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Abstract

Directed acyclic graphs (DAGs) provide a natural framework for modeling di-
rectional and hierarchical relationships. We introduce the DAG Convolutional
Network (DCN), a graph neural architecture specifically developed for convolu-
tional learning on signals defined over DAGs. DCN employs causal graph filters
that incorporate the inherent partial order of DAGs, introducing an inductive bias
absent in conventional GNNs. Unlike existing approaches, DCN relies on formal
convolutional operators that admit spectral interpretations, ensuring both theoreti-
cal grounding and efficient implementation. We further propose the Parallel DCN
(PDCN), which processes shifted DAG signals through a shared multilayer percep-
tron, thereby decoupling parameter complexity from graph size while preserving
predictive performance. Extensive evaluations confirm that (P)DCN achieves strong
performance relative to state-of-the-art methods, combining accuracy, robustness,
and computational efficiency within a principled signal processing framework.

1 Introduction

Graph signal processing (GSP) extends statistical learning to non-Euclidean domains by exploiting
graph topology as prior knowledge. Recent progress in GSP has shaped Graph Neural Networks
(GNNs), which learn node representations via graph convolutions, attention, and autoencoders,
enabling applications across science and engineering [, 2} [3, 4} 51 6, [7]. While directed graphs
naturally model flows, citations, and causal relations, incorporating directionality into GNNs remains
challenging—especially for directed acyclic graphs (DAGs), whose nilpotent adjacency matrices
collapse spectral information [8, |9]. Yet DAGs are central to causal inference, Bayesian networks,
program analysis, and neural architecture optimization [10} 11} [12} {13} [14].

We introduce the DAG Convolutional Network (DCN), a convolutional GNN tailored for signals
on DAGs. Building on recent extensions of GSP to partially ordered sets [15, 9], DCN layers use
causal graph filters that encode the partial order of nodes, providing a strong inductive bias. This
design connects naturally to linear structural equation models (SEMs), admits spectral interpretations.
Unlike prior DAG-based GNNs [16} [17], DCN employs sparse matrix multiplications, enabling
scalable learning of causal dependencies. To improve efficiency, we further propose the Parallel
DCN (PDCN). Instead of recursive filtering, PDCN applies a shared-parameter MLP to shifted DAG
signals in parallel and aggregates the outputs. This scheme decouples parameter count from graph
size.

Related work. Recent work has increasingly focused on applying GNN-based machine learning
to DAGs. D-VAE [16] introduces a variational autoencoder framework that embeds DAGs into a
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continuous latent space. DAGNN [[17] adopts a sequential aggregation strategy, where each node
gathers information from its predecessors via an attention mechanism and updates its state through
a gated recurrent unit (GRU), thereby leveraging the partial order of the DAG. However, both
approaches rely on sequential operations, which impose high computational costs and limit their
scalability to large graphs. DCN, by contrast, leverages weighted transitive closure filters [9] for
efficient long-range aggregation, while PDCN further enhances scalability. Transformer-based DAG
models [18] encode reachability with attention, but differ fundamentally from our convolutional
operators.

Contributions. This work advances DAG representation learning by:

* Proposing DCN, a convolutional GNN for DAGs, and PDCN, a scalable parallel variant
with parameter count independent of graph size.

* Demonstrating state-of-the-art performance on synthetic and real datasets, with robustness
to additive noise.

Overall, we provide a unified framework for convolutional learning on DAGs, combining new
architectures, and extensive experiments.

2 Preliminaries and Problem Statement

We consider signals supported on DAGs. A DAG is denoted D = (V, £), where V is the set of N
nodes and £ C V x V the set of directed edges. An edge (i, j) € £ indicates a directed link j — 1.
The absence of cycles induces a partial order over V: node j precedes ¢ whenever a directed path
j — i exists [I5]. Under a topological ordering, the adjacency matrix A € RY*¥ is strictly lower
triangular with zero diagonal.

