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Abstract
In this era of booming technology and rapidly updated information,
it has become a top priority to provide researchers and the general
public with high-quality cutting-edge academic knowledge in mul-
tiple fields. Accurate academic paper retrieval can help researchers
quickly capture the frontiers of their fields and accelerate research
progress. For this purpose, we propose a multi-channel retriever
that includes a Naïve Embedding-based Retriever and a Graph
Embedding-based Retriever that considers the citation relations be-
tween papers. We then use Reciprocal Rank Fusion (RRF) to ensem-
ble the results from the multiple retrievals. Our approach achieved
fifth-place position in the KDD Cup 2024 AQA Challenge. Code
is publicly available at https://github.com/fuxinjiang/KDDCUP-
2024_AQA.

CCS Concepts
• Information systems→ Information retrieval.
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1 Introduction
Effective academic question answering (AQA) plays an important
role in academic research and has a significant impact on the effec-
tiveness and comprehensiveness of research results. The accuracy
of literature retrieval ensures that researchers obtain relevant and
high-quality information, thereby improving the integrity of their
work. In the context of the ever-expanding academic literature,
the ability to formulate precise queries and use advanced retrieval
techniques is essential [22].
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To further enhance the efficacy of academic question answer-
ing, we propose a multi-channel retriever that includes a Naïve
Embedding-based Retriever and a Graph Embedding-based Re-
triever that considers the citation relationships between papers. We
then use reciprocal rank fusion (RRF) to ensemble the results from
the multiple retrievals. Although the proposed retrieval method
is relatively simple, it achieved satisfactory results on real-world
data, securing the fifth-place position in the KDD Cup 2024 AQA
Challenge.

2 Relted Works
Text retrieval involves the task of generating a ranked list of doc-
uments in response to a given query. Approaches to text retrieval
are commonly categorized into two types: lexical methods, which
are based on word matching [7, 16], and semantic methods, which
aim to assess document relevance by interpreting the underlying
meaning beyond the surface level of words [3, 19]. While tradi-
tional lexical retrieval algorithms, which have been established for
decades, continue to perform effectively, it is the machine learning
techniques that have shown the greatest promise in enhancing
semantic retrieval capabilities [2, 4, 20].

Embedding of text [4, 5] encodes its semantic information and
can be employed in many downstream applications, such as re-
trieval, reranking, classification, clustering, and semantic textual
similarity tasks. The embedding-based retriever is also a critical
component for retrieval-augmented generation (RAG) [10], which
allows large language models (LLMs) to access the most up-to-date
external or proprietary knowledge without modifying the model
parameters [13, 18]. Currently, embedding methods mainly include
bidirectional embedding models and decoder-only LLM-based em-
bedding models [9]. Bidirectional embedding models mainly fine-
tune parameters based on BERT [5] and T5 [14]. For example, Sen-
tenceBERT [15] and SimCSE [6], which fine-tune BERT on natural
language inference (NLI) datasets. Decoder-only LLM-based em-
bedding models are mainly fine-tuned based on LLMs. For example,
LLM2Vec [1] uses a specially designed masked token prediction to
warm-up the bidirectional attention and unsupervised contrastive
learning to improve the effect of text embedding. NV-Embed [9]
significantly enhances the performance of large language models
in general text embedding tasks by introducing a latent attention
layer, removing causal attention masks, and employing a two-stage
instruction-tuning.

Graph neural networks (GNNs) have also attracted consid-
erable attention in question answering systems. For example, QA-
GNN [21] leverages language models and knowledge graphs to
enhance interpretability and structured reasoning capabilities, Liu
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et al. propose a GNN-encoder model in which query (passage) in-
formation is fused into passage (query) representations via graph
neural networks that are constructed by queries and their top re-
trieved passages [12].

3 Methodology
We propose a multi-channel retriever based on a naïve embedding
retriever and graph embedding retriever that considers node rela-
tionships, as shown in Fig. 1.

3.1 Naïve Embedding-based Retriever
Firstly, following the work of Karpukhin et al. [7], we employ a
dense encoder 𝐸 (·) that maps each paper to a 𝑑-dimensional real-
valued vector and constructs an index for all papers 𝑃 used for
retrieval. We also apply the same encoder 𝐸 (·) to map the input
question to a 𝑑-dimensional vector, and retrieve 𝑘 papers whose
vectors are closest to the question vector. Define the similarity
between the question 𝑞 and the paper 𝑝 ∈ 𝑃 using the inner product
of their vectors as follows:

𝑠𝑖𝑚(𝑞, 𝑝) = 𝐸 (𝑞)𝑇 𝐸 (𝑝)

At the same time, with the continuous optimization of model
structures and the increasing volume of pre-training data, the repre-
sentation of text by pre-trained models has significantly improved.
Therefore, we employ the pre-trained models NV-Embed [9] and
GTE [11] as dense encoders and fine-tune them separately on the
dataset utilized for this academic paper retrieval task. This allows
us to achieve more precise representations of texts specific to this
particular task.

