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ABSTRACT

Score-based diffusion models have achieved remarkable progress in various do-
mains with the ability to generate new data samples that do not exist in the training
set. In this work, we study the hypothesis that such creativity arises from an inter-
polation effect caused by a smoothing of the empirical score function. Focusing
on settings where the training set lies uniformly in a one-dimensional subspace,
we probe the interplay between score smoothing and the denoising dynamics with
analytical solutions and numerical experiments. In particular, we demonstrate how
a smoothed score function can lead to the generation of samples that interpolate
among the training data within their subspace while avoiding full memorization.
Moreover, we present theoretical and empirical evidence that learning score func-
tions with regularized neural networks can have a similar effect as score smoothing,
including in simple nonlinear settings.

1 INTRODUCTION

Score-based diffusion models (DMs) have become an important pillar of generative modeling across
a variety of domains from content generation to scientific computing (Sohl-Dickstein et al., 2015;
Song and Ermon, 2019; Ho et al., 2020; Ramesh et al., 2022; Abramson et al., 2024; Brooks et al.,
2024). After being trained on datasets of actual images or molecular configurations, for instance,
such models can transform noise samples into high-quality images or chemically-plausible molecules
that do not belong to the training set, indicating an exciting capability of such models to generalize
beyond what they have seen and, in a sense, be creative.

The theoretical mechanism of the creativity of score-based DMs has been a topic of many discussions.
At the core of these models is the training of neural networks (NNs) to fit a series of target functions,
often called the empirical score functions (ESFs), which will eventually drive the denoising process at
inference time. The precise form of the ESFs are determined by the training set and can in principle
be computed exactly, but when equipped with the exact ESF instead of the NN-learned version,
the DM will end up generate data points that already exist in the training set (Yi et al., 2023; Li
et al., 2024a), a phenomenon commonly called memorization. This suggests that, for the models to
generalize fresh samples beyond the training set, it is crucial to have certain regularization on the
score function through NN training that prevents the ESF from being learned exactly. For example,
for image generation, Kamb and Ganguli (2024) showed that DMs with a convolutional NN (CNN)
as the score estimator can gain their creativity through CNNs’ inductive biases including equivariance
and locality. One may ask: can there be a more general mechanism behind the creativity of DMs
beyond image generation and CNNs?

Our work takes inspiration from an interesting hypothesis by Scarvelis et al. (2023) that smoothing
the ESF allows DMs to generate samples that interpolate among the training data, which motivated
their proposal of a closed-form score estimator for DMs based on local convolutions. In this work, we
bring the hypothesis further by studying how score smoothing can happen through NN learning and
how it quantitatively affects the denoising dynamics. To gain concrete insights, we focus on a simple
setup with uniformly-spaced training data and analyze score smoothing as well as the denoising
dynamics mathematically, and our main contributions are two-fold:

1. We give theoretical and empirical evidence that regularized two-layer ReLU NNs tend
to approximately learn a smoothed version of the ESF (named the “Smoothed PL-ESF”).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The theory is based on analyzing a non-parametric variational problem involving the score
matching loss and a non-smoothness penalty known as equivalent to NN regularization;

2. Through analytical solutions of the denoising dynamics, we show that a DM under the
Smoothed PL-ESF produces a non-singular density that interpolates the training set. In
particular, when the training data lie in a one-dimensional (1-D) subspace, the denoising
dynamics is able to recover the underlying subspace without collapsing onto the training set.

Together, these results shed light on how score smoothing can be an important link for understanding
how NN-based DMs avoid memorization.

The rest of the paper is organized as follows. After briefly reviewing the background in Section 2, we
examine the smoothing of ESF in the 1-D case and discuss its connections with NN regularization
in Section 3. The trajectory of the denoising dynamics under the Smoothed PL-ESF is derived in
Section 4. In Section 5, we generalize the analysis to the multi-dimensional case when the training
data belongs to a hidden subspace. In Section 6, we present empirical evidence that NN-learned SF
exhibits an interpolation effect similar to that of score smoothing, including when the data belongs to a
nonlinear manifold. Due to space limitation, we defer the discussion of related works to Appendix A.

Notations For x, δ > 0, we write pN (x;σ) = (
√
2πσ)−1 exp(−x2/(2σ2)) for the 1-D Gaussian

density with mean zero and variance σ2, δx for the Dirac delta distribution centered at x ∈ R, and
sgn(x) for the sign of x. We write [n] := {1, .., n} for n ∈ N+. For a vector x = [x1, ..., xd] ∈ Rd,
we write [x]i = xi for i ∈ [d]. The use of big-O notations is explained in Appendix B.