A graph signal is a function x : V — R, mapping each node to a real value. This function can be
represented as a vector x € R, where x; denotes the signal value at node 7. Examples include gene
expression levels in regulatory networks or hydrological measurements along a river. We refer to
these as DAG signals. The DAG signal processing framework of [9] extends classical GSP [2] by
introducing graph-shift operators and transitive closures adapted to partially ordered structures.

Problem statement. We are given a dataset 7 = {(X,, y.m)}2_,, where each input X,,, €
RN XF has F features per node, and y,,, € R” is a single-feature output signal. The goal is to learn
a nonlinear map feg : RV*F 1 RY that depends on D and leverages its structure. Parameters © are
trained by minimizing the empirical risk
M
min — Zlﬁ(ym,f@(xm;D)), Q)
-

with £ a task-specific loss (e.g., mean squared error for regression or cross-entropy for classification).
A typical convolutional GNN layer is X(©) = U(Zf;ol ATX-DE! )), where X(©) are node

features, @&‘) learnable filter parameters, and o a nonlinearity [3, |19} 20]. While effective on general
graphs, these filters are not convolutional for DAG signals: A is nilpotent with all eigenvalues zero,
eliminating a spectral domain and voiding the Fourier interpretation. Moreover, DAGs encode a
partial order that such models do not exploit. Building on the DAG signal processing framework [9],
we develop convolutional architectures that explicitly encode the partial order and causal structure
inherent in DAGs. As introduced in Section ] these architectures help address the limitations of
existing approaches.

3 DAG Signal Processing

DAG signal processing [9] provides a Fourier analysis and convolution framework for signals on
DAGs. Consider a DAG D = (V, &) with adjacency matrix A € RV and a signal x € R",
Following [9], x is modeled as x = Wc with exogenous inputs ¢ € R, where W is the weighted
transitive closure: W;; # 0 if j is a predecessor of i, W;; = 1, and W is lower triangular and
invertible. A canonical choice is W = (I — A)™! = I+ A + --- + AN~! which implies



x = Ax + ¢, i.e, a linear SEM [10]. For each node k € V, the causal graph-shift operator is
Sk = WD, W ™!, where Dy, is diagonal with [Dgli; = 1if i < k and 0 otherwise; hence all Sy, are
diagonalized by W, whose columns form a Fourier basis, and ¢ = W ~1x are the Fourier coefficients.
The most general shift-invariant filter, called a causal graph filter, is

H=> 08 = W( Y oD )W, )

kev kev

with coefficients @ € RYV. The convolution of x with filter h is y = Hx = h *xp x, whose frequency
response is given by the diagonal of ), 6Dy, i.e., a pointwise scaling of Fourier coefficients c.
This provides a principled definition of Fourier analysis and convolution on DAGs that respects both
reachability and partial order, forming the foundation of the architectures in Section [4]

4 DAG Convolutional Network

We now introduce two architectures for learning from DAG signals: the DAG Convolutional Network
(DCN) and its parallel counterpart (PDCN). The DCN builds directly on causal graph filters from (2)),
defining each layer as

0] :(7(2 e,f)skx“‘”>, t=1,...,L, 3)

key

where 9,(f) are learnable filter coefficients, o(-) is a nonlinearity such as ReLU, and the input is
x(0) = x. Spectrally, the operation S;;x(“~1) = WD, W ~1x(¢~1 selects the exogenous inputs (or
“causes”) associated with the predecessors of k, which are then diffused through the reachability
DAG using W, thereby injecting the inductive bias from the partial order. From a message-passing
perspective, each Sy aggregates features from common predecessors of nodes ¢ and k, producing
multiple messages that are combined through the weighted sum in (3) and updated by o. To increase
expressiveness and accommodate multi-feature signals, the single-filter recursion generalizes to a

filter bank:
X =g <Z Skx(‘*—”@,(f)> : )
keV

. . 0
where X ¢ RNVXF. s is the feature matrix at layer ¢, and @Ef) € REixF s are learnable filter

