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ABSTRACT

Graph representation learning is a fundamental problem for modeling relational
data and benefits a number of downstream applications. Traditional Bayesian-based
random graph models and recent deep learning based methods are complementary
to each other in interpretability and scalability. To take the advantages of both
models, some combined methods have been proposed. However, existing models
are mainly designed for undirected graphs, while a large portion of real-world
graphs are directed. The focus of this paper is on the more challenging directed
graphs where both the existences and directions of edges need to be learned. We
propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate
the traditional latent space random graph model into deep learning frameworks via
a hierarchical variational auto-encoder architecture. To adapt to directed graphs,
our model generates multiple highly interpretable latent variables as node repre-
sentations, and the interpretability of representing node influences is theoretically
proved. The experimental results on real-world graphs demonstrate that our pro-
posed model achieves the state-of-the-art performances on link prediction and
community detection tasks while generating interpretable node representations of
directed graphs.

1 INTRODUCTION

Learning representations on graphs is a fundamental problem for graph analysis and benefits a number
of downstream applications, typically including link prediction, community detection and influential
node identification. Traditionally, a plethora of Bayesian-based random graph models have been
proposed for learning graph representations (Holland et al., 1983; Hoff et al., 2002; Karrer & Newman,
2011; Sewell & Chen, 2015). Despite the ideal interpretability of these methods, they are unscalable
to model large-scale graphs due to the expensive iterative inference procedures. Boosted by the
powerful representation learning ability, graph neural networks (GNNs) have been proposed to learn
the topology of graph-structured data (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018; Zeng et al., 2020). However, these GNN-based methods usually bring about the interpretability
issues, which restrict the practical applications of these methods.

As an effective deep learning method based on the Bayesian theory, the variational auto-encoders
(VAEs) (Kingma & Welling, 2014b) have been proposed for representation learning on graph-
structured data (Kipf & Welling, 2016; Grover et al., 2019; Salha et al., 2019). To capture the mutual
facilitation of random graph models and deep learning based methods, some recent research attempts
to combine them using VAEs, and build the deep generative random graph models (Mehta et al., 2019;
Sarkar et al., 2020). However, most of these VAE-based methods are designed only for undirected
graphs. In contrast, a large portion of real-world graphs, such as social and citation networks, are
directed graphs, of which undirected graphs are special cases (i.e. an undirected edge can be regarded
as a bidirectional edge). The representation learning on directed graphs is particularly challenging
since not only the existences but also the directions of edges need to be learned. Although directed
graphs have been extensively studied by traditional research on random graph models (Hoff et al.,
2002; Krivitsky et al., 2009; Sewell & Chen, 2015), there are still few deep learning based methods
and no combined models existed to address them.

In this paper, we present the first VAE-based generative model for directed graphs and propose the
Deep Latent Space Model (DLSM), which combines graph convolutional networks (GCNs) with the

1



Under review as a conference paper at ICLR 2022

Bayesian random graph model using a hierarchical VAE architecture. Within our model, a deep GCN
is leveraged to encode the asymmetric adjacency matrix and node features as hidden states, which are
layer-wise transformed to variational parameters to generate latent random variables as interpretable
node representations. Then, the hierarchical decoder network reconstructs the adjacency matrix using
the learned representations.

To better capture the characteristics of graphs for deep random graph models, our method generates
three types of interpretable representations, including the latent positions, node random factors and
community memberships. The latent positions measure the distances between nodes and enable our
method to model the link reciprocity of directed graphs, which means that both bidirectional and
unidirectional edges exist. To characterize the degree heterogeneity, we introduce a pair of node
random factors, namely the social activity and popularity, thus the asymmetric structure of directed
edges can be modeled. Besides, we use a binary latent variable, named the community membership,
to accommodate an overlapping community structure. We further prove that these node-specific
variables, including the latent positions and random factors, are interpretable for representing the
existence and strength of node influences.

For fast inference, we leveraged the stochastic gradient variational Bayes (SGVB) algorithm (Kingma
& Welling, 2014a), which is far more efficient and scalable compared to the traditional iterative
inference methods. We conduct experiments on link prediction task to verify the effectiveness of
directed graph modeling with several real-world graphs, and further demonstrate the interpretability
of latent variables on community detection task.

The main contributions of this work are summarized as follows:

1. We propose the DLSM model for directed graphs to incorporate the latent space model into
deep learning frameworks using a hierarchical VAE architecture, which can generate highly
interpretable representations of graph nodes for multiple downstream tasks.

2. To adapt our method to directed graphs, we introduce the social activity and popularity fac-
tors of each node, with theoretical proof of their capabilities in representing node influences.

3. We conduct experiments on five real-world graph datasets, and the results show that our
proposed method can well support downstream tasks and achieve the state-of-the-art perfor-
mances in link prediction and community detection.

2 RELATED WORK

In this section, we briefly review the traditional Bayesian-based random graph models and deep
learning based generative graph representation methods.

2.1 BAYESIAN-BASED RANDOM GRAPH MODELS

Classic Bayesian-based random graph models have developed for decades and are still valued in
modeling and generating relational data. This methods regard graph nodes as random variables
following a prior distribution, and learns low-dimensional embeddings via the posterior distributions
of nodes. One of the most well-known methods is the stochastic blockmodel (SBM) (Holland
et al., 1983), which generates a latent variable indicating the community membership of each node.
Following SBM, a large number of variants have been proposed, such as allowing an overlapping
community structure (Miller et al., 2009) and involving degree heterogeneity (Karrer & Newman,
2011).

Another important random graph model is the latent space model (LSM) (Hoff et al., 2002), which
assumes each node as a position in an unobservable latent space and use distances to measure the
relationships between nodes. Such method has soon been extended to model directed graphs by
involving the degree heterogeneity of nodes (Krivitsky et al., 2009; Sewell & Chen, 2015). Although
these above methods provide good theoretical properties and learn interpretable node embeddings,
they rely on either the MCMC posterior sampling or mean-field variational inference with dramatically
high computational complexity, and thus are usually unfeasible when modeling large-scale graphs.
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2.2 DEEP LEARNING BASED MODELS FOR UNDIRECTED GRAPHS

The intriguing achievements of deep learning models for learning representations of Euclidean data
have encouraged efforts to employ them on graph-structured data. The earliest attempts include
DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016), both of which encode
local relations as node representations by conducting random walks on a graph.

