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ABSTRACT

The adaptation of large-scale foundation models for real-world medical Domain
Incremental Learning (DIL) is challenged by data scarcity, significant domain
shifts, and severe class imbalance. Current parameter-efficient methods often
present a trade-off between knowledge integration, which risks task interference,
and parameter isolation, which sacrifices forward transfer. To address this trade-
off, we propose a framework that achieves both domain specialization and inte-
grated knowledge transfer. Our two-tiered adaptive paradigm enables a foundation
model to learn domain-specific representations while systematically transferring
knowledge across a sequence of tasks. For intra-domain specialization, we in-
troduce Recursive LoRA (RecLoRA), a dynamic computation module where a
learnable router directs tokens for iterative feature refinement by a shared LoRA
block, focusing computation on complex inputs. For inter-domain integration, our
Sequential Knowledge Transfer strategy preserves domain-specific expertise by
training independent RecLoRA modules for each task, while promoting forward
transfer by using the converged weights of a previous task’s modules to initialize
those of the next. Built upon a frozen foundation model, our framework em-
ploys an efficient key-query mechanism for inference-time expert selection. We
demonstrate that our approach sets a new state-of-the-art on challenging diabetic
retinopathy DIL benchmarks, validating its efficacy for real-world clinical appli-
cations.

1 INTRODUCTION

Large-scale medical foundation models have demonstrated significant potential in domains such as
ophthalmology (Qiu et al., 2024; Zhou et al., 2023) and radiology (Tiu et al., 2022; Wang et al.,
2024; Yan et al., 2022), etc. These models are often trained on data collected from various sources,
including different types of machines with unique scanning parameters and from diverse countries.
However, their effectiveness is limited by their reliance on static, retrospective datasets. This re-
liance makes it difficult for the models to adapt to the ever-changing and diverse nature of medical
data, which can vary significantly across different institutions, countries, and patient demograph-
ics (Queiroz et al., 2025; He et al., 2024; Sheng et al., 2025). Consequently, these models may
struggle to generalize well to diverse patient populations, incorporate new medical knowledge, and
accurately handle rare conditions.

To address these challenges, domain incremental learning (DIL) has emerged as a crucial approach
for large-scale medical foundation models (Chen et al., 2024; Wang et al., 2025b). DIL enables these
models to continuously integrate new information while retaining previously acquired knowledge,
thereby enhancing their adaptability and clinical utility. However, implementing DIL effectively
is challenging due to the substantial number of parameters in these models and the issue of catas-
trophic forgetting. Several strategies have been proposed to tackle these challenges in DIL. One
approach involves regularization techniques, which help the model learn new information while re-
taining old knowledge (Wang et al., 2022c;b). For example, some methods use a shared pool of
prompts with a mechanism to select task-specific subsets, which can lead to task interference as the
pool grows. Alternatively, other methods assign independent prompts to each task to prevent forget-
ting (Wang et al., 2022a), but this limits the potential for forward knowledge transfer. More recent
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hybrid approaches (Smith et al., 2023; Wang et al., 2025a; Xu et al., 2025) have introduced complex
mechanisms to balance shared and task-specific knowledge.

These methods generally overcome catastrophic forgetting across domains but often overlook the
issue of class distribution shift, where the distribution of classes varies across datasets. This shift
can lead to imbalanced learning, particularly when rare but clinically significant conditions are un-
derrepresented, resulting in suboptimal model performance. This problem is especially significant
in the medical field, where underrepresented conditions may lead to missed diagnoses or inadequate
treatment recommendations.

Beyond this inter-domain dilemma, we identify a more fundamental limitation inherited by both
paradigms: they rely on a static and homogeneous computational graph. Every input token, whether
representing healthy tissue or a subtle, rare lesion, undergoes the same fixed-depth processing. This
uniform computational approach is profoundly inefficient for imbalanced data. It leads to the under-
processing of diagnostically critical tokens from minority classes, which require more intensive fea-
ture extraction, while simultaneously wasting computational resources on abundant, easy-to-classify
tokens from majority classes. While methods like Mixture-of-Recursions (Bae et al., 2025) have ex-
plored dynamic token processing, their design for training models from scratch is ill-suited for the
PEFT context. Such methods rely on the entire network’s weights adapting to a dynamic routing
policy, a condition not met when operating on a frozen foundation model. Their routers are often
designed to simply manage computational budgets rather than explicitly learning to discern token
complexity. This necessitates a new approach specifically engineered for the constraints and oppor-
tunities of PEFT.

