉 is a block matrix of size
n× n, so it is already divided by the size n (and not d). Hence we simply have with ηz = −z

ζz
:

h̃1(x, y) = −g〈22〉 =
−x
ζx

−y
ζy
f1(x, y) = ηxηyf1(x, y) (138)

LIMITING TRACE FOR h2

In the case of h2, we need the specific term provided by the linear-pencil M2 by the location g〈41〉

with φh2(z) = c0φ+ g〈41〉

For h2 we use the linear pencil for f2, but instead of using g〈21〉 we use h2 = c0φ+ g〈41〉. We find:

g〈41〉 = zφTrd
[
V ∗(φU + ζzI)−1

]
(139)

= φ
z

ζz
Trd
[
ζzV

∗(φU + ζzI)−1
]

(140)

= φ
z

ζz
(c0 − f2(z)) (141)

Hence:

h2(z) = c0

(
1− −z

ζz

)
+
−z
ζz
f2(z) = ηz(c0f0(z) + f2(z)) (142)

LIMITING TRACE FOR h0

Finally for h0 we use again the linear pencil M2 with:

Trd [zG(z)] = zg〈22〉 = −Trd
[
ζz(φU + ζzI)−1

]
(143)

= −Trd
[
(ζz + φU − φU)(φU + ζzI)−1

]
(144)

= −1 + φTrd
[
U(φU + ζzI)−1

]
(145)

= −1 +
φ

ζz
Trd
[
ζzU(φU + ζzI)−1

]
(146)

= −1 +
φ

ζz
(ζz + z) (147)

Therefore:

h0(z) =

(
1− −z

ζz

)
= −

(
1 +

ζz
z

)
−z
ζz

= ηzf0(z) (148)

19



Under review as a conference paper at ICLR 2023

C OTHER LIMITING EXPRESSIONS

In this section we bring the sketch of proofs of additional expressions seen in the main results.

C.1 EXPRESSION WITH DUAL COUNTERPART MATRICES U? AND V?

The former functionals f2 and f̃1 can be rewritten as:

f2(z) = c0 − Trd
[
ζzV

∗(φU + ζzI)−1
]

(149)

= c0 − Trd
[
(ζzI + φU − φU)V ∗(φU + ζzI)−1

]
(150)

= c0 − Trd [V ∗] + Trd
[
φATV ∗(φU + ζzI)−1AT

]
(151)

= c0 − c0 + Trd
[
φATBβ∗β∗TBTA(U? + ζzI)−1

]
(152)

= Trn
[
(Ξβ∗β∗TΞT )(U? + ζzI)−1

]
(153)

With similar steps using:

ζxV
∗ζy = −(ζxI+φU)V ∗(ζyI+φU)+ ζxV

∗(ζyI+φU)+(ζxI+φU)V ∗ζy +φ2UV ∗U (154)

We find:

f̃1(x, y) = −c0 + Trd
[
ζxV

∗(ζyI + φU)−1
]

+ Trd
[
(ζxI + φU)−1V ∗ζy

]
(155)

+ Trd
[
(φU + ζxI)−1(φ2UV ∗U + f̃1(x, y)φU2)(φU + ζyI)−1

]
(156)

= c0 − f2(x)− f2(y) (157)

+ Trn
[
(U? + ζxI)−1((Ξβ∗β∗TΞT ) + f̃1(x, y)U?)U?(U? + ζyI)−1

]
(158)

Hence in fact:

f1(x, y) = Trn
[
(U? + ζxI)−1((Ξβ∗β∗TΞT ) + f̃1(x, y)U?)U?(U? + ζyI)−1

]
(159)

Finally, we have using the push-through identity and the cyclicity of the trace:

ζz = −z + Trd
[
ζzAA

T (φAAT + ζzI)−1
]

(160)

= −z + Trd
[
ζzA(φATA+ ζzI)−1AT

]
(161)

= −z + Trn
[
ζzU?(U? + ζzI)−1

]
(162)

C.2 LIMITING TRACE OF ZTZV ∗

Here we show another way in which our random matrix result can be used to infer the result on the
limiting trace Trd

[
ZTZV ∗

]
. To this end, we can design the linear-pencil:

M3 =

I −V ∗ 0 0
0 I ZT 0
0 0 I Z
0 0 0 I

 (163)

It is straightforward to calculate the inverse of the sub-matrix:I ZT 0
0 I Z
0 0 I

−1

=

I −ZT ZTZ
0 I −Z
0 0 I

 (164)

So that:

M−1
3 =

I V ∗ −ZTV ∗ V ∗ZTZ
0 I −ZT ZTZ
0 0 I −Z
0 0 0 I

 (165)
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At this point, it is clear that the quantity of interest is provided by the term g〈14〉 of the linear-pencil
M3. We find calculate further:

η(g) =


0 0 0 0
0 0 0 φg〈33〉

0 0 g〈42〉 0
0 0 0 0

 (166)

Based on the inverse of M3, we can already predict that g〈33〉 = 1 and g〈42〉 = 0. Hence:

Π(M3) =

I −V ∗ 0 0
0 I 0 −φI
0 0 I 0
0 0 0 I

 =⇒ Π(M3)−1 =

I V ∗ 0 φV ∗

0 I 0 φI
0 0 I 0
0 0 0 I

 (167)

Finally we obtain g〈14〉 = Trd [φV ∗], and hence Trd
[
ZTZV ∗

]
= φTrd [V ∗].

