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Abstract
Large Language Models (LLMs) have recently enabled natural lan-
guage interfaces that translate user queries into executable SQL,
offering a powerful solution for non-technical stakeholders to ac-
cess structured data. However, one of the limitation that LLMs do
not natively express uncertainty makes it difficult to assess the reli-
ability of their generated queries. This paper presents a case study
that evaluates multiple approaches to estimate confidence scores
for LLM-generated SQL in supply chain data retrieval. We inves-
tigated three strategies: (1) translation-based consistency checks;
(2) embedding-based semantic similarity between user questions
and generated SQL; and (3) self-reported confidence scores directly
produced by the LLM. Our findings reveal that LLMs are often over-
confident in their own outputs, which limits the effectiveness of
self-reported confidence. In contrast, embedding-based similarity
methods demonstrate strong discriminative power in identifying
inaccurate SQL.
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1 Introduction
Supply chain analysis frequently requires querying large-scale
databases to extract insights related to inventory, demand trends,
logistics, and supplier performance. Recent advances in Large Lan-
guage Models (LLMs) have enabled natural language interfaces that
allow non-technical users to pose complex questions and receive
SQL queries to query databases automatically. While this repre-
sents a significant leap in usability and accessibility, it introduces a
critical challenge: trust. In the supply chain context, user queries
often involve intricate constraints and domain-specific semantics.
For example, a question like “Which supplier had the fastest aver-
age delivery time for Category X items in the past year?” requires
reasoning and accurate mapping to structured schema elements.
LLMs operating in this setting must translate natural language
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into syntactically valid and semantically precise SQL. These chal-
lenges are compounded by the dynamic nature of supply chain
databases, where schema variations or out-of-scope queries (e.g.,
asking for metrics not tracked) are common. Errors in generated
SQL or misinterpretation of user intent can result in significant
business costs, underscoring the importance of robust reliability
mechanisms [10]. To mitigate this risk, systems must be able to
estimate and communicate confidence in their outputs. Confidence
estimation enables selective deployment: the model may choose to
present results only when sufficiently confident and defer uncertain
queries for human verification. This could reduce the likelihood
of misinformation. This paper investigates the novel and practical
challenge of estimating confidence for LLM-generated SQL queries
in the context of supply chain data extraction. We evaluated three
strategies for confidence scoring:

(1) Translation-based consistency checks, where SQL is re-
expressed in natural language and compared to the original
question;

(2) Embedding-based semantic similarity, which measures
the alignment between the user question and the generated
question;

(3) Self-reported confidence, where the LLM assigns its own
certainty score during or after generation.

Our goal is to assess the effectiveness of these approaches in
identifying unreliable queries and to informmore trustworthy LLM-
driven data access systems in supply chain environments.

2 Methodology
In this section, we first explain the baseline Text-to-SQL system
we used and the evaluation method of the in-distribution text-to-
SQL accuracy, and then describe three strategies for estimating
confidence in LLM-generated SQL queries, along with relevant
supporting literature. We assume an LLM-based text-to-SQL system
that takes a user’s natural language question as input and produces
an SQL query for a supply chain database. The strategies are applied
on top of the base system without altering the underlying LLM
answer.

2.1 Baseline Text-to-SQL System Simulation
To support accurate SQL generation and evaluation, we first con-
structed a synthetic question bank by prompting a large language
model to generate domain-specific business question templates
spanning key supply chain functions such as inventory manage-
ment, order tracking, demand trends, and supplier performance.
Each question is paired with a reference SQL query, accompanying
reasoning steps, and verified execution results. All the data is re-
viewed by domain experts to ensure accuracy. As shown in Table 1,
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this high-fidelity dataset serves as a reference for SQL generation
and trusted ground truth for evaluating text-to-SQL performance.