2 BACKGROUND

While score-based DMs have many variants, we will focus on a simplest one (named the “Variance
Exploding” version by Song et al. 2021b) where the forward (or noising) process is defined by the
following stochastic differential equation (SDE) in Rd for t ≥ 0:

dxt = dwt , x0 ∼ p0 , (1)

where w is the Wiener process (a.k.a. Brownian motion) in Rd. The marginal distribution of xt,
denoted by pt, is thus fully characterized by the initial distribution p0 together with the conditional
distribution, pt|0(x|x′) =

∏d
i=1 pN ([x]i − [x′]i;

√
t): specifically, pt is obtained by convolving p0

with an isotropic Gaussian distribution with variance σ(t)2 = t in every direction.

A key observation is that this process is equivalent (in marginal distribution) to a deterministic
dynamics, often called the probability flow ordinary differential equation (ODE) (Song et al., 2021b):

dxt = − 1
2st(xt)dt , (2)

where st(x) = ∇ log pt(x) is the score function (SF) associated with the distribution pt (Hyvärinen
and Dayan, 2005). In generative modeling, p0 is often a distribution of interest that is hard to sample
directly (e.g. the distribution of cat images in pixel space), but when T is large, pT is close to a
Gaussian distribution (with variance increasing in T ), from which samples are easy to obtain. Thus,
to obtain samples from p0, we may first sample from pT and follow the reverse (or denoising) process
by simulating (2) backward-in-time (or its equivalent stochastic variants, which we will not focus
on). A main challenge in this procedure lies in the estimation of the family of SFs, ∇ log pt for
t ∈ [0, T ]. In reality, we have no prior knowledge of each pt (or even p0) but just a training set
S = {yk}k∈[n] usually assumed to be sampled from p0. Thus, we only have access to an empirical
version of the noising process, where the same SDE (1) is initialized at t = 0 with not p0 but the
uniform distribution over S (i.e., x0 ∼ p

(n)
0 := 1

n

∑n
k=1 δyk

), and hence the marginal distribution of
xt is p(n)t (x) := 1

n

∑n
k=1 pt|0(x|yk), called the noised empirical distribution at time t. To obtain a

proxy for∇ log pt, one often uses an NN as a (time-dependent) score estimator, sθ(x, t), and train
its parameters to minimize variants of the time-averaged score matching loss (Song et al., 2021b):

min
θ

1

T

∫ T

0

L
(n)
t [sθ( · , t)]dt , (3)

where
L
(n)
t [f ] := t · E

x∼p
(n)
t

[∥∥f(x)−∇ log p
(n)
t (x)

∥∥2] (4)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Add noise Denoise via 
Empirical SF
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Figure 1: From the noised empirical distribution
(p(n)t0 ; middle), denoising with the ESF (∇ log p

(n)
t )

leads back to the empirical distribution of the train-
ing set (p(n)0 ; top), while using a smoothed SF (e.g.
the Smoothed PL-ESF, ŝ(n)t,δt

; or NN-learned SF)
produces a distribution that interpolates among the
training set on the relevant subspace (e.g., p̂(n,t0)0
in the case of Smoothed PL-ESF; bottom). Defini-
tions are given in Sections 2 - 4.

measures the L2 distance between the score estimator and ∇ log p
(n)
t — which is the ESF at time

t — with respect to p
(n)
t . The scaling factor of t ∝ 1/E[∇ log pt|0(xt|x0)] serves to balance the

contribution to the loss at different t (Song et al., 2021b).

Though in practice the minimization problem (3) is solved via NN optimization and Monte-Carlo
sampling (Vincent, 2011), we know the minimum is attained uniquely by the ESF itself, which can be
computed in closed form (e.g. see Section 3). If we use the ESF directly in the denoising dynamics
(2) instead of an NN-learned SF, we get an empirical version of the probability flow ODE:

dxt = − 1
2∇ log p

(n)
t (xt) , (5)

which exactly reverses the empirical forward process of adding noise to the training set, and hence
the outcome at t = 0 is inevitably p

(n)
0 . In other words, the model memorizes the training data. This

suggests that the creativity of the diffusion model hinges on a sub-optimal solution to the minimization
problem (3) and an imperfect approximation to the ESF. Indeed, the memorization phenomenon has
been observed in practice when the models have large capacities relative to the training set size (Gu
et al., 2023; Kadkhodaie et al., 2024), which results in too good an approximation to the ESF. This
leads to the hypothesis that regularized score estimators — in particular, those that learn to smooth
the ESF — give rise to the model’s ability to generalize beyond the training set. In the rest of this
work, we provide quantitative arguments for this hypothesis through simple settings.