GNN-based graph models More recently, many GNN-based models have been proposed for
graph representation learning. Kipf & Welling (2017) first leverages the spectral GCN to learn node
embeddings using the global topology of a graph. GraphSAGE (Hamilton et al., 2017) samples a
fixed-size neighborhood of each node for the inductive representation learning, which allows unseen
nodes to be excluded during training. The graph attention networks (Veličković et al., 2018) introduce
the attention mechanism to aggregate the information from neighbors. GraphSAINT (Zeng et al.,
2020) constructs minibatches by sampling subgraphs across GCN layers. (Zhang et al., 2021a)
proposes a multi-node representation learning method for link prediction using the node labeling
trick. These methods usually learn representations for a single or a set of nodes and only focus on
some specific task of graph modeling, such as node classification or link prediction.

Deep generative graph models Another stream of research is the deep generative models, which
attempt to generate the full structures of graphs and are typically able to be applied for multiple
downstream tasks. These methods usually consist of a inferential model to capture the inner prob-
abilistic distribution of graphs and an unsupervised generative model to generate the similar data.
The variational graph auto-encoders (VGAE) (Kipf & Welling, 2016), for example, sample node
embeddings from variational Normal distributions to reconstruct the adjacency matrix. GraphGAN
Wang et al. (2018) unifies a generator and a discriminator to learn node embeddings by playing a
minimax game. GraphRNN You et al. (2018) generates small graphs through a sequence of node and
edge formations. Recently, some work tries to incorporate traditional random graph models into deep
learning frameworks. Mehta et al. (2019) first combines the classic SBM with GCN to learn sparse
node embeddings. Furthermore, Sarkar et al. (2020) builds a Gamma ladder VAE (Sønderby et al.,
2016) architecture to discover the communities at multiple levels of granularities.

2.3 DEEP LEARNING BASED MODELS FOR DIRECTED GRAPHS

Despite a plethora of literature for undirected graph modeling, the deep learning based methods for
directed graphs are still relatively rare. Existing methods are mostly designed for some special cases
and are not generalizable enough. For instance, Salha et al. (2019) and Zhang et al. (2021b) focus on
the unidirectional graphs and neglect the link reciprocity of generalized directed graphs. Funke et al.
(2020) learns the low-dimensional statistical manifold embedding for unsupervised directed graph
modeling. Zhu et al. (2021) learns a pair of source and target embeddings for each node using the
generative adversarial network. In this paper, we propose a novel deep generative model and learn
interpretable node representations for generalized directed graphs where both uni- and bi-directional
edges exist.

3 DEEP LATENT SPACE MODEL

Consider a directed graph containing n nodes. The input data include an asymmetric adjacency
matrix A = (Aij) ∈ {0, 1}n×n, where each binary element Aij denotes the presence (1) or not (0) of
the directed edge from node i to j, and a node attribute matrix X ∈ Rn×p. Throughout this paper we
assume all edges to be conditionally independent and satisfy Aij |Θ ∼ Bernoulli(pij), where Θ is the
collection of latent variables (representations) and pij ∈ (0, 1) is the posterior probability to form an
edge. The objective is to learn the representations which can best reconstruct the adjacency matrix.

We propose a deep VAE architecture composed of a GCN encoder and a hierarchical latent space
model (HLSM) decoder, as shown in Fig. 1. The encoder block takes the adjacency A and attribute
matrices X, if available, as inputs and learns a hidden state for each node using a directed GCN. Then,
the decoder block recursively generates interpretable latent variables from variational posteriors
via Monte Carlo sampling and reconstructs the adjacency matrix as outputs. For inference, the
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Figure 1: The architecture of hierarchical variational auto-encoder. The HLSM decoder generates a
adjacency matrix with latent variables, which are sparsified by the community membership (black
dashed arrows). The GCN encoder learns variables using not only the feedforward priors from
previous layers (black solid arrows), but also the skipping likelihood of the inputs (orange arcs).

hierarchical architecture enables the model to learn variables using not only the priors passed from
previous layers of the decoder, but also the approximate likelihood learned by the encoder.

3.1 HLSM DECODER

The HLSM decoder learns interpretable node representations based on the classic LSM approach
and generates an adjacency matrix. Assume each node to correspond to a latent position in an
unobservable D-dimensional space, denoted as zi ∈ RD. The distances between latent positions
indicate the relationships of nodes. The closer two latent positions are, the more possible an edge
will exist. Formally, an directed edge is generated by following

P (Aij = 1|X,Θ) = σ (β0 − βout‖γi � (zi − zj) ‖ − βin‖δj � (zi − zj) ‖) , (1)

where σ(·) is the sigmoid function. The latent positions zi are involved as Euclidean distances,
indicating the relationships between nodes. γi and δi ∈ RD are the activity and popularity factors,
the reverse of which represent the tendencies for a node to send and receive an edge, respectively. The
global weights βout and βin are to measure the importance of activity and popularity, respectively,
and β0 is a bias. To be mentioned, though Eq. (1) is designed for directed graphs, it can be easily
degraded to an undirected variant by setting γi = δi and βout = βin.

We build an HLSM decoder to generate three types of latent variables, i.e. the latent positions
z
(l)
i ∈ RGl , the community membership s(l)i ∈ RGl and the node random factors γi, δ

(l)
i ∈ RGl ,

where Gl is the size of the l−th decoder layer. All of these variables are randomly sampled from
the variational distributions. At the first layer (l = 1), the parameters of variational distributions are
defined by priors solely, while for other layers (l = 2, . . . , L− 1), the parameters are obtained by the
feedforward representations generated from previous layers as well as priors.

Latent position The latent positions z(l)i represent the location of each node in a latent space,
generated as

z
(l)
i ∼ Normal

(
s
(l)
i � f(W(l−1)

z z
(l−1)
i ), diag(σ

(l)
i

2
)
)
, (2)

where f(·) is a nonlinear activation function (e.g. leaky ReLU), � denotes the element-wise multi-

plication, diag(·) denotes a diagonal matrix, σ(l)
i

2
∈ RGl is the prior variance to be specified, and

W(l−1)
z ∈ RGl×Gl−1 is a weight matrix to transform the variable from dimension Gl−1 to Gl.

Community membership The latent positions in Eq. (2) are separated into different communities
by the sparse binary variables s(l)i = (si1, . . . , siGl)

′, thus an overlapping community structure can
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be adapted. Referring to Miller et al. (2009), we employ the Indian buffet process (IBP) prior on s(l)i
to learn the effective number of communities given a sufficiently large truncation parameter Gl, i.e.