To improve SQL generation accuracy, our baseline system adopts
a retrieval-augmented generation (RAG) framework, which has
been shown to significantly enhance factual correctness and re-
sponse quality in LLM outputs [2, 9]. Given a customer query, the
system first performs entity extraction to identify relevant supply
chain concepts (e.g., product ID, Order ID). The These sentence-
level embedding model is used to extract entities, the most relevant
database schema and a set of five semantically similar example
questions from the synthetic question bank. The retrieved schema
and question-SQL pairs are provided as contextual prompts to the
large language model. This targeted retrieval ensures the model is
guided by structurally and semantically aligned examples, promot-
ing syntactic correctness, schema consistency, and domain fidelity
in the generated SQL.

2.2 Evaluation Method
To evaluate the model’s performance and simulate realistic variabil-
ity, we generated an evaluation dataset by introducing controlled
paraphrasing and context variation. Specifically, for each original
customer question in the question bank, we used an LLM to gener-
ate semantically equivalent rephrasings by altering word choices
and entity references [6, 8]. For example, the question “What’s the
sales order of Apple_1 in the last week?” may yield variants like
“Could you tell me the sales order of Olive_3 over the last 7 days?”.
This paraphrasing protocol introduces linguistic and contextual
diversity while preserving the original intent, thereby testing the
model’s generalization to in-distribution examples with increased
surface-level complexity [3]. It reflects real-world variability in
how business users may phrase similar questions. We define in-
distribution accuracy as the proportion of evaluation queries for
which the LLM-generated SQL query yields the correct result upon
execution—i.e., when the output of the generated query matches
the ground truth label 𝑌 . This reflects whether the generated SQL
is both syntactically correct and semantically aligned with the in-
put question. To assess the utility of different confidence scoring
strategies, we report the Area Under the Receiver Operating Char-
acteristic Curve (AUROC). AUROC evaluates the model’s ability to
discriminate between correct and incorrect SQL predictions based
on their associated confidence scores [5]. Intuitively, it measures
the probability that a randomly chosen correct prediction is as-
signed a higher confidence score than a randomly chosen incorrect
one. A perfectly calibrated scoring system yields an AUROC of 1.0,
indicating flawless ranking. In contrast, an AUROC of 0.5 implies
that the confidence scores are no better than random guessing.

The AUROC is defined as:

AUROC =
1

|P | |N |
∑︁

𝑥𝑝 ∈P

∑︁
𝑥𝑛∈N

𝐼 (·)
(
𝑆 (𝑥𝑝 ) > 𝑆 (𝑥𝑛)

)
𝑆 (𝑥) denotes the confidence score assigned to input 𝑥 , and P and

N represent the sets of positive (correct) and negative (incorrect)
examples. 𝐼 (·) is the indicator function, returning 1 if the argument
is true and 0 otherwise.

2.3 Confidence Scoring Method
LLM-Generated Confidence. Large Language Models (LLMs) can

be prompted to articulate or quantify their confidence, either di-
rectly within a single response or through a follow-up query. The
self-probing approach was introduced first by Kadavath et al. [7].
After generating an answer, the model is asked a binary question
such as “Is the previous answer correct?” The predicted probabil-
ity of a positive response serves as a proxy of confidence. This
method demonstrated up to 30% improvement in identifying in-
correct answers compared to relying solely on raw token prob-
abilities. Subsequent studies have built on the concept showing
that prompting the model to first explain its reasoning and then
report a numerical confidence score led to better-calibrated “pre-
dictions” ( Tian et al. [11]). The experiments indicated that the
model’s self-reported confidence was more closely aligned with
actual correctness than its conditional likelihood, outperforming
log-probability-based by approximately 50% in calibration metrics
across question-answering tasks. These findings underscore the
potential of prompting strategies for eliciting reliable confidence
estimates from LLMs.