D APPLICATIONS AND CALCULATION DETAILS

D.1 MISMATCHED RIDGELESS REGRESSION OF A NOISY LINEAR FUNCTION

Target function Here we consider a slightly more complicated version of the former example
where we let y(x0, x1) = r

(
xT0 β

∗
0 + xT1 β

∗
1

)
+ σε and still averaged over β0 ∼ N (0, Iγp) and

β1 ∼ N (0, I(1−γ)p) with x0 ∈ Rγp, x1 ∈ R(1−γ)p. We let again d = p+ q and ψ = p
d and φ0 = p

q .
Therefore the former relation still holds φ = n

d = n
p
p
d = φ0ψ. Similarly, we derive a block-matrix B

and compute V ∗:

B =


r
√

d
pIγp 0 0

0 r
√

d
pI(1−γ)p 0

0 0 σ
√

d
q Iq

 =⇒ V ∗ =


r2

ψ Iγp 0 0

0 r2

ψ I(1−γ)q 0

0 0 σ2

1−ψ Iq

 (168)

So that with the splitting Z =
(√

p
dX0|

√
p
dX1|

√
q
dΣ
)
, and β∗T =

(
β∗T0 |β∗T1 |β∗T2

)
, and with

ξ = Σβ∗2 :
Y = ZBβ∗ = r(X0β

∗
0 +X1β

∗
1) + σξ (169)

Estimator Following the same steps, we construct A and U with

A =


√

d
γpIγp

0(1−γ)p×γd
0q×γd

 =⇒ U =

 1
γψ Iγp 0 0

0 0 0
0 0 0

 (170)

So that we get the linear estimator Ŷt

Ŷt = ZAβt =
1
√
γ
X0βt (171)

Analytic result as U and V ∗ commute again, the joint probability distribution can be derived:

P
(
u =

1

γψ
, v =

r2

ψ

)
= γψ (172)

P
(
u = 0, v =

r2

ψ

)
= (1− γ)ψ (173)

P
(
u = 0, v =

σ2

(1− ψ)

)
= 1− ψ (174)

Therefore, in the regime λ = 0, with κ = φ0

γ , a calculation leads to the following result (dubbed the
"mismatched model" in Hastie et al. (2019))

Egen(+∞) = f̃1 =

{ κ
κ−1 (σ2 + (1− γ)r2) (κ > 1)

1
1−κσ

2 + r2γ(1− κ) (κ < 1)
(175)
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D.2 NON ISOTROPIC MODEL

We have the joint probabilities P (u = α−i, v = 1) = 1
p = γ for i ∈ {0, . . . , p − 1} and λ = 0.

Then:

f̃1 =
1

p

p−1∑
i=0

f̃1φ+ (αiζ)2

(φ+ αiζ)2
(176)

ζ =
1

p

p−1∑
i=0

ζ

φ+ αiζ
(177)

f2 = c0 −
1

p

p−1∑
i=0

ζαi

φ+ αiζ
(178)

So either ζ = 0 and thus f̃1 = 0, or ζ 6= 0 and:

f̃1 =

(
1− 1

p

p−1∑
i=0

φ

(φ+ αiζ)2

)−1

1

p

p−1∑
i=0

(αiζ)2

(φ+ αiζ)2
(179)

1 =
1

p

p−1∑
i=0

1

φ+ αiζ
(180)

Writing further down (αiζ)2 = (αiζ + φ− φ)2 = (αiζ + φ)2 − 2φ(αiζ + φ) + φ2 we get:

1

p

p−1∑
i=0

(αiζ)2

(φ+ αiζ)2
= 1− 2φ

1

p

p−1∑
i=0

1

φ+ αiζ
+ φ2 1

p

p−1∑
i=0

1

(φ+ αiζ)2
(181)

= 1− 2φ+ φ2 1

p

p−1∑
i=0

1

(φ+ αiζ)2
(182)

= (1− φ)− φ

(
1− 1

p

p−1∑
i=0

φ

(φ+ αiζ)2

)
(183)

So:

f̃1 = (1− φ)

(
1− 1

p

p−1∑
i=0

φ

(φ+ αiζ)2

)−1

− φ (184)

Now injecting the expression for ζ:

1− 1

p

p−1∑
i=0

φ

(φ+ αiζ)2
=

1

p

p−1∑
i=0

(
1

φ+ αiζ
− φ

(φ+ αiζ)2

)
(185)

=
1

p

p−1∑
i=0

αiζ

(φ+ αiζ)2
(186)

Hence the formula

Egen(∞) = (1− φ)

(
1

p

p−1∑
i=0

αiζ

(φ+ αiζ)2

)−1

− φ (187)

Asymptotic limit: Let’s consider the behavior of the generalisation error when α → ∞. Let’s
consider the potential solution for some k ∈ {0, . . . , p− 1}:

ζk =
ck
αk

(1 + oα(1)) (188)

for some constant ck. Then:

p =

p−1∑
i=0

1

φ+ ckαi−k(1 + oα(1))
=

1

φ+ ck
+
k

φ
+ oα(1) (189)
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Hence we choose:

ck = φ

(
1

pφ− k
− 1

)
(190)

Because Egen(∞) ≥ 0, we need to enforce ζk > 0 which leads to the condition 1
pφ−k − 1 ≥ 0, that is

1 ≥ pφ− k > 0. So in fact it implies φ ∈
]
k
p ,

k+1
p

]
, so ζk can only be a solution for φ in this range.