3 SCORE SMOOTHING IN ONE DIMENSION

Let us begin with the simplest setup where d = 1 and S = {y1 = −1, y2 = 1} consists of n = 2
points (whereas in Appendix C, we prove extensions of all results in Sections 3 - 5 to the setup
where S consists of n uniformly-spaced points). At time t, the noised empirical distribution is
p
(n)
t (x) = 1

2 (pN (x+ 1;
√
t) + pN (x− 1;

√
t)), and the (scalar-valued) ESF takes the form of

d
dx log p

(n)
t (x) = (x̂

(n)
t (x)− x)/t , (6)

where
x̂
(n)
t (x) := E0|t[x0|xt = x] = pN (x−1;

√
t)−pN (x+1;

√
t)

pN (x−1;
√
t)+pN (x+1;

√
t)

(7)

lies between±1 and has the same sign as x. As t→ 0, the Gaussians sharpen and x̂
(n)
t (x) approaches

sgn(x), allowing us to approximate the ESF by a piece-wise linear (PL) function, named the PL-ESF:

s̄
(n)
t (x) = (sgn(x)− x)/t , (8)

which explains the attraction of the backward dynamics to ±1, corresponding to memorization. We
will show below that this behavior can crucially be avoided by smoothing the ESF at small t.

3.1 SCORE SMOOTHING VIA NN REGULARIZATION: A THEORETICAL MODEL

To gain intuition, we perform experiments to fit the ESF (6) at a fixed t using the loss (4) by two-layer
ReLU NNs that are regularized by weight decay (additional details given in Appendix J.1). As shown
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Figure 2: Similarities between NN-learned SF (sNN
t,λ) under increasing strengths of regularization, λ

(left) and the Smoothed PL-ESF (ŝ(n)t,δ ) with decreasing values of δ (right) in the d = 1, n = 2 case
with a fixed t. Details of the experiment setup are discussed in Section J.1.

in Figure 2, for various strengths of regularization, the NN-learned score estimators are nearly PL,
and remarkably, well-approximated by the following ansatz parameterized by δ ∈ (0, 1]:

ŝ
(n)
t,δ (x) :=


−(x+ 1)/t , if x ≤ δ − 1 ,

−(x− 1)/t , if x ≥ 1− δ ,

δ/(1− δ) · x/t , if x ∈ (δ − 1, 1− δ) .

(9)

In particular, a stronger regularization corresponds to a smaller δ. We will refer to ŝ
(n)
t,δ as a Smoothed

PL (S-PL) ESF. As illustrated in Figure 2 (right), it is PL and matches s̄(n)t except on the interval
[δ − 1, 1− δ] (hence ŝ

(n)
t,1 ≡ s̄

(n)
t ).

Why do the regularized NNs learn score estimators that are so close to being expressed by (9)? While
it is difficult to predict exactly what function an NN will learn due to the nonlinearity and stochasticity
of the training dynamics, below we will provide an argument based on a non-parametric view of NN
regularization. Specifically, for function fitting in one dimension, it is shown in Savarese et al. (2019)
that regularizing the weight norm of a two-layer ReLU NN (with unregularized bias and linear terms)
is essentially equivalent to penalizing a non-smoothness measure of the estimated function defined as:

R[f ] :=

∫ ∞

−∞
|f ′′(x)|dx , (10)

where f ′′ is the weak second derivative of the function f . Inspired by this connection, for ϵ, t > 0, we
consider the following family of variational problems in function space as a proxy for NN learning:

r∗t,ϵ := inf
f

R[f ] s.t. L
(n)
t [f ] < ϵ , (11)

with the infimum taken over all functions f on R that are twice differentiable except on a finite
set (a broad class of functions that include, e.g., any function representable by a finite-width NN).
Heuristically, we seek to minimize the non-smoothness measure among functions that are ϵ-close
to the ESF according to the score matching loss (3). When ϵ = 0, only the ESF itself satisfies the
constraint and hence attains the minimum uniquely; if ϵ is small but positive, the feasible set is infinite
and we need to study how the non-smoothness penalty biases the score estimator away from the ESF.