Training: Fine-tuning the encoders so that the dot-product simi-
larity becomes a good ranking function aims to create a vector space
such that relevant pairs of questions and papers will have smaller
distances (i.e., higher similarity) than the irrelevant ones, by learn-
ing a better embedding function. LetD = {𝑞𝑖 , 𝑝+𝑖 , 𝑝

−
𝑖,1, 𝑝

−
𝑖,2, ..., 𝑝

−
𝑖,𝑛

}𝑚
𝑖=1,

we optimize the loss function as the negative log likelihood of the
positive sample:

L(𝑞𝑖 , 𝑝+𝑖 , 𝑝
−
𝑖,1, 𝑝

−
𝑖,2, ..., 𝑝

−
𝑖,𝑛) = −𝑙𝑜𝑔 𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑝+

𝑖 )

𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑝+
𝑖
) +∑𝑛

𝑗=1 𝑒
𝑠𝑖𝑚 (𝑞𝑖 ,𝑝−

𝑗
)

where 𝑝+
𝑖
represents the correct answer to question𝑞𝑖 (positive sam-

ple), and 𝑝−
𝑖,.

represents the wrong answer to question 𝑞𝑖 (negative
sample).

Negative Samples: For retrieval tasks, positive samples are usu-
ally explicitly available, while negative samples need to be selected
from a large pool. For instance, in academic question-answering
dataset, papers related to the question are provided. All other pa-
pers in the collection, although not explicitly designated, can be
implicitly considered irrelevant. In practice, the method of select-
ing negative samples is often overlooked, yet it can be crucial for
training high-quality encoders. We consider two different types of
negative samples: (1) Random: any random paper from the dataset;
(2) Hard negatives: samples inferred through an initial pre-trained
model but not identified as positive samples.

3.2 Graph Embedding-based Retriever
The naïve embedding retriever only considers the semantic simi-
larity between the users’ questions and the papers, but it ignores
the relationships between papers (e.g., citations). Therefore, we
additionally introduce an additional retriever based on Graph Con-
volutional Network (GCN) [8], which incorporates the relational
structure between papers.

In order to avoid over-smoothing, we directly use the first-order
graph convolutional operation. The specific process is as follows:

Step 1. We utilize DBLP dataset [17] to construct the text at-
tribute graph G(V,A) of papers. Specifically, if a paper cites other
papers, then the adjacency matrix entry A𝑖, 𝑗 = 1; otherwise, A𝑖, 𝑗 =

0.
Step 2. Subsequently, the encoder 𝐸 (·) is utilized to embed the

user question 𝑞 and all papers 𝑃 . Then, graph convolutional op-
eration is employed to aggregate node information. The message
passing is defined as

𝐻 (𝑃) = (D̃−1/2ÃD̃−1/2)𝐸 (𝑃)W𝑃 + b𝑃

where D̃ = D + I and Ã = A + I represent the degree and adjacency
matrices enhanced with self-loops, 𝐷 is the diagonal degree matrix,
W𝑃 and b𝑃 are learnable parameters.

Step 3. To achieve an equitable enhancement of user question
representation, we introduce the learnable parameters W𝑄 and b𝑄
as:

𝐸𝐸 (𝑞) = 𝐸 (𝑞)W𝑄 + b𝑄
Step 4. The training process, similar to that of the naïve embed-

ding retriever. The similarity between the question and the paper
using the inner product of their vectors as:

𝑠𝑖𝑚(𝑞, 𝑝) = 𝐸𝐸 (𝑞)𝑇𝐻𝑝

where 𝐻𝑝 is the representation of 𝐻 (𝑃) to paper 𝑝 .

3.3 Model Ensemble
Firstly, we select the 100 papers 𝑃𝑁𝐸

𝑐𝑎𝑛𝑑
most similar to the user

question from the naïve embedding-based retriever (NE) through
similarity matching, and also select the 100 papers 𝑃𝐺𝐸

𝑐𝑎𝑛𝑑
most sim-

ilar to the user question from the graph embedding-based retriever
(GE).