Therefore we can consider the solution ζ(φ) =
∑p−1
i=0 1] kp ; k+1

p [(φ)ζk(φ). Then notice:

p−1∑
i=0

αiζk

(φ+ αiζk)2
=

ck
(ck + φ)2

+ oα(1) = −p2

(
φ− k

p

)(
φ− k + 1

p

)
+ oα(1) (191)

and thus for φ ∈ [0, 1] \ kpZ:

Egen(∞) =

p−1∑
k=0

φ(1− φ)

p
(
φ− k

p

)(
k+1
p − φ

)1] kp ; k+1
p [(φ)− φ+ oα(1) (192)

So we clearly see that in the limit of α large, the test error approaches a function with two roots at the
denominator.

Evolution:

f̃1(x, y) =
1

p

p−1∑
i=0

f̃1(x, y)φ+ α2iζxζy
(φ+ αiζx)(φ+ αiζy)

(193)

ζz = −z +
1

p

p−1∑
i=0

ζz
φ+ αiζz

(194)

f2(z) = c0 −
1

p

p−1∑
i=0

αiζz
φ+ αiζz

(195)

In particular f2 is given by:

f2(z) = c0 − 1 +
φ

p

p−1∑
i=0

1

φ+ αiζz
= c0 − 1 + φζz

(
1 +

z

ζz

)
(196)

and f̃1 is given by:

f̃1(x, y) =

1
p

∑p−1
i=0

α2iζxζy
(φ+αiζx)(φ+αiζy)

1− φ
p

∑p−1
i=0

1
(φ+αiζx)(φ+αiζy)

(197)

D.2.1 EIGENVALUE DISTRIBUTION

In our figures, we look at the log-eigenvalue distribution of the student data ρlog λ as it provides the
most natural distributions on a log-scale basis. So in fact, if we plot the curve y(x) = ρlog λ(x) we
have:

y(x) = ρlog λ(x) =
∂

∂x
P(log λ ≤ x) (198)

=
∂

∂x
P(λ ≤ ex) (199)

= exρλ(ex) (200)
So in a log-scale basis we have ρlog λ(log x) = xρλ(x). It is interesting to notice the connection with
ηx for running computer simulations:

ρlog λ(log x) =
x

π
lim
ε→0+

m(x+ iε) =
1

π
lim
ε→0+

x+ iε

ζ(x+ iε)
= − 1

π
lim
ε→0+

ηx+iε (201)

It is work mentioning that the bulks are further "detached" as α grows as it can be seen in figure 6.
Furthermore, bigger α makes the spike more distringuisable.
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Figure 6: Theoretical (log-)eigenvalue distribution in the non-isotropic ridgeless regression model
with p = 3, λ = 10−5, α = 104 with φ = 1 on the left and a range φ ∈ (0, 1) on the right heatmap.

D.3 KERNEL METHODS

Kernel methods are equivalent to solving the following linear regression problem:

β = arg min
β

n∑
i=1

(
θT0 φ(xi)− βTφ(xi)

)2
+ λ ‖β‖2 (202)

Where φ(x) = (φi(x))i∈N = (
√
ωiei(x)) for some orthogonal basis (ei)i∈N. In fact we can consider:

A = B =


√
ω1 0 · · · 0
0

√
ω2 · · · 0

...
...

. . .
...

0 0 · · · √ωd

 (203)

and zi = (e1(xi), . . . , ed(xi)). Then let’s consider the following linear regression problem:

β̂ = arg min
β
‖Z (Bβ∗ −Aβ)‖2 + λ ‖β‖2 (204)

Egen(β̂) = Ez
[(
zT
(
Bβ∗ −Aβ̂

))2
]

(205)

This problem is identical to the kernel methods in the situation with a specific β∗T = (θ01, . . . , θ0d).
Although V ∗ and U don’t commute with each other, Notice that with x = y = −λ, due to the
diagonal structure of U :

f̃1 = Trd
[
(φU + ζI)−1(ζ2V ∗ + f̃1φU

2)(φU + ζI)−1
]

(206)

=
1

d

d∑
i=1

[(ζ2V ∗ + f̃1φU
2)(φU + ζI)−2]ii (207)

=
1

d

d∑
i=1

(ζ2[V ∗]ii + f̃1φ[U2]ii)(φ[U ]ii + ζ)−2 (208)

So in fact we find the self-consistent set of equation with Egen(+∞) = f̃1:

ζ = λ+
1

d

d∑
i=1

ζωi
φωi + ζ

(209)

f̃1 =
1

d

d∑
i=1

f̃1φω
2
i + ζ2θ2

0iωi
(φωi + ζ)2

(210)

This is precisely the results from equation (78) in Loureiro et al. (2021) (see also Bordelon et al.
(2020)) with the change of variables λ(1 + V )→ ζ and ρ+ q − 2m→ f̃1.
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D.4 RANDOM FEATURES EXAMPLE

We get the following matrices U, V with µ̃2 = µ2

ψ , ν̃
2 = ν2

ψ , r̃
2 = r2

ψ , σ̃2 = σ2

1−(1+ψ0)ψ :

U =

µ̃2WWT µ̃ν̃W 0
µ̃ν̃WT ν̃2IN 0

0 0 0

 V =

r̃2Ip 0 0
0 0 0
0 0 σ̃2Iq

 (211)

In fact, the matrices U and V do not commute with each other, so we have more involved calculations.
First we consider the subspace F = Ker(V − σ̃2Iq)

⊥. Let’s define the matrices:

UF =

(
µ̃2WWT µ̃ν̃W
µ̃ν̃WT ν̃2IN

)
VF =

(
r̃2Ip 0

0 0

)
(212)

UF⊥ = (0) VF⊥ =
(
σ̃2Iq

)
(213)

Then, although U and V can’t be diagonalized in the same basis, they are still both block-diagonal
matrices in the same direct-sum space Rd = F ⊕ F⊥, so in fact the following split between the two
subspaces F and F⊥ holds:

f̃1 = Trd
[
(φUF + ζxI)−1ζxζyVF (φUF + ζyI)−1

]
(214)

+ Trd
[
(φUF⊥ + ζxI)−1ζxζyVF⊥(φUF⊥ + ζyI)−1

]
(215)

+ Trd
[
(φU + ζxI)−1f̃1φU

2(φU + ζyI)−1
]

(216)

Now let’s define κ1, κ2, κ3 such that:

f̃1 = r2κ1 + f̃1(1− κ−1
2 ) + σ2κ3 (217)

That is to say, we get directly f̃1 = (r2κ1 + σ2κ3)κ2 and by definition:

r2κ1 = Trd
[
(φUF + ζxI)−1ζxζyVF (φUF + ζyI)−1

]
(218)

1− 1

κ2
= Trd

[
(φU + ζxI)−1φU2(φU + ζyI)−1

]
(219)

σ2κ3 = Trd
[
(φUF⊥ + ζxIq)

−1ζxζyVF⊥(φUF⊥ + ζyIq)
−1
]

= σ2 (220)
So we already know that κ3 = 1. Let’s focus on κ1, we can deal with a linear pencil M such that we
would get the desired term. First we define similarly ATF , the restriction of AT on the subspace F :

AF =

(
µ̃W
ν̃IN

)
=⇒ UF = AFA

T
F (221)

Then, following the structure of M1 we can construct the following linear-pencil M :

M =


0 0 ζyI AF
0 0 ATF − 1

φI

ζxI AF −ζxζyVF 0
ATF − 1

φI 0 0

 =

 0 By

Bx

(
−ζxζyVF 0

0 0

)  (222)

So that:

M−1 =

 B−1
x

(
−ζxζyVF 0

0 0

)
B−1
y B−1

x

B−1
y 0

 (223)

where:

B−1
x =

(
(φUF + ζxI)−1 φ(φUF + ζxI)−1AF

ATFφ(φUF + ζxI)−1 (− 1
φI −

1
ζy
ATFAF )−1

)
(224)

In the above matrices, the sub-blocks AF and VF are implicitly flattened, so in fact M is given
completely by:

M =


0 0 0 ζyI 0 µ̃W
0 0 0 0 ζyI ν̃I
0 0 0 µ̃WT ν̃I − 1

φI

ζxI 0 µ̃W −r̃2ζxζyIp 0 0
0 ζxI ν̃I 0 0 0

µ̃WT ν̃I − 1
φI 0 0 0

 (225)

25



Under review as a conference paper at ICLR 2023

and therefore, one has to pay attention on the quantity of interest which is given by a sum of two
terms:

r2κ1 = lim
d→+∞

(
p

d
g〈11〉 +

N

d
g〈22〉

)
= ψ(g〈11〉 + ψ0g

〈22〉) (226)

Using a Computer-Algebra-System, we get the equations with γx, γy, δx, δy defined such that g〈36〉 =

−ψγxζx, g〈63〉 = −ψγyζy , δx = ζxg
〈14〉, δy = ζyg

〈41〉:

ψg〈11〉 = (ζxζy)−1(δxδy)(r2ζxζy + µ2ψ0g
〈33〉) (227)

ψg〈22〉 = φ−2(γxγy)(ψg〈11〉µ2ν2φ2) (228)

g〈33〉 = (ζxζy)(γxγy)(ψg〈11〉µ2) (229)

δy = (1 + γyµ
2ψ0)−1 (230)

γy = (µ2δy + φ−1
0 ζy + ν2)−1 (231)

So:

(1− µ4ψ0(δxδy)(γxγy))ψg〈11〉 = (δxδy)(r2) (232)

and:

ψg〈11〉 + ψ0ψg
〈22〉 =

(
1 + ψ0µ

2ν2(γxγy)
)

(ψg〈11〉) (233)

Hence the result:

κ1 =
1 + ν2µ2ψ0(γxγy)

1− µ4ψ0(δxδy)(γxγy)
(δxδy) (234)

Also there remain to use the last equation regarding ζx using the fact that:

ζy + y = Trd
[
ζxU(φU + ζxI)−1

]
(235)

Notice that we have

g〈63〉 = −γyψζy = TrN

[(
− 1

φ
I − 1

ζy
ATFAF

)−1
]

(236)

So because ATFAF = ATA:

ζyγy = φ0ζyTrN
[
(φATA+ ζyI)−1

]
(237)

= φ0TrN
[
(φATA+ ζyI − φATA)(φATA+ ζyI)−1

]
(238)

= φ0TrN
[
I − φATA(φATA+ ζyI)−1

]
(239)

= φ0

(
1− TrN

[
φ(φU + ζyI)−1U

])
(240)

= φ0

(
1− φ0

ψ0ζy
Trd
[
ζyU(φU + ζyI)−1

])
(241)

= φ0

(
1− φ0

ψ0ζy
(ζy + y)

)
(242)

Therefore:

γy
φ0
ζy = 1− φ0

ψ0

(
1 +

y

ζy

)
(243)
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For κ2 we can calculate the following expression - which in fact is general and doesn’t depend on the
specific design of U :

1− 1

κ2
= Trd

[
(φU + ζxI)−1φU2(φU + ζyI)−1

]
(244)

= Trd
[
(φU + ζxI)−1(φU + ζxI − ζxI)U(φU + ζyI)−1

]
(245)

= Trd
[
(I − ζx(φU + ζxI)−1)U(φU + ζyI)−1

]
(246)

= Trd
[
U(φU + ζyI)−1 − ζx(φU + ζxI)−1)U(φU + ζyI)−1

]
(247)

= Trd

[
U(φU + ζyI)−1 − ζx

ζy − ζx
(U(φU + ζxI)−1 − U(φU + ζyI)−1)

]
(248)

=
1

ζy − ζx
Trd
[
ζyU(φU + ζyI)−1 − ζxU(φU + ζxI)−1

]
(249)

=
1

ζy − ζx
(ζy + y − ζx − x) (250)

= 1 +
y − x
ζy − ζx

(251)

Hence the general formula:

κ2 = −ζy − ζx
y − x

(252)

One can check that the same formula applies for instance for the mismatched ridgeless regression.
Also, we assume that it can be replaced by its continuous limit in y → x in the situation x = y.

Finally for f2, we find
f2 = c0 − Trd

[
ζzV (φU + ζzI)−1

]
(253)

= c0 − Trd
[
ζzVF⊥(φUF⊥ + ζzI)−1

]
− Trd

[
ζzVF (φUF + ζzI)−1

]
(254)

= c0 − σ2 − lim
d→+∞

(
p

d
g̃〈11〉 +

N

d
g̃〈22〉

)
(255)

= c0 − σ2 − ψ(g̃〈11〉 + φ0g̃
〈22〉) (256)

where we use g̃ associated to a slightly different linear-pencil M̃ :

M̃ =


0 0 I 0
0 0 0 I
ζzI AF −ζzVF 0
ATF − 1

φI 0 0

 (257)

from which we get using a Compute-Algebra-System
ψg̃〈11〉 + ψφ0g̃

〈22〉 = r2δz (258)
Another more straightforward way for obtaining the same result without the need for an additional
linear-pencil is to notice that if we let E1 = (Ip|0p×N ) such that VF = r̃2E1E

T
1 , then we have:

Trd
[
ζxVF (φUF + ζxI)−1

]
= Trd

[
ζxr̃

2ET1 (φUF + ζxI)−1E1

]
(259)

= r̃2ζxTrp
[
ET1 (φUF + ζxI)−1E1

]
(260)

Therefore reusing the definition of δx and the former linear-pencil M :
Trd
[
ζxVF (φUF + ζxI)−1

]
= r̃2ψζxg

〈14〉 = r2δx (261)

Conclusion we have the following equations

f̃1(x, y) =

(
−ζy − ζx
y − x

)(
r2 1 + ν2µ2ψ0(γxγy)

1− µ4ψ0(δxδy)(γxγy)
(δxδy) + σ2

)
(262)

f2(z) = c0 − (r2δz + σ2) (263)

δz = (1 + γzµ
2ψ0)−1 (264)

γz = (µ2δz + φ−1
0 ζz + ν2)−1 (265)

γy
φ0
ζy = 1− φ0

ψ0

(
1 +

y

ζy

)
(266)
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D.5 REALISTIC DATASETS

For the realistic datasets, we capture the time evolution for two different datasets: MNIST and
Fashion-MNIST. To capture the dynamics over a realistic dataset X ∈ Rntot×d, it is more convenient
to use the dual matrices U?, V?,Ξ. We only need to estimate U? and Ξβ∗ with U? ' 1

ntot
XTX and

Ξβ∗ ' 1
ntot
XTY . In both cases, we sill sample a subset of n < ntot data-samples for the training

set. The scope of the theoretical equations is still subject to the high-dimensional limit assumption,
in other words we need n and d "large enough", that is to say 1 � n. At the same time, the
approximation of U? and Ξβ∗ hints at ntot sufficiently large compared to the number of considered
samples n. Hence we need also n� ntot.

Numerically, for the two following datasets and as per assumptions 2.1, the theoretical prediction
rely on a contour enclosing the spectrum Sp(X̃T X̃) of X̃T X̃ , but not enclosing −λ. Therefore, in
order to proceed with our computations, we take a symmetric rectangle around the x-axis crossing
the axis at the particular values −λ2 and 1.2 max Sp(X̃T X̃) after a preliminary computation of the
spectrum. For the need of our experiments, we commonly discretized the contour and ran a numerical
integration over the discretized set of points.

MNIST Dataset: we consider the MNIST dataset with ntot = 70′000 images of size 28 × 28 of
numbers between 0 and 9. In our setting, we consider the problem of estimating the parity of the
number, that is the vector Y with Yi = 1 if image i represents an even number and Yi = −1 for an
odd-number. The dataset X ∈ Rntot×d is further processed by centering each column to its mean, and
normalized by the global standard-deviation of X (in other words the standard deviation of X seen as
a flattened ntot × d vector) and further by

√
d (for consistency with the theoretical random matrix Z).