Translation-based Consistency Check. This approach leverages
the intuition that if the SQL truly captures the user’s intent, its
natural language rendition should semantically match the input
question. A self-validation framework called CycleSQL was pre-
sented to implement the translation-based consistency check idea
Fan et al. [4]. In this approach, after an LLM generates a SQL query,
the system executes the query and translates the results back into
natural language, essentially producing an answer explanation.
It then uses a textual entailment model to compare the natural
language explanation with the original question, treating it as a
premise-hypothesis pair for natural language inference. If the ex-
planation does not entail the question (indicating a discrepancy in
semantics), the SQL is flagged as wrong and the model attempts to
refine it. This round-trip verification process significantly boosts
accuracy on benchmarks, as the model catches subtle errors where
the SQL, though syntactically valid, fails to answer the questions.

Embedding Similarity Approach. Another approach is using em-
beddings to find if a new input question is semantically similar to
some known questions with verified answers. If a closely similar
question has appeared before in the question bank with verified
answer, one can infer that the LLM’s answer to the new question
is more likely correct. Conversely, if the question is unlike any-
thing seen before, the model’s output should be treated with lower
confidence. This technique has been observed in real-world de-
ployments of QA systems to improve consistency. For instance, an
LLM-augmented search application might remember that it cor-
rectly answered “How many passengers fit in a Boeing 747? before,
so when a semantically equivalent question “What is the seating
capacity of a 747 jumbo jet? is asked, the model’s answer can be
cross-checked against the previous answer for agreement. If they
align, the confidence in the answer increases; if not, it may indicate
uncertainty. Such semantic caching exploits question-to-question
similarity to avoid repeat mistakes and to provide calibrated confi-
dence based on prior successes.
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Table 1: Example entry from the synthetic question bank used to evaluate SQL generation

Customer Question What is the total quantity of Apple_1 ordered?

Context { ‘entities’: [{ ‘table’: ‘product’, ‘id’: ‘Apple_1’, ‘description’: ‘Apple’ }, { ‘topic’:
‘inbound_order_line’ }] }

Reasoning Based on the input question and context:
- Apple_1 refers to a product ID in the product table.
- This ID is used to filter the orders table.
- The goal is to sum the quantity for this product.

SQL (SQLite) SELECT SUM(quantity) FROM orders WHERE product_ID = ‘Apple_1’

Execution Result [(40,)]

3 Experiments
In this section, we present the experimental setup and confidence
score accuracy results obtained. The experiments were designed to
evaluate the effectiveness of our proposed confidence estimation
strategies within a controlled, privacy-preserving environment.
These strategies were integrated into our base SQL generation
system to assess their applicability and performance.

3.1 Experimental Setup
To ensure the customer data privacy, we demonstrated our method
evaluation using a synthetic dataset that we generated. The syn-
thetic dataset consisting of 988 supply chain related questions [12].
There are 731 simpler questions and 257 complex business questions.
Simpler questions typically map to SQL queries with a well-defined
and consistent structure. For example, the question “What’s the
total quantity of item X sold yesterday?” corresponds to a straight-
forward aggregation query with minimal variation. In contrast,
business questions often involve domain-specific terminology and
admit multiple valid SQL formulations. Consider the question “How
many sites have stock-out risk for item Y?” The term “stock-out risk”
is a supply chain concept with a fixed SQL definition, typically
derived from business logic. Such queries increase semantic ambi-
guity and structural variability, posing greater challenges for SQL
generation systems. All experiments were conducted using Claude
Sonnet 3, the most advanced model available at the time of ex-
perimentation, accessed through Amazon Bedrock API [1] with
default hyperparameter settings. The same model was used for
both SQL generation and downstream confidence estimation tasks.
Unless otherwise stated, no fine-tuning or task-specific training
was performed.

Our evaluation comprises three stages, each exploring a different
approach to confidence score generation for LLM-produced SQL
queries.

Stage 1: Prompt-Based Self-Reported Confidence. In the first stage,
we evaluated the ability of the LLM to self-report its confidence in
the generated SQL query. We experimented with multiple prompt-
ing strategies to elicit confidence scores in binary (e.g., True or
False) and scalar (e.g., score 0-100) formats. Details of the prompt
templates used are provided in Table 2. This setup assesses whether
the model’s self-assessed confidence aligns with actual correctness.