π
(l)
ig = logit

(
g∏

h=1

v
(l)
ih

)
, s

(l)
ig ∼ Bernoulli

(
σ(π

(l)
ig )
)
. (3)

Typically, the log odds π(l)
ig is generated using a stick-breaking construction, where v(l)ih is drawn from

a Beta distribution (Teh et al., 2007). In our model we simplify such hierarchical prior structure by
specifying a global v for all nodes. At each layer, the community membership s(l)ig denotes whether
node i belongs to community g, hence the size of each decoder layer Gl can be explained as the
number of communities. Additionally, the proposed HVAE architecture enables our model to detect
community structures at multiple levels of granularities. Letting the layer sizes Gl be downward
increasing, the top layers indicate the coarse-grained communities and the bottom layers indicate the
fine-grained communities.

Node random factors To model the prevalent power-law of node degrees, we propose the Dirichlet
random factors γ(l)

i , δ(l)i ∈ RGl , i.e.

γ
(l)
i ∼ Dirichlet

(
ξ
(l)
i + s

(l)
i � f(W(l−1)

γ γ
(l−1)
i )

)
, (4)

δ
(l)
i ∼ Dirichlet

(
ψ

(l)
i + s

(l)
i � f(W(l−1)

δ δ
(l−1)
i )

)
, (5)

where ξ(l)i and ψ(l)
i are prior parameters to be specified, and W(l−1)

γ , W(l−1)
δ ∈ RGl×Gl−1 are weight

matrices. Note that the node random factors are dependent on the community membership s(l)i as
well, which can be explained as only the random effects within the community are involved in the
representations.

At the output layer (l = L), the latent positions zi and node random factors γi, δi are obtained by
linear transformation from dimension GL−1 to D. Each column of the weight matrices belongs
to a (D − 1)-simplex. Such transformation also changes the interpretation of the layer size, from
the number of communities to the dimension of the latent space. Last, the adjacency matrix is
reconstructed with the latent variables by Eq. (1).

3.2 GCN ENCODER

The proposed DLSM employs a deep encoder as a non-iterative recognition model to infer the
parameters of posterior distributions. Assuming the mean-field approximation of the variational
distributions, the true joint posterior of the latent variables pθ(Θ|A,X) can be approximated by a
variational posterior qφ(Θ), where θ and φ denote the generative (decoder) and inference (encoder)
parameters to be trained, respectively. Then, the variational posterior is given as

qφ(z, s,γ, δ) =

n∏
i=1

L∏
l=1

qφ(z
(l)
i |h

(l)
i , z

(l−1)
i )qφ(si|h(l)

i ,π
(l−1)
i )

qφ(γi|h(l)
i ,γ

(l−1)
i )qφ(δi|h(l)

i , δ
(l−1)
i ), (6)

where h(l)
i ∈ RKl is the output of the encoder and Kl denotes the size of the l-th layer.

GCN has been proved effective in learning the topology of non-Euclidean data, and thus is an ideal
choice for the encoder of our model. Referring to Kipf & Welling (2017), we propose the directed
GCN operator as

H(l+1) = f
(

D̃outÃD̃inH(l)W(l)
)
. (7)

Here Ã = A + In and In is the n-dimensional identity matrix. D̃out and D̃in are diagonal matrices
with elements as the out- and in-degrees of Ã, respectively. H(0) = X if X is available and H(0) = In
if not. During inference, the hidden states are passed to the corresponding layer of the decoder
and then combined with the prior information from previous layers to generate the parameters of
variational distributions. Note that the vanilla GCN used here can be substituted by any other GNN
for directed graphs.
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4 INFERENCE

We now introduce our fast inference method using the SGVB algorithm (Kingma & Welling, 2014a).
Compared with the iterative methods such as MCMC adopted by traditional Bayesian random graph
approaches, SGVB is much more efficient and scalable. Such method requires differential Monte
Carlo expectations to perform backpropagation, thus the reparameterization trick for each of the
latent variables is leveraged.

Denoting z∗ ∈ RGl a vector with standard Normal elements, the latent positions are reparametrized as
z
(l)
i = µ̂

(l)
i (z

(l−1)
i , s

(l−1)
i ,h

(l)
i ) + σ̂

(l)
i (z

(l−1)
i , s

(l−1)
i ,h

(l)
i ) � z∗, where µ̂(l)

i (z
(l−1)
i , s

(l−1)
i ,h

(l)
i ),

σ̂
(l)
i (z

(l−1)
i , s

(l−1)
i ,h

(l)
i ) are variational posterior parameters.

Following Mehta et al. (2019), the Bernoulli posterior pθ(s
(l)
ig ) is approximated by the Binary Concrete

distribution (Maddison et al., 2017), i.e.

s̃
(l)
ig =

1

λ

(
π̂
(l)
ig (s

(l−1)
i ,h

(l)
i ) + logit(u)

)
, (8)

where u ∼ U(0, 1), π̂(l)
ig (s

(l−1)
i ,h

(l)
i ) is a variational posterior parameter, λ ∈ R+ is the temperature

to be specified, and then s(l)ig = σ(s̃
(l)
ig ).

Referring to the recent literature (Joo et al., 2020), we use multiple normalized Gamma variables
with unified rate parameters to compose the Dirichlet distributions pθ(γ

(l)
i ) and pθ(δ

(l)
i ), i.e.

γ̃
(l)
i ∼ Gamma

(
ξ̂i

(l)
(γ

(l−1)
i , s

(l−1)
i ,h

(l)
i ),1

)
, (9)

δ̃
(l)
i ∼ Gamma

(
ψ̂i

(l)
(δ

(l−1)
i , s

(l−1)
i ,h

(l)
i ),1

)
, (10)

where ξ̂i
(l)

(γ
(l−1)
i , s

(l−1)
i ,h

(l)
i ) and ψ̂i

(l)
(δ

(l−1)
i , s

(l−1)
i ,h

(l)
i ) are variational posterior parameters.

For the convenience of notations, here the parameters of Gamma distribution are symbolized as
vectors, meaning the element-wise operations. The node random factors are then derived by γ(l)

i =

γ̃
(l)
i /

∑n
j γ̃

(l)
j , δ(l)i = δ̃

(l)
i /

∑n
j δ̃

(l)
j . In practice, the Dirichlet variables are magnified by n times to

avoid too small values of γ(l)
i and δ(l)i when n is large.

In particular, the initial variational posterior parameters (l = 0) are set as nonlinear combinations of
h
(1)
i and h(L−1)

i , as illustrated in Fig. 1.

The loss function is defined by minimizing the negative evidence lower bound (ELBO), i.e.