To address these limitations at both the domain and token levels, we propose a novel two-tiered adap-
tive learning framework. For token-level adaptation, we introduce Recursive LoRA (RecLoRA),
a dynamic computation module. RecLoRA integrates a lightweight, learnable router that works
synergistically with a LoRA block to perform iterative feature refinement. This mechanism dynami-
cally allocates more computation to complex tokens, directly tackling the learning challenges posed
by class imbalance. For domain-level adaptation, we propose Sequential Knowledge Transfer,
a new DIL paradigm that reconciles the tension between knowledge isolation and integration. It
preserves domain-specific expertise by dedicating an independent set of RecLoRA modules to each
task, while promoting forward transfer by initializing the modules for a new domain with the con-
verged weights of its predecessor. This entire framework is built upon a frozen foundation model,
leveraging its powerful feature space for an efficient key-query mechanism that selects the appropri-
ate domain expert at inference time. Our main contributions are threefold:

• We propose Recursive LoRA (RecLoRA), a novel adaptive computation module for PEFT,
and establish its direct utility in addressing the challenge of intra-domain class imbalance
by enabling input-conditional processing depth.

• We design a new DIL paradigm, Sequential Knowledge Transfer, which effectively bal-
ances catastrophic forgetting and forward knowledge transfer by combining domain-
specific modules with a cross-task weight initialization strategy.

• We demonstrate the effectiveness of our approach on challenging Diabetic Retinopathy
DIL benchmarks, where our method sets a new state-of-the-art. To foster further research,
we will release our code as a flexible DIL platform.

2 RELATED WORK

Continual Learning. The primary goal of Continual Learning (CL) is to enable models to learn
from a sequence of tasks while overcoming the catastrophic forgetting of previously acquired knowl-
edge. CL methodologies are often categorized into three families. Regularization-based approaches,
such as Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017) and Synaptic Intelligence (SI)
Boahen (2022), introduce a penalty term to the loss function to protect weights deemed critical for
past tasks. Rehearsal-based methods store a small subset of past data (an episodic memory) to be
replayed during subsequent training, but this approach is often constrained by data privacy and stor-
age limitations. Architecture-based methods, such as PackNet, dynamically expand the network by
allocating new parameters for new tasks. Our work aligns with the principles of architecture-based
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methods, but instead of significant parameter growth, we leverage PEFT to isolate task-specific
knowledge in a highly compact and efficient manner.

Parameter-Efficient Tuning for Continual Learning. With the rise of large-scale pre-trained mod-
els, applying PEFT to CL, particularly in the Domain-Incremental setting, has become a prominent
research direction. These methods typically freeze the model backbone and manage a small set of
trainable parameters across tasks. This has led to a dichotomy between knowledge integration and
parameter isolation. Integration-based methods like Learning to Prompt (L2P) Wang et al. (2022c)
and DualPrompt Wang et al. (2022b) maintain a global pool of prompts and learn a query mech-
anism to select a task-adaptive subset for each input, but risk task interference as the pool grows.
Conversely, isolation-based methods such as S-Prompts Wang et al. (2022a) dedicate a separate,
independent prompt to each task to prevent forgetting, but forgo the opportunity for forward knowl-
edge transfer by training each prompt from scratch. More recent hybrid approaches like CODA-
Prompt Smith et al. (2023), HiDe-PET Wang et al. (2025a), and Componential Prompt-Knowledge
Alignment Xu et al. (2025) have introduced more complex mechanisms to decompose and align
shared and task-specific knowledge. While these methods are effective, our Sequential Knowledge
Transfer offers a simpler yet potent alternative that facilitates a curriculum-like knowledge progres-
sion through weight initialization, avoiding the need for complex architectural modifications.