Due to the non-differentiability of the functional R, the variational problem (11) is also hard to solve
directly. Nevertheless, we can show that near-optimality can be achieved by the Smoothed PL-ESF
uniformly across small t when we choose δ to depend proportionally on

√
t:

Proposition 1 Given ϵ ∈ (0, 0.015), for any κ ≥ F−1(ϵ), where F is a computable function that
decreases strictly from 1 to 0 on [0,∞), there exists t1 > 0 (dependent on κ) such that ŝ(n)t,δt

with
δt = κ

√
t satisfies the following two properties for all t ∈ (0, t1):

1. L
(n)
t [ŝ

(n)
t,δt

] < ϵ, and hence the function ŝ
(n)
t,δt

belongs to the feasible set of (11);

2. R[ŝ
(n)
t,δt

] < (1 + 8
√
ϵ)r∗t,ϵ.

Outline of proof (full proof given in Appendix D): The first property follows from the lemma below:
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Figure 3: Phase diagram in the x-√
t plane for the flow solution (14)

of the dynamics (13) in the d = 1,
n = 2 case analyzed in Section 4.

Lemma 2 Let δt = κ
√
t for some κ > 0. Then ∃t1, C > 0 (depending on κ) such that ∀t ∈ (0, t1),

1
2F (κ)− C

√
t ≤ L

(n)
t [ŝ

(n)
t,δt

] ≤ 1
2F (κ) + C

√
t . (12)

Lemma 2 (proved in Appendix E) relies on the insight that when t is small, p(n)t is concentrated near
±1, and hence L

(n)
t is dominated by contributions from the neighborhood of ±1. In particular, for

L
(n)
t to remain at a constant level, we can afford to decrease δt ∝

√
t as t→ 0.

For the second property in Proposition 1, we observe that when t is small, for any function belonging
to the feasible set with a small enough ϵ, its derivative near ±1 needs to be close to d log p

(n)
t /dx ≈

−1/t (again because of the concentration of p(n)t near ±1). Combined with the fundamental theorem
of calculus, this gives us a lower bound on r∗t,ϵ. □

Proposition 1 and Lemma 2 thus establish that the Smoothed PL-ESFs with δt ∝
√
t are nearly

minimizers of the non-smootheness measure in the function space while maintaining small bounded
errors across small t. In Section 6, we will further show empirical evidence that when we train
a single NN with regularization to learn the time-dependent SF through the time-averaged score
matching loss (3), the solutions are indeed also closely approximated Smoothed PL-ESF.

4 INTERPOLATION EFFECT ON THE DENOISING DYNAMICS

With the motivations discussed above, we now study the effect on the denoising dynamics of
substituting the ESF (6) with ŝ

(n)
t,δt

where δt = κ
√
t for some κ > 0, that is, replacing (5) by:

d
dtxt = − 1

2 ŝ
(n)
t,δt

(xt) . (13)

Thanks to the piece-wise linearity of (9), the backward-in-time dynamics of the ODE (13) can be
solved analytically in terms of flow maps:

Proposition 3 For 0 ≤ s ≤ t < 1/κ2, the solution to (13) satisfies xs = ϕs|t(xt), where

ϕs|t(x) =


(1− δs)/(1− δt) · x , if x ∈ [δt − 1, 1− δt]√
s/
√
t · x− (1−

√
s/
√
t) , if x ≤ δt − 1√

s/
√
t · x+ (1−

√
s/
√
t) , if x ≥ 1− δt

(14)

The proposition is proved in Appendix G, and we illustrate the trajectories characterized by ϕs|t in
Figure 3. The differentiability profile of ŝ(n)t,δt

divides the x−
√
t plane into three regions (A, B and C)

with linear boundaries, defined by x ≤ −1 + δt, x ≥ 1− δt and δt − 1 ≤ x ≤ 1− δt, respectively,
and trajectories induced by ϕs|t do not cross the region boundaries. If at t0 > 0, xt0 falls into region
A (or B), then as t decreases to 0, it will follow a linear path in the x −

√
t plane to y1 = −1 (or

y2 = 1). Meanwhile, if xt0 falls into region C, then it will follow a linear path to the x-axis with a
terminal value between −1 and 1. In other words,

ϕ0|t(x) =

{
x/(1− δt) , if x ∈ [δt − 1, 1− δt]

sgn(x) , otherwise
(15)