L =

n∑
i=1

L∑
l=1

(
KL
[
qφ(z

(l)
i )
∥∥∥pθ(z(l)i )

]
+ KL

[
qφ(s

(l)
i )
∥∥∥pθ(s(l)i )

]
+ KL

[
qφ(γ

(l)
i )
∥∥∥pθ(γ(l)

i )
]

+KL
[
qφ(δ

(l)
i )
∥∥∥pθ(δ(l)i )

])
−

n∑
i=1

n∑
j=1

Eq
[
logpθ(Aij |Θ(L))

]
, (11)

where KL[q(·)||p(·)] denotes the Kullback-Leibler (KL) divergence between q(·) and p(·) (of which
the full expression is given in Appendix A). The second term is the cross entropy of adjacency matrix
reconstruction. Here all of the true posteriors pθ(Θ(l)) and variational posteriors qφ(Θ(l)), except for
the input layer (l = 1), are conditioned on Θ(l−1), which is omitted for simplification.

5 MODEL INTERPRETABILITY

In this section, we show that the proposed latent positions and node random factors are interpretable
for representing the existence and strength of node influences, by hypothesizing that the true posterior
of zi can be approximated by the variational Normal distribution.

Imagine that there is a new node i with ni ≥ 2 neighbors entering a graph and we want to calculate
zi using other existed nodes. It is rational to suppose that the new node should be posited around its
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neighbors and thus can be denoted as a residual to the mean of its neighbors, i.e.

zi ∼ Normal (z̄i + εi, diag (σi)) , (12)

where z̄i = 1
ni

∑
j∈Ni zj is the mean position of node i’s neighbors, and εi ∈ RD is the residual

for zi to the mean position. Intuitively, the residual should depend on all of the neighbors to various
extent, of which the influential ones are likely to contribute more. Formally, we decompose the
residual as

εi =
∑
j∈Ni

rijeij , (13)

where rij ≥ 0 is a scalar and eij ∈ RD is a unit vector at the direction of zj − z̄i. The non-negative
scalar denotes the strength of influences for neighbor j exerting on node i (see Fig. 2 in Appendix for
an example in a two-dimensional latent space). An extreme case is rij = 0, which means the latent
position of i is not influenced by neighbor j at all.

To further analyze the relation between the latent variables and node influences, we define the prior
of rij as a mixture of a point mass on 0 and an exponential distribution, i.e.

fr(rij) =

{
p0 if rij = 0

(1− p0)fExpλ(rij) if rij > 0,
(14)

where 0 < p0 < 1 and fExpλ(·) denotes the density function of the exponential distribution with
parameter λ. What is of our interest is the posterior odds ratio (OR) for rij > 0, defined as
OR(rij > 0|A,X) =

∫∞
0
fr(rij = v|A,X)/fr(rij = 0|A,X)dv, which measures the ratio for node

influences to exist.

Theorem 1 Let Θ denote a collection of all parameters except zi. The posterior OR for rij > 0
satisfies

OR(rij > 0|A,X) = E
[
g (zi,Θ)

∣∣∣rij = 0,A,X
]
, (15)

The full expression and proof are provided in Appendix B.1. It is interesting that in the proof
(zi − z̄i −

∑
k∈Ni,k 6=j rikeik)′eij is a scalar projection of zi’s residual component onto the unit

vector whose direction is determined by zj . In a word, it shows that the posterior latent positions are
able to model the existence of node influences via the residual component projections.

Now we consider the interpretation of node random factors, which explains the strengths of node
influences. Formally, we have the following conclusion, i.e.

Theorem 2 Assume the vectors from z̄i to all influential neighbors (rij > 0) are orthogonal to each
other, and the random factors are the same at all dimensions of the latent space, denoted as γi and δi,
respectively. The strength of influences for neighbor j exerting on node i can be denoted as

rij =h(γi, δj , θ, o)‖zj − zi‖, (16)

where θ is the angle between zi − z̄i and zj − z̄i, o is the angle between z̄i − zj and zi − zj .

Here h(γi, δj , θ, o) is a function of the random factors as well as θ and o. The full expression and
proof are given in Appendix B.2. Theorem 2 reflects that given the direction of eij and zj − zi,
the node random factors can be regarded as coefficients for measuring the ratio of rij to ‖zj − zi‖,
which means that the strength of influences for a neighbor delivering to the node can be strengthened
or undermined via shrinking or enlarging the distance between them by the random factors.

6 EXPERIMENTS

To evaluate the effectiveness and interpretability of the proposed model, we conduct a series of
experiments, including link prediction and community detection, on several real-world graphs.
Ablation study for the components of our method, including the community membership, node
random factors and the HLSM decoder architecture are also conducted.
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Table 1: Results (in %) for link prediction on directed graphs. The best results are in bold and the
second are underlined.

Emails Political blogs Cora WikiVote Google
AUC AP AUC AP AUC AP AUC AP AUC AP

LSM 91.3 ± 0.1 90.6 ± 0.1 88.7 ± 0.3 86.5 ± 0.2 86.2 ± 0.2 85.7 ± 0.2 N/A N/A N/A N/A
VGAE 86.9 ± 0.5 85.9 ± 0.6 84.8 ± 0.5 83.0 ± 0.4 72.9 ± 0.3 77.3 ± 0.4 78.6 ± 0.2 77.8 ± 0.2 78.3 ± 0.4 80.0 ± 0.4
SEAL 94.2 ± 0.3 94.0 ± 0.5 93.0 ± 0.3 93.0 ± 0.4 83.2 ± 0.6 86.8 ± 0.5 97.1 ± 0.2 96.8 ± 0.2 98.8 ± 0.4 98.7 ± 0.4
DGLFRM 92.4 ± 0.3 93.1 ± 0.3 88.6 ± 0.4 88.4 ± 0.4 73.7 ± 0.4 78.3 ± 0.6 88.4 ± 0.3 89.8 ± 0.2 86.0 ± 0.0 88.2 ± 0.1
GGVAE 91.5 ± 0.3 90.3 ± 0.6 93.6 ± 0.4 92.4 ± 0.5 91.9 ± 0.8 92.5 ± 0.6 96.2 ± 0.1 94.7 ± 0.3 97.8 ± 0.3 98.2 ± 0.1
LGVG 93.2 ± 0.2 92.4 ± 0.3 91.4 ± 0.4 90.2 ± 0.3 85.3 ± 0.2 88.2 ± 0.4 94.0 ± 0.0 94.5 ± 0.0 95.7 ± 0.0 95.9 ± 0.0
DGGAN 91.4 ± 0.7 91.0 ± 0.8 91.2 ± 0.6 90.8 ± 0.8 86.1 ± 0.7 88.6 ± 0.6 93.2 ± 0.5 93.4 ± 0.5 92.7 ± 0.4 92.8 ± 0.5