Adaptive Computation A core challenge in applying deep learning to real-world problems like
medical diagnostics is the inherent inefficiency of static computation graphs for imbalanced data.
In tasks such as Diabetic Retinopathy (DR) grading, where sight-threatening pathologies are rare, a
standard model expends most of its capacity on abundant, simple samples (e.g., healthy tissue), while
under-processing the sparse but critical tokens indicating disease. This dilutes the learning signal
from minority classes and hinders the learning of fine-grained, diagnostically relevant features.

Our work is inspired by the growing field of adaptive computation, which aims to address this
by dynamically adjusting the computational graph or depth based on input complexity. Early ex-
amples include Mixture-of-Experts (MoE) models Shazeer et al. (2017), which selectively activate
different sub-networks. In Transformers, this has been realized through mechanisms like adaptive
attention spans or early exiting. More recently, Mixture-of-Recursions Bae et al. (2025) explored
learning dynamic recursion depths for different tokens. However, these methods are typically de-
signed for training models from scratch. Our RecLoRA module contributes to this line of work but
is fundamentally distinct as it is engineered for the PEFT paradigm. It uses a lightweight gating
mechanism to enable adaptive processing while preserving the stability of the frozen, pre-trained
features, making it uniquely suited to address class imbalance within a foundation model.

3 METHOD

In this section, we first define the Domain-Incremental Learning problem and its key challenge,
Class Imbalance Shift. We then detail our groundbreaking two-level adaptive framework for ad-
dressing class imbalance shift (intra-domain) and domain shift (inter-domain). Specifically, for class
imbalance shift, we design Recursive LoRA (RecLoRA), that provides adaptive, token-level com-
putational depth to mitigate class imbalance. In parallel, we confront the domain shift problem with
our pioneering Sequential Knowledge Transfer strategy, which leverages domain-specific modules
to preserve specialized knowledge while using cross-domain weight initialization to foster positive
transfer. We first formalize the DIL problem setting (§3.1), then detail the RecLoRA architecture
(§3.2) and its subsequent integration into our DIL framework (§3.3).

3.1 PRELIMINARIES

Incremental Learning Scenarios. In a general Continual Learning (CL) setting, a model learns
from a sequence of tasks T = {T1, . . . , TN}. This field is primarily divided into two scenarios.
In Class-Incremental Learning (CIL), tasks introduce disjoint sets of classes, causing the label
space to expand over time (i.e., Yt ∩ Yt′ = ∅ for t ̸= t′). The model must learn new classes
while preserving knowledge of old ones. In contrast, Domain-Incremental Learning (DIL), the
focus of this work, assumes a fixed and shared label space across all tasks (Yt = Y). The primary
challenge in DIL, known as domain shift, stems from the varying distribution of the input data, i.e.,
Pt(X) ̸= Pt′(X).
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Figure 1: The Architecture of the Recursive LoRA (RecLoRA) Module. At each recursion step
k, a Step Embedding is added to the input token representations X(k−1). The Gating RouterR then
computes a binary gate gi,k for each token, selecting a subset of ”active” tokens. To ensure coherent
progression, only tokens selected at step k − 1 are re-evaluated at step k. These active tokens are
processed by the shared LoRA block. The resulting update (delta) is then gated and sparsely applied
back to the representations to produce the output X(k). This process repeats for a maximum of
Kmax steps.

Class Imbalance Shift (CIS). In DIL setting, we are the first to identify Class Imbalance Shift,
a challenge beyond domain shift. CIS occurs when the class prior probabilities change across do-
mains, i.e., Pt(Y ) ̸= Pt′(Y ). Unlike CIL, which deals with an expanding label space, CIS involves
adapting to varying class prevalences within a fixed label space. This dual challenge requires models
to adjust to shifts in both input feature distribution P (X) and class prior distribution P (Y ).

3.2 RECLORA: RECURSIVE LORA FOR ADAPTIVE COMPUTATION

To effectively tackle the challenge of class imbalance within the PEFT framework, our approach is
grounded in the principle that tokens representing complex or rare samples require more intensive
computational processing than those from simpler, majority classes. To achieve this, we introduce
Recursive LoRA (RecLoRA), a novel module that enables recursive and input-adaptive adaptation
of foundation models. Unlike approaches that necessitate training a dynamic computation policy
from scratch, RecLoRA is crafted as a lightweight, parameter-efficient solution. It incorporates a
gating mechanism that routes tokens for recursive processing, enabling the model to dynamically
allocate computational depth to simpler or complex classes. The following sections provide a de-
tailed exploration of the architectural components of this mechanism and its impact on handling
class imbalance.