parameters, with F’ i(é) = Fy_l). The DCN thus resembles a GNN but with aggregation restricted to
causal GSOs, which ensures that convolution respects the DAG structure. Its advantages include: (i)
a spectral interpretation since Sy has well-defined eigenvalues (binary diagonals of Dy), enabling
analyses of stability and transferability; (ii) numerical stability under depth, as Sy, are idempotent
and well-conditioned, avoiding the exploding/vanishing spectrum issues common in GNNs; and (iii)
efficient computation, since each Sy, is typically quite sparse, so layer complexity is O(NF(S+NF'))

with S = maxy ||Skl|lo. However, DCN requires one @2@ per node k, and hence the number of
parameters grows linearly with /N, which may become a limitation for large graphs. To address
scalability, we introduce the Parallel DCN (PDCN), which replaces depth with width. Instead of
sequentially stacking layers as in @), PDCN defines N parallel branches. Each branch processes a
shifted input S X through a shared multilayer perceptron (MLP), i.e.,

Zi = MLP(8,X) = of .. o(S:X01)..0»), ®)

where the parameters @) are identical across all branches, following a siamese design. The branch
outputs are then aggregated as

Z2-% 7, (©)

which defines the final PDCN representation.

This parallel design yields several advantages. (i) The number of trainable parameters becomes
independent of N, scaling as O(F2L) under weight sharing. (ii) Computations can be parallelized
across branches, and in practice the shifted inputs S; X may be precomputed to reduce runtime. (iii)
The architecture belongs to the family of parallel GNNs with injective aggregation and readout [21]],
thereby satisfying the Weisfeiler—Lehman (WL) test for distinguishing non-isomorphic DAGs [22].
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(a) DCN architecture (b) PDCN architecture

Figure 1: Comparison of the DCN (a) and PDCN (b) architectures. DCN is sequential, applying
causal convolutions layer by layer with a representative computation ), -, S X® @Ef) followed
by a nonlinearity. PDCN processes multiple shifted signals S X in parallel through weight-shared
MLP branches and aggregates Z = ), Zj,, keeping the parameter count independent of N.
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Figure 2: (a) NMSE in the network diffusion task as the noise in the observations increases. For the
source identification task, we plot accuracy as a function of (b) the proportion of unobserved nodes
and (c) the edge probability. We report the median performance across 25 realizations and values
between the first and third quartile in the shaded area.

5 Numerical Evaluation

In this section, we evaluate the proposed DCN across diverse tasks, datasets, and conditions. We aim
to demonstrate its ability to learn from DAG-supported signals, and to benchmark its performance
against state-of-the-art baselines, highlighting accuracy as well as robustness to noise.

Baselines. We compare (P)DCN with both DAG-agnostic and DAG-aware models. The former
include GCN [3]], FB-GCNN [19]], GraphSAGE [23], GIN [4], GAT [5], and an MLP [24] that ignores
graph structure. The latter comprise DAGNN [17] and D-VAE [16]], from which we adopt only the
encoder modules, since our task focuses on direct learning from DAG signals. Full implementation
and training details are given in Appendix [A.1]

Tasks and metrics. We assess (P)DCN on both synthetic and real data. In the synthetic setting,
we study diffusion learning, where the objective is to predict the output of a causal graph filter
applied to input signals on a DAG, with performance measured by normalized mean squared error
(NMSE). We also consider source identification, where the model must recover the hidden origin
of a propagated signal; this is treated as a node-classification problem, with accuracy defined as the
fraction of correctly predicted source nodes. To demonstrate practical relevance, we further evaluate
(P)DCN on hydrological data from the River Thames, forecasting pollutant concentrations using a
DAG constructed from hydrological dependencies, thereby illustrating its applicability to real-world
scientific domains. In all cases, the data is split into 70% for training, 20% for validation, and 10%
for testing.



