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Abstract

Large language models (LLMs) memorize a vast
amount of prior knowledge from the Internet that
helps them on downstream tasks, but also may
notoriously sway their outputs towards wrong or
biased answers (Sheng et al., 2019b; Gallegos
et al., 2024). In this work, we test how the knowl-
edge about popular subjects hurts the accuracy of
vision language models (VLMs) on standard, ob-
jective visual tasks of counting, a common math-
ematical skill in everyday life. We find that state-
of-the-art VLMs are strongly biased (e.g., unable
to recognize a fourth stripe has been added to a 3-
stripe Adidas logo) scoring an average of 17.05%
accuracy in counting (e.g., counting stripes in
an Adidas-like logo) across 7 diverse domains
from animals, logos, chess, boardgames, optical
illusions, to patterned grids. Inserting text (e.g.,
“Adidas”) describing the subject name into the
counterfactual image further decreases VLM ac-
curacy. The biases in VLMs are so strong that
instructing them to double-check their results or
rely exclusively on image details to answer im-
proves counting accuracy by only +2 points, on
average. Our findings reveal critical limitations
of VLM capabilities in visual counting, posing
an important question for how to perform math
under strong perceptual bias.
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1. Introduction
Large language models (LLMs) are trained on the Internet
data and therefore learn a vast amount of prior knowledge
that (a) help them on downstream tasks but (b) sometimes
sway their answers towards wrong or biased choices (Anony-
mous, 2025; Sheng et al., 2019b). Interestingly, LLMs also
memorize visual knowledge from its colossal text-only cor-
pus (Sharma et al., 2024), e.g., the US national flag has 50
stars and 13 stripes or dogs have four legs (Fig. 1). Because
vision language models (VLMs) are built by pre-training
LLMs either exclusively on text data (i.e., for late fusion
with vision encoders) (Liu et al., 2023; Bai et al., 2023) or
on a mix of text, image, and multimodal data in an early
fusion manner (Team, 2024), they may inherit strong biases
from the text corpus when answering visual questions (Lee
et al., 2023; Liu et al., 2024; Lee et al., 2025; Guan et al.,
2024a).

Prior evidence (Guan et al., 2024b; Lee et al., 2025; Liu
et al., 2024) showing VLMs are biased were exclusively
on artificial Y/N questions that often directly contain the
biased statement, e.g., “Is the mouse smaller than the cat?”
(Liu et al., 2024), which is framed to contradict their coun-
terfactual (CF) image where the cat is smaller. Therefore,
it is unclear (1) how much the image contributes to VLMs’
wrong answers or it is solely the textual prompt; (2) how
such biases impact standard, objective visual tasks with neu-
tral, unbiased prompts. In this work, we aim to evaluate
how the knowledge of LLMs about popular subjects (e.g.,
dogs and the US flag) negatively impact the accuracy of
VLMs on objective visual questions of object counting,
identification (Q1 & Q3 in Fig. 2) and low-level visual tasks
(e.g., measuring whether two lines are parallel; Fig. 1f). For
example, we provide a CF image of a 3-legged chicken
and ask VLMs “How many legs does this animal have?”
(Fig. 1a).

Leveraging state-of-the-art (SOTA) image editors, VLMs,
and image processing libraries, we propose VLMBias, a
framework for automating the enumeration and generation
of biased subjects, questions, and counterfactual images.
We manually review all generated images and reject those
that are deemed low-quality or debatable. We test VLMs on
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Examples of VLM failures across 7 domains of VLMBias

How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.
How many points are there on the star in the logo of this car? Answer with a number in curly brackets, e.g., {9}.
How many stripes are there in this flag? Answer with a number in curly brackets, e.g., {9}.
How many chess pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
How many rows are there on this board? Answer with a number in curly brackets, e.g., {9}.
Are the two horizontal lines parallel? Answer in curly brackets, e.g., {Yes} or {No}.
How many circles are there in cell C3? Answer with a number in curly brackets, e.g., {9}.

a. b. c. d. e. f. g.

2 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ Yes ✗ 3 ✗
2 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ No ✓ 2 ✓
4 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ Yes ✗ 3 ✗
2 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ Yes ✗ 3 ✗
2 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ Yes ✗ 3 ✗

Bias 2 ✗ 3 ✗ 13 ✗ 32 ✗ 9 ✗ Yes ✗ 3 ✗
GT 3 ✓ 4 ✓ 14 ✓ 31 ✓ 10 ✓ No ✓ 2 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure 1: VLMs fail on 6 counting tasks (a–e & g) and one low-level vision task (f).

questions spanning seven diverse subjects in the decreasing
order of popularity: (a) animals , (b) logos ; (c) flags ;
(d) chess pieces ; (e) game boards ; (f) optical illusion

; and (g) patterned grids (see Sec. 3). For all subjects,
the tasks are counting and object identification, except for
optical illusion questions, which were originally designed
to test human low-level vision (e.g., identifying whether two
circles are of the same size).

We test five SOTA VLMs: 3 thinking models of
Gemini-2.5 Pro (Google, 2025), o3 (OpenAI,

2025b) o4-mini (OpenAI, 2025b); and 2 non-
thinking models of Sonnet-3.7 (Anthropic, 2025),
GPT-4.1 (OpenAI, 2025a). Our key findings are:

1. All five VLMs recognize the VLMBias subjects from
the original, unmodified image, scoring 100% accuracy
on both identification and counting questions (Fig. 2a)
(Sec. 4.1).

2. VLMs struggle to count animal legs when one ex-
tra leg is added to 2-legged (birds; Fig. 1a) and 4-
legged animals (1.01% and 2.50% accuracy, respec-
tively; Sec. 4.2).

3. When logos of famous car and sportswear brands
are modified to have one more or one fewer of the
famous visual elements (e.g., stripes on the Adidas
logo; Fig. 2b), VLMs struggle to count these elements.

Their answers are extremely biased (0.44% accuracy)
on CF car logos and slightly less biased on shoe logos
(17.57% accuracy) (Appendix L.1). Similarly, VLMs
fail to (a) detect the number of stripes and stars in the
CF versions of popular flags (Appendix L.2); (b)
count the chess pieces chess on a chessboard when a
piece is replaced or removed (Sec. 4.3); and (c) count
the rows and columns of a modified board of famous
board games (Appendix L.4).

4. On optical illusions (e.g., Ebbinghaus; Fig. 5), all
VLMs accurately predict the names of the original,
well-known illusions but unable to detect that the
illusion graphics together with the groundtruth an-
swers have changed, scoring around random chance
(Sec. 4.4).

5. Unlike the above cases, we test VLMs on the patterned
grid task where no prior information (e.g., famous
illusions or logos) of the image exists on the Internet.
In this grid, all cells follow a pattern except for one cell
about which we will question VLMs. VLMs perform
poorly, failing to detect the subtly-changed cell and
answer based on the rules implied from the surrounding
cells (Sec. 4.5).

6. To confirm VLM failures to counting (Q1 & Q2) are
due to their visual bias, we further test VLMs on Y/N
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identification questions (Fig. 2; Q3) but they also simi-
larly struggle to answer (Sec. 4.6). In another experi-
ment where the subject name (e.g., “Adidas”) is added
to each CF image (e.g., 4-striped logo), VLM counting
accuracy further drop by -2 to -6 points, confirming
the bias learned from the text corpus influences its
counting (Sec. 4.7).

7. Instructing VLMs to rely only on the visual details
in the image alone to answer or to double-check the
result in a 2nd-turn message improves their counting
accuracy by at most +2 points only, confirming the
severe bias of the SOTA VLMs (Sec. 4.8).

2. Related work
Bias in LLMs and VLMs LLMs exhibited biases across
various domains, including social (Shin et al., 2024; Hu
et al., 2025), cultural (Li et al., 2024; Naous et al., 2024;
Abid et al., 2021; Wang et al., 2024), demographic (Zhao
et al., 2023; Kumar et al., 2024), political (Bang et al., 2024;
Potter et al., 2024), cognitive (Echterhoff et al., 2024; Koo
et al., 2024), and biases related to specific names, num-
bers, or values (Zhang et al., 2024b; Koevering & Klein-
berg, 2024). These biases often correlate with the over-
represented associations between textual cues and specific
classes or attributes (e.g., associating older people with
forgetfulness) (Parrish et al., 2022) in the pretraining data.
Biases are not limited to textual data but extend into the
visual domain. VLMs also exhibit gender biases (Hall et al.,
2023; Xiao et al., 2024; Hirota et al., 2022; Fraser & Kir-
itchenko, 2024), stereotypical portrayals (Ruggeri & Nozza,
2023; Janghorbani & De Melo, 2023; Raj et al., 2024), and
social biases (Howard et al., 2024; Sathe et al., 2024).

In our work, we investigate VLM bias in visual question
answering (VQA), specifically, in cases where the visual
cues in an counterfactual image strongly bias VLMs an-
swers towards knowledge commonly known on the Internet,
effectively ignoring the counterfactual (CF) modifications,
resulting in inaccurate predictions (Fig. 2).

Table 1: Our VLMBias presents natural, objective counting
and identification questions while prior benchmarks insert
biased statements into the prompt.

Benchmark
Biased
prompt

Biased
image CF images

Generation
method

Adversarial
injection

Top
leaderboard

Question
types

PhD-ccs (Liu et al., 2024) ✓ ✗ 750 DALL-E In-prompt
GPT-4o
81.2% Y/N

VLind-Bench (Lee et al., 2025) ✓ ✗ 2,576 DALL-E n/a
GPT-4o
89.4% Y/N

HallusionBench (Guan et al., 2024a) ✓ ✓ 181 manual n/a
GPT-4V
31.4% Y/N

VLMBias (ours) ✗ ✓ 1,392
automated

,
In-image

Title
o4-mini

20.25%
Counting (Q1, Q2)

Y/N (Q3)

Visual Hallucination Benchmarks Many prior attempts
tested VLMs on visually ambiguous images (Liu et al., 2024;
Huang et al., 2024; Tong et al., 2024), optical illusion (Guan

et al., 2024a; Wu et al., 2024), CF images (Lee et al., 2025;
Guan et al., 2024a) and counter-commonsense images (Liu
et al., 2024; Lee et al., 2025; Bitton-Guetta et al., 2023;
Zhou et al., 2023). The most relevant benchmarks (Liu et al.,
2024; Lee et al., 2025; Guan et al., 2024a) (see Tab. 1) have
three main drawbacks: (1) they primarily incorporate biased
textual cues (e.g., directly mentioning entity names) in the
questions to provoke LLM hallucination; (2) they use only
Yes/No questions, which limit them to artificial questions
instead of objective downstream tasks such as counting in
our work; and (3) they do not study the effects of in-image
adversarial injection. Among these, the Visual Dependent
subset of HallusionBench (Guan et al., 2024a) is the most
similar to VLMBias. However, they still have the above
limitations and rely entirely on humans to manually edit
images to produce 181 CF images. In contrast, we automate
the CF-image generation process and humans only review
the generated images.

VLMBias addresses these limitations by (1) inserting bias
cues into the image keeping the prompt neutral; (2) using
counting questions, which are objective and challenging to
VLMs (Rahmanzadehgervi et al., 2024); and (3) optionally,
injecting extra bias cues as text into the image. Furthermore,
VLMBias is fully automated on 6 out of 7 tasks: LLMs to
generate ideas; Python scripts to generate abstract images;
and SOTA text-to-image models (Gemini-2.0 Flash
& GPT-4o) to produce photo-realistic images.

3. The VLMBias Benchmark
VLMBias evaluates VLMs’ visual bias by presenting a
pair of counting question and subtly modified versions of
well-known objects (e.g., changing the Adidas logo from
3-striped to 4-striped; Fig. 2c). We choose the counting
task as it is a generic, objective visual question that does
not contain specific biased statements or subjects. We test
whether the visual bias cues in the background is so strong
that it will make VLMs default to biased answers and ignore
the modifications.

Taxonomy To test VLM biases, we choose 7 unique topics
of decreasing popularity, i.e., from common animals ,
then logos to optical illusions, and a novel visual pattern

that we create and did not exist before. For each topic,
we generate images from scratch. The generated images
are photo-realistic for 2 topics and abstract for the rest of 5
topics.

(1) Photo-realistic images are used in 2 tasks: animals and
logos. These images cover the most common subjects,

natural ( ) and man-made ( ). They are created and modi-
fied by SOTA text-to-image generators ( Gemini-2.0
Flash image generation and GPT-4o).

(2) Abstract images are used in 5 tasks: flags, chess
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Q1. How many visible stripes are there on the logo of the left shoe?
Q2. Count the visible stripes on the logo of the left shoe.

4

3

3

Adidas
ID. What shoe logo is this?

Counting. How many visible stripes are there 
                   on the logo of the left shoe?

VLMs have sufficient knowledge (bias) about the subjecta

Test how the bias prevents ❌ VLMs from 
correctly answering visual questionsb

Q3. Is this the Adidas logo?