DLSM 95.2 ± 0.2 94.1 ± 0.6 94.8 ± 0.4 93.7 ± 0.8 91.6 ± 0.2 92.5 ± 0.2 97.0 ± 0.2 97.0 ± 0.2 98.8 ± 0.2 98.8 ± 0.1

6.1 DATASETS

The experiments of link prediction are conducted on five real-world benchmark datasets, namely
Emails (Leskovec et al., 2007), Political blogs (Adamic & Glance, 2005), Cora (Sen et al., 2008),
WikiVote (Leskovec et al., 2010) and Google (Palla et al., 2007). All of the graphs have been
preprocessed by omitting the isolated nodes and loops. In our experiments, the edges are randomly
splitted as 85% for training, 10% for testing, and 5% for validation. More details and descriptive
statistics of the datasets are given in Appendix C.

6.2 BASELINES

We compare our proposed DLSM1 with four recent deep generative methods for graph representation
learning, i.e. the variational graph auto-encoder (VGAE) (Kipf & Welling, 2016), the deep generative
latent feature relational model (DGLFRM) (Mehta et al., 2019), the gravity graph variational auto-
encoder (GGVAE) (Salha et al., 2019), the ladder Gamma variational auto-encoder for graphs (LGVG)
(Sarkar et al., 2020), and the directed graph generative adversarial network (DGGAN) (Zhu et al.,
2021). For link prediction, we also consider a non-generative GNN-based model, i.e. SEAL (Zhang
et al., 2021a), which is the state-of-the-art method for this task. The methods that are not particularly
designed for directed graphs, including VGAE, DGLFRM and LGVG, are slightly modified by
altering the original encoder with our proposed directed GCN given in Eq (7).

6.3 EXPERIMENTAL RESULTS

Link Prediction For link prediction, we employ the widely used area under the ROC curve
(AUC) and average precision (AP) as evaluation metrics. Hyperparameter settings are provided in
Appendix D. The experimental results of DLSM and the baselines are presented in Table 1, where
the reported results are the means and standard deviations of 10 independent random splits. On all
datasets, our model achieves better or comparable performances to the non-generative method SEAL.
However, since it requires to materialize a subgraph for each link, SEAL is much more unscalable
than our DLSM and takes about 20 multiples longer for running one epoch. The traditional LSM
model is unpractical to fit large graphs such as WikiVote and Google because of the MCMC-based
inference methods, while the SGVB method adopted by our model is much more computationally
efficient. In addition, it seems that GGVAE performs well on approximately unidirectional graphs
(i.e. the reciprocal rate is close to 0 as shown in Table 4) such as Cora, whereas on other more
generalized directed graphs where more bidirectional edges exist, our method is significantly superior
to GGVAE. This is because our proposed DLSM considers the link reciprocity of directed graphs,
which is neglected by GGVAE due to its absolutely asymmetric decoding scheme. We also conduct
experiments of link prediction on three real-world undirected graphs, given in Appendix E, which
show that our proposed model achieves comparable performances with the baselines and verify the
capability for modeling undirected graphs as special cases.

Community Detection We further conduct community detection on three real-world datasets with
ground-truth community labels, i.e. Emails, political blogs and Cora. In particular, for the Emails

1The source code is available at https://github.com/upperr/DLSM.
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Table 2: Results (in %) for community detection on directed graphs. The best results are in bold and
the second are underlined.

Emails Political blogs Cora
macro F1 micro F1 macro F1 micro F1 macro F1 micro F1

VGAE 31.5 ± 1.6 42.5 ± 1.5 34.9 ± 1.2 52.3 ± 1.4 23.2 ± 1.0 24.8 ± 0.4
DGLFRM 53.3 ± 1.3 60.7 ± 1.0 42.4 ± 1.1 50.5 ± 1.3 18.2 ± 0.5 22.2 ± 0.5
GGVAE 62.8 ± 1.5 67.7 ± 1.4 92.0 ± 1.1 92.5 ± 0.8 22.7 ± 0.7 24.0 ± 0.4
LGVG 67.0 ± 1.3 63.8 ± 1.2 72.8 ± 1.3 73.9 ± 1.3 20.0 ± 0.5 23.9 ± 0.7
DGGAN 62.1 ± 1.6 66.7 ± 1.3 88.9 ± 1.1 89.5 ± 1.3 18.7 ± 1.0 21.4 ± 1.2

DLSM 72.0 ± 1.0 77.0 ± 1.2 92.5 ± 0.7 92.6 ± 0.7 24.6 ± 0.8 25.7 ± 0.5

Table 3: Ablation study results (in %) for link prediction.

Emails Political blogs Cora WikiVote Google
AUC AP AUC AP AUC AP AUC AP AUC AP

-S-∆-Γ 94.3 ± 0.4 93.2 ± 0.4 90.6 ± 0.3 90.2 ± 0.4 86.5 ± 0.5 88.9 ± 0.6 93.1 ± 0.4 92.9 ± 0.3 95.1 ± 0.3 95.3 ± 0.4
-∆-Γ 93.0 ± 0.5 91.5 ± 0.6 90.1 ± 0.4 87.5 ± 0.5 82.3 ± 0.6 86.0 ± 0.7 87.2 ± 0.6 85.1 ± 0.6 94.9 ± 0.4 95.0 ± 0.3
-Γ 94.9 ± 0.4 93.9 ± 0.5 91.0 ± 0.6 88.1 ± 0.5 85.2 ± 0.8 87.9 ± 0.7 93.6 ± 0.6 93.6 ± 0.5 98.6 ± 0.1 98.5 ± 0.1
-S 94.8 ± 0.5 93.7 ± 0.6 93.6 ± 0.5 91.9 ± 0.6 88.2 ± 0.6 90.9 ± 0.8 96.5 ± 0.3 96.4 ± 0.3 98.4 ± 0.2 98.2 ± 0.1
-HLSM 95.2 ± 0.5 94.0 ± 0.6 93.9 ± 0.4 92.5 ± 0.5 86.8 ± 0.7 86.9 ± 0.6 95.6 ± 0.3 95.8 ± 0.4 98.0 ± 0.3 97.3 ± 0.2

DLSM 95.2 ± 0.2 94.1 ± 0.6 94.8 ± 0.4 93.7 ± 0.8 91.6 ± 0.2 92.5 ± 0.2 97.0 ± 0.2 97.0 ± 0.2 98.8 ± 0.2 98.8 ± 0.1

dataset, communities (departments) with less than 30 nodes are excluded and finally 10 communities
are retained. We utilize the node embeddings learned by each model (the latent positions zi for
DLSM) to conduct K-means clustering with ground-truth community numbers. The commonly
used macro and micro F1 scores are leveraged as evaluation metrics, which are computed using the
most likely mappings between true and predicted clusters. Table 2 shows that our proposed model
significantly outperforms all other baselines for graph representation learning. Such results verify the
advantages of leveraging the Euclidean distance rather than inner product to compute the divergences
between nodes for community detection. (See Appendix G for visualizations of node embeddings
using a 2D t-SNE projectionthe distributions of the reverse node random factors, which shows a
consistent power-law with node degrees and offers more interpretability.)