Table 1: Performance on diffusion learning (NMSE) and source identification (Accuracy). Results

show mean =+ std and average runtime across 25 runs.

Diffusion learning

Source identification

Method NMSE Time (s) Accuracy Time (s)
DCN 0.014 + 0.010 7.9 0.057 + 0.008 222
DCN-30 0.029 + 0.017 6.0 0.053 + 0.012 20.1
DCN-10 0.049 + 0.021 59 0.054 + 0.005 17.0
DCN-T 0.073 + 0.024 8.1 0.997 + 0.018 22.5
DCN-30-T 0.153 + 0.030 6.0 0.996 + 0.032 17.8
DCN-10-T 0.181 + 0.030 5.9 0.933 + 0.141 19.5
DAGNN 0.173 + 0.040 S5111.8 0.957 + 0.031 9344.5
D-VAE 0.163 + 0.041 14024.1 0.987 + 0.007 12841.9
LS 0.048 + 0.022 0.4 0.060 + 0.016 0.45
PDCN 0.098 + 0.015 22.6 0.288 +0.114 79.5
FB-GCNN 0.138 + 0.028 5.8 0.676 + 0.172 18.6
GraphSAGE 0.341 + 0.039 9.9 0.620 + 0.163 40.0
GIN 0.404 + 0.079 9.7 0.176 + 0.098 39.8
GCN 0.167 + 0.037 52 0.052 + 0.018 7.6
GAT 0.653 + 0.089 19.9 0.071 + 0.018 38.5
MLP 0.392 + 0.012 4.1 0.050 + 0.016 16.9

5.1 Synthetic Setup

Unless specified otherwise, we generate synthetic graphs from an Erd6s—Renyi random DAG model
with NV = 100 nodes and edge probability p = 0.2. A total of 2000 input—output signal pairs are
simulated according to y = Hx. The input x is sparse, with nonzero entries restricted to the first 25
nodes, while H is a causal graph filter (Eq. [2)) constructed from 25 causal GSOs selected uniformly at
random, with filter taps sampled uniformly from [—1, 1]. y represents the diffused output signal. Both
input and output signals are perturbed with zero-mean additive white Gaussian noise, normalized
relative to the signal power to achieve 5% noise power. For the source identification task, the input x
is one-hot with the nonzero entry restricted to the first 25 topologically ordered nodes of V. Since the
diffusion y = Hx preserves the source value, the output y is masked at the source node to prevent
trivial identification. All reported results are averaged over 25 trials

Findings and discussion.  Table [I] shows that the proposed architectures—particularly
DCN——consistently outperform baselines. In the network diffusion task, using subsets of 30 or
10 GSOs (DCN-30 and DCN-10) decouples parameters from graph size while retaining strong
accuracy, with DCN-30 second only to the full DCN. Compared to Least Squares (LS), DCN is
more robust to noisy inputs (see Test Case 1). Conversely, reversing edge directions with transposed
GSOs (DCN-T) sharply reduces performance, especially with fewer GSOs. In source identification,
the trend reverses: DCN variants struggle, while DCN-T variants reach near-perfect accuracy. This
matches intuition, as source detection requires traversing DAGs in reverse. These results highlight
the importance of DAG directionality. In terms of cost, PDCN—implemented with a 128-unit
MLP—trains and infers slower than DCN, which uses only a 32-dimensional vector per layer (L = 2).
With comparable neurons, runtimes converge (results not shown). Overall, DAG-agnostic models
underperform DAG-specific ones such as PDCN, DAGNN, and D-VAE. Notably, DCN surpasses
DAGNN and D-VAE in accuracy while requiring much less computation.

Test Case 1. For the diffusion task, Fig.[2{a) explores model performance under varying noise levels.
In the absence of noise, LS achieves the lowest NMSE overall. However, its accuracy deteriorates
sharply as noise power increases. In contrast, DCN achieves NMSE comparable to LS under noiseless
conditions, while maintaining significantly greater robustness to noise. This demonstrates that despite
the underlying generative process being linear, the nonlinear DCN is advantageous in noisy regimes,
particularly when sample sizes are limited.