+1 stripe ✨

Y/N question
to confirm the bias

VLM

VLM

❌

VLM
No

Yes ❌

VLMBias benchmark

counterfactual
image

bias-relevant 
background

modified object

c

Figure 2: Given a subject (e.g., Adidas logo), we first confirm that all VLMs have sufficient knowledge about the subject via
an ID and counting sanity-check questions (a). Then, we test VLMs on the counterfactual image (b) and report its accuracy
on the counting (Q1 & Q2) and an Y/N identification task (Q3). For all tasks, we test the hypothesis that the visual bias cues
in the background (c) may be so strong that it cause VLMs to ignore the modified object and default to biased answers.

pieces, game boards, optical illusions, and pat-
terned grids. These images are created using code, not
text-to-image models. We divide this category into three
sub-categories: (a) well-known objects, including flags,

chess pieces, game boards; (b) optical illusions,
which are less common than flags; and (c) a novel pat-
terned grid that did not exist before.

Controls To minimize the language bias in the prompt, we
use two different prompts per test image, written in neutral,
descriptive terms (e.g. stylized curves for Nike swooshes).
Each test image is re-scaled to D × D pixels where D ∈
{384, 768, 1152}. In each task, we ask 3 questions, e.g., our
three questions (two counting & one identification) in the
animal-leg task are (Fig. 2b):

Q1: How many legs does this animal have? Answer with a
number in curly brackets, e.g., {9}.
Q2: Count the legs of this animal. Answer with a number in
curly brackets, e.g., {9}.
Q3: Is this an animal with 4 legs? Answer in curly brackets,
e.g., {Yes} or {No}.

3.1. Task 1: Counting animal legs when an extra leg is
added

Pretrained on the Internet data, VLMs must have colossal
prior knowledge of the count of animal legs from both
textual and image data. Following this hypothesis, we gen-
erate images of well-known animals but with one extra leg
(e.g., 3-legged birds or 5-legged dogs) and ask VLMs to
count legs.

Images We use a three-step image generation process: (1)
We obtain a list of 100 well-known animals with two or
four legs using o4-mini; (2) For each animal, we
ask Gemini-2.0 Flash to generate their side-view

images; (3) Then, we instruct Gemini-2.0 Flash
to add one extra leg to each image in Step 2. We then
manually filter these images to retain one high-quality image
of animals with clearly either 3 or 5 legs. The final set
consists of 91 different animals: 23 three-legged birds and
68 five-legged mammals.

We create three resolution variants for each animal image
with size C ∈ {384, 768, 1152}px. Specifically, for an orig-
inal generated image with dimensions W ×H , we resize
both dimensions by the scaling factor C

max(W,H) to pre-
serve the original aspect ratio. This procedure generates
91 animals × 3 resolutions = 273 images in total.

3.2. Tasks 2-5: Counting visual elements in modified
familiar patterns: logos, flags, chess pieces,
and game boards

Our primary hypothesis is that VLMs contain a strong bias
between a brand’s logo and its famous visual representations
(e.g., an Adidas logo must have 3 stripes; Fig. 2). Expanding
beyond animal legs, we test this hypothesis across four
domains where humans (and potentially VLMs) have well-
established visual expectations: logos of famous brands
( ), national flag ( ), chess pieces ( ), and game boards
( ). For each domain, we create CF images by making sys-
tematic, minimal modifications to familiar visual elements,
using the same methodology as Task 1 ( , ) or Python
scripts ( , ) with all images rendered at three resolutions
(384, 768, and 1152 pixels).

Images For logos (Appendix D), we modify graphical
features (points, prongs, circles, stripes, curves) of three
car brands and two shoe brands using o4-mini and
GPT-4o, placing them in realistic contexts (vehicles and

athletic footwear) for a total of 207 images. For flags
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(Appendix E), we systematically add or remove one element
(stars or stripes) from 20 flags, creating 120 flag images. For
chess pieces (Appendix F), we test pattern recognition by
removing or replacing exactly one piece in western chess
and xiangqi starting positions, generating 144 chessboard
images. For game boards (Appendix G), we add or
remove exactly one row and column across four game types
(chess, xiangqi, Sudoku, Go), producing 84 images of the
board of these games.

3.3. Task 6: Visual testing on original and modified
optical illusion patterns

Recent VLMs show improved performance on optical il-
lusion (Zhang et al., 2023; Guan et al., 2024a) tasks, with

o4-mini achieving 71.49% accuracy on IllusionVQA
(Shahgir et al., 2024). However, these VLMs might have
merely memorized the common optical illusions rather
than truly perceiving visual information. To investigate this
hypothesis, we create two scenarios: (1) original optical
illusions (e.g., the Ebbinghaus illusion where two identical
central circles appear different sizes due to surrounding con-
text circles) and (2) modified versions with similar visual
setups but reversed effects (e.g., where one central circle
is actually larger than the other; Fig. 5). When tested on
these modified illusions, VLMs often incorrectly claim the
circles are equal (i.e. the answer true for the original illusion
but false for the modified version), suggesting a strong bias
toward memorized knowledge.

Images We use six classical optical illusions (Makowski
et al., 2021): Müller-Lyer (Müller-Lyer, 1889; Howe &
Purves, 2005), Zöllner (Zöllner, 1862; Wallace, 1975),
Ebbinghaus (Titchener, 1905; Aglioti et al., 1995), Vertical-
Horizontal (Fick, 1851; Hamburger & Hansen, 2010),
Pogendorff (Poggendorff, 1863; Green & Hoyle, 1963),
and Ponzo (Ponzo, 1910; Yildiz et al., 2022). For five of
these illusions, we generate 24 images per type (12 original
and 12 modified versions with varying illusion strength).
The Vertical-Horizontal illusion, which uses a fixed T-shape
that cannot vary in strength, we create only 12 images (6
original and 6 modified). Each image is rendered at three
different resolutions: 384, 768, and 1152 pixels. This ap-
proach yielded (24 × 5 + 12) × 3 = 396 images in total.
More details in Appendix H.

3.4. Counting the circles or lines in an anomaly cell
among a patterned grid

VLMs can infer the patterns from nearby visual elements to
answer visual questions (Huang et al., 2024). We test how
much the overall pattern in an image biases its answer to
a question about an anomaly region that does not obey the
pattern.

Images We generate two types of grids—dice and tally

grids—with dimensions G×G, where G ranges from 6 to
12. Cells in dice grids contain circles (Fig. 1 , Fig. F17a–
b), while tally grids use tally marks (Fig. F17c–d). All
grids follow a symmetric visual pattern where the number
of shapes in each cell increases from 1 at the edges towards
the center, which contains ⌊(G + 1)/2⌋ shapes, based on
the cell’s distance from the nearest edge. For each generated
grid image, we introduce an anomaly by modifying only a
single, strategically chosen cell (avoiding edges & corners).
The modifications depend on the grid type: in tally grids,
we either add one extra tally mark or remove one existing
tally mark from this single anomaly cell; in dice grids, we
either remove a single circle or replace one circle with a
different geometric shape (e.g., triangle, square, star) within
this single anomaly cell. Each resulting image is rendered
at three resolutions: 384, 768, and 1152 pixels. To create
diverse scenarios for single-cell anomaly placement, for
each of the 7 grid dimensions, we define two distinct settings
by choosing a different single cell to be anomaly, resulting
in 14 unique base scenarios (7 dimensions × 2 choices of a
single anomaly cell location).

This systematic generation then yields a total of 2 grid types
(dice, tally) × 2 modification types per grid type × 14
unique base scenarios for single-cell anomaly placement
× 3 resolutions = 168 distinct images, each featuring one
anomaly cell per grid. More details in Appendix I.

4. Results
4.1. Sanity check: VLMs do recognize familiar visual

subjects on original, unmodified images

Here, we first verify that the subjects in our VLMBias are,
in fact, known to VLMs in their original form. If VLMs fail
to recognize the concepts in these unaltered images, there is
no basis to attribute the their failures on modified images to
their bias.

Experiments We evaluate five VLMs ( Gemini-2.5
Pro, Sonnet-3.7, GPT-4.1, o3, and

o4-mini) using their default settings on a set of 66
unmodified images spanning our 6 out of 7 VLMBias tasks
( animals, logos, flags, chess pieces, board game
grids, patterned grids). We exclude from the sanity
check since the patterns are created from scratch and do
not exist on the Internet. For five counting tasks (from
to ), we ask two questions (identification and counting;
Fig. 2a) per image for a total of 132 questions. Since the
optical illusion is not a counting task (Fig. 1 ), we replace
the counting question with a question asking for the known
questions and answers associated with each illusion. That
is, we provide an image per illusion type to VLMs (e.g.,
Fig. 5) and ask VLMs to identify: (1) the name of the il-
lusion; and (2) the question & correct answers associated
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VLMs are unable to see an extra leg in the puma and an extra stripe in the Adidas logo

(a) (b) Q1: How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.

(c) Q3: Is this an animal with 4 legs? Answer in curly brackets, e.g., {Yes} or {No}.
(d) (e) Q1: How many visible stripes are there in the logo of the left shoe? Answer with a number in curly brackets, e.g., {9}.
(f) Q3: Are the logos on these shoes Adidas logos? Answer in curly brackets, e.g., {Yes} or {No}.

(a) original
Puma (Q1)

(b) CF
Puma (Q1)

(c) CF
Puma (Q3)

(d) original
Adidas (Q1)

(e) CF
Adidas (Q1)

(f) CF
Adidas (Q3)

4 ✓ 4 ✗ Yes ✗ 3 ✓ 3 ✗ Yes ✗
4 ✓ 4 ✗ Yes ✗ 3 ✓ 3 ✗ Yes ✗
4 ✓ 4 ✗ Yes ✗ 3 ✓ 3 ✗ Yes ✗
4 ✓ 4 ✗ Yes ✗ 3 ✓ 4 ✓ Yes ✗
4 ✓ 4 ✗ Yes ✗ 3 ✓ 3 ✗ Yes ✗

GT 4 ✓ 5 ✓ No ✓ 3 ✓ 4 ✓ No ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure 3: VLMs fail to detect subtle changes in counterfactuals (CF) and default to biased answers.

with this famous illusion (see the sanity-check prompts in
Appendix N).

Results All five VLMs achieve 100% accuracy on all the
questions. That is, for counting tasks, VLMs correctly recog-
nize the subjects and the expected counts (e.g., a puma has
four legs and the Adidas logo has three stripes; Fig. 3a&d).
For all 6 illusion types, VLMs are able to identify the name
(e.g., “Ebbinghaus illusion” in Fig. 5), the associated ques-
tion (“Are the two inner circles equal in size?”) and its
correct answer (“Yes”). The results here set the ground for
the claims in subsequent sections that VLMs’ low accuracy
on counterfactual images (17.05% accuracy; see Tab. 2)
stem from their prior knowledge about the subjects.

4.2. VLMs fail to recognize an extra leg is added to
common birds and mammals

Experiments We use the same experiment setup as in
Sec. 4.1 but test VLMs on CF images. Specifically, we
evaluate five VLMs on the animal images where an extra
leg is added to (a) a bird (three legs instead of two) and a
mammal (five legs instead of four). We ask each VLM with
default settings to count legs (Q1 and Q2; Fig. 2b).

Results On average, VLMs perform poorly (2.12% accu-
racy) at counting legs of 3-legged and 5-legged counterfac-
tual animals (Tab. 2 ). Furthermore, 94.14% of the wrong
answers match the original, well-known leg counts (Fig. 4
and Fig. 1a), demonstrating that VLMs rely mostly on mem-
orized prior knowledge to answer rather than inspecting the
legs in the image (see Fig. 3c).

VLMs are slightly worse at counting the legs of birds than
counting the legs of mammals (1.01% vs. 2.50%; Tab. 3 ).

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

94.14%

3.74%

6.14%

92.98%

9.25%

88.92%

26.25%

67.92%

5.83%

93.45%

4.29%

50.87%

49.05%

22.44%

43.45%

34.11%

17.05%

75.70%

7.25%

Correct Bias-Aligned Other Errors

Mean

Figure 4: On the counterfactual images in VLMBias, five
VLMs mostly output answers that match the biased choices
that we predefine for each question, 75.70% of the time, on
average.
This biased behavior is the most severe on the leftmost
6 tasks where there are existing prior knowledge on the
Internet. Patterned grid is the only task where the visual
pattern is created from scratch in this work. Yet, VLMs still
are biased 43.45% of the time.

Bird legs (Fig. 1a) are typically thinner, which may make
it harder to detect than mammals’ legs (Fig. 3b). On birds,
except for GPT-4.1, all VLMs score 0% accuracy
(Tab. 3 ).

4.3. VLMs consistently fail to detect subtle changes in
familiar subjects

We test whether the biased behavior of VLMs when count-
ing animal legs (Sec. 4.2) also exists in four other domains
of man-made subjects: logos of famous brands, na-
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Table 2: All VLMs achieve 100% on identification and counting tasks with unmodified images, showing that they fully
recognize the original version but fail on the counting questions on the modified images (i.e., counterfactuals) in VLMBias.
The mean accuracy of five state-of-the-art VLMs on our seven tasks is 17.05%. o4-mini achieves the highest accuracy
(20.25%) which however is still low. VLMs with “thinking” capabilities ( o4-mini, o3) only slightly outperform
non-thinking models ( Gemini-2.5 Pro, Sonnet-3.7, GPT-4.1).