Table 2: Prompt strategies for eliciting self-reported confi-
dence scores from the LLM

Prompt Strategy Prompt Template

Subtracting from 100 Aim for a wide distribution of scores that
accurately reflects the varying levels of
confidence you have in the generated SQL.

Money Betting Aim to place bets that accurately reflect
your true confidence in the generated SQL,
as if real money were at stake.

SQL Component
Weighting

Calculate the overall confidence score by
taking the weighted average of the compo-
nent scores, with weights determined by
the importance of each component in the
given context.

Straight Instructions After generating the SQL query, please
take a moment to critically analyze your
output and generate your own confidence
score, between 0 and 100, about the gener-
ated SQL.

Binary Classification Generate the binary judgment of “con-
fident” or “not confident”; explain why
you gave that classification within the
<conf_reason>...</conf_reason>
XML tags.

Stage 2: Translation-Based Consistency Scoring. In the second
stage, we implemented the translation-based validation framework.
For each LLM-generated SQL query, we prompt a second LLM
to generate a natural language question that the SQL is likely to
answer, given the SQL statement, reasoning trace, and execution
result. The inferred question is then compared to the original input
question using a third LLM acting as a natural language judge. If
the inferred question is semantically equivalent to the original, the
SQL is considered high-confidence.

Stage 3: Embedding-Based Similarity Scoring. In the third stage,
we adopted an embedding-based approach to estimate confidence
through semantic alignment. Specifically, we compute the cosine
similarity between the input customer question and the five se-
mantically relevant examples retrieved from the question bank for
in-context learning. The average similarity score across these five
examples is used as the confidence estimate for the generated SQL
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query. This method assumes that if the target question closely re-
sembles high-quality examples, the model is more likely to produce
reliable SQL.

3.2 Results
Stage 1. As shown in Table 3, the binary classification prompt

strategy achieved the highest AUROC among all evaluated methods,
outperforming direct scalar score generation approaches. However,
the overall performance across all strategies remains close to the 0.5
threshold, indicating limited discriminative power. While analyz-
ing the mismatch between confidence scores and actual accuracy,
we observed that the LLM tends to assign consistently high confi-
dence scores—often above 0.9—to its own generated SQL queries,
particularly for simpler questions. This suggests that the model’s
self-reported confidence scores are poorly calibrated and often over-
confident—offering little improvement over random guessing in
identifying correct versus incorrect SQL outputs.

Table 3: AUROC performance of different prompt strategies
for self-reported confidence estimation in stage 1

Prompt Strategy AUROC

Subtracting from 100 0.544
Money Betting 0.509
SQL Component Weighting 0.481
Straight Instructions 0.523
Binary Classification 0.553

Table 3 shows the classification prompt strategy will provide
better AUROC than direct score generation. Overall, the results
show that it’s over-confident for this method. All of the AUROC
are near 0.5 borderline, meaning the confidence score is not much
better than a random guess.

Stage 2. Table 4 presents the distribution of confident versus
non-confident predictions across accurate and inaccurate SQL gen-
erations. The binary confidence classifier achieved an AUROC of
0.524, indicating performance only marginally better than random
chance. These results suggest that the strategy remains overconfi-
dent and its confidence scores fail to reliably distinguish between
correct and incorrect SQL outputs. The translation-based approach
demonstrated lower performance on complex questions, particu-
larly due to hallucinations around domain-specific terminology.
For instance, the LLM often translates the term "quantity" as "vol-
ume" during SQL interpretation. While both terms can imply a
numerical measure in general language, they carry distinct mean-
ings in the supply chain domain: quantity typically refers to the
number of units ordered, whereas volume refers to the physical
size or space occupied by the items. This kind of domain-specific
ambiguity in natural language is difficult for the model to detect
and disambiguate, often resulting in overconfident yet incorrect
SQL generation.