Ablation study To justify the effectiveness of each component in our framework, including the
community membership si, node random factors, δi, γi, and the HLSM decoder architecture,
we compare the proposed DLSM with several variants of our method, which are named by the
corresponding ablated components. For example, -∆-Γ indicates the variant removed node random
factors (see Appendix F for more details). The link prediction results are presented in Table 3 and the
community detection results are in Table 8 of Appendix. Our DLSM performs best on all datasets
for both tasks, verifying that all components are useful under the proposed framework. Interestingly,
from the first two lines of Table 3, we find that the community membership seems ineffective when
the node random factors are not involved. This reflects that the binary si mainly benefits our model
by shrinking the redundant latent variables to 0 when there are too many parameters to optimize.

7 CONCLUSION

We establish a deep generative model to learn multiple highly interpretable node representations for
directed graphs. Our proposed DLSM, comprised of a deep GCN encoder and a HLSM decoder,
combines the traditional random graphs models with deep learning based methods to take the
complementary advantages of interpretability and scalability. Series of experiments have shown that
the model is effective for fitting directed graphs and achieves the state-of-the-art performance on link
prediction and community detection. In addition, the interpretable node representations learned by
the model can naturally represent both the community structure and degree heterogeneity of complex
directed graphs. In the future, we shall extend our model for the more complicated scenes such as
weighted or dynamic graphs. While the former with multi-valued edges can be simply achieved, the
latter demands for a more efficient method to learn the evolutionary topology of graphs.
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A LOSS FUNCTIONS

The KL divergence between Normal distributions Kingma & Welling (2014b) for z(l)i is
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The KL divergence between Binary Concrete distributions Maddison et al. (2017) for s(l)i is
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where s̃(l)ig is the log odds of s(l)ig .

The KL divergence between Gamma distributions Joo et al. (2020) for γ(l)
i (the same for δ(l)i ) is
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where Γ(·) and ψ(·) denote the Gamma and digamma function, respectively.

B DETAILS OF THEOREMS

B.1 PROOF OF THEOREM 1

For any positive value v > 0, the posterior probability density of rij at v is

f
(
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Assume that the true posterior of zi can be approximated by the variational Normal distribution.
Then, according to Eq. (12) and (13), we have
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By dividing f(rij = 0|A,X) on both sides of Eq. (20) and integrating over v on (0,+∞), we can
obtain

OR(rij > 0|A,X)

=

∫∫
f
(
zi
∣∣rij = v,Θ

)
f (rij = v)

f
(
zi
∣∣rij = 0,Θ

)
f (rij = 0)

· f
(
zi,Θ

∣∣∣rij = 0,A,X
)
dzidΘ

=

∫∫
g (zi,Θ) f

(
zi,Θ

∣∣∣rij = 0,A,X
)
dzidΘ

=E
[
g (zi,Θ)

∣∣∣rij = 0,A,X
]
,

where

g (zi,Θ) =

(1− p0)Φ

(∏D
d σ
−1
id

[(
zi − z̄i −

∑
k∈Ni,k 6=j rikeik

)′
eij − λ

∏D
d σ

2
id

])
p0φ

(∏D
d σ
−1
id

[(
zi − z̄i −

∑
k∈Ni,k 6=j rikeik

)′
eij − λ

∏D
d σ

2
id

]) ,

and Φ(·) and φ(·) denote the cumulative distribution function and probability density function of the
standard Normal distribution, respectively.

The conclusion is proved.

B.2 PROOF OF THEOREM 2

We start our proof by giving two definitions, the standard distance (SD) and actual distance (AD)
between node i and neighbor j. Consider a simple case, where the influence discrepancies of all
neighbors are neglected and the latent position zi is only dependent on the distances between the
node and neighbors (see Fig. 2(b) for an illustration). In this case, the residual εi = 0 and zi will
coincide with z̄i, thus the distance from neighbor j to node i is equal to ‖zj − z̄i‖, which we refer as
the standard distance.

Now we reconsider the influence discrepancies of neighbors upon the node. According to Eq. (1), the
actual distance between node i and neighbor j when involving node influences is node influences in
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our DLSM are involved by rescaling the standard distance. Assume the vectors from the z̄i to all
influential neighbors (rij > 0) are orthogonal to each other, and the random factors are the same
at all dimensions of the latent space, denoted as γi and δi, respectively. Then, the actual distance
between zi and zj is

ADij = (βoutγi + βinδj)‖ (zi − zj) ‖. (21)

The coefficients βoutγi + βinδj enlarge or shrink SDij = ‖zj − z̄i‖ to ADij using the node activity
and popularity factors. Let θ ∈ (0, π/2) be the angle between zi − z̄i and zj − z̄i, i.e.

θ = arccos

(
(zi − z̄i)′(z̄j − z̄i)
‖zi − z̄i‖‖zj − z̄i‖

)
. (22)

Since eij is orthogonal to other residual components, the modulus of εi can be denoted as ‖εi‖ =
rij/ cos θ. According to the law of cosines, we have

AD2
ij =SD2

ij + ‖εi‖2 − 2SD‖εi‖ cos θ

=SD2
ij +

r2ij
cos2 θ

− 2SDijrij . (23)

By combining Eq. (21) and Eq. (23), we obtain
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2 ‖zj − zi‖.

Given θ ∈ (0, π/2) (when θ ∈ (π/2, π), rij = 0), the sign for the right side depends on the positive
or negative correlation for ‖εi‖ and AD given θ, which is determined by the angle between z̄i − zj
and zi − zj , denoted as

o = arccos

(
(βoutγi + βinδj) (zi − zj)′(z̄i − zj)

(βoutγi + βinδj) ‖zi − zj‖2

)
= arccos

(
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zi − zj

)
. (24)

The sign is positive when o ∈ (0, π/2− θ) and negative when o ∈ (π/2− θ, π).