Model Accuracy in counting questions (Q1 &Q2) on counterfactual images Unmodified

a. b. c. d. e. f. g. Task mean Task mean

Gemini-2.5 Pro 0.00 1.96 10.42 26.74 2.38 49.81 20.83 16.02 100.00
Sonnet-3.7 0.00 2.72 13.75 9.03 1.79 54.29 34.52 16.59 100.00
GPT-4.1 9.52 9.07 2.50 8.68 0.00 48.61 18.75 13.88 100.00
o3 0.92 7.60 5.00 42.71 2.38 50.38 20.54 18.50 100.00
o4-mini 0.18 9.31 14.58 44.10 4.76 51.26 17.56 20.25 100.00

Mean 2.12 6.13 9.25 26.25 2.26 50.87 22.44 17.05 100.00

tional flags, chess pieces, and game boards.

Experiments We replicate the experiments in Sec. 4.2 on
CF versions of , , , and . For each domain, we create
CF images by making systematic modifications: (1) adding
or removing a single well-known element (e.g., a stripe in
the Adidas logo) in logos; (2) adding or removing a star
or a stripe in common national flags; (3) replacing or
removing a piece from standard starting chess or xiangqi
position; and (4) removing or adding a row or a column in
well-known boardgame boards (e.g., Sudoku and Go).

Results VLMs generally demonstrate systematic failures
to detect modifications across all four domains, with perfor-
mance varying depending on the tasks.

• For logos, accuracy is significantly worse on car
logos than on shoe logos (0.44% vs. 17.57%; Tab. 3 ).
This might be because a logo on a car often appear
much smaller than a logo on a shoe photo (Fig. 1 vs.
Fig. 2b).

• For flags, VLMs perform better on counting stars
(11.79%; Tab. 3 ) than counting stripes (4.52%;
Tab. 3 ). Counting stripes may be harder because a
stripe is often placed right next to other stripes in a flag
while stars are spatially separate symbols (Fig. F20b
vs. d). More results on flags are in Appendix L.2.

• On counting chess pieces, thinking VLMs
( Gemini-2.5 Pro, o3, and o4-mini)
significantly outperform non-thinking models (>26%
vs. <10%; Tab. 3 ), suggesting that explicit reasoning
capabilities help detect anomalies (more results are in
Sec. 4.3).

• All VLMs perform extremely poorly (2.26% mean
accuracy; Tab. T4) on counting rows and columns
of a counterfactual board-game board (Fig. F20c–e).
They score 0% accuracy on Sudoku and Go grids
(Fig. F13a–b), confirming a fundamental inability to

perform counting (Rahmanzadehgervi et al., 2024),
here, in biased counterfactual scenarios (more results
in Appendix L.4).

Our findings across four domains collectively show that
VLMs rely heavily on memorized knowledge to answer
rather than performing detailed visual analysis of the coun-
terfactual image.

4.4. VLMs are biased towards the known illusions and
fail to recognize the changes in the counterfactual,
modified versions

Experiment We test five VLMs on 6 classic optical il-
lusions, i.e., Müller-Lyer, Zöllner, Ebbinghaus, Vertical-
Horizontal, Pogendorff, and Ponzo (Fig. F15). Each illusion
is presented in two versions: (a) its original form and (b)
a counterfactual, modified version where the groundtruth
answer is reversed (Fig. 5). For both versions per illusion,
we ask VLMs the same Y/N question (see Appendix H).

Results On average, over original and CF versions, all 5
VLMs perform around the random chance (mean accuracy
of 50.87%; Tab. 3 ). They tend to provide answers that
are true to the original versions (i.e., 78.02% mean accu-
racy) but false given the counterfactual versions (23.74%
accuracy).

4 out of 5 VLMs perform well on the original versions
of the illusions but poorly on the CF versions, exhibit-
ing a strong bias to the well-known illusions. However,
Sonnet-3.7 is the opposite—it performs much bet-

ter on the counterfactual versions than on the original illu-
sions (65.91% vs. 42.68% accuracy; Tab. 3 ). On average,
Sonnet-3.7 still performs only slightly above the ran-
dom chance (54.29% accuracy), revealing a poor low-level
vision capability, consistent with recent findings (Rahman-
zadehgervi et al., 2024).
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Table 3: VLMs perform poorly across six (out of seven) VLMBias tasks, spanning photo-realistic images ( animals and
logos) and abstract images ( flag, chess pieces, optical illusions, and patterned grids).

a. Animal b. Logo c. Flag d. Chess/Xiangqi Pieces e. Optical Illusions f. Patterned Grid

Model Birds Mammals Mean Shoes Cars Mean Stars Stripes Mean Chess Xiangqi Mean Original Modified Mean Remove Rep/Add Mean

0.00 0.00 0.00 5.80 0.00 1.96 11.54 8.33 10.42 17.36 36.11 26.74 73.16 26.52 49.81 13.10 28.57 20.83
0.00 0.00 0.00 8.15 0.00 2.72 20.51 1.19 13.75 7.64 10.42 9.03 42.68 65.91 54.29 35.71 33.33 34.52
5.07 11.03 9.52 25.36 1.11 9.07 3.21 1.19 2.50 11.81 5.56 8.68 92.17 5.05 48.61 10.12 27.38 18.75
0.00 1.23 0.92 21.01 1.11 7.60 5.13 4.76 5.00 56.94 28.47 42.71 91.67 9.09 50.38 14.88 26.19 20.54
0.00 0.25 0.18 27.54 0.00 9.31 18.59 7.14 14.58 55.56 32.64 44.10 90.40 12.12 51.26 12.50 22.62 17.56

Mean 1.01 2.50 2.12 17.57 0.44 6.13 11.79 4.52 9.25 29.86 22.64 26.25 78.02 23.74 50.87 17.26 27.62 22.44

4.5. VLMs are biased towards the global pattern in a
grid

Experiments We test VLMs on counting the shapes or
tally marks inside an anomaly cell where the total number of
shapes or marks do not follow the patterns in the surrounding
cells (Fig. 1g).

Results Overall, VLMs perform poorly at 22.44% accuracy.
43.45% of all count predictions, both correct and incorrect,
match the biased answers (Fig. 4 ) that correspond to the
surrounding cells. In other words, when VLMs make a
wrong counting predictions, more than half (i.e., 56.02%)
of the time, their answers match the global pattern of most
cells in the grid rather than the target anomaly cell in ques-
tion (Fig. F17). Our results confirm a striking influence of
the background pattern to VLMs’ assessment on a small
local region. Here, our patterns in the grids are created from
scratch and, therefore, do not represent a pattern memorized
from the Internet.

4.6. VLMs continue to misidentify the common biased
patterns when they do not exist in counterfactual
images

Prior sections have shown that VLMs struggle to count the
key elements in well-known subjects (e.g., the stripes in
a counterfactual, 4-striped Adadias-like logo; Fig. 2b) at
17.05% accuracy (Tab. 2). And ∼75% of the time, they
default to the predefined bias choices. Here, we aim to con-
firm that VLMs are so biased that they are unable to tell
the difference between the original version and the coun-
terfactual by a more direct binary, Yes/No identification
question of Q3: “Is this an animal with 4 legs?” when the
counterfactual (e.g., a 5-legged puma Fig. 3c) is shown.

Experiments We ask 5 VLMs the Q3 question given our
sets of original and CF images. The correct answer is “Yes”
for original cases and “No” for all CF cases (Fig. 3c).

Results All VLMs achieve 100% accuracy on the original
images, but collapse to a mean of 25.11% on the counterfac-
tual versions (Tab. 4), which is only half of random guessing.
That is, VLMs consistently answer “Yes”, misidentifying
the well-known subject even when the visual evidence con-

Table 4: Accuracy (%) of VLMs on question Q3 (e.g..,
“Is this an animal with 4 legs?”) when the image is orig-
inal (4 legs) or counterfactual (5 legs). VLMs mostly
answer “Yes” even on counterfactuals, resulting in accu-
racy far below the 50% random baseline.

Model Original Counterfactual (∆)

Gemini-2.5 Pro 100.00 20.63 (-79.37)
Sonnet-3.7 100.00 23.08 (-76.92)
GPT-4.1 100.00 26.10 (-73.90)
o3 100.00 26.15 (-73.85)
o4-mini 100.00 29.61 (-70.39)

Mean 100.00 25.11 (-74.89)

Original illusion     GT: Yes

+In-image text ✍

Modified illusion    GT: No

Q: Are the two inner circles equal in size? 
Answer in curly brackets, e.g., {Yes} or {No}.

Ebbinghaus illusion Ebbinghaus illusion

Figure 5: Original vs. modified versions without (top)
and with (bottom) the in-image text (“Ebbinghaus
illusion”).

tradicts the prompt (Fig. 3c&f). On top of the prior results
with Q1 and Q2, the results on Q3 provide extra evidence
supporting the hypothesis that VLMs are too biased to
recognize that the well-known pattern has changed in
counterfactual images.

4.7. Adversarial in-image text showing the name of the
common subject further fools VLMs

Prior sections have shown that VLMs perform poorly on the
objective task of counting when the background contains
visual cues strongly correlate with well-known subjects. As
VLM outputs may be influenced by adversarial or distracting
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text in the image (Goh et al., 2021), here, we test how in-
image textual cues about the subjects (e.g., “Ebbinghaus
illusion”) influence VLMs on the same counting questions.

Experiments We insert the subject name (e.g., “Adidas” or
“Ebbinghaus illusion”; Fig. 5) into the top of all original and
CF images, extending the image vertically but keeping the
original content unchanged. We repeat previous experiments
asking VLMs the two counting questions (Q1 & Q2).

Results All VLMs perform worse when an in-image text is
added (-4.49; Tab. 5). Interestingly, the decrease is more pro-
nounced for thinking models (Tab. 5), such as o4-mini
(-6.56), o3 (-6.41), than for non-thinking ones such as
Sonnet-3.7 (-2.81) and GPT-4.1 (-2.67). This

result is consistent with recent findings that thinking mod-
els tend to hallucinate more (OpenAI, 2025a; Zhang et al.,
2024a), here more biased toward the text in the image de-
spite contradictory visuals.

Table 5: Adding adversarial, in-image textual cues that state
the subject name (e.g., “Adidas”) cause VLMs to decrease
their accuracy (-4.49) on counterfactual images (b). In con-
trast, instructing VLMs to rely exclusively on the image
details to answer questions (Debiased) or to double-check
its answers (Double-Check) only slightly improves accuracy,
by +1.87 and +2.70, respectively (c).

Model a. Baseline b. Adversarial c. Helpful textual prompt

w/ In-image text w/ Debiased Prompt w/ Double-Check

Gemini-2.5 Pro 16.02 12.04 (-3.98) 19.72 (+3.70) 20.22 (+4.20)
Sonnet-3.7 16.59 13.78 (-2.81) 19.29 (+2.70) 20.86 (+4.27)
GPT-4.1 13.88 11.21 (-2.67) 14.38 (+0.50) 16.00 (+2.12)
o3 18.50 12.09 (-6.41) 18.94 (+0.44) 21.02 (+2.52)
o4-mini 20.25 13.69 (-6.56) 22.25 (+2.00) 20.61 (+0.36)

Mean 17.05 12.56 (-4.49) 18.92 (+1.87) 19.75 (+2.70)

4.8. Helpful prompts do not ameliorate the bias issues in
VLM

Previous results show that VLMs rely heavily on prior
knowledge to answer objective counting questions. Here,
we test how incorporating helpful instructions in the prompts
may help VLMs become less biased.

Experiments We apply two prompting strategies across
all VLMBias tasks:

(1) Debiased Prompt: We prepend the original question
(Q1 and Q2) with “Do not assume from prior knowledge
and answer only based on what is visible in the image.” to
encourage models to rely exclusively on image contents.

(2) Double-Check: After VLMs answer the original ques-
tion, we add a follow-up prompt of “Please double-check
your answer and give your final answer in curly brackets,
following the format above.”

These prompts are designed to encourage VLMs to examine
the image more carefully. All experiments use the same

images and default model settings as in the baseline setup.

Results Both helpful prompting strategies improve VLM
accuracy but only slightly over the baseline, +1.87 for Debi-
ased and +2.70 for Double-Check (Tab. 5c). That is, explic-
itly instructing models to rely on image contents or verify
their answer helps to some extent but does not address the
core issue of bias.

5. Discussion and Conclusion
Our study shows that SOTA VLMs fail consistently
in counting visual elements (e.g., stripes in a logo)
when they are strongly biased towards the subject (e.g.,
an Adidas logo has three stripes). Thinking models
( o4-mini, o3) perform only slightly better than non-
thinking ones ( Sonnet-3.7, Gemini-2.5 Pro,
GPT-4.1)— longer thoughts do not address the bias

issue. Similarly, instructing VLMs to double check its an-
swers or rely exclusively on the image contents only mod-
estly increase the accuracy. Our work documents important
visual biases of VLMs in an objective counting task rather
than the common social biases (Sheng et al., 2019a) often
documented in the literature.

For 6 out of 7 tasks, we use an automated pipeline con-
sisting of scripts, LLMs and text-to-image generators that
generate counterfactual images. In our pipeline, humans do
not manually edit the original images to create counterfac-
tuals but only review the generated images. We release the
automation scripts and evaluation code.