Evolution of marginal distribution Suppose we start from some t0 ∈ (0, 1/κ2) and run the
denoising dynamics (13) backward-in-time, and we denote the marginal distribution of xt by p̂

(n,t0)
t

5
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for t ∈ [0, t0]. We assume that p̂(n,t0)t0 = p
(n)
t0 is the noised empirical distribution at time t0.1 Since

the map ϕs|t is invertible and differentiable almost everywhere when 0 < s ≤ t ≤ t0, we can apply
the change-of-variable formula of push-forward distributions to obtain an analytic expression for the
density p̂

(n,t0)
s :

p̂(n,t0)s (x) =


(1− δt)/(1− δs) · p̂(n,t0)t ((1− δt)/(1− δs) · x) , if x ∈ [δs − 1, 1− δs]

δt/δs · p̂(n,t0)t (δt/δs · x+ (δt − δs)/δs) , if x ≤ δs − 1

δt/δs · p̂(n,t0)t (δt/δs · x− (δt − δs)/δs) , if x ≥ 1− δs ,

(16)

and its evolution as s decreases from t0 to 0 is visualized in Figure 1 (the lower grey-colored heat
map). When s = 0, ϕ0|t is invertible only when restricted to [δt − 1, 1 − δt], and the terminal
distribution can be decomposed as

p̂
(n,t0)
0 = a+δ1 + a−δ−1 + (1− a+ − a−)p̃

(n,t0)
0 , (17)

where a± = E
x∼p̂

(n,t0)
t0

[1±x≥1−δt0
] and p̃

(n,t0)
0 is a probability distribution satisfying

p̃
(n,t0)
0 (x) =

{
(1− δt0)/(1− a+ − a−) · p̂(n,t0)t0 ((1− δt0)x) , if x ∈ [−1, 1]
0 , otherwise

(18)

In particular, since p̂(n,t0)t0 has a positive density on [δt0−1, 1−δt0 ], p̃
(n,t0)
0 also has a positive density

on [−1, 1], corresponding to a smooth interpolation between the two training data points.

Note that (18) allows us to prove KL-divergence bounds for p̂(n,t0)0 based on those of p̂(n,t0)t , and an
example is given in Appendix I.1. In contrast, denoising with the exact ESF results in p

(n)
0 , which is

fully singular and has an infinite KL-divergence with any smooth density on [−1, 1].

5 HIGHER DIMENSION: SUBSPACE RECOVERY WITH SCORE SMOOTHING

Let us consider a case where S = {y1 = [−1, 0, ..., 0],y2 = [1, 0, ..., 0]} ⊆ Rd consists of two
points on the [x]1-axis (and in Appendix C we generalize the analysis to the case where S contains
n uniformly-spaced points in any 1-D subspace). In this case, the noised empirical density is
p
(n)
t (x) = 1

2

(
pN ([x]1 + 1;

√
t) + pN ([x]1 − 1;

√
t)
)∏d

i=2 pN ([x]i;
√
t), and the (vector-valued)

ESF is given by ∇ log p
(n)
t (x) = [∂1 log p

(n)
t (x), ..., ∂d log p

(n)
t (x)], where

∂1 log p
(n)
t (x) =

(
x̂
(n)
t ([x]1)− [x]1

)
/t ,

∀i ∈ {2, ..., n} , ∂i log p
(n)
t (x) = − [x]i/t ,

(19)

where x̂
(n)
t is defined in the same way as in (7). Relative to the subspace on which the training set

belongs — the [x]1-axis — we may refer to the first dimension as the tangent component and the
other dimensions as the normal component. The tangent component of the ESF behaves the same
as in the 1-D setting, whereas its normal components are linear functions and explain the uniform
collapse onto the 1-D subspace during denoising.

To understand score smoothing in this context, we study an extension of the variational problem (11)
to the multi-dimensional case through a generalization of the non-smoothness measure (10) by:

R(d)[f ] := sup
(w,b)∈(Sd−1,Rd)

∫ ∞

−∞
∥∇2

wf(wx+ b)∥dx (20)

for f : Rd → Rd. Note that R(d) reduces to (10) when d = 1 and is invariant to coordinate rotations
and translations.2 We can now consider an analog of (11) for d > 1 by having (20) as the objective:

r∗t,ϵ,d := inf
f

R(d)[f ] s.t. L
(n)
t [f ] < ϵ , (21)

1This can be viewed as starting from the noised empirical distribution at some large time T (nearly Gaussian),
initially denoising via the ESF until t0, then switching to Smoothed PL-ESF for the rest of the denoising process
until t = 0. An equivalent interpretation is that we add noise to the training data for time t0 before denoising
them with the Smoothed PL-ESF for the same amount (as illustrated in Figure 1).