In summary, we have the following conclusion, i.e.

rij =h(γi, δj , θ, o)‖zj − zi‖,

where

h(γi, δj , θ, o) =

 cos2 θ − cos θ
[
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] 1

2
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cos2 θ + cos θ

[
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] 1

2

, if o ∈
(
π
2 − θ, π

)
,

and θ, o is defined by Eq. (22) and Eq. (24), respectively.

The conclusion is proved.

C DIRECTED GRAPH DATASETS

Here we provide more details about the directed graph datasets employed in our experiments. Emails
network consists of the members from 42 departments of a European research institution (Leskovec
et al., 2007). An edge exists if a person sends at least one email to another. Political blogs is a
well-studied social network composed of U.S. political blog nodes (Adamic & Glance, 2005), which
are labeled as “liberal” and “conservative” clusters. Two blog pages are connected if one is referenced
by another. Cora is a citation network of scientific publications which are classified into seven
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Figure 2: (a) An illustration for the residual decomposition with two influential neighbors (the
influence strengths for other neighbors are assumed to be 0). The residual for zi can be decomposed
as components at the direction of neighbor zj and zk, and rij , rik are the corresponding influence
strengths. (b) An example for the standard and actual distances in a two-dimensional latent space.
The vectors from the mean position z̄i to influential neighbors, i.e. zj and zk, are orthogonal and
equal length.

Table 4: Descriptive statistics of the real graph datasets. |V| and |E| are the numbers of nodes and
edges, respectively, CC is the clustering coefficient (Fagiolo, 2007), doutmax and dinmax are the maximal
in-degree and out-degree of all nodes, respectively, davg is the average degree of all nodes (average
in-degree equals to average out-degree), ED =

∑n
i=1

∑n
j=1 Aij/(n(n− 1)) is the edge density, and

RR =
∑n
i=1

∑n
j=1 Aijaji/

∑n
i=1

∑n
j=1 Aij is the reciprocal rate.

Dataset |V| |E| CC doutmax dinmax davg ED RR

Emails 986 24,929 0.4124 333 211 25.3 0.0257 0.7112
Political blogs 1,222 19,021 0.2459 256 337 15.6 0.0127 0.2426
Cora 2,708 5,429 0.1600 5 166 2.0 0.0007 0.0556
WikiVote 7,115 103,689 0.0896 893 457 14.6 0.0020 0.0565
Google 15,763 171,206 0.4007 852 11,397 10.8 0.0007 0.2541

classes (Sen et al., 2008). Each node and directed edge represent a paper and a citation, respectively.
WikiVote is a network of Wikipedia users (Leskovec et al., 2010), where each edge represents a
user voting on another to become the administrator. Google is a network of web pages which are
connected by hyperlinks (Palla et al., 2007).

The descriptive statistics of the directed graph datasets for link prediction and community detection
are summarized in Table 4.

D HYPERPARAMETER SETTING AND SENSITIVITY ANALYSIS

The proposed DLSM employs a hierarchical VAE architecture composed of a GCN encoder and
HLSM decoder. In practice, both of the two parts have three layers, and the layer sizes are fixed to be
32/64/128 and 50/100/50 for the encoder and decoder, respectively. Note that the last layer of the
decoder (l = L) is a linear full connection layer which transforms the sparse latent variables to dense
for adjacency reconstruction. Fig. 3(a) shows the link prediction results for increasing numbers of
layers, and the performance of our method is continuously rising until more than 4 layers.
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The HLSM stochastic decoder requires prior distributions to generate latent variables. Specifically,
we employ a standard Normal prior for the latent positions z(l)i , i.e. the variance σ(l)

i = 1. For the
community membership s(l)i , we use the IBP prior to infer community numbers given the truncation
Gl (i.e. layer sizes of the decoder) and a stick-breaking parameters v ∈ (0, 1). Typically, a smaller
v results in fewer active communities (i.e. non-zero elements of s(l)i ). Fig. 3(b) presents the link
prediction results of our method with different values of v on the Political blogs dataset, and our
method performs best when v ∈ (0.9, 1). Therefore, we set v = 0.9 to ensure the model fully
exploring the potential community structure of graphs. Last, we adopt flat priors for the Dirichlet
node random factors γi and δi, where all parameters are set as ξ(l)ig = ψ

(l)
ig = 1/Gl.

For inference, the temperature parameter λ of the Binary Concrete distribution is fixed to 1. All
models are trained by 1,000-2,000 iterations with a learning rate of 0.01 on an RTX 2080 Ti GPU.
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Figure 3: Sensitivity analysis for link prediction on the Political blogs dataset. (a) The plain VAE
(green) tends to collapse as the number of layers increases, while the performance of DLSM (blue) is
much more stable and continuously rises until more than 4 layers. (b) The performance of DLSM
(blue solid line) reaches peak when v is about 0.9, and is consistently better than that of the ablated
variant -S (black dashed line).

E LINK PREDICTION ON UNDIRECTED GRAPHS

Undirected graphs can be regarded as special cases in our framework, as an undirectional edge is
treated as a bidirectional one. In this section we provide some experimental results for link prediction
on three real-world undirected graph datasets. The baselines are the same as those in the experiments
of directed graphs.

E.1 DATASETS

We consider three real-world undirected graph datasets, namely NIPS12, Cora and Pubmed. NIPS12
is a coauthor network of the authors in NIPS papers from volumes 1-12 Zhou (2015). Cora is the
same dataset used in the experiments for directed link prediction, except that the directions of edges
are neglected here. Pubmed is a citation network of scientific publications Sen et al. (2008). Both
Cora and Pubmed datasets contain sparse bag-of-words feature matrices, which are used as node
attributes. The descriptive statistics of the datasets are summarized in Table 5.

E.2 LINK PREDICTION RESULTS

The results of link prediction on undirected graphs are presented in Table 6. On all datasets, our
DLSM achieves the best or comparative performances with the state-of-the-art baselines for undirected
graphs.
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Table 5: Descriptive statistics of the real-world undirected graph datasets. |V| and |E| are the numbers
of nodes and edges, respectively, CC is the clustering coefficient, dmax is the maximal node degrees,
davg is the average degree of all nodes, ED is the edge density, defined as ED = 2|E|/(|V|(|V| − 1)),
and FD is the dimension of attribute features (0 denotes no features available).