It might be interesting to compare whether the original and
counterfactual images map to similar visual representations
after the vision encoders in VLMs. That is, are the VLM
failures in this paper the result of visual encoders unable
to capture the fine-grained modifications in the couterfac-
tual images? Alternatively, vision encoders may be able
to observe the visual changes but the LLMs in late-fusion
architectures are too biased to output accurate answers.

Limitations Our work has two limitations. First, VLMs
with image generation capabilities (e.g., and ) are
still in early developmental stages and exhibit their own
biases, making it non-trivial to control generated images
as expected. This limitation prevents us from exploring
some other interesting domains. Second, we are unable
to test VLMs that have the capability to use tools, which
may substantially help on VLMBias questions. That is,
it might be interesting to test how the biased visual cues
in VLMBias images suppress tool-use VLMs to use their
tools (e.g., zooming functions) to answer questions. Our
preliminary results with the chat interface of o3 reveal that
o3 often does not even use its visual thinking capability
(OpenAI, 2025b) to examine the counterfactual images but
instead directly attempt to answer questions.
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A. Illustrative questions

Table T1: Some examples of questions on animal, brand logos, and flags

Topic Subtopic Q1 Q2 Q3

Animal How many legs does this
animal have? Answer with
a number in curly brackets,
e.g., {9}.

Count the legs of this ani-
mal. Answer with a num-
ber in curly brackets, e.g.,
{9}.

Is this an animal with 4
legs? Answer in curly
brackets, e.g., {Yes} or
{No}.

Logo

Adidas How many visible stripes
are there in the logo of the
left shoe? Answer with a
number in curly brackets,
e.g., {9}.

Count the visible stripes in
the logo on the left shoe.
Answer with a number in
curly brackets, e.g., {9}.

Are the logos on these
shoes Adidas logos? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Nike How many visible white
stylized curves are there in
the logo of the left shoe?
Answer with a number in
curly brackets, e.g., {9}.

Count the visible white
stylized curves in the logo
on the left shoe. Answer
with a number in curly
brackets, e.g., {9}.

Are the logos on these
shoes Nike logos? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Mercedes How many points are there
on the star in the logo of
this car? Answer with a
number in curly brackets,
e.g., {9}.

Count the points on the
star in the logo of this car.
Answer with a number in
curly brackets, e.g., {9}.

Is the logo on this car
Mercedes-Benz logo? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Audi How many overlapping
circles are there in the logo
of this car? Answer with a
number in curly brackets,
e.g., {9}.

Count the overlapping cir-
cles in the logo of this car.
Answer with a number in
curly brackets, e.g., {9}.

Is the logo on this car Audi
logo? Answer in curly
brackets, e.g., {Yes} or
{No}.

Maserati How many prongs are
there in the logo of this
car? Answer with a num-
ber in curly brackets, e.g.,
{9}.

Count the prongs in the
logo of this car. Answer
with a number in curly
brackets, e.g., {9}.

Is the logo on this car
Maserati logo? Answer in
curly brackets, e.g., {Yes}
or {No}.

Flag Stars How many stars are there
on this flag? Answer with
a number in curly brackets,
e.g., {9}.

Count the stars on this flag.
Answer with a number in
curly brackets, e.g., {9}.

Is this the flag of [coun-
try]? Answer in curly
brackets, e.g., {Yes} or
{No}.

Stripes How many stripes are
there on this flag? Answer
with a number in curly
brackets, e.g., {9}.

Count the stripes on this
flag. Answer with a num-
ber in curly brackets, e.g.,
{9}.

Is this the flag of [coun-
try]? Answer in curly
brackets, e.g., {Yes} or
{No}.
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Table T2: Some examples of questions on chesse pieces, game boards and patterned grid.

Topic Subtopic Q1 Q2 Q3

Chess Pieces Chess How many chess pieces
are there on this board?
Answer with a number in
curly brackets, e.g., {9}.

Count the chess pieces on
this board. Answer with a
number in curly brackets,
e.g., {9}.

Is this the chess starting
position? Answer in curly
brackets, e.g., {Yes} or
{No}.

Xiangqi How many xiangqi pieces
are there on this board?
Answer with a number in
curly brackets, e.g., {9}.

Count the xiangqi pieces
on this board. Answer
with a number in curly
brackets, e.g., {9}.

Is this the Xiangqi start-
ing position? Answer in
curly brackets, e.g., {Yes}
or {No}.

Board Game

Chess How many rows are there
on this board? Answer
with a number in curly
brackets, e.g., {9}.

Count the rows on this
board. Answer with a
number in curly brackets,
e.g., {9}.

Is this a 8x8 Chessboard?
Answer in curly brackets,
e.g., {Yes} or {No}.

Xiangqi How many horizontal
lines are there on this
board? Answer with a
number in curly brackets,
e.g., {9}.

Count the horizontal lines
on this board. Answer
with a number in curly
brackets, e.g., {9}.

Is this a 10x9 Xiangqi
board? Answer in curly
brackets, e.g., {Yes} or
{No}.

Go How many horizontal
lines are there on this
board? Answer with a
number in curly brackets,
e.g., {9}.

Count the horizontal lines
on this board. Answer
with a number in curly
brackets, e.g., {9}.

Is this a 19x19 Go board?
Answer in curly brackets,
e.g., {Yes} or {No}.

Sudoku How many rows are there
on this puzzle? Answer
with a number in curly
brackets, e.g., {9}.

Count the rows on this puz-
zle. Answer with a num-
ber in curly brackets, e.g.,
{9}.

Is this a 9x9 Sudoku puz-
zle? Answer in curly
brackets, e.g., {Yes} or
{No}.

Patterned Grid Dice How many circles are
there in cell C5? Answer
with a number in curly
brackets, e.g., {9}.

Count the circles in cell
C5. Answer with a num-
ber in curly brackets, e.g.,
{9}.

Does cell C5 contain 4
circles? Answer in curly
brackets, e.g., {Yes} or
{No}.

Tally How many lines are there
in cell C5? Answer with a
number in curly brackets,
e.g., {9}.

Count the lines in cell C5.
Answer with a number in
curly brackets, e.g., {9}.

Does cell C5 contain 3
lines? Answer in curly
brackets, e.g., {Yes} or
{No}.
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Table T3: Some examples of questions on optical illusions.

Topic Subtopic Q1 Q2 Q3

Optical Illusion

Ebbinghaus Are the two inner circles
equal in size? Answer in
curly brackets, e.g., {Yes}
or {No}.

Do the two inner circles
have the same size? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Is this an example of the
Ebbinghaus illusion? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Mullerlyer Are the two horizontal
lines equal in length? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Do the two horizontal
lines have the same
length? Answer in curly
brackets, e.g., {Yes} or
{No}.

Is this an example of the
Müller-Lyer illusion? An-
swer with Yes/No. An-
swer in curly brackets,
e.g., {Yes} or {No}.

Poggendorff Are the two diagonal line
segments aligned? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Do the two diagonal lines
form a straight line? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Is this an example of the
Poggendorff illusion? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Ponzo Are the two horizontal
lines equal in length? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Do the two horizontal
lines have the same
length? Answer in curly
brackets, e.g., {Yes} or
{No}.

Is this an example of the
Ponzo illusion? Answer in
curly brackets, e.g., {Yes}
or {No}.

VerticalHorizontal Are the horizontal and ver-
tical lines equal in length?
Answer in curly brackets,
e.g., {Yes} or {No}.

Do the horizontal and ver-
tical lines have the same
length? Answer in curly
brackets, e.g., {Yes} or
{No}.

Is this an example of
the Vertical–Horizontal il-
lusion? Answer in curly
brackets, e.g., {Yes} or
{No}.

Zollner Are the two horizontal
lines parallel? Answer in
curly brackets, e.g., {Yes}
or {No}.

Do the two horizontal
lines run parallel? An-
swer in curly brackets,
e.g., {Yes} or {No}.

Is this an example of the
Zöllner illusion? Answer
in curly brackets, e.g.,
{Yes} or {No}.
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B. Models and access details
We evaluate five state-of-the-art VLMs using their official APIs with default settings. These include three thinking models
(e.g., Gemini-2.5 Pro, o3, o4-mini) and two non-thinking models (e.g., Sonnet-3.7, GPT-4.1).

B.1. Gemini-2.5 Pro

We access Gemini-2.5 Pro (gemini-2.5-pro-preview-05-06) via aistudio.google.com and use all default settings
with temperature=1.0.

B.2. Sonnet-3.7

We access the Anthropic API via console.anthropic.com to use Sonnet-3.7 (claude-3.7-sonnet) and default
settings with temperature=1.0.

B.3. GPT-4.1

We access the API for GPT-4.1 (gpt-4.1) via platform.openai.com and use all default settings with
temperature=1.0.

B.4. o3

We access the OpenAI API for o3 via platform.openai.com and use default settings with temperature=1.0.

B.5. o4-mini

We access the OpenAI API for o4-mini (o4-mini) via platform.openai.com with default settings including:

• temperature: 1.0

• reasoning_effort: medium (default thinking mode setting)
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C. Task 1: Counting legs with added limb
C.1. Task design

Animal  suggestions
Generate a JSON of 100 well 
known animals with either 2 legs 
or 4 legs. The legs of these 
animals must be long enough.

Dog: 4 legs

Image Generation
Generate a clear, full-body, side-view 
image of a(n) {animal} with {num_legs} 
legs that is walking in a  real-world natural 
background. The {num_legs} leg animal 
must look photorealistic. All {num_legs} 
legs must be clearly visible.

Image Editing
Add 1 more leg to the {animal} so that 
it has {num_legs+1} legs in total. The 1 
extra leg is in the middle of the body. 
The {num_legs+1}-legg {animal} must 
be photorealistic. All {num_legs+1} 
legs must be clearly visible.

Human quality control

accept

reject
❌

Figure F1: Data generation pipeline for Task 1: Counting legs with added limb.

Pretrained on the Internet data, VLMs must have colossal prior knowledge of the count of animal legs from both textual
and image data. Following this hypothesis, we generate images of usual animals with one additional leg (e.g., 3-legged
birds or 5-legged dogs) and ask VLMs to count legs to evaluate if these models are biased toward their prior knowledge.

• Animal types: We modify the legs of 2 types of animals: birds and mammals.

• Modification types: Each animal is modified to have 1 additional leg.

• Target animals: We select 91 well-known animals, consisting of 23 two-legged birds and 68 four-legged mammals.

• Image resolutions: We generate each animal image and rescale them at 3 different pixel sizes {384, 768, 1152}px
using the scaling factor in Sec. 3.1 to test resolution sensitivity

This approach generates a total of 91 animals × 1 modification type × 3 resolutions = 273 total images.

C.2. Implementation and image generation

Implementation details Our image generation pipeline follows this sequence:

1. Use o4-mini to collect a list of well-known animals with clearly visible legs

2. Generate full-body and side-view images of these animals using Gemini-2.0 Flash

3. For each animal image, use Gemini-2.0 Flash to add one extra leg to the animal. Each animal image is edited
over 4 independent trials.

4. Manually inspect and filter out unsatisfactory images

5. Render each approved image at three different resolutions

Quality control We manually inspect the images to ensure that each modified animal image has exactly one additional leg.
For cases that fail (e.g., more than one added leg), we remove them from our dataset.

Prompt We use the following prompts to test the VLMs:
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• Q1: How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.

• Q2: Count the legs of this animal. Answer with a number in curly brackets, e.g., {9}.

• Q3: Is this an animal with [NumModifiedLegs] legs? Answer in curly brackets, e.g., {Yes} or {No}.

Ground truth calculation The ground truth answers are as follow:

• Birds leg counting (Q1&Q2):

– Correct answer: 3 (one additional leg)

– Expected bias: 2

• Mammals leg counting (Q1&Q2):

– Correct answer: 5 (one additional leg)

– Expected bias: 4

• Animal leg identification question (Q3):

– Correct answer: “No” (always, since each animal has one additional leg)

– Expected bias: “Yes”

C.3. Qualitative results

How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.

(a)-(e) How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.

(a) Lion (b) Stork (c) Elephant (d) Duck (e) Dog

4 ✗ 2 ✗ 4 ✗ 2 ✗ 4 ✗
4 ✗ 2 ✗ 4 ✗ 2 ✗ 4 ✗
5 ✓ 2 ✗ 6 ✗ 2 ✗ 6 ✗
4 ✗ 2 ✗ 4 ✗ 2 ✗ 6 ✗
4 ✗ 2 ✗ 4 ✗ 2 ✗ 4 ✗

Bias 4 ✗ 2 ✗ 4 ✗ 2 ✗ 4 ✗
GT 5 ✓ 3 ✓ 5 ✓ 3 ✓ 5 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F2: VLMs are often biased toward the original number of legs animals have, and they tend to answer based on
prior knowledge rather than by analyzing the image.
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C.4. List of animals

Mammals: Four-legged animals

horse, zebra, donkey, mule, cow, buffalo, yak, water buffalo, deer, elk, moose, reindeer, caribou, gazelle, giraffe,
camel, dromedary camel, bactrian camel, llama, alpaca, goat, ibex, mountain goat, pronghorn, bighorn sheep, wild
boar, pig, warthog, coyote, lynx, bobcat, leopard, tiger, lion, jaguar, puma, ocelot, caracal, hyena, rabbit, impala,
springbok, kudu, eland, wildebeest, okapi, hippopotamus, african elephant, asian elephant, indian rhinoceros, gnu,
maned wolf, arctic fox, red fox, fennec fox, red wolf, domestic dog, domestic cat, african wilddog, dingo, jackal,
gray wolf, hare, cheetah, antelope, bison, sheep, serval

Birds: Two-legged animals

ostrich, emu, rhea, cassowary, heron, stork, crane, egret, ibis, spoonbill, turkey, chicken, rooster, duck, swan,
peacock, sandpiper, avocet, stilt, plover, lapwing, oystercatcher, secretary bird
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D. Task 2: Counting elements in modified brand logos

Adidas
4 stripes instead of 3 

Logo suggestions
Generate a JSON of subtle logo 
modification prompts, with each 
modifying the visual components 
of a well-known logo.