2We note that our definition of R(d) differs from the complexity measure in function space associated with
regularized two-layer ReLU NN on multi-dimensional inputs, which has a more involved definition via the
Radon transform and fractional powers of Laplacians (Ongie et al., 2020).
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with the infimum taken over all piece-wise twice-differentiable functions f : Rd → Rd.

Analogously to the 1-D case, we show that near-optimality can be achieved by vector-valued functions
of the following type, ŝ(n)t,δ : Rd → Rd, where ŝ

(n)
t,δ : R→ R is defined the same way as in (9):

ŝ
(n)
t,δ (x) := [ŝ

(n)
t,δ ([x]1),−[x]2/t, ...,−[x]d/t]

⊺ . (22)

(22) can be viewed as defining a generalization of the Smoothed PL-ESF to higher dimensions.

Proposition 4 Given any fixed ϵ ∈ (0, 0.015), if we choose δt = κ
√
t with any κ ≥ F−1(ϵ), then

there exists t1 > 0 (dependent on κ) such that the following holds for all t ∈ (0, t1):

• L
(n)
t [ŝ

(n)
t,δt

] < ϵ;

• R(d)[ŝ
(n)
t,δt

] < (1 + 8
√
ϵ)r∗t,ϵ,d.

The proof is given in Appendix F and builds on Proposition 1 by leveraging two main observations: (1)
p
(n)
t is a product distribution between the tangent and normal dimensions; (2) the normal components

of the ESF are fully linear and do not incur “additional” non-smoothness penalty under (20).

Implication for denoising dynamics Motivated by Proposition 4 and similar to in Section 4, we
consider a denoising dynamics under the smoothed score given by d

dtxt = − 1
2 ŝ

(n)
t,δt

(xt), which is
noticably decoupled across the different dimensions:

d
dt [xt]1 = − 1

2 ŝ
(n)
t,δt

([xt]1) , (23)

∀i ∈ {2, ..., d} , d
dt [xt]i =

1
2 [xt]i/t . (24)

Based on our analysis in the d = 1 case, we know that this dynamics has the following solution:

Proposition 5 For 0 ≤ s ≤ t < 1/κ2, the solution of (23, 24) is given by xs = Φs|t(xt) :=

[ϕs|t([xt]1),
√
s/t[xt]2, ...,

√
s/t[xt]d] with ϕs|t defined as in (14, 15). Hence, if run backward-

in-time with the marginal distribution of xt0 being p̂
(n,t0)
t0 × pN ( · ;

√
t0) × ... × pN ( · ;

√
t0), at

t ∈ [0, t0), xt has marginal distribution p̂
(n,t0)
t × pN ( · ;

√
t) × ... × pN ( · ;

√
t), where p̂

(n,t0)
t

satisfies (16) when t > 0 and (17) when t = 0.

Crucially, we see distinct dynamical behaviors in the tangent versus normal dimensions. As t→ 0,
the trajectory converges to zero at a rate of

√
t in the normal directions and results in a uniform

collapse onto the [x]1-axis (as in the case without score smoothing). In the tangent dimension,
meanwhile, a smoothing phenomenon happens similarly to the 1-D case. In particular, if the marginal
distribution of [xt]1 has a positive density on [δt − 1, 1− δt], then so will [x0]1 on [−1, 1], meaning
that x0 has a non-singular density that interpolates smoothly among the training data on the desired
1-D subspace.

Contrast with inference-time early stopping The effect of score smoothing is different from what
can be achieved by denoising under the exact ESF but stopping it at some tmin > 0. In the latter case,
the terminal distribution is still supported in all d dimensions and is equivalent to simply corrupting
the training data by Gaussian noise. Hence, without modifying the ESF, early stopping alone does
not induce a proper generalization behavior.