Gating Router with Differentiable Decision. The Gating Router,R, determines whether a token
requires additional processing by making a binary decision (”yes” or ”no”). It is implemented as
a simple linear layer that maps a token embedding xi ∈ RD to a scalar logit li: li = R(xi) =
Wrxi + br, where Wr ∈ R1×D and br ∈ R are its trainable parameters. To make the discrete
routing decision differentiable for end-to-end training, we employ the Straight-Through Estimator
(STE). The logits are first normalized into probabilities using a sigmoid function, modulated by a
temperature τ that is annealed from a starting value τstart to an ending value τend over the course of
training: pi = σ(li/τ).

During the forward pass in training, a binary gate gi ∈ {0, 1} is generated via stochastic sampling:

gi = 1(ui<pi), where ui ∼ U(0, 1). (1)

For inference, the gate becomes deterministic: gi = 1(pi > 0.5). While the indicator function 1(·)
is non-differentiable, the STE creates a shortcut for gradients. In the backward pass, the gradient
is passed directly through the continuous probability pi, allowing the router to learn from the main
task loss. The gradient with respect to the logit is thus approximated as:

∂L
∂li
≈ ∂L

∂gi

∂pi
∂li

. (2)
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This mechanism empowers the router to learn an effective, data-driven policy for token selection
directly from the downstream task signal.

Gated Recursive Update. We introduce gated update mechanism to manage the recursive updat-
ing of tokens representation within a single Transformer block. Let X(k−1) represent the set of
token representations at the beginning of recursion step k. The router first selects a subset of these
tokens for processing, indexed by the active set Ak. To ensure a coherent refinement process, we
implement a hierarchical filtering strategy: only those tokens that were selected at step k − 1 are
eligible for selection in step k.

The representations for the active tokens are updated by passing them through the LoRA-augmented
Transformer block, fℓ(·). This block is adapted using Low-Rank Adaptation (LoRA) (Hu et al.,
2022), a parameter-efficient technique that injects small, trainable matrices into a frozen model.
Specifically, for a pre-trained weight matrix W0 ∈ Rd×k, such as the query (Wq) and key (Wk)
projection matrices in the self-attention layer, its forward pass is modified as

h = W0x+BAx, (3)

where the original weights W0 remain frozen. The trainable update is represented by two low-rank
matrices, A ∈ Rr×k and B ∈ Rd×r, where the rank r ≪ min(d, k). These matrices are the
only parameters updated during training within the block. Tokens not selected by the router remain
unchanged. This process continues until a termination condition is met, either no tokens are selected
(Ak = ∅), or the maximum number of recursions, Kmax, is reached. Upon termination, the final
representations of all processed tokens are used to substitute their counterparts in the block’s original
input sequence. This fully updated sequence then serves as the input for the subsequent Transformer
block or the classification head.

Step Embedding. A single, shared router and LoRA block would be permutation-invariant across
recursion steps, limiting their ability to learn step-dependent strategies. To break this symmetry, we
introduce learnable Step Embeddings. We define a set of unique embedding vectors, {Ek

step}
Kmax

k=1 ,
where each Ek

step ∈ RD. At the beginning of each recursion step k, the corresponding embedding is
broadcast and added to all token representations being considered:

X ′
k−1 = Xk−1 + Ek

step. (4)

The router and LoRA block then operate on this conditioned input, X ′
k−1. This explicitly informs

the modules of the current recursion depth, enabling them to learn step-dependent strategies, such
as performing coarse-grained analysis in early steps and refining intricate features in later ones.

3.2.1 RECURSIVE FORWARD PASS ALGORITHM

We formalize the dynamic computation within a RecLoRA-augmented block in Algorithm 1. The
algorithm iteratively refines token representations, employing the hierarchical filtering strategy pre-
viously described. Based on the router’s decision at each step, an UPDATE function sparsely modi-
fies the token representations from the previous state to generate the input for the next iteration. This
recursive process is self-contained within a single block. After the loop terminates, the final token
representations are passed as a complete sequence to the next layer.