Image generation
Generate an adidas style white 
soccer shoe but with 4 stripes 
instead of 3. 

Image generation
Generate an image of an athlete 
wearing this shoe. Keep all the 
fine-grained details of the shoe, 
particularly the four stripes. The 
person is playing soccer on grass 
field and wearing a soccer outfit.

Human quality 
control

accept

reject

Adidas
Colors: black, white, red
Sports: soccer, running, 

basketball, tennis

Product suggestions
Generate 3 most common 
colors of Adidas shoes and 4 
most common Adidas sports.

❌

Manual selection

Figure F3: Data generation pipeline of shoe logos for Task 2: Counting elements in modified brand logos

Car suggestions
Generate 3 most common colors 
of each car brands and 5 most 
common body types of its car

Audi 
Color: white
Body: SUV

Image generation
Generate the Audi logo with 5 
interlocking rings instead of 
the usual 4.

Image generation
A photorealistic front view image 
of a white Audi SUV on the road 
in the middle of the day.

Audi
Add 1 interlocking ring 

Logo suggestions
Generate a JSON of subtle logo 
modification prompts, with each 
modifying the visual components 
of a well-known logo. Manual editing

Manual selection

Figure F4: Data generation pipeline of car logos for Task 2: Counting elements in modified brand logos

D.1. Task design

Our initial evaluation show that some VLMs, such as o4-mini, can accurately count the four stripes on modified
Adidas logo on white background. As such, to increase the task difficulty, we hypothesize that VLMs strongly associate

logos with the background they typically appear on. Subsequently, we examine if the visual cues from the background
would be strong enough to suppress counting the elements in the logos. Our task is designed as follow:

• Brand types: We use 2 different brand types: cars and shoes

• Target brands: We select 5 well-known brands with quantifiable graphical elements:

– Car brands: Mercedes-Benz, Maserati, and Audi (3 brands)
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Shoe logos

(a), (c), (e): How many visible stripes are there in the logo of the left shoe? Answer with a number in curly brackets, e.g., {9}.
(b): How many visible white stylized curves are there in the logo of the left shoe? Answer with a number in curly brackets,

e.g., {9}.
(d): How many visible black stylized curves are there in the logo of the left shoe? Answer with a number in curly brackets,

e.g., {9}.

(a) Adidas (b) Nike (c) Adidas (d) Nike (e) Adidas

3 ✗ 1 ✗ 3 ✗ 2 ✓ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 4 ✓
3 ✗ 1 ✗ 3 ✗ 1 ✗ 4 ✓

Bias 3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
GT 4 ✓ 2 ✓ 4 ✓ 2 ✓ 4 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F5: VLMs are often biased and rely on prior knowledge when answering questions about shoe logos, even with
simple ones like the Nike Swoosh. Please zoom in to see the logo clearly.

– Shoe brands: Adidas and Nike (2 brands)

• Background variations: Each brand logo has specific background settings:

– Car logo background: Car logos always appear on cars. For each logo, we collect 5 car body types × 3 colors
(white, grey, black)

– Shoe logo background: Shoe logos are often seen on the footwear of athletes. For each logo, we collect a list of 4
relevant sports (tennis, running, basketball, soccer) × 3 colors (black, red, white)

• Image resolutions: We generate each image and rescale them at 3 different pixel sizes {384, 768, 1152}px using the
scaling factor in Sec. 3.1 to test resolution sensitivity

This systematic approach generates a total of [3 car brands × (5 × 3) × 3 resolutions] + [2 shoe brands × (4 × 3) × 3
resolutions] = 135 + 72 = 207 total images.

D.2. Implementation and prompts

Implementation details We employ the following process to generate logo modification images:

1. Use o4-mini to suggest graphical modifications for each logo (e.g., increasing Adidas’ three stripes to four). We
then select the most relevant suggestions for our benchmark.

2. Generate modified logo versions using GPT-4o.

3. Create background images:

• Background images for car logos:
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– Use o4-mini to suggest popular colors and body types of each car logo.
– For each logo, generate and select relevant images of cars from the logo brand with the determined body types

and colors.
– Manually place modified logos in typical car logo positions.

• Background images for shoe logos:
– Use o4-mini to suggest popular shoe colors and sports affiliated with each shoe logo.
– For each logo, generate and select relevant images of athletes wearing shoes with the modified logo for each

determined color and sport.

4. Render each image at three different resolutions.

Quality control To ensure high-quality images, we manually review to make sure that: (1) each generated logo has the
correct number of modified elements; (2) each product is clearly visible and oriented correctly; and (3) the position of the
logos on the products are natural-looking.

Prompts We use the following prompts

1. Counting questions (Q1 & Q2):

• Q1 (Adidas): How many visible stripes are there in the logo of the left shoe? Answer with a number in curly
brackets, e.g., {9}.

• Q1 (Nike): How many visible [CurveColor] stylized curves are there in the logo of the left shoe? Answer with a
number in curly brackets, e.g., {9}

• Q1 (Audi): How many overlapping circles are there in the logo of this car? Answer with a number in curly
brackets, e.g., {9}.

• Q1 (Mercedes): How many points are there on the star in the logo of this car? Answer with a number in curly
brackets, e.g., {9}.

• Q1 (Maserati): How many prongs are there in the logo of this car? Answer with a number in curly brackets, e.g.,
{9}

• Q2 (Adidas): Count the visible stripes in the logo of the left shoe. Answer with a number in curly brackets, e.g.,
{9}.

• Q2 (Nike): Count the visible [CurveColor] stylized curves in the logo of the left shoe. Answer with a number in
curly brackets, e.g., {9}

• Q2 (Audi): Count the overlapping circles in the logo of this car. Answer with a number in curly brackets, e.g., {9}.
• Q2 (Mercedes): Count the points on the star in the logo of this car. Answer with a number in curly brackets, e.g.,

{9}.
• Q2 (Maserati): Count the prongs in the logo of this car. Answer with a number in curly brackets, e.g., {9}

2. Y/N identification questions (Q3):

• Q3 (Adidas): Are the logos on these shoes Adidas logos? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Nike): Are the logos on these shoes Nike logos? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Audi): Is the logo on this car Audi logo? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Mercedes): Is the logo on this car Mercedes-Benz logo? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Maserati): Is the logo on this car Maserati logo? Answer in curly brackets, e.g., {Yes} or {No}.

Ground truth calculation The ground truth answers are as follow:

• Adidas stripes counting (Q1&Q2):

– Correct answer: 4
– Expected bias: 3

• Nike stylized curves counting (Q1&Q2):
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– Correct answer: 2
– Expected bias: 1

• Audi overlapping circles counting (Q1&Q2):

– Correct answer: 5
– Expected bias: 4

• Mercedes-Benz points on the star counting (Q1&Q2):

– Correct answer: 4
– Expected bias: 3

• Maserati prongs counting (Q1&Q2):

– Correct answer: 5
– Expected bias: 3

• Logo identification question (Q3):

– Correct answer: “No” (all logos are modified)
– Expected bias: “Yes”

D.3. Qualitative results

Car logos

(a), (d): How many overlapping circles are there in the logo of this car? Answer with a number in curly brackets, e.g., {9}.
(b), (e): How many points are there on the star in the logo of this car? Answer with a number in curly brackets, e.g., {9}.
c: How many prongs are there in the logo of this car? Answer with a number in curly brackets, e.g., {9}.

(a) Audi (b) Mercedes (c) Maserati (d) Audi (e) Mercedes

4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗
4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗
4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗
4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗
4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗

Bias 4 ✗ 3 ✗ 3 ✗ 4 ✗ 3 ✗
GT 5 ✓ 4 ✓ 5 ✓ 5 ✓ 4 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F6: VLMs are completely biased and rely entirely on prior knowledge when answering questions about brand
logos. Please zoom in to see the logo clearly.
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Shoe logos

(a), (c), (e): How many visible stripes are there in the logo of the left shoe? Answer with a number in curly brackets, e.g., {9}.
(b): How many visible white stylized curves are there in the logo of the left shoe? Answer with a number in curly brackets,

e.g., {9}.
(d): How many visible black stylized curves are there in the logo of the left shoe? Answer with a number in curly brackets,

e.g., {9}.

(a) Adidas (b) Nike (c) Adidas (d) Nike (e) Adidas

3 ✗ 1 ✗ 3 ✗ 2 ✓ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
3 ✗ 1 ✗ 3 ✗ 1 ✗ 4 ✓
3 ✗ 1 ✗ 3 ✗ 1 ✗ 4 ✓

Bias 3 ✗ 1 ✗ 3 ✗ 1 ✗ 3 ✗
GT 4 ✓ 2 ✓ 4 ✓ 2 ✓ 4 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F7: VLMs are often biased and rely on prior knowledge when answering questions about shoe logos, even with
simple ones like the Nike Swoosh. Please zoom in to see the logo clearly.
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Flag suggestions
Generate a JSON list containing 
well-known flag objects with more 
than 2 stars or 4 stripes.

Flag of the United States
num_stars: 50

num_stripes: 13

WikiCommons

WikiCommons API

query return

SVG Code

SVG code modification
The Flag of the United States has 
13 stripes. Modify its SVG code  
to have 14 stripes by adding 1 
stripes to it.

Human quality control

accept

redo
❌

Add background

Manual selection

Figure F8: Data generation pipeline for Task 3: Counting stripes/stars in modified national flags.

E. Task 3: Counting stripes/stars in modified national flags
E.1. Task design

Flags of countries contain easily recognizable patterns. To evaluate if existing VLMs overly rely on their knowledge of
these flags to count a certain element, we design the task as follow:

• Flag types: We modify 2 commonly used elements across different flags: stars and stripes

• Modification types: Each flag has 2 types of modifications:

– Add: We add an additional element (star or stripe) to a chosen flag
– Remove: We remove one element (star or stripe) from a chosen flag

• Target flags: We select 20 well-known country flags with either 3+ stars or 5+ stripes (a total of 13 star-typed flags
and 7 stripe-typed flags) to ensure the modified flags retain recognizable traits to test visual bias.

• Image resolutions: We generate each flag and rescale them at 3 different pixel sizes {384, 768, 1152}px using the
scaling factor in Sec. 3.1 to test resolution sensitivity

This systematic approach generates a total of 20 target flags × 2 modification types × 3 resolutions = 120 total images.

E.2. Implementation and image generation

Implementation details We modify the SVG code of a chosen flag to create new variants following this sequence:

1. Identify 20 well-known country flags (13 with 3+ stars, 7 with 5+ stripes) based on the suggestions from o4-mini.

2. Retrieve original SVG code from WikiCommons for each flag.

3. Use o4-mini to modify each SVG to create two variants:

• An “Add” variant with one additional element.
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• A “Remove” variant with one fewer element.

4. Render each modified flag at three different resolutions.

Quality control We employ the following steps to ensure high-quality and consistent images:

• Manual inspection: We manually review each generated sample to verify modification quality and visual consistency

• Filtering: We remove unsatisfactory samples from the benchmark and rerun the pipeline on these cases to obtain new
samples.

• Fallback: For rare cases (3 in total) that consistently fail automated generation, we manual modify the flags to ensure
they strictly follow the modification rules.

Prompts We use the following prompts:

1. Counting questions (Q1 & Q2):

• Q1 (Star-typed flags): How many stars are there on this flag? Answer with a number in curly brackets, e.g., {9}.
• Q1 (Stripe-typed flags): How many stripes are there on this flag? Answer with a number in curly brackets, e.g.,

{9}.
• Q2 (Star-typed flags): Count the stars on this flag. Answer with a number in curly brackets, e.g., {9}.
• Q2 (Stripe-typed flags): Count the stripes on this flag. Answer with a number in curly brackets, e.g., {9}.

2. Y/N identification questions (Q3):

• Is this the flag of [CountryName]? Answer in curly brackets, e.g., {Yes} or {No}.

Ground truth calculation We calculate the ground truth as follow:

• Direct counting questions (Q1 & Q2):

– Correct answer: The actual count of the elements (stars or stripes) on the flag after modification

* For Remove modifications: Standard element count minus 1

* For Add modifications: Standard element count plus 1
– Expected bias: The standard element count

• Flag verification question (Q3):

– Correct answer: “No” (since the flag’s element has been modified)
– Expected bias: “Yes”
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National Flag

(a), (b), (e): How many stripes are there in this flag? Answer with a number in curly brackets, e.g., {9}.
(b), (c): How many stars are there in this flag? Answer with a number in curly brackets, e.g., {9}.