6 NUMERICAL EXPERIMENTS

6.1 DENOISING WITH SMOOTHED PL-ESF AND NN-LEARNED SF (d = 2, n = 4)

3 To validate our theoretical analysis on the effect of score smoothing on the denoising dynamics,
we choose the setup in Section 5 with d = 2 and n = 4 and run the denoising dynamics (2) under

3The detailed setup of all experiments is given in Appendix J.
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Figure 4: Results of the experiment in Section 6.1. Each column shows the denoising process under
one of 3 choices of SFs, which starts from the distribution p

(n)
t0 at t0 and evolves backward-in-time

following the respective SF. At t = t0, t0/4 and tmin = 10−5, we plot (a) the samples from the
denoising processes in R2 and (b) the density histograms (log scale) of their first dimension. In (b),
the colored curves are the analytical predictions of p̂(n,t0)t (for t = t0, t0/4) and p̃

(n,t0)
0 (for t = tmin),

with the formulas given in Appendix C.2.

three choices of the SF: (i) the ESF (st = ∇ log p
(n)
t ), (ii) the Smoothed PL-ESF (st = ŝ

(n)
t,δt

from
(22)), and (iii) an NN-learned SF with t as an input (st = sNN

t ). All three processes are initialized at
t0 = 0.02 with the same marginal distribution xt0 ∼ p

(n)
t0 and run backward-in-time to tmin = 10−5.

The results are illustrated in Figure 4. We first observe that, in all three cases, the variance of the
data distribution along the second dimension shrinks gradually to zero at a roughly similar rate
as t → 0, consistent with the argument in Section 5 that score smoothing does not interfere with
the convergence in the normal direction. Meanwhile, in contrast with Col. (i), where the variance
along the first dimension shrinks to zero as well, we see in Col. (ii) that the variance along the first
dimension remains positive for all t, validating the interpolation effect caused by smoothing the ESF.
Moreover, the density histograms in Col. (ii) are closely matched by our analytical predictions of
p̂
(n,t0)
t and p̃

(n,t0)
0 (the colored curves). Finally, we observe that Col. (iii) is much closer to (ii) than

(i) in terms of how the distribution (as well as the SF itself, as shown in Figures 6 - 8) evolves during
denoising. This suggests that NN learning causes a similar smoothing effect on the SF and supports
the relevance of our theoretical analysis for understanding how NN-based DMs avoid memorization.

6.2 DATA ON A CIRCLE

To show that the effect of score smoothing goes beyond linearly-spaced data, we consider training
sets spaced uniformly on a circle in R2 and train 2L NNs without weight decay to fit the ESF and
drive the denoising dynamics, with results illustrated in Figure 5. As shown in the last two rows, the
NN-learned SF is evidently smoother than the ESF, especially in the polar (i.e., tangent) direction.
Notably, this leads the denoising dynamics to generate samples that interpolate between nearby
training data points in a nearly linear fashion, which forms a regular polygon that approximates
the underlying circle better as the number of training data increases. That this phenomenon occurs
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Figure 5: Experiment in Section 6.2 with training data spaced uniformly on the unit circle in R2.
Top: Samples from the beginning and end of the denoising process with NN-learned SF. Middle
and bottom: Visualization of the NN-learned SF vs ESF at t = t0/8 as vector fields, with the length
corresponding to the magnitude and the color determined by their angular direction (red for clockwise,
blue for counter-clockwise).

without weight decay in NN training also suggests that implicit regularization from the optimization
dynamics can be sufficient to induce the score smoothing effect (see discussion in Appendix A).

In addition, we observe that NN-learned SF also tend to be smoother than the ESF when the training
data are non-uniformly spaced in 1-D. The results are illustrated in Figure 9 in Appendix J.2.

7 CONCLUSIONS AND LIMITATIONS

Through theoretical analyses and numerical experiments, our work shows how score smoothing
can enable the denoising dynamics to produce distributions on the training data subspace without
fully memorizing the training set. Further, by showing connections between score smoothing and
score learning using NNs, our results shed light on an arguably core mechanism behind the ability of
NN-based diffusion models to generalize, hallucinate or create. Additionally, as NN learning is just
one way to achieve score smoothing, our work also motivates the exploration of alternative score
estimators that facilitate generalization in DMs, including the proposal by Scarvelis et al. (2023).

The present work focuses on a vastly simplified setup compared to real-world scenarios. First, it
would be valuable to extend our theory to cases where training data are generally spaced, random
or belonging to complex manifolds as well as to more general variants of DMs (De Bortoli et al.,
2021; Albergo et al., 2023; Lipman et al., 2023; Liu et al., 2023). Second, score estimators in practice
typically have more sophisticated architectures than 2L ReLU NN, which can lead to more complex
and nonlinear interpolation effects (Kamb and Ganguli, 2024). The connections between score
smoothing and the implicit bias of NN training have also only been explored to a limited extent,
especially in the higher-dimensional setting (see Appendix A). Lastly, it will be useful to consider
alternative forms of function smoothing and other regularization mechanisms beyond smoothing
(Wibisono et al., 2024; Baptista et al., 2025).