3.3 DOMAIN INCREMENTAL LEARNING FRAMEWORK

The RecLoRA module addresses intra-domain class imbalance by enabling adaptive computation at
the token level. We now integrate this module into a broader framework to tackle the full DIL prob-
lem. While existing DIL methods focus on adapting to Domain Shift (P (X)), our work addresses
the dual challenge of concurrently handling both Domain Shift and the critical, often-overlooked
Class Imbalance Shift (P (Y )). This section details the training and inference pipeline of our two-
level adaptive system designed for this compound challenge.

3.3.1 TRAINING PROCEDURE

Our training procedure sequentially adapts to new domains by training dedicated modules with a
knowledge transfer mechanism.

5
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Algorithm 1 Recursive Forward Pass within a RecLoRA-augmented Block

1: Input: Initial token representations X(0)

2: Initialize active index set A0 ← {0, 1, . . . ,M − 1} ▷ M is the sequence length
3: for k = 1, . . . ,Kmax do
4: if Ak−1 is empty then break
5: end if
6: X ′ ← X(k−1) + Ek

step ▷ Condition on current recursion depth
7: Let X ′

Ak−1
= {x′

i | i ∈ Ak−1}
8: Ak ← R(X ′

Ak−1
) ▷ Router selects new active indices

9: X(k) ← UPDATE(X(k−1),Ak) ▷ Sparsely update active tokens
10: end for
11: Return: Final token representations X(k)

Domain-Specific Modules. To preserve domain-specific knowledge and adapt to each domain’s
unique class distribution (i.e., the Class Imbalance Shift), we allocate an independent set of train-
able modules θt for each domain Dt. This set includes the Gating Router, LoRA matrices, Step
Embeddings, and a domain-specific classification head:

θt = {Rt,Λt, Estep,t, ht}. (5)

When training on domain Dt, only the parameters in θt are optimized; the foundation model back-
bone and all previously trained modules {θj}t−1

j=1 remain frozen.

Cross-Domain Weight Initialization. To foster positive knowledge transfer, we employ a sequen-
tial initialization strategy. For any subsequent domain t > 1, its module set θt is initialized with the
converged weights of the preceding module set θt−1:

θ
(init)
t ← θ

(final)
t−1 . (6)

This provides a strong starting point for optimization on the new domain.

Optimization Objective. For each domain Dt, the module set θt is trained to minimize the Fo-
cal LossLin et al. (2017), which is effective at mitigating the effects of severe class imbalance by
focusing on hard-to-classify samples.

3.3.2 INFERENCE PROCEDURE

At inference time, the domain identity of a given sample is unknown. We use an efficient key-query
mechanism to select the appropriate domain-specific module.

Key-Query Domain Selection. We first pre-compute a ”domain key” kt for each domain by aver-
aging the [CLS] token features of its training data, as extracted by the frozen backbone Fpre. When
a new sample xnew arrives, we compute its ”query” vector q in the same fashion. The domain t̂ is
then identified by finding the key with the highest cosine similarity to the query:

t̂ = argmax
j∈{1,...,T}

q · kj
∥q∥2∥kj∥2

. (7)

Once the domain expert t̂ is selected, its corresponding module set θt̂ is loaded. The final predic-
tion for xnew is then made by a forward pass through the backbone augmented with these expert
RecLoRA modules.

4 EXPERIMENTS

To validate the effectiveness of our proposed framework, RecLoRA we conduct a comprehensive
set of experiments on challenging, real-world medical imaging benchmarks for Domain Incremental
Learning. Our evaluation is designed to answer the following key research questions:

6
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• Does RecLoRA outperform state-of-the-art DIL techniques in terms of both accuracy and knowl-
edge retention?

• What is the contribution of each key design choice within RecLoRA including the DIL framework
and the adaptive module?

• Does the adaptive computation mechanism behave as intended, focusing more resources on com-
plex, diagnostically relevant samples?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate RecLoRA on two distinct DIL benchmarks constructed from publicly avail-
able retinal imaging datasets.