Then we use Reciprocal Rank Fusion (RRF) to ensemble the re-
trieval results of nav̈e embedding-based retriever and graph embedding-
based retriever. For each paper 𝑝 in the candidate papers {𝑃𝑁𝐸

𝑐𝑎𝑛𝑑
,

𝑃𝐺𝐸
𝑐𝑎𝑛𝑑

} generated by each retrieval method, we compute:

𝑅𝑅𝐹𝑠𝑐𝑜𝑟𝑒 (𝑝) =
∑︁

𝑟 ∈{𝑁𝐸,𝐺𝐸}

1
𝑘 + 𝑟 (𝑝)

where 𝑟 (𝑝) represents the ranking of paper 𝑝 in retriever 𝑟 . The
constant 𝑘 is set to 60 for this task.

Finally, we select the 20 papers with the largest 𝑅𝑅𝐹𝑠𝑐𝑜𝑟𝑒 as the
final retrieval results.

4 Experiments
4.1 Datasets
We use the OAG-QA [22] dataset to verify the effectiveness of
our proposed method, which aggregates question-paper pairs from
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Figure 1: The framework of th proposed multi-channel retriever

academic question-answering platforms such as StackExchange
and Zhihu. It mainly includes training data, validation data, test
data and candidate paper list. The amount of data contained in each
part is shown in the Table 1.

Table 1: Statistics of the OAG-QA dataset

Data Amount Key words

Train 8757 "question", "body", "pids"
Valid 2919 "question", "body"
Test 3000 "question", "body"

Papers List 466387 "pid", "title", "abstract"

The training dataset includes three key elements: "question",
"body", and "pids", These elements represent a concise description of
the question, a detailed exposition of the question, and a list of paper
identifiers (pids) associated with relevant papers, respectively. The
validation dataset and test dataset do not have "pids". Conversely, in
the candidate papers list, the papers are paired with their content,
including titles and abstracts, through a dictionary that maps the
paper identifier (pid).

4.2 Experimental Settings
We selected the pre-trained models NV-Embed[9] and GTE[11] as
dense encoders. The training parameters are set as follows: batch
size of 24, learning rate of 1e-5, and 5 epochs. We perform the
experiments on a Debian server with Intel(R) Xeon(R) Platinum
8336C CPU @ 2.30GHz, 920GB RAM and 8 A100 80G GPUs.

4.3 Results
Metrics:We utilize Mean Average Precision (MAP) and top-k MAP
as evaluation metrics. For each query 𝑉𝑞 , the Average Precision

(AP) is calculated using the following formula:

𝐴𝑃 (𝑉𝑞) =
1
𝑅𝑞

𝑀∑︁
𝑘=1

𝑃𝑞 (𝑘) ·
1
𝑘

where 𝑅𝑞 is the number of papers marked as positive examples,
𝑀 is the number of documents in the database, and 𝑃𝑞 (𝑘) is the
precision at rank 𝑘 in the ranking list for query 𝑉𝑞 . The term 1

𝑘
is

an indicator function that equals 1 if the 𝑘-th returned document is
relevant, and 0 otherwise.

For a given set of 𝑛 queries, the MAP is calculated as follows:

𝑀𝐴𝑃 =
1
𝑛

𝑛∑︁
𝑞=1

𝐴𝑃 (𝑉𝑞)

The top-K MAP can be similarly computed by setting𝑀 = 𝐾 in the
above equation.

Model Comparison: Based on the result presented in Table
2, we conduct a comparative analysis of retrieval accuracy across
different models on a test set. The GTE model achieved a Mean
Average Precision (MAP) score of 0.17747, which positioned it at
rank 10. In contrast, the NV-Embed model obtained a MAP score
of 0.18683, securing the 5th rank. Similarly, the Ensemble model
slightly outperformed the NV-Embed with a MAP score of 0.18688,
also ranking 5th.

These results indicate that both the NV-Embed and Ensemble
model demonstrate superior retrieval accuracy compared to the
GTE model. Notably, while the Ensemble model has a marginally
higher MAP score than the NV-Embed model, both models are
ranked equally. This suggests that the Ensemble model’s incremen-
tal improvement in MAP may not significantly impact its relative
ranking in this context.

5 Conclusion
Wepropose amulti-channel retriever that includes a Naïve Embedding-
based Retriever and a Graph Embedding-based Retriever that con-
siders the citation relations between papers. We then use Reciprocal

3
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Table 2: Comparison of retrieval accuracy on test set

Model MAP Rank

GTE 0.17747 10
NV-Embed 0.18683 5
Ensemble 0.18688 5

Rank Fusion (RRF) to ensemble the results from the multiple re-
trievals. Our approach achieved fifth-place position in the KDD
Cup 2024 AQA Challenge.
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