Test Case 2. For the source identification task, Fig.[2|b) examines classification accuracy as the
proportion of unobserved nodes increases. Larger values on the x-axis represent more difficult
scenarios with fewer observed nodes and more possible sources. Following the results of Fig.[2] all
models in this test use transposed GSOs. The plots show that DCN maintains high accuracy even
when a substantial fraction of nodes is unobserved. Among DCN variants, DCN-30 and DCN-20
illustrate the trade-off between reducing the number of GSOs and preserving accuracy. With 50% or



Table 2: Performance comparison of models on the River Thames network. Results for four chemical
indicators are reported as mean NMSE = std and mean training + testing time (s) over 25 trials.
Rightmost column shows trainable parameter counts. Best NMSE values are bolded.

Silicon Sulphate Nitrate Chloride Params
Method NMSE Time NMSE Time NMSE Time NMSE Time  Count
DCN 0.006 +£ 0.010 226 0.003 +£0.003 220 0.004 +0.003 227 0.020+ 0.100 226 1313
DCN-15 0.049 £0.020 228 0.031 £0.007 219 0.0734+0.020 227 0.076 £0.096 226 993
PDCN 0.037 £0.071 1.77 0.109 £0.015 174 0.120£0.052 1.77 0.129 £0.095 1.76 385
DCN-T 0.054 £0.064 210 0.116 £0.028 223 0.069 £0.022 229 0.117 £0.097 229 1313
Linear 0.009 £ 0.015 0.01 0.004 +0.003 001 0.006 £0.005 0.01 0.02240.099 001 20
DAGNN 0.025 £ 0.028 1449 0.044 +0.010 1128 0.086 £ 0.021 844 0.049 4 0.098 1449 888454
D-VAE 0.012 £ 0.010 1834 0.004 £+ 0.003 177.6 0.086 +0.043 1828 0.040 £ 0.100 1834 460694
GraphSAGE-A  0.029 + 0.036 390 0.022 £0.012 3.81 0.0224+0.018 389 0.040£0.101 3.89 161
GIN-A 0.057 £0.056 3.87 0.174 +£0.028 373 0.204+£0.031 3.83 0.192+0.074 3.83 33409
MLP 0.073 £0.103 1.63 0.1714+0.028 158 0.126 £0.033 1.62 0.159 +0.099 1.62 97
GCN 0.537 £0.077 201 0.628+0.040 196 0.670+£0.059 200 0.657 4+ 0.058 2.02 97
FB-GCNN-2 0.046 £ 0.027 227 0.010 £0.003 221 0.021 +0.007 224 0.032+0.101 225 161
GAT 0.042 £0.034 7.88 0.084+0.018 7.65 0.059+0.023 7.82 0.069 % 0.092 785 163

more observed nodes, DCN-30 performs comparably to the full DCN, while DCN-20 continues to
outperform non-DAG-based baselines.

Test Case 3. We further study the effect of graph edge density on the source identification task.
For Erd6s—Rényi graphs with increasing edge probability p, Fig. Pfc) shows that denser graphs
make source identification more difficult, since diffusion tends to produce homogeneous signals that
differ only by source distance. Importantly, DCN and its variant DCN-20 consistently outperform
FB-GCNN-R (with R = 2 and 5), validating the advantages of convolutional filters tailored to DAGs
over conventional GSP-based graph filters. Even as density increases, DCN accuracy decreases only
gradually, underscoring its robustness.