• Diabetic Retinopathy (DR) Grading: A 5-class classification task. We construct a domain se-
quence from three datasets known for significant domain shifts and class imbalance: APTOS
2019, Messidor-2, and IDRiD.

• Age-Related Macular Degeneration (AMD) Grading: A multi-class classification task. The
domain sequence is formed by three datasets: ADAM, ARIA, and ODIR-5K (AMD subset).

Baselines. We compare RecLoRA against a comprehensive suite of baselines, including: (1) Full
Fine-tuning (FT-Seq), which sequentially fine-tunes the entire backbone and represents a lower
bound for forgetting. (2) Traditional CL methods: EWC (Kirkpatrick et al., 2017) and LwF (Li
& Hoiem, 2017). (3) State-of-the-art PEFT-based DIL methods, covering both integration-based
approaches (L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b)) and isolation/hybrid ap-
proaches (S-Prompts (Wang et al., 2022a), CODA-Prompt (Smith et al., 2023), HiDe-PET (Wang
et al., 2025a)).

Evaluation Metrics. Following standard DIL evaluation protocols, we use two primary metrics:

• Average Accuracy (ACC): The average accuracy across all seen tasks after the final task is
learned. Higher is better.

• Average Forgetting (AF): The average drop in performance on a task after training, as new tasks
are introduced. Lower is better. It is calculated as:

AF =
1

T − 1

T−1∑
i=1

(max
t∈[1,i]

At,i −AT,i)

where At,i is the accuracy of the task i after learning task t.

Implementation Details. Our framework is implemented in PyTorch. We use the pre-trained
RETFound Zhou et al. (2023) as our frozen backbone. For all PEFT-based methods, we use LoRA
with a rank of r = 8. All models are trained using the AdamW optimizer with a learning rate of
2× 10−4 and a batch size of 32. We set the maximum recursion depth Kmax = 3 for RecLoRA.

4.2 MAIN RESULTS

The main results on the DR and AMD benchmarks are presented in Table 1, respectively. The
findings clearly demonstrate that RecLoRA establishes a new state-of-the-art in both challenging
medical DIL scenarios.

On the more complex DR benchmark (Table 1), which is characterized by significant class imbal-
ance, RecLoRA achieves an average accuracy of 68.50%, surpassing the next best method by a large
margin of 5.15%. Crucially, it reduces average forgetting to a near-zero 0.19%. This powerful com-
bination of high accuracy and low forgetting validates our core design philosophy. The performance
gain over pure-isolation methods like S-Prompts highlights the substantial benefit of our Sequen-
tial Knowledge Transfer strategy, which promotes positive forward transfer. Simultaneously, the
drastic reduction in forgetting compared to integration-based methods like L2P and DualPrompt
confirms the effectiveness of using domain-specific modules to prevent catastrophic forgetting.

This effectiveness is further underscored on the AMD benchmark (Table 1), where RecLoRA not
only achieves the highest accuracy (94.93%) but does so with a perfect forgetting score of 0.02%.

7
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Table 1: Overall performance comparison on the DR Grading and AMD Grading benchmarks.
RecLoRA demonstrates superior performance in average accuracy and knowledge retention across
both challenging medical imaging datasets. Best results are in bold.

METHODS
DR GRADING AMD GRADING

AVG. ACC (%) ↑ FORGETTING (%) ↓ AVG. ACC (%) ↑ FORGETTING (%) ↓

FT-SEQ 61.89 11.61 85.22 0.20
EWC 61.95 9.82 91.73 1.10
LWF 62.32 6.97 54.24 45.53
L2P 62.34 6.11 91.17 3.80
DUALPROMPT 63.35 4.87 80.52 0.20
S-PROMPTS 49.39 15.78 82.56 0.20
CODA-PROMPT 62.18 6.91 76.45 2.30
HIDE-PROMPT 55.60 9.52 71.69 0.11
HIDE-LORA 58.85 1.99 75.35 0.63

RECLORA (OURS) 68.50 0.19 94.93 0.02

UPPERBOUND 69.60 - 94.53 -

This result demonstrates the framework’s robustness and its capability to fully preserve domain-
specific expertise while adapting to new data distributions.