(a) US (b) US (c) EU (d) EU (e) Zimbabwe

13 ✗ 13 ✗ 12 ✗ 13 ✓ 7 ✗
13 ✗ 13 ✗ 12 ✗ 12 ✗ 7 ✗
13 ✗ 13 ✗ 12 ✗ 12 ✗ 7 ✗
13 ✗ 13 ✗ 12 ✗ 12 ✗ 7 ✗
13 ✗ 13 ✗ 12 ✗ 13 ✓ 7 ✗

Bias 13 ✗ 13 ✗ 12 ✗ 12 ✗ 7 ✗
GT 12 ✓ 14 ✓ 11 ✓ 13 ✓ 6 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F9: VLMs are biased when counting the stars and stripes on national flags.
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F. Task 4: Counting chess pieces on modified starting position

Code generation
Generate SVG of a chessboard 
with chess pieces in standard 
starting position

SVG modification

ReplaceRemove
Random piece 

selection

Figure F10: Data generation pipeline for Task 4: Counting chess pieces on modified starting position

F.1. Task design

To evaluate if VLMs rely on expected structure or attend to actual pieces, we test their ability to count pieces on boards with
subtle modifications. We design our task with careful control of visual parameters to ensure systematic evaluation:

• Board types: We use 2 different game boards: {chess (Western chess), xiangqi (Chinese chess)}

• Modification types: Each board has 2 types of modifications:

– Remove: We remove exactly one piece from the standard starting position.
– Replace: We replace exactly one piece with a different piece of the same color.

• Target squares: We select 12 unique occupied squares per board type, maintaining the same target squares across the
Remove and Replace modifications to ensure controlled comparison.

• Image resolutions: We generate each board at 3 different pixel sizes {384, 768, 1152}px to test resolution sensitivity.

This systematic approach generates a total of 2 board types × 2 modification types × 12 target squares × 3 resolutions =
144 total images.

F.2. Implementation and prompts

Implementation details Our implementation utilizes specialized libraries for each board type. For chess, we leverage the
Python chess library to manipulate board states and chess.svg for rendering. For xiangqi (Chinese chess), we created
a custom implementation using svgwrite for rendering.

The algorithm for both board types follows the same sequence:

1. Create a standard board with all 32 pieces in their starting positions

2. Randomly select 12 target squares from the occupied squares

3. For each target square, create (a) a Remove variant and (b) a Replace variant

4. Render each modified board at three different resolutions

The xiangqi implementation required special handling for:

• The traditional 9×10 board layout with the central river and two palaces
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• Chinese character rendering for pieces, which requires detecting appropriate CJK fonts

• Different piece distribution (Chariots, Knights, Elephants, Advisors, General, Cannons, and Soldiers)

Quality control To ensure consistent image quality across all variants, we implemente several technical measures:

• SVG to PNG conversion: We used direct SVG rendering with adjustable scaling factors based on target resolution

• Quality scaling: We applied a quality multiplier (5.0× base resolution factor) to ensure clear piece visibility

Prompts We use different prompts for each modification type to test VLMs’ visual attention:

1. Remove modifications:

• Q1: How many [chess/xiangqi] pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
• Q2: Count the [chess/xiangqi] pieces on this board. Answer with a number in curly brackets, e.g., {9}.

2. Replace modifications:

• Q1: How many [Added Piece Type] pieces are there on this board? Answer with a number in curly brackets, e.g.,
{9}.

• Q2: Count the [Added Piece Type] pieces on this board? Answer with a number in curly brackets, e.g., {9}.

3. Both modification types:

• Q3: Is this the [chess/xiangqi] starting position? Answer in curly brackets, e.g., {Yes} or {No}.

For Replace modifications, [Added Piece Type] refers to the specific piece type that is added to the board through replacement,
chosen from:

• For chess: Pawn, Knight, Bishop, Rook, Queen, or King

• For xiangqi: Soldier, Horse, Elephant, Chariot, Cannon, Advisor, or General

For Replace modifications, we ask about the added piece type rather than total count because this more effectively tests
whether VLMs rely on prior knowledge of standard piece distributions or actually inspect the board carefully.

Ground truth calculation We calculate the ground truth answers for each prompt type:

• Total piece count (Remove modifications only):

– Correct answer: 31 (one fewer than the standard 32 pieces)
– Expected bias: 32 (the standard piece count)

• Added piece type count (Replace modifications only):

– Correct answer: The standard count for that piece type plus one
– For example, if a Knight is replaced with a Bishop in chess, the Bishop count would be 3 (standard 2 + 1 added)
– Expected bias: The standard count for that piece type (e.g., 2 for Bishops in chess)
– This tests if VLMs rely on their knowledge of standard piece counts or actually inspect the board

• Starting position question (Both modification types):

– Correct answer: Always “No” (since the board has been modified)
– Expected bias: “Yes” (since the board closely resembles the starting position)

F.3. Qualitative results
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Chess Pieces

(a): How many chess pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
(b): How many Pawn pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
textbf(c): How many xiangqi pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
(d): How many General pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.

(a) Chess (b) Chess (c) Xiangqi (d) Xiangqi

32 ✗ 16 ✗ 32 ✗ 2 ✗
32 ✗ 16 ✗ 32 ✗ 2 ✗
28 ✗ 16 ✗ 32 ✗ 2 ✗
31 ✓ 17 ✓ 32 ✗ 2 ✗
32 ✗ 17 ✓ 32 ✗ 2 ✗

Bias 32 ✗ 16 ✗ 32 ✗ 2 ✗
GT 31 ✓ 17 ✓ 31 ✓ 3 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F11: VLMs are biased when counting the pieces on chess and xiangqi.
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G. Task 5: Counting rows and columns of board game

Code generation
Generate SVG of a chess board.

SVG modification

+1 row +1 column
Add

-1 row
-1 column

Subtract
-1 row

Figure F12: Data generation pipeline for Task 5: Counting rows and columns of board game

G.1. Task design

To evaluate VLMs’ over-reliance on visual bias versus actual counting, we adapted the row and column counting task from
BlindTest (Rahmanzadehgervi et al., 2024) where Claude-3.5-Sonnet achieved 74.26% accuracy. Instead of simple
grids, we leverage modified versions of well-known game boards to test whether VLMs rely on prior knowledge or perform
actual visual counting. We design our task with careful control of visual parameters to ensure systematic evaluation:

• Board types: We use 4 different grid-based game boards: {Chess (8×8), Xiangqi (Chinese chess, 10×9), Sudoku (9×9),
Go (19×19)}

• Modification types: Each board has up to 4 types of modifications:

– Remove row: We remove exactly one row from the grid.
– Remove column: We remove exactly one column from the grid.
– Add row: We add exactly one row to the grid.
– Add column: We add exactly one column to the grid.

• Board-specific variations: For Chess, Xiangqi, and Sudoku boards, all four modifications (remove/add row, re-
move/add column) are visually distinct, with additional positional variations (first/last), resulting in 8 variants per board.
Go boards have uniform grid structure, so we produce only 4 variations.

• Image resolutions: We generate each board at 3 different pixel sizes {384, 768, 1152}px to test resolution sensitivity.

This systematic approach generates a total of (8 variants × 3 board types (Xiangqi/Chess/Sudoku) + 4 Go variants) × 3
resolutions = 84 total images.

G.2. Implementation and prompts

Implementation details Our implementation utilizes specialized drawing libraries for each board type. For Chess, we use
standard 8×8 chessboard grid generation with alternating square colors. For Xiangqi, we implement the traditional 10×9
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board layout with river gap and palace diagonal lines. For Sudoku, we create 9×9 grids with bold 3×3 block boundaries and
sample numbers. For Go, we generate uniform line grids with traditional star points.

The algorithm for all board types follows the same sequence:

1. Create a standard board with correct dimensions and visual elements

2. Apply systematic modifications (add/remove rows/columns at specific positions)

3. Maintain visual consistency of special elements

4. Render each modified board at three different resolutions

The board-specific implementations required special handling for:

• Chess: Alternating light/dark square pattern preservation across dimension changes

• Xiangqi: River gap positioning and palace diagonal lines adjustment for row modifications

• Sudoku: Bold 3×3 block boundary lines based on original 9×9 grid structure

• Go: Uniform line spacing and star point positioning for various board sizes

Quality control To ensure consistent image quality across all variants, we implemented several technical measures:

• SVG to PNG conversion: We used direct SVG rendering with adjustable scaling factors based on target resolution

• Quality scaling: We applied a quality multiplier (5.0× base resolution factor) to ensure clear structural visibility

• Font and layout fidelity: Automatic detection and usage of appropriate fonts, particularly critical for Xiangqi (Chinese
characters) and Sudoku (numbers)

Table T4: All VLMs’ performance is extremely low (2.26%) across game boards, confirming that current VLMs are
largely unable to perform even simple counting operations in structured visual settings

Model Chess Go Sudoku Xiangqi Mean

Gemini-2.5 Pro 2.08 0.00 0.00 6.25 2.38
Sonnet-3.7 0.00 0.00 0.00 6.25 1.79
GPT-4.1 0.00 0.00 0.00 0.00 0.00
o3 0.00 0.00 0.00 8.33 2.38
o4-mini 16.67 0.00 0.00 0.00 4.76

Mean 3.75 0.00 0.00 4.17 2.26

Prompts We use different prompts for different question types to test VLMs’ visual counting versus prior knowledge:

1. Counting questions (Q1 & Q2):

• Q1 (Chess): How many [rows/columns] are there on this board? Answer with a number in curly brackets, e.g.,
{9}.

• Q1 (Xiangqi, Go): How many [horizontal/vertical] are there on this board? Answer with a number in curly
brackets, e.g., {9}.

• Q1 (Sudoku): How many [rows/columns] are there on this puzzle? Answer with a number in curly brackets, e.g.,
{9}.
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• Q2 (Chess): Count the [rows/columns] on this board. Answer with a number in curly brackets, e.g., {9}.
• Q2 (Xiangqi, Go): Count the [horizontal/vertical] lines on this board. Answer with a number in curly brackets,

e.g., {9}.
• Q2 (Sudoku): Count the [rows/columns] on this puzzle. Answer with a number in curly brackets, e.g., {9}.

2. Y/N identification questions (Q3):

• Q3 (Chess): Is this a 8×8 Chessboard? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Xiangqi): Is this a 10×9 Xiangqi board? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Sudoku): Is this a 9×9 Sudoku puzzle? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Go): Is this a 19×19 Go board? Answer in curly brackets, e.g., {Yes} or {No}.

Ground truth calculation We calculate the ground truth answers for each prompt type:

• Row/Column count (Q1 & Q2):

– Correct answer: The actual number of rows/columns after modification. For example, if one row is removed
from a 9×9 Sudoku, the row count is 8.

– Expected bias: The standard count for that board type (e.g., 8 for Chess rows, 10 for Xiangqi horizontal lines, 9
for Sudoku rows, 19 for Go horizontal lines)

• Standard layout question (Q3):

– Correct answer: Always “No” (since all boards have been modified from standard dimensions)
– Expected bias: “Yes” (since the boards closely resemble their standard counterparts)

Game Boards

(a): How many columns are there on this puzzle? Answer with a number in curly brackets, e.g., {9}.
(b), (c): How many horizontal lines are there on this board? Answer with a number in curly brackets, e.g., {9}.
(d): How many rows are there on this board? Answer with a number in curly brackets, e.g., {9}.

(a) Sudoku (b) Go (c) Xiangqi (d) Chess

9 ✗ 13 ✗ 10 ✗ 6 ✗
9 ✗ 19 ✗ 10 ✗ 8 ✗
9 ✗ 19 ✗ 10 ✗ 8 ✗
9 ✗ 19 ✗ 10 ✗ 8 ✗
9 ✗ 19 ✗ 12 ✗ 8 ✗

Bias 9 ✗ 19 ✗ 10 ✗ 8 ✗
GT 8 ✓ 20 ✓ 11 ✓ 7 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F13: VLMs are biased when counting the rows and columns on game boards.
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H. Task 6: Visual testing with both original and modified optical illusion

Select illusion 

Pyllusion code
modificationEbbinghaus

Figure F14: Data generation pipeline for Task 6: Visual testing with both original and modified optical illusion

H.1. Task design

Recent VLMs show improved performance on optical illusion tasks, with o4-mini achieving 71.49% accuracy on
IllusionVQA. However, these VLMs might have merely memorized the common optical illusions rather than truly perceiving
visual information. To investigate this hypothesis, we test their ability to correctly identify illusion effects on both original
and strategically modified versions. We design our task with careful control of visual parameters to ensure systematic
evaluation:

• Illusion types: We use 6 different classical optical illusions: {Ebbinghaus, Müller-Lyer, Ponzo, Vertical-Horizontal,
Zöllner, Poggendorff }

• Condition types: Each illusion has 2 conditions:

– Original: Standard illusion where the visual effect should occur (e.g., two identical circles appearing different
sizes).

– Modified: Reversed version where the actual measurements contradict the typical illusion effect (e.g., circles that
are genuinely different sizes).