5.2 Real World Setup

Hydrological Data Forecasting. We evaluate the proposed (P)DCN on the River Thames dataset [25]],
which contains weekly hydrological and chemical measurements from 20 monitoring sites between
2010 and 2016 (excluding years with excessive missing data). Variables include pH, alkalinity,
suspended solids, and concentrations of chloride, nitrate, sulphate, silicon, and metals, along with
flow rates. Graph signals studied consist of 343 realizations and each graph signal x € R?° records
simultaneous chemical concentrations at all sites, with diffusion modeled along the river’s upstream-
to-downstream DAG structure (Fig. [3). We focus on four representative chemical markers: dissolved
silicon, sulphate, nitrate, and chloride. The task is cast as graph signal imputation: a subset of
intermediary or sink nodes (cyan in Fig. [3) is masked, while source nodes (purple) remain observed.
The goal is to interpolate missing downstream values from observed upstream signals, a setting
that reflects practical monitoring challenges such as sensor failures. Results in Table [2] show that
DCN achieves the lowest NMSE across all indicators. The DCN-15 variant offers a trade-off
between accuracy and parameter efficiency, incurring an error increase while reducing model size. In
contrast, DAGNN [[17]] and D-VAE [16] require orders of magnitude more parameters and runtime
without outperforming DCN. The parallelized PDCN also performs competitively, surpassing several
DAG-agnostic GNNGs.

6 Conclusions, Limitations, and Future Work

We introduced DCN, a graph neural architecture tailored for convolutional learning on signals over

DAGs. Unlike conventional GNNs, DCN employs causal graph filters that encode node partial orders,
yielding sparse operators with clear spectral interpretations. We also proposed PDCN, a parallel
and parameter-efficient variant that retains strong predictive performance. Empirically, experiments
on synthetic and real datasets, showed consistent gains over state-of-the-art baselines in accuracy,
noise robustness, and efficiency. DCN’s main limitation lies in its reliance on multiple causal GSOs,
with parameter counts growing with graph size. PDCN mitigates this, but future work will pursue
adaptive GSO selection, extensions to dynamic or probabilistic DAGs, and Bayesian formulations
for uncertainty quantification. Studying stability under graph perturbations also remains an open
challenge. Overall, this work offers a principled and efficient framework for deep learning on DAGs,
with wide applicability in domains governed by directional or causal structure.
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A Technical Appendices and Supplementary Material

A.1 Implementation Details

All experiments were run on Google Colab GPUs, with the more computationally demanding cases
in Tablel|executed on Tesla T4 GPUs. We first describe the configurations of the proposed (P)DCN
models, followed by the baseline architectures and training settings. The code to reproduce the results
is available on GitHub[] .

(P)DCN Details

For all experiments we adopted a L = 2-layer DCN with 32 hidden units, selected through a grid
search over the hyperparameter space. The DCN-T variant corresponds to the same architecture
but with reversed edge directions, i.e., using transposed causal GSOs. Additionally, we evaluated
reduced variants of DCN in which only a randomly chosen subset of the causal GSOs is used to build
the convolutional filters. These models are denoted as DCN-|U{|, where |U/| indicates the number of
GSOs included.

For PDCN, the shared MLP is composed of a single hidden layer with 128 units. In this parallel
scheme, each shifted version of the input signal is passed through the shared MLP, and the outputs are
aggregated, ensuring that the parameter count remains independent of the graph size while preserving
expressive capacity.

Baseline Methods

We next summarize the baseline models used in the experimental comparisons presented in Section 3}

GCN [3]. The Graph Convolutional Network applies first-order graph convolutions based on a
degree-normalized adjacency matrix augmented with self-loops. Each layer aggregates features from
neighbors, followed by a linear transformation and nonlinearity. While effective, GCNs are prone to
oversmoothing. In our setup, the model has L = 2 layers with hidden dimension 32.

FB-GCNN [19]. The Filter Bank GCN is a spatial convolutional model that applies a filter bank
of parameters to different powers of the graph shift operator A, thereby combining multi-scale
neighborhood information. Unless otherwise noted, we use a filter order R = 2. The parameter
vector dimension is set to 32, with a depth of L = 2 layers. Variants with different R are denoted as
FB-GCNN-R.