The results that we obtain are shown in Figure 4. On the figure on the left side we show the theoretical
prediction of the training and test error with the minimum least-squares estimator (or alternatively the
limiting errors at t = +∞). We make the following observations which in fact relates to the same
ones as in Figure 4 in Loureiro et al. (2021):

• There is an apparent larger deviation in the test error for smaller n which tends to heal with
increasing number of data samples

• A bias between the mean observation of the test error and the theoretical prediction emerges
around the double-descent peak between n = 100 and n = 1000, in particular, the ex-
periments are slightly above the given prediction. We notice that this bias is even more
pronounced for smaller values of λ.

• Although it is not visible on the figure, increasing n further tends to create another divergence
between the theoretical prediction and the experimental runs - as it is expected with n getting
closer to ntot.

Besides the limiting error, we chose to draw the time-evolution of the training and test error around
at n = 700 around the double descent on the right side of Figure 4. This time, a gradient descent
algorithm is executed for each 10 experimental runs with a constant learning-rate dt = 0.01. Due to
the log-scale of the axis, it is interesting to notice that with such a basic non-adaptive learning-rate,
each tick on the graph entails 10 times more computational time to update the weights. By contrast,
the theoretical curves can be calculated at any point in time much farther away. Overall we see a good
agreement between the evolution of the experimental runs with the theoretical predictions. However,
as it is expected around the double-descent spike, learning-curves of the experimental runs appear
slightly biased and above the theoretical curves.

Fashion-MNIST Dataset: We provide another example with MNIST-Fashion dataset with d = 784
and ntot = 70′000. The dataset X is processed as for the MNIST dataset. We take the output vector
Y such that Yi = 1 for items i above the waist, and Yi = −1 otherwise. We provide the results
in Figure 7 where the training set is sampled randomly with n elements in ntot and the test set is
sampled in the remaining examples. As it can be seen, the test error is slightly above the prediction
for n < 103 but fits well with the predicted values for larger n. Furthermore, the learning curves
through time in Figure 8 are different compared to the MNIST dataset in Figure 4 and we still observe
a good match with the theoretical predictions. However the mismatch in the learning curves seems to
increase in the specific case when λ is lower, increasing thereby the effect of the double descent.
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Figure 7: Comparison between the analytical and experimental learning profiles for the minimum least-squares
estimator at λ = 10−3 on the left (average and ± 2-standard-deviations over 20 runs) and λ = 10−2, n = 700
on the right.

Figure 8: Comparison between the analytical and experimental learning evolution at λ = 10−2, n = 700 (10
runs).

E LINEAR-PENCILS FIXED POINT EQUATION

In general, traces of algebraic expressions of large random matrices can be difficult to compute (See
for instance appendix in Pennington & Worah (2017)). A modern approach consists in assembling a
block of large random matrices such that the block-inversion formula (otherwise called the Schur
complement) yields the desired algebraic expression of random matrices in some sub-blocks. Then,
using the correlation structure of the sub-blocks of the assembled block-matrix, a fixed-point equation
can be derived that yields a set of algebraic equations whose solutions provide the traces of the
sub-blocks of the inverted block-matrix. This idea initially emerged in Rashidi Far et al. (2006), then
has been described further in Mingo & Speicher (2017) and Helton et al. (2018) which coined the
term "Linear-Pencils". Since then, it has recently been introduced in the machine learning community
in a more geneal form in Adlam & Pennington (2020a), and also recently in Bodin & Macris (2021)
where a non-rigorous proof is provided using the replica symmetry tool from statistical physics.

Here we propose to generalize even further the fixed-point equation where we let the sub-blocks
be potentially of any form, and provide a non-rigorous proof of the proposition following the steps
proposed in Bun et al. (2017); Potters & Bouchaud (2020) using Dyson brownian motions and Itô
Lemma to derive the fixed-point equation.

E.1 NOTATIONS AND MAIN STATEMENT

Let’s consider an invertible self-adjoint complex block matrix M ∈ CN×N with N = p1 + . . .+ pn
such that M 〈ij〉 is the sub-matrix of size pi × pj . We assume that p1, . . . , pn →∞ when N →∞
such that we have the fixed ratios γi = limN→∞

pi
N , and let’s define the inverse G = M−1.

Now let S = {ij|pi = pj}. We define for (ij) ∈ S (and defined to 0 outside of this set):

g
〈ij〉
N =

1

pi
Tr
[
G〈ij〉

]
=

1

pi

pi∑
k=1

G
〈ij〉
kk (267)
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We further decompose M as the sum of two components M = M0 + 1√
N
H with M0 and H both

self-adjoint, M0 is also invertible and where H is a block of random matrices independent of M0.
In particular, Re(H) and Im(H) are independent element-wise with each-other, and we leave the
possibility that the sub-blocks of Re(H) and Im(H) be either a Wigner random-matrix, Wishart
random matrix, the adjoint of a Wishart random matrix, or a (real-)weighted sum of any of the three.
For the sake of simplicity, we will consider that the elements ReH

〈ij〉
uv or ImH

〈ij〉
uv within the block ij

are gaussian and identically distributed although the gaussian assumption can certainly be weakened.