4.3 ABLATION STUDY

To thoroughly investigate the sources of RecLoRA’s performance gains and validate its key design
choices, we conduct a series of detailed ablation studies on the more challenging DR benchmark.
We first evaluate the effectiveness of the overall DIL framework, then dissect the core components
of the RecLoRAmodule.

4.3.1 IMPACT OF OUR DIL FRAMEWORK

We first validate the Sequential Knowledge Transfer strategy, which is critical to RecLoRA. As
shown in Table 2, we compare the full model against a variant that removes cross-domain weight
initialization (i.e., modules for each new domain are randomly initialized). The results show that
without knowledge transfer, the model’s average accuracy drops significantly by 9.04%, while for-
getting increases by nearly nine-fold. This provides strong evidence that leveraging knowledge from
prior tasks as a starting point for new ones is crucial for improving performance and accelerating
convergence.

4.3.2 COMPONENT-WISE ANALYSIS OF THE ADAPTIVE MODULE

Next, we delve into the core adaptive module of RecLoRAto quantify the contribution of each inter-
nal component. As presented in Table 2: (1) Removing the entire recursive mechanism (w/o Recur-
sion) by setting Kmax = 1 leads to the most significant drop in performance, directly confirming the
fundamental benefit of iterative refinement for complex features. (2) Replacing the learned gating
router with a random policy (w/o Learned Router) also markedly degrades performance, indicating
that an intelligent routing strategy is key to the effectiveness of the recursion, not just the recursive
operation itself. (3) Removing the step embedding (w/o Step Embedding) causes a slight perfor-
mance drop, which validates its role in helping the model learn a hierarchical, step-aware refinement
strategy.

4.4 ANALYSIS OF DESIGN CHOICES

Finally, we conduct analyses to validate two key design choices within our framework: the mech-
anism for inference-time domain identification and the sensitivity to the maximum recursion depth
hyperparameter.
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Table 2: Comprehensive ablation studies on the DR benchmark. We analyze the contributions of
both the high-level DIL framework and the core components of our adaptive module. The perfor-
mance degradation across all variants validates our key design choices.

Category Ablation Variant ACC (%) ↑ AF (%) ↓
Full Model (Ours) 68.50 0.19
DIL Framework w/o Sequential Knowledge Transfer 59.46 1.66

Adaptive Module
w/o Recursion (Kmax = 1) 61.14 2.95
w/o Learned Router (Random) 61.01 1.01
w/o Step Embedding 66.62 0.57

Impact of Maximum Recursion Depth. We analyze the sensitivity of RecLoRAto the core hy-
perparameter, Kmax, which controls the maximum depth of token-level processing. As shown in
Figure 2, performance on the DR benchmark steadily improves as Kmax increases from 1 to 3,
validating the benefit of deeper, iterative refinement. The performance saturates at Kmax = 3 and
slightly declines at Kmax = 4, likely due to overfitting on the training data. This result justifies our
choice of Kmax = 3 as an effective trade-off between representational power and overfitting risk.

1 2 3 4 5
Maximum Recursion Steps (Kmax)

62

64

66

68

Av
er

ag
e 

Ac
cu

ra
cy

 (
%

)

66.34
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Figure 2: Impact of maximum recursion depth (Kmax). Performance peaks at Kmax = 3 on the
DR benchmark, justifying our default setting.

5 CONCLUSION

In this work, we addressed the dual challenges of continual domain adaptation and intra-domain
class imbalance for large-scale medical foundation models. We proposed a novel two-tiered adaptive
framework featuring Recursive LoRA (RecLoRA), which performs token-level adaptive computa-
tion to iteratively refine features of rare and complex samples. At the domain level, our Sequential
Knowledge Transfer paradigm utilizes domain-specific modules to prevent catastrophic forgetting
while employing cross-domain weight initialization to promote forward knowledge transfer. Our
experiments on challenging Diabetic Retinopathy benchmarks demonstrate that this integrated ap-
proach sets a new state-of-the-art, paving the way for more robust, efficient, and continually adapting
AI systems suitable for real-world clinical deployment.
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