GraphSAGE [23]]. GraphSAGE learns inductive embeddings by sampling and aggregating features
from fixed-size neighborhoods. Different aggregation functions can be used, including mean, LSTM,
or pooling; here we employ mean aggregation. Our implementation uses L = 2 layers, each with
hidden dimension 32.

GIN [4]. The Graph Isomorphism Network was designed to match the discriminative power of the
Weisfeiler-Lehman test by using injective sum aggregation. Each GIN layer aggregates neighbor
features via summation and processes them with a learnable MLP. We implement the standard GIN
with L = 2 layers, each with 32 hidden units.

1https ://github.com/reysam93/dag_conv_nn/
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Figure 3: A DAG illustrating the flow of the River Thames and the positions of monitoring sites along
its course. Purple nodes mark source locations, while cyan nodes denote intermediate or sink sites.
Acronyms for the sites are defined in [23]].

GAT [5]. The Graph Attention Network employs self-attention to adaptively weigh neighbor
contributions during feature aggregation. Each layer applies multiple attention heads to capture
diverse relational patterns. In our experiments, GAT uses L = 2 layers, each with 16 hidden units
and 2 attention heads.

DAGNN [17]]. The Directed Acyclic Graph Neural Network modifies message passing to respect the
topological order of a DAG. It uses an attention mechanism to weight inputs from parent nodes, and
a gated recurrent unit (GRU) to sequentially integrate this information. Our implementation employs
L = 2 layers with hidden dimension 128 and dropout rate 0.2.

D-VAE [16]]. The DAG Variational Autoencoder encodes DAGs into continuous latent spaces by
recursively aggregating node and predecessor information via GRUs, and subsequently reconstructing
the DAG from the latent code. For our comparisons, we only use the encoder component of D-VAE.
The hidden layer size is set to 128.

MLP [24]]. As a graph-agnostic baseline, the Multilayer Perceptron treats each node independently
without considering graph connectivity. It consists of two fully connected layers with 32 units each.
This baseline allows us to isolate the benefits of incorporating graph structure into the models.

Training Hyperparameters

We detail here the hyperparameter choices used for training the models reported in Section 3}

Learning rate. Candidate learning rates were explored in the range 5 x 107* to 5 x 1073, A rate of
5 x 10~* was selected for the River Thames forecasting and diffusion learning tasks, whereas source
identification was trained with 5 x 1073,

Batch size. All experiments employed a batch size of 25.
Number of epochs. In all cases, training was run for 100 epochs.
Weight decay. A weight decay coefficient of 10~* was used uniformly across all tasks.

Optimizer. All models were optimized using Adam [26]].

B River Thames structure

The Fig. [3|demonstrates the structure of River Thames as we used in experiments.



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The first contribution is fully explained in Section ] and the experimental
results provided in Section [5|demonstrate the second contribution.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in Section 4] and
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results are provided or proved in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The contribution is a new architecture which is fully described, supported by
experiments and reproducible. All the experimental setup is explained in[5|and [A.T] The
code is available on GitHubf]

2https ://github.com/reysam93/dag_conv_nn/
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is available on GitHub[]

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

3https ://github.com/reysam93/dag_conv_nn/.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see section[5land section[A1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please see section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see section[3land section [A. 1]
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, our research conforms to the NeurIPS Code of
Ethics in every aspect.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper introduces a new neural architecture that can be used for hydrologi-
cal data forecasting as showed in section[3] so the positive societal impacts are mentioned.
We don’t see any negative societal impact of the work.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper proposes a new architecture but does not release pretrained models,
large-scale generative systems, or scraped datasets that could pose risks of misuse. To the
best of our knowledge, the proposed architecture does not carry foreseeable risks of misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The experiments are conducted on a publicly available dataset [25]], which has
been properly cited. No licensed data have been used.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The proposed architectures are thoroughly explained and documented; however,
the code is not included with this submission in order to comply with the double-blind
review process. The code will be released publicly upon acceptance.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

15


paperswithcode.com/datasets

14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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