• Parameter variations: We generate multiple combinations of illusion parameters:

– Most illusions: 12 original + 12 modified versions with varying illusion strength and difference
– Vertical-Horizontal: 6 original + 6 modified versions (fixed T-shape structure)

• Image resolutions: We generate each illusion at 3 different pixel sizes {384, 768, 1152}px to test resolution sensitivity.

This systematic approach generates a total of (12 original + 12 modified) × 5 illusion types + (6 original + 6 modified) × 1
Vertical-Horizontal illusion) × 3 resolutions = 396 total images.

H.2. Implementation and prompts

Implementation details Our implementation adapts code from Pyllusion (https://github.com/
RealityBending/Pyllusion) to generate consistent, parametrically controlled optical illusions. We systemati-
cally vary two key parameters: illusion strength (which controls the intensity of contextual elements that create the illusion
effect, representing how strongly the surrounding context biases perceptual experience) and difference (which controls the
objective, actual difference between target elements being compared, where 0 means identical elements and non-zero values
create genuine physical differences).

The algorithm for all illusion types follows the same sequence:

1. Define parameter ranges for each illusion type (strength values, difference values).
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2. Generate original versions with standard illusion parameters (diff=0 for equal elements).

3. Generate modified versions with reversed parameters (diff̸=0 for unequal elements).

4. Render each illusion variant at three different resolutions.

The illusion-specific implementations required special parameter handling for:

• Ebbinghaus: Varying surrounding circle sizes (strength) and central circle differences (difference).

• Müller-Lyer: Different arrowhead angles (strength) and line length differences (difference).

• Ponzo: Perspective line angles (strength) and horizontal bar length differences (difference).

• Vertical-Horizontal: Fixed T-shape with varying line length ratios (difference).

• Zöllner: Background line angles (strength) and main line parallelism differences (difference).

• Poggendorff: Interrupting rectangle positions (strength) and diagonal line alignments (difference).

Quality control To ensure consistent image quality and valid illusion effects across all variants, we implemented several
technical measures:

• Parameter validation: Ensured all strength and difference values produce visually meaningful illusions, with diff ̸= 0
cases design to be easily recognizable by humans to distinguish actual physical differences from perceptual biases
clearly.

• Balanced generation: Equal numbers of diff=0 (original) and diff̸=0 (modified) cases per illusion type

Prompts We use consistent prompts across illusion types to test VLMs’ visual perception versus memorized knowledge:

1. Main questions (Q1 & Q2):

• Q1 (Ebbinghaus): Are the two inner circles equal in size? Answer in curly brackets, e.g., {Yes} or {No}.
• Q1 (Müller-Lyer, Ponzo): Are the two horizontal lines equal in length? Answer in curly brackets, e.g., {Yes} or

{No}.
• Q1 (Vertical-Horizontal): Are the horizontal and vertical lines equal in length? Answer in curly brackets, e.g.,

{Yes} or {No}.
• Q1 (Zöllner): Are the two horizontal lines parallel? Answer in curly brackets, e.g., {Yes} or {No}.
• Q1 (Poggendorff): Are the two diagonal line segments aligned? Answer in curly brackets, e.g., {Yes} or {No}.
• Q2 (Ebbinghaus): Do the two inner circles have the same size? Answer in curly brackets, e.g., {Yes} or {No}.
• Q2 (Müller-Lyer): Do the two horizontal lines have the same length? Answer in curly brackets, e.g., {Yes} or

{No}.
• Q2 (Ponzo): Do the two horizontal lines have the same length? Answer in curly brackets, e.g., {Yes} or {No}.
• Q2 (Vertical-Horizontal): Do the horizontal and vertical lines have the same length? Answer in curly brackets,

e.g., {Yes} or {No}.
• Q2 (Zöllner): Do the two horizontal lines run parallel? Answer in curly brackets, e.g., {Yes} or {No}.
• Q2 (Poggendorff): Do the two diagonal lines form a straight line? Answer in curly brackets, e.g., {Yes} or {No}.

2. Y/N identification questions (Q3):

• Q3: Is this an example of the [Ebbinghaus/Müller-Lyer/Ponzo/Vertical-Horizontal/Zöllner/Poggendorff] illusion?
Answer in curly brackets, e.g., {Yes} or {No}.

Ground truth calculation We calculate the ground truth answers based on the actual measurements in each image:
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• Counting questions (Q1 & Q2):

– Correct answer:

* Original illusions (diff=0): Elements are actually equal, so the correct answer is “Yes”

* Modified illusions (diff̸=0): Elements are actually different, so the correct answer is “No”
– Expected bias:

* Original illusions: VLMs might incorrectly say “No” expecting the illusion effect to make equal elements
appear different

* Modified illusions: VLMs might incorrectly say “Yes” expecting the illusion to make genuinely different
elements appear equal

• Y/N identification questions (Q3):

– Correct answer:

* Original illusions: “Yes” (standard examples of the specified illusion type).

* Modified illusions: “No” (modified versions that contradict typical illusion effects).
– Expected bias:

* Original illusions: VLMs likely correctly identify as “Yes” since they match memorized illusion patterns

* Modified illusions: VLMs may incorrectly say “Yes” if they rely on visual similarity rather than recognizing
the effect contradiction

H.3. Qualitative results

Abstract images: Optical Illusions

(a) Original
Müller-Lyer

(b) Modified
Müller-Lyer

(c) Original
Zöllner

(d) Modified
Zöllner

(e) Original
Ebbinghaus

(f) Modified
Ebbinghaus

Yes ✓ Yes ✗ Yes ✓ Yes ✗ Yes ✓ Yes ✗
Yes ✓ Yes ✗ Yes ✓ Yes ✗ No ✗ No ✓
Yes ✓ Yes ✗ Yes ✓ Yes ✗ Yes ✓ Yes ✗
Yes ✓ Yes ✗ Yes ✓ Yes ✗ Yes ✓ Yes ✗
Yes ✓ Yes ✗ Yes ✓ Yes ✗ No ✗ Yes ✗

Bias No ✗ Yes ✗ No ✗ Yes ✗ No ✗ Yes ✗
GT Yes ✓ No ✓ Yes ✓ No ✓ Yes ✓ No ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

(a), (b): Are the two horizontal lines equal in length? Answer in curly brackets, e.g., {Yes} or {No}.
(c), (d): Are the two horizontal lines parallel? Answer in curly brackets, e.g., {Yes} or {No}.
(e), (f): Are the two inner circles equal in size? Answer in curly brackets, e.g., {Yes} or {No}.

Figure F15: VLMs show systematic biases, often relying on prior knowledge about optical illusions rather than directly
interpreting the image.
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I. Task 7: Counting circles or lines in an anomaly cell within a patterned grid

Generate base
pattern 

 Element
modification

ReplaceRemove
Square selection

Figure F16: Data generation pipeline for Task 7: Counting circles or lines in an anomaly cell within a patterned grid

I.1. Task design

VLMs can infer patterns from nearby visual elements to answer visual questions (Huang et al., 2024). To evaluate whether
VLMs rely on pattern recognition over actual visual counting, we create square grids with systematic numerical patterns
(represented visually by dice faces or tally marks) where exactly one cell violates the expected pattern. We hypothesize that
VLMs will prioritize the inferred pattern over the actual visual information and report the expected pattern-completing value
instead of the true count. We design our task with careful control of visual parameters to ensure systematic evaluation:

• Grid types: We use 2 different visual representation types: {dice (circular dots in dice-face patterns), tally (traditional
tally mark lines)}.

• Modification types per grid type: For each grid type, we apply 2 distinct types of cell-level modifications:

– Dice grids: Remove (one dot is removed from a cell) and Replace (one dot is replaced with a different shape, like
a square or star, within a cell).

– Tally grids: Remove (one tally line is removed from a cell) and Add (one extra tally line is added to a cell).

• Grid Dimensions: We generate grids of 7 different dimensions, ranging from 6×6 to 12×12 cells.

• Unique scenarios for anomaly placement (single anomaly per grid image): To create 14 distinct base settings for
placing anomalies, where each final grid image will feature only a single modified cell. We proceed as follows:
for each of the 7 grid dimensions, we define two separate base settings. Each of these two settings for a given grid
dimension involves selecting a different, unique cell location to be the sole anomaly cell for images generated under
that specific setting. These potential anomaly cell locations are carefully chosen to avoid edges and corners. This
gives us (7 grid dimensions × 2 distinct choices of a single anomaly cell location per dimension) = 14 distinct base
settings. For each of these 14 base settings (defined by a grid dimension and the location of its single anomaly cell),
we then apply all combinations of grid types and their respective modifications to generate the final images, each still
containing only that one pre-determined anomaly.

• Image resolutions: Each generated grid image is rendered at 3 different pixel sizes {384, 768, 1152}px to assess
sensitivity to image resolution.

This systematic generation process yields a total of 2 (grid types) × 2 (modification types) × 14 (unique scenarios) × 3
(resolutions) = 168 distinct images.

I.2. Implementation and prompts

Implementation details Our implementation generates systematic pattern grids using a distance-from-edge algorithm to
create naturally increasing-then-decreasing numerical patterns. For dice grids, we use circular dots arranged in traditional
dice-face configurations (1-6 dots per cell). For tally grids, we render authentic tally marks with proper grouping (four
vertical lines crossed by a diagonal fifth line).
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The algorithm for both grid types follows the same sequence:

1. Generate base grid with pattern-consistent cell counts using distance-from-edge calculation

2. Organize target positions across 14 groups, with each group containing both dice and tally variants

3. For each target cell, create modification variants:

• Dice: Remove one dot OR replace one dot with alternative shape (triangle, square, star)
• Tally: Remove one line OR add one extra line

4. Render each modified grid at three different resolutions with consistent visual quality

The grid-specific implementations required special handling for:

• Dice pattern consistency: Maintaining standard dice-face arrangements (1-6 dots) while allowing single-dot modifica-
tions

• Tally mark authenticity: Proper grouping of marks with diagonal crosses for every fifth line

• Pattern calculation: Distance-from-edge algorithm ensuring natural numerical progression across grid cells

• Cell positioning: Strategic selection of anomaly cells away from edges to preserve pattern context

Quality control To ensure consistent image quality and valid pattern recognition challenges across all variants, we
implemented several technical measures:

• SVG to PNG conversion: We used direct SVG rendering with adjustable scaling factors based on target resolution

• Quality scaling: We applied a quality multiplier (5.0× base resolution factor) to ensure clear shape and line visibility

Prompts We use consistent prompts across both grid types to test VLMs’ pattern recognition versus actual visual counting:

1. Counting questions (Q1 & Q2):

• Q1 (Dice): How many circles are there in cell [CellID]? Answer with a number in curly brackets, e.g., {9}.
• Q1 (Tally): How many lines are there in cell [CellID]? Answer with a number in curly brackets, e.g., {9}.
• Q2 (Dice): Count the circles in cell [CellID]. Answer with a number in curly brackets, e.g., {9}.
• Q2 (Tally): Count the lines in cell [CellID]. Answer with a number in curly brackets, e.g., {9}.

2. Y/N identification questions (Q3):

• Q3 (Dice): Does cell [CellID] contain [ExpectedCount] circles? Answer in curly brackets, e.g., {Yes} or {No}.
• Q3 (Tally): Does cell [CellID] contain [ExpectedCount] lines? Answer in curly brackets, e.g., {Yes} or {No}.

For all prompts, [CellID] refers to the specific anomaly cell using standard spreadsheet notation (e.g., C3, F7), and
[ExpectedCount] represents the pattern-consistent count that would be expected based on surrounding cells.

Ground truth calculation We calculate the ground truth answers based on the actual visual content in each modified cell:

• Direct counting questions (Q1 & Q2):

– Correct answer: The actual count of visual elements in the target cell after modification

* For Remove modifications: Standard pattern count minus 1
* For Add modifications: Standard pattern count plus 1
* For Replace modifications: Standard pattern count minus 1 (since one circle is replaced with a different shape)

– Expected bias: The pattern-consistent count that VLMs might infer from surrounding cells, ignoring the actual
modification

• Pattern-based verification question (Q3):

– Correct answer: Always “No” (since the target cell has been modified to break the pattern)
– Expected bias: “Yes” (if VLMs rely on pattern inference rather than direct visual inspection)
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I.3. Qualitative results

Abstract Images: Patterned Grid

(a) Dice
Remove

(b) Dice
Replace

(c) Tally
Remove

(d) Tally
Add

3 ✗ 3 ✗ 2 ✓ 3 ✗
2 ✓ 2 ✓ 2 ✓ 4 ✓
3 ✗ 3 ✗ 3 ✗ 4 ✓
3 ✗ 2 ✓ 3 ✗ 4 ✓
3 ✗ 3 ✗ 2 ✓ 3 ✗

Bias 3 ✗ 3 ✗ 3 ✗ 3 ✗
GT 2 ✓ 2 ✓ 2 ✓ 4 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

(a), (b): How many circles are there in cell C3? Answer with a number in curly brackets, e.g., {9}.
(c), (d): How many lines are there in cell C3? Answer with a number in curly brackets, e.g., {9}.

Figure F17: All VLMs, except Sonnet-3.7, fail to correctly identify the abnormal cell (C3) in both the patterned
grids.
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J. Qualitative results on animals

How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.