Dataset |V| |E| CC dmax davg ED FD

NIPS12 2,037 3,134 0.7463 45 3.1 0.0015 0
Cora 2,708 5,278 0.3893 168 3.9 0.0014 1,433
Pubmed 19,717 88,648 0.1117 171 4.5 0.0002 500

Table 6: Results (in %) for link prediction on undirected graphs. The best results are in bold and the
second are underlined.

NIPS12 Cora Pubmed
AUC AP AUC AP AUC AP

LSM 85.7 ± 1.5 86.4 ± 0.6 86.1 ± 0.7 87.2 ± 0.5 N/A N/A
VGAE 87.9 ± 0.6 91.1 ± 0.4 92.6 ± 0.0 93.3 ± 0.0 94.2 ± 0.8 93.9 ± 0.9
SEAL 90.7 ± 0.4 92.5 ± 0.5 94.5 ± 0.6 95.2 ± 0.6 97.0 ± 0.5 96.5 ± 0.6
DGLFRM 87.3 ± 0.3 90.1 ± 0.3 93.4 ± 0.2 93.8 ± 0.2 94.0 ± 0.0 95.0 ± 0.4
GGVAE 89.5 ± 0.8 90.7 ± 0.7 89.2 ± 0.4 90.4 ± 0.6 93.4 ± 0.5 94.1 ± 0.4
LGVG 90.1 ± 0.3 92.6 ± 0.7 93.6 ± 0.4 95.0 ± 0.6 94.6 ± 0.3 95.6 ± 0.2
DGGAN 89.9 ± 0.5 91.3 ± 0.6 93.3 ± 0.6 94.2 ± 0.6 94.0 ± 0.2 94.6 ± 0.3

DLSM 90.5 ± 0.1 92.7 ± 0.1 93.1 ± 0.5 93.5 ± 0.5 96.9 ± 0.2 96.7 ± 0.1

F MORE DETAILS FOR ABLATION STUDY

We consider five variants of our proposed model. Here we provide more details about these variants.
-HLSM indicates to replace the HLSM decoder of our model using a plain VAE with the same
numbers of layers. Others are simplified variants by removing the corresponding components, as
presented in Table 7. In particular, -∆ refers to set γi = δi (thus the model has degenerated to an
undirected form yet still involves degree heterogeneity of graphs), and -S-∆-Γ can be viewed as a
variant of VGAE by changing the plain decoder with our proposed HLSM architecture.

The community detection results of ablation study is given in Table 8. Generally, models including
the community membership perform better than those without this component, and the full version
DLSM reaches the best performances on all datasets.

G VISUALIZATIONS OF NODE REPRESENTATIONS

Latent position We leverage a 2D t-SNE projection (Van der Maaten & Hinton, 2008) to visualize
the learned latent positions for the Emails dataset. As comparisons, we also illustrate the node
representations learned by DGLFRM and LGVG, both of which also consider the community
structure but overlook the degree heterogeneity of graphs. The transformed latent variables learned
by these three models are plotted in Fig. 4. It is clearly seen that our model performs best in fitting
such directed graphs.

Table 7: Components of ablation variants. A circle denotes the component is involved.

HLSM zi si δi γi

-S-∆-Γ © ©
-∆-Γ © © ©
-Γ © © © ©
-S © © © ©
-HLSM © © © ©

DLSM © © © © ©
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Table 8: Ablation study results (in %) for community detection.

Emails Political blogs Cora
macro F1 micro F1 macro F1 micro F1 macro F1 micro F1

-S-∆-Γ 64.8 ± 1.7 67.8 ± 1.5 89.6 ± 0.6 90.7 ± 0.5 19.0 ± 0.3 18.9 ± 0.4
-∆-Γ 66.5 ± 1.2 70.4 ± 1.2 90.9 ± 0.6 91.0 ± 0.6 22.5 ± 0.5 23.4 ± 0.4
-Γ 69.6 ± 1.3 74.1 ± 1.2 92.4 ± 0.4 92.3 ± 0.5 22.7 ± 0.6 24.0 ± 0.5
-S 65.3 ± 1.4 68.5 ± 1.5 91.1 ± 0.5 91.3 ± 0.7 20.9 ± 0.3 21.6 ± 0.4
-HLSM 70.0 ± 1.1 72.4 ± 1.2 90.6 ± 0.6 90.1 ± 0.6 23.5 ± 0.4 24.6 ± 0.5

DLSM 72.0 ± 1.0 77.0 ± 1.2 92.5 ± 0.7 92.6 ± 0.7 24.6 ± 0.8 25.7 ± 0.5
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Figure 4: Visualizations of the latent positions learned on the Emails network using a 2D t-SNE
projection. Points in different colors denote nodes from the ground-truth communities.

18



Under review as a conference paper at ICLR 2022

Community membership The IBP prior enables the community membership s(l)i to freely detect
the true number of communities. In the experiments we set the truncation Kl to be 50/100, which are
far larger than the true numbers of communities. Therefore, the hyperparameter (truncation) actually
exert little impact for community detection. In Fig. 5 we illustrate the learned s(1)i with IBP and
independent Bernoulli priors for fitting the Emails network, of which most nodes belong to one of
the 10 communities. A lighter color indicate a larger probability for the corresponding dimension
(community) of latent variables to be activated ( 6= 0). It shows that IBP prior condenses the activated
communities to be the first 10-15 dimensions, which is relatively approximate to the true number
of communities, while the independent Bernoulli variables are much more chaotic and uniformly
distributed at all dimensions. Therefore, the proposed IBP prior provide better interpretability for the
community membership, in addition to the improvement of model performances.
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Figure 5: Illustration of the community membership with different priors learned on the Emails
network.

Reverse node random factors The pairwise node random factors γi and δi are supposed to
measure the heterogeneity of out-degrees and in-degrees, respectively, which typically follow the
power-law (Barabási & Albert, 1999). Fig. 6(a) and (b) present the probability density distributions
(PDD) of the node degrees and reverse random factors learned by DLSM on the political blogs
network. It seems that the degree distributions are well fitted by the reverse node random factors,
indicating that our DLSM can well represent the degree heterogeneity via these latent variables.
Furthermore, Fig. 6(c) illustrates the complementary cumulative distributions (CCD) of the random
factors. As can be seen, the logarithm CCD of both γi and δi are approximately linear, with
different slopes though. This shows that the proposed Dirichlet latent variables are flexible enough to
accommodate the power-law distribution of degrees.
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Figure 6: Probability density distributions of the degrees and node random factors learned by DLSM.
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