Now let’s define σklij the covariance between the elements of the sub-matrices H〈ij〉 and H〈kl〉, that
is for (il, jk) ∈ S2 on the off-diagonal position uv on transposed element-locations:

σklij = E
[
H〈ij〉uv H〈kl〉vu

]
= E

[
ReH〈ij〉uv ReH〈kl〉vu

]
− E

[
ImH〈ij〉uv ImH〈kl〉vu

]
(268)

Also, there can be some covariances on similar element-locations which we define with σ̄ for
(ik, jl) ∈ S2:

σ̄klij = E
[
H〈ij〉uv H〈lk〉uv

]
= E

[
H〈ij〉uv H̄〈kl〉vu

]
(269)

= E
[
ReH〈ij〉uv ReH〈kl〉vu

]
+ E

[
ImH〈ij〉uv ImH〈kl〉vu

]
(270)

Notice that σklij = σijkl and σ̄klij = σ̄jilk by symmetry, and also when H is real, we always have
σklij = σ̄klij . So overall the random matrix H has to satisfy the following property at any off-diagonal
locations (uv), (xy) and blocks (ij, kl):

δS2(jk, il)δvxδyuσ
kl
ij + δS2(ik, jl)δuxδvyσ̄

lk
ij = E

[
H〈ij〉uv H〈kl〉xy

]
(271)

Finally we define the mapping η : Cn×n → Cn×n:

[η(g)]ij =
∑
kl∈S

γkσ
lj
ikg
〈kl〉 (272)

then let Π(M) = M0 − η(g) ⊗ I with the notation (η(g) ⊗ I)ij = η(g)ijIpi when ij ∈ S and
(η(g) ⊗ I)ij = 0pi×qj the null-matrix when ij /∈ S. Similarly as G, with Π(G) = Π(M)−1 and
with:

g〈ij〉 := lim
N→∞

g
〈ij〉
N (273)

Trpi
[
G〈ij〉

]
:= lim

pi→∞

1

pi
Tr
[
G〈ij〉

]
(274)

we state that:
g〈ij〉 = Trpi

[
Π(G)〈ij〉

]
(275)

Remark 1: When M0 = Z ⊗ I such that Zij = 0 if ij /∈ S, then we get Π(M) = (Z − η(g))⊗ I ,
then Π(M)−1 = (Z − η(g))−1 ⊗ I . Therefore: g = (Z − η(g))−1, or re-adjusting the terms, we
find back the equation from Adlam & Pennington (2020a); Bodin & Macris (2021):

Zg = In + η(g)g (276)

Remark 2: When considering the linear pencil of a block-matrix M? such this is not necessarily
self-adjoint however still invertible, the amplified matrix M can be considered:

M =

(
0 M?

M̄T
? 0

)
(277)

This implies that:

M−1 =

(
0 (M̄T

? )−1

M−1
? 0

)
(278)

So g will also be of the form:

g =

(
0 ḡT?
g? 0

)
η(g) =

(
0 η̄(g?)

T

η(g?) 0

)
(279)

So in fact, the same equation still holds with g〈ij〉? = Trpi
[
(C? − η(g?)⊗ I)〈ij〉

]
and thus, the

self-adjoint constraints can be relaxed.
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E.2 NON-RIGOROUS PROOF VIA DYSON BROWNIAN MOTIONS

In order to show the former result, we extend the sketch of proof provided in Bun et al. (2017);
Potters & Bouchaud (2020). First we introduce a time t and a matrix Z ∈ Cn×n with M(t, Z) =
Z ⊗ I + M0 + 1√

N
H(t) with H a Dyson brownian motion. Therefore, the matrix that we are

interested in is actually M = M(1, 0n×n). In order for H(1) to satisfy the property 271 we must
have:

d
[
H〈ij〉uv , H〈kl〉xy

]
t

= (δS2(ik, jl)δuxδvyσ̄
lk
ij + δS2(il, jk)δuyδvxσ

kl
ij )dt (280)

Itô’s lemma provides the stochastic differential equation

dG〈αβ〉pq =
∑
ij

∑
uv

∂G
〈αβ〉
pq

∂M
〈ij〉
uv

dM 〈ij〉uv +
1

2

∑
ijkl

∑
uvxy

∂G
〈αβ〉
pq

∂M
〈ij〉
uv ∂M

〈kl〉
xy

d[M 〈ij〉uv ,M 〈kl〉xy ] (281)

Using simple algebraic manipulations and the fact that G is analytic in M 〈ij〉uv as a rational function,
we can rewrite the above partial derivatives as:

∂G
〈αβ〉
pq

∂M
〈ij〉
uv

= −
[
G

∂M

∂M
〈ij〉
uv

G

]〈αβ〉
pq

= −G〈αi〉pu G〈jβ〉vq (282)

And applying the same formula twice:

∂G
〈αβ〉
pq

∂M
〈ij〉
uv ∂M

〈kl〉
xy

= G〈αk〉px G〈li〉yu G
〈jβ〉
vq +G〈αi〉pu G〈jk〉vx G〈lβ〉yq (283)

Injecting it in (281) we get for p = q

dG〈αβ〉pp = − 1√
N

∑
ij

∑
uv

G〈αi〉pu G〈jβ〉vp dH〈ij〉uv (284)

+
1

2N

∑
(ik,jl)∈S2

∑
uv

[
G〈αk〉pu G〈li〉vu G

〈jβ〉
vp +G〈αi〉pu G〈jk〉vu G〈lβ〉vp

]
σ̄lkij dt (285)

+
1

2N

∑
(il,jk)∈S2

∑
uv

[
G〈αk〉pv G〈li〉uu G

〈jβ〉
vp +G〈αi〉pu G〈jk〉vv G〈lβ〉up

]
σklij dt (286)