Stage 3. The similarity-based confidence score achieved an AU-
ROC of 0.57 across both simple questions and complex questions,
the highest among all methods evaluated. Figure 1 illustrates the
relationship between SQL execution accuracy, return rate (i.e., the

Table 4: Confusion matrix of binary confidence classification
vs. actual SQL correctness in stage 2

Confidence Accuracy Confident Non-Confident

Accurate 754 12
Non-Accurate 208 14

proportion of queries with confidence above a given threshold), and
average confidence score for simple questions. Figure 2 presents
the same analysis for complex business questions.

Both figures reveal a clear pattern: when the confidence score
exceeds a specific threshold, empirically observed around 0.85, the
majority of generated SQL queries attain significantly higher exe-
cution accuracy. This indicates that the similarity score serves as a
reliable proxy for SQL correctness and can effectively be used to
filter out low-confidence outputs, thereby improving the overall
trustworthiness of the system.

Figure 1: Simple Questions: Accuracy and Returning Rate by
Confidence Level

Figure 2: Complex Questions: Accuracy and Returning Rate
by Confidence Level

4 Dicussion
In this study, we evaluated three distinct approaches for estimating
confidence levels in LLM-generated SQL queries: (1) self-reported
scores via direct prompting, (2) translation-based consistency checks,
and (3) embedding-based similarity scoring.
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Our experimental results reveal a consistent trend: large lan-
guage models tend to be overconfident in the SQL generation to
extract supply chain data, regardless of the prompting strategy
employed. Among the self-assessment methods, the binary clas-
sification prompt outperformed scalar score generation, though
still with limited discriminative ability. In contrast, the embedding-
based similarity score demonstrated the stronger correlation with
SQL correctness, achieving the higher AUROC and showing clear
utility in separating high-quality from low-quality generations.

As a practical insight for real-world deployment, we find that
the similarity score offers a promising mechanism for thresholding
LLM outputs—particularly in complex supply chain data extraction
scenarios, where schema diversity and business logic can increase
error risk. By filtering out low-confidence queries based on semantic
alignment, systems can significantly improve overall reliability and
user trust.

Future work will explore the generalizability of the similarity-
based confidence strategy across diverse supply chain datasets,
schemas, and query intents. In addition, integrating confidence-
driven post-filtering into end-to-end decision support systems may
offer further gains in production robustness.

5 Limitation and Future Work
One limitation of this study is that all experiments were conducted
on a synthetic dataset due to customer data privacy concerns. While
the synthetic data allowed us to prototype and evaluate the con-
fidence scoring approach in a controlled environment, it may not
fully capture the complexities of real-world supply chain data. In
future work, we aim to extend our evaluation to public supply
chain datasets, such as the M5 competition dataset, to validate the
generalizability and robustness of our approach under more realis-
tic conditions. Additionally, Large Language Models are evolving
rapidly. Although this study used Claude Sonnet 3, the latest model
available to us at the time, it is important to evaluate the proposed
confidence scoring strategy across a broader set of LLMs. Future
work will explore the performance of the method on newer and
more diverse models, including GPT-4, DeepSeek, and Claude Son-
net 3.5 or 3.7. As different models, particularly those optimized for
reasoning, may demonstrate varying levels of confidence reliability,
such comparison is essential to assess the method’s transferability
and performance consistency. Lastly, our current confidence scoring
framework is built on a baseline text-to-SQL system that leverages a
retrieval-augmented generation pipeline. As more domain-specific
supply chain databases are developed, incorporating fine-tuning
strategies on top of this foundation may further improve both SQL
generation accuracy and the reliability of the associated confidence
scores. Future exploration into fine-tuning will allow for deeper
model alignment with domain-specific language and schema pat-
terns, thereby enhancing practical utility in enterprise settings.
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