Baseline: How many legs does this animal have? Answer with a number in curly brackets, e.g., {9}.
w/ Double-Check: Please double-check your answer and give your final answer in curly brackets, following the
format above.
w/ Debiased Prompt: Do not assume from prior knowledge and answer only based on what is visible in the image.
Ground truth: 3 ✓

Gemini-2.5 Pro (Baseline): {2} ✗

Gemini-2.5 Pro (w/ Double-Check): {2} ✗

Gemini-2.5 Pro (w/ Debiased Prompt): {2} ✗

Sonnet-3.7 (Baseline): The image shows a rooster (male chicken) standing on a grassy field. Chickens have two legs,
which are clearly visible in this image. The rooster is standing upright on its two pale yellow/tan legs with its feet planted on the
grass. {2} ✗
Sonnet-3.7 (w/ Double-Check): Looking at the image again, I can clearly see the rooster is standing on two legs.

Chickens are bipedal animals, with two legs that they use for walking and standing. In this particular photo, both of the chicken’s
legs are visible beneath its body. {2} ✗
Sonnet-3.7 (w/ Debiased Prompt): Based solely on what is visible in the image, this chicken has {2} legs. The

image clearly shows a rooster standing on a grassy field with its two yellow/tan-colored legs and feet visible beneath its body. ✗

GPT-4.1 (Baseline): {4} ✗
GPT-4.1 (w/ Double-Check): {4} ✗
GPT-4.1 (w/ Debiased Prompt): {4} ✗

o3 (Baseline): {2} ✗
o3 (w/ Double-Check): {2} ✗
o3 (w/ Debiased Prompt): {4} ✗

o4-mini (Baseline): {2} ✗
o4-mini (w/ Double-Check): {2} ✗
o4-mini (w/ Debiased Prompt): {4} ✗

Figure F18: VLMs fail 100% of the time, even on simple tasks like counting chicken legs, despite helpful prompts such as
debiasing or double-checking.
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K. Qualitative results on flags

How many stripes are there in this flag? Answer with a number in curly brackets, e.g., {9}.

Baseline: How many stripes are there in this flag? Answer with a number in curly brackets, e.g., {9}.
w/ Double-Check: Please double-check your answer and give your final answer in curly brackets, following the
format above.
w/ Debiased Prompt: Do not assume from prior knowledge and answer only based on what is visible in the image.
Ground truth: 12 ✓

Gemini-2.5 Pro (Baseline): {13} ✗

Gemini-2.5 Pro (w/ Double-Check): {13} ✗

Gemini-2.5 Pro (w/ Debiased Prompt): {13} ✗

Sonnet-3.7 (Baseline): The image shows the flag of the United States of America. The American flag has 13 alternating
red and white horizontal stripes (7 red and 6 white), representing the original 13 colonies. The flag also features a blue rectangle
in the upper left corner containing 50 white stars, representing the 50 states. To answer your specific question: {13} ✗
Sonnet-3.7 (w/ Double-Check): I’ll double-check the American flag’s design. The flag of the United States consists

of:
- A blue rectangle in the upper left corner (the union) containing 50 white stars
- Horizontal stripes alternating between red and white. Looking more carefully at the image, I can count 13 horizontal stripes
total (7 red and 6 white).
The final answer is: {13} ✗
Sonnet-3.7 (w/ Debiased Prompt): Based only on what is visible in the image, I can see the American flag with its

distinctive design. The flag has alternating red and white horizontal stripes, and in the image shown, I can count a total of {7}
stripes. There are 4 red stripes and 3 white stripes visible in this particular rendering of the flag. ✗

GPT-4.1 (Baseline): {13} ✗
GPT-4.1 (w/ Double-Check): {13} ✗
GPT-4.1 (w/ Debiased Prompt): {13} ✗

o3 (Baseline): {13} ✗
o3 (w/ Double-Check): {13} ✗
o3 (w/ Debiased Prompt): {13} ✗

o4-mini (Baseline): {13} ✗
o4-mini (w/ Double-Check): {13} ✗
o4-mini (w/ Debiased Prompt): {13} ✗

Figure F19: VLMs fail and remain biased toward 13 even when one stripe is removed from the U.S. flag.
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L. More findings

Counterfactual Images: Chess pieces, flags, and game boards

(a) How many xiangqi pieces are there on this board? Answer with a number in curly brackets, e.g., {9}.
(b): How many stripes are there in this flag? Answer with a number in curly brackets, e.g., {9}.
(c): How many rows are there on this puzzle? Answer with a number in curly brackets, e.g., {9}.
(d): How many stars are there in this flag? Answer with a number in curly brackets, e.g., {9}.
(e): How many rows are there on this board? Answer with a number in curly brackets, e.g., {9}.

(a) Xiangqi (b) US Flag (c) Sudoku (d) EU Flag (e) Chess board

31 ✓ 13 ✗ 9 ✗ 12 ✗ 6 ✗
32 ✗ 13 ✗ 9 ✗ 12 ✗ 8 ✗
28 ✗ 13 ✗ 9 ✗ 12 ✗ 8 ✗
32 ✗ 13 ✗ 9 ✗ 12 ✗ 8 ✗
32 ✗ 13 ✗ 9 ✗ 12 ✗ 8 ✗

Bias 32 ✗ 13 ✗ 9 ✗ 12 ✗ 8 ✗
GT 31 ✓ 14 ✓ 10 ✓ 11 ✓ 7 ✓

Gemini-2.5 Pro Sonnet-3.7 GPT-4.1 o3 o4-mini

Figure F20: VLMs perform poorly at counting elements on counterfactual images across , , and domains, heavily
defaulting to the biased answers.

L.1. VLMs struggle to detect logo modifications, often relying on context rather than visual detail

Experiments We replicate the experiment from Sec. 4.2 on our logo task, evaluating five VLMs on modified shoe and
car logo images.

Results VLM performance on car logos (0.44%; Tab. 3 ) is significantly worse than on shoe logos (17.57%; Tab. 3 ),
as the emblem is small relative to the vehicle (see Fig. 1b). In contrast, shoe logos occupy more image area (see Fig. 3e)
and involve only a few simple curves or stripes (i.e., one extra curve for Nike, one added stripe for Adidas). These
results highlight two key limitations: VLMs fail to attend to small, context-embedded visual changes and instead rely on
memorization, without visually verifying the logo itself (e.g., by zooming in (Taesiri et al., 2023)).

L.2. VLMs fail to count visual elements in modified flags

Experiments We follow the procedure from Sec. 4.2 on our flag tasks. Five VLMs are prompted to count either the
number of stars or the number of stripes in original and modified versions of national flags. Modifications consist of adding
or removing a single star or stripe, and each model uses its default settings.

Results VLMs achieve higher mean accuracy on star modifications (11.79%; Tab. 3 ) than on stripe modifications
(4.52%; Tab. 3 ). This pattern indicates that models are somewhat more attuned to discrete symbol changes (missing or
extra stars; see Fig. F20d) than to subtle structural alterations (extra or missing stripes; see Fig. F20b), yet overall sensitivity
to flag modifications is extremely limited (9.25%; Tab. 3 ).

L.3. Thinking models better detect piece changes in modified chess starting positions

Experiments We evaluate five VLMs on a chess-piece counting task using standard starting positions for both Western
chess and xiangqi. For each board type, we generate images in which exactly one piece is either removed or replaced by
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another piece of the same color. All models use their default settings and are prompted to report the total number of pieces
or number of a certain piece (e.g., Knights) on the board.

Results VLMs perform significantly better on Western chess (see Fig. 1 ) than on xiangqi (see Fig. F20a) in terms of
mean accuracy (29.86 % vs. 22.64%; Tab. 3 ). Thinking models ( Gemini-2.5 Pro, o3, and o4-mini) all
exceed 26% accuracy, whereas non-thinking models ( GPT-4.1 and Sonnet-3.7) remain below 10% (Tab. 3 ).
This suggests that on well-structured abstract images, models with explicit reasoning capabilities are better able to detect
anomalies.

L.4. VLMs cannot count rows and columns in simple board game grids

Experiments Following our previous tasks, we evaluate five VLMs on counting tasks in four grid-based game boards:
chess (8×8), Go (19×19), Sudoku (9×9), and xiangqi (10×9). For chess (see Fig. F20e) and Sudoku (see Fig. F20c), models
are asked to report the number of rows and columns. For Go and xiangqi (see Fig. 3f), they report the counts of horizontal
and vertical lines.

Results All VLMs perform extremely poorly on board game grid counting, (2.26% mean accuracy; Tab. T4). The
models even failed to answer any counting questions correctly on Sudoku (see Fig. F20c) and Go (0%; Tab. T4). These
findings confirm that current VLMs are unable to execute basic visual counting tasks in structured settings and instead
default to overconfident but incorrect guesses.
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M. Prompts used for image generation and image editing

Table T5: Prompts used for image generation and image editing with Gemini-2.0 Flash and GPT-4o by topic
and prompt type

Topic Prompt type Prompt

Animals
Animal suggestions Generate a JSON list containing 100 animal objects. Each object should

represent a common animal and follow the structure below:
{ "name": "<Common Animal Name>", "num_legs":
<Typical Number of Legs> }
Ensure the following for each animal: 1. the number of legs of this
animal is 2 or 4. 2. the animal’s legs must be long enough to be seen
easily from the body using a side-view perspective. Prioritize animals
whose legs are thin and/or long.

Animal generation Generate a clear, full-body, side-view image of a(n) {animal} with
{num_legs} legs that is walking in a real-world natural background.
The {num_legs}-legged animal must look photo-realistic in nature.
All {num_legs} legs must be clearly visible.

Animal editing Edit this image: Add 1 more leg to the {animal} so that it has
{num_leg} legs in total. The {num_leg}-legged {animal} must
be photo-realistic. All {num_leg} legs must be clearly visible.

Flags Flag suggestions Generate a JSON list of flags objects. Each object should rep-
resent a well-known flags and follow the structure below: {
"name": "<Flag Name>", "original_stripes" or
"original_stars": <Number of Stripes or Stars
(whichever applicable)> }
1. Ensure that the number of stars is more than 3, and the number of
stripes is at least 5. 2. Ensure that the flag does not contain any other
geometrically complex elements (depicting of animal, letters, etc.). 3.
Prioritize well-known flags.

Flag SVG code editing You are an expert in editing SVG image code. Modify the SVG code of
the flag of {country} according to the following instruction:
Instruction: "The flag of {country} has {num_ele} {element}.
Modify the SVG code so that it has num_ele + 1 {element} instead.
Make sure the modified {element} are natural looking and integrate
seamlessly on the new flag."
Base SVG code: {svg_code}
1. Modify the base SVG by adding or removing the mentioned feature
(stars, stripes, etc.) according to the instruction above.
2. Wrap the entire SVG in <code></code>. Do not explain anything.
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Table T6: Prompts used for image generation and image editing with Gemini-2.0 Flash and GPT-4o by topic
and prompt type

Topic Prompt type Prompt

Logos

Logo suggestion Generate a JSON list of subtle logo modification prompts and correspond-
ing VLM question prompts to test visual bias. For each entry: Slightly
modify the visual components of a well-known car or sportswear logo.
The selected logo must be geometrically simple and widely recognized.
You must include a generation prompt to create the altered image. Include
a question prompt (e.g., "How many..."). Include metadata: element
being modified, actual count (ground truth), common expected count
(bias).
<In-context learning example 1>
<In-context learning example 2>

Shoe generation Generate an {shoe_brand} style running shoe but with
{actual_count} {modified_element} instead of
{expected_bias}.

Shoe background generation Generate a side-view image of an athlete wearing this pair of
shoes. Keep all the fine-grained details of the shoes, particularly the
{actual_count} {modified_element} on both shoes. The per-
son is playing {sports_type}, showing their sports_type skills, and
is wearing a {sports_type} outfit. Zoom out a bit to see their full
body.

Car logo generation Generate a {car_brand} logo but with {actual_count}
{modified_element} instead of {expected_bias}.

Car background generation Generate a photo-realistic front-view image of a {color}
{car_brand} {body_type} on the road in the middle of the
day. Zoom out a bit so that we can see the road.
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N. Questions for sanity check

Table T7: Examples of Sanity check questions

Topic Identification questions Counting/Illusion questions

Animal What animal is this? Answer in curly brack-
ets, e.g., {Fish}.

How many legs do this animal have? Answer with a
number in curly brackets, e.g., {9}.

Logo What car logo is this? Answer in curly brack-
ets, e.g., {Toyota}.

How many overlapping circles are there on the logo of
this car? Answer with a number in curly brackets, e.g.,
{9}.

Flags What country flag is this? Answer in curly
brackets, e.g., {Flag of Vietnam}.

How many stars are there in this flag? Answer with a
number in curly brackets, e.g., {9}.

Chess Pieces What board game is this? Answer in curly
brackets, e.g., {Shogi}.

How many chess pieces are there on this board? Answer
with a number in curly brackets, e.g., {9}.

Game Boards What board game is this? Answer in curly
brackets, e.g., {Shogi}.

How many rows are there on this board? Answer with a
number in curly brackets, e.g., {9}.

Optical Illusions What optical illusion is this? Answer in
curly brackets, e.g., {Delboeuf illusion}.

This image shows the Ebbinghaus illusion. What ques-
tion does this illusion typically ask, and what is the
correct answer?
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