So considering γαdg
〈αβ〉
N = 1

N d
∑
pG
〈αβ〉
pp we get

γαdg
〈αβ〉
N = ε

〈αβ〉
N +

1

2N

∑
(il,jk)∈S2

∑
p

[
[G〈αk〉G〈jβ〉]ppγlg

〈li〉
N + [G〈αi〉G〈lβ〉]ppγjg

〈jk〉
N

]
σklij dt

(287)

where:

ε
〈αβ〉
N = − 1

N
3
2

∑
ij

∑
uv

∑
p

G〈αi〉pu G〈jβ〉vp dH〈ij〉uv (288)

+
1

2N2

∑
(ik,jl)∈S2

∑
uv

∑
p

[
G〈αk〉pu G〈li〉vu G

〈jβ〉
vp +G〈αi〉pu G〈jk〉vu G〈lβ〉vp

]
σ̄lkij dt (289)

The matrix Z is now helpful upon noticing that (using again the analyticity of G)

∂G
〈αβ〉
pp

∂Zkj
= −

[
G
∂M

∂Zkj
G

]〈αβ〉
pp

= − [G(Ekj ⊗ I)G]
〈αβ〉
pp = −

[
G〈αk〉G〈jβ〉

]
pp

(290)

31



Under review as a conference paper at ICLR 2023

Hence (using the fact that σklij = σijkl)

γαdg
〈αβ〉
N = ε

〈αβ〉
N − 1

2N

∑
(il,jk)∈S2

∑
p

[
∂G
〈αβ〉
pp

∂Zkj
γlg
〈li〉
N +

∂G
〈αβ〉
pp

∂Zil
γjg
〈jk〉
N

]
σklij dt (291)

= ε
〈αβ〉
N − γα

2

∑
(il,jk)∈S2

[
σijklγlg

〈li〉
N

∂g
〈αβ〉
N

∂Zkj
+ σklij γjg

〈jk〉
N

∂g
〈αβ〉
N

∂Zil

]
dt (292)

= ε
〈αβ〉
N − γα

2

∑
jk∈S

[η(gN )]kj
∂g
〈αβ〉
N

∂Zkj
+
∑
il∈S

[η(gN )]il
∂g
〈αβ〉
N

∂Zil

 dt (293)

= ε
〈αβ〉
N − γα

∑
jk∈S

[η(gN )]kj
∂g
〈αβ〉
N

∂Zjk

dt (294)

As it would require more in-depth analysis, we make the following two assumptions:

1. We assume that g〈αβ〉N concentrates towards a constant value g〈αβ〉 when N →∞

2. That ε〈αβ〉N concentrates towards 0 when N →∞

With these assumptions in mind we obtain the partial differential equation:

∂g〈αβ〉

∂t
+
∑
ij∈S

[η(g)]ij
∂g〈αβ〉

∂Zij
= 0 (295)

Finally, using the change of variable ĝ(s) = g(t̂(s), Ẑ(s)) = g(t+ s, Z + sη(g(t, Z))) we find:

dĝ〈αβ〉

ds
=
∂g〈αβ〉

∂t

∂t̂

∂s
+
∑
ij

∂g〈αβ〉

∂Zij

∂Ẑij
∂s

(296)

=
∂g〈αβ〉

∂t
+
∑
ij

∂g〈αβ〉

∂Zij
[η(g(t, Z))]ij = 0 (297)

So ĝ〈αβ〉(s) is constant so: ĝ〈αβ〉(−t) = ĝ〈αβ〉(0) which implies:

g(0, Z − tη(g(t, Z))) = g(t, Z) (298)

Hence for (t, Z) = (1, 0n×n) we have:

g(0,−η(g(1, 0))) = g(1, 0) (299)

Hence the expected result:

g〈ij〉 = [g(1, 0)]ij = [g(0,−η(g(1, 0)))]ij = Trpi
[[

(M0 − η(g(1, 0))⊗ I)−1
]〈ij〉]

= Trpi
[
Π(G)〈ij〉

]
(300)

E.3 EXAMPLES

WIGNER SEMICIRCLE LAW

Let’s consider n = 1 and the symmetric random matrix H ∈ RN and M = H√
N
− zI . We find that

η(g) = g and using (276) we find directly

−zg = 1 + g2 (301)
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MARCHENKO PASTUR LAW

Let’s consider n = 2 and the random matrix X ∈ Rd×N with φ = N
d = γ1

γ2
and γ1 = N

N+d , γ2 =
d

N+d and the random symmetric block matrix:

M =

(
−zIN XT√

N
X√
N

−Id

)
=

(
−zIN 1√

γ1
XT√
N+d

1√
γ1

X√
N+d

−Id

)
(302)

Using Schur complement, it can be seen that g〈11〉
N = 1

N Tr
[(

XTX
N − zIN

)−1
]

which is precisely

the trace that is being looked for.

A careful analysis shows that σ12
12 = σ21

21 = 1
γ1

while the rest is null and thus [η(g)]11 = γ2
γ1
g〈22〉 =

g〈22〉

φ and [η(g)]22 = g〈11〉. With (276) we obtain the system of algebraic equations

−zg〈11〉 = 1 +
1

φ
g〈22〉g〈11〉 (303)

−g〈22〉 = 1 + g〈11〉g〈22〉 (304)

Therefore, injecting the solution of the second equation g〈22〉 = − 1
1+g〈11〉

in the first equation

−zg〈11〉 = 1− 1

φ

g〈11〉

1 + g〈11〉 (305)

Hence the Marcheko Pastur result:

z(g〈11〉)2 +

(
z + 1− 1

φ

)
g〈11〉 + 1 = 0 (306)
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