Reproducibility statement The detail setup of all experiments is given in Appendix J and the proof
of all theoretical results can be found in Appendices D - H.
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A RELATED WORKS

Generalization in DMs. Several works have noted the transition from generalization to memoriza-
tion behaviors in DMs when the model capacity increases relatively to the training set size (Gu et al.,
2023; Yi et al., 2023; Carlini et al., 2023; Kadkhodaie et al., 2024; Li et al., 2024b). Using tools from
statistical physics, Biroli et al. (2024) showed that the transition to memorization occurs in the crucial
regime where t is small relative to the training set sparsity, which is also the focus of our study.

To derive rigorous learning guarantees, one line of work showed that DMs can produce a distribution
accurately given a good score estimator (Song et al., 2021a; Lee et al., 2022; De Bortoli, 2022; Chen
et al., 2023a;c; Shah et al., 2023; Cole and Lu, 2024; Benton et al., 2024; Huang et al., 2024a), which
leaves open the question of how to estimate the SF of an underlying density from finite training data
without overfitting. For score estimation, when the ground truth density or its SF belongs to certain
function classes, prior works have constructed score estimators with guaranteed sample complexity
(Block et al., 2020; Li et al., 2023; Zhang et al., 2024; Wibisono et al., 2024; Chen et al., 2024;
Gatmiry et al., 2024; Boffi et al., 2025), including for scenarios where the data are supported on
low-dimensional sub-manifolds (further discussed below). An end-to-end error bound is derived by
Wang et al. (2024b) which covers both training and sampling and is used to inform the choice of time
and variance schedules. Unlike these approaches, which concern the estimation of densities from i.i.d.
samples, our analysis does not assume a ground truth distribution. Based on a finite and fixed training
set, our work focuses on the geometry of the SF when t is small relative to the training set sparsity and
elucidates how it determines the memorization behavior via an interplay with the denoising dynamics.
For future work, it will be interesting to study the implication of score smoothing in the density
estimation setting by potentially adapting our analysis to cases with randomly-sampled training data.

DMs and the manifold hypothesis. An influential hypothesis is that high-dimensional real-world
data often lie in low-dimensional sub-manifolds (Tenenbaum et al., 2000; Peyré, 2009), and it has
been argued that DMs can estimate their intrinsic dimensions (Stanczuk et al., 2024; Kamkari et al.,
2024), learn manifold features in meaningful orders (Wang and Vastola, 2023; 2024; Achilli et al.,
2024), or perform subspace clustering implicitly (Wang et al., 2024a). Under the manifold hypothesis,
Pidstrigach (2022); De Bortoli (2022); Potaptchik et al. (2024); Huang et al. (2024b) studied the
convergence of DMs assuming a sufficiently good approximation to the true SF, while Oko et al.
(2023); Chen et al. (2023b); Azangulov et al. (2024) proved sample complexity guarantees for score
estimation using NN models. In particular, prior works such as Chen et al. (2023b); Wang and Vastola
(2024); Gao and Li (2024); Ventura et al. (2024) have considered the decomposition of the SF into
tangent and normal components. Our work is novel in showing how score smoothing can affect
these two components differently: reducing the speed of convergence towards training data along the
tangent direction (to avoid memorization) while preserving it along the normal direction (to ensure a
convergence onto the subspace).

Score smoothing and regularization. Aithal et al. (2024) showed empirically that NNs tend
to learn smoother versions of the ESF and argued that this leads to a mode interpolation effect
that explains model hallucination. Scarvelis et al. (2023) designed alternative closed-form DMs
by smoothing the ESF, although the theoretical analysis therein is limited to showing that their
smoothed SF is directed towards certain barycenters of the training data. Their work inspired our
further theoretical analysis on how score smoothing affects the denoising dynamics and leads to a
terminal distribution that interpolates the training data. In the context of image generation, Kamb
and Ganguli (2024) showed that imposing locality and equivariance to the score estimator allows
the model to generalize better. However, in addition to being limited to the image generation setting
with CNN-based score estimators, their result does not show how new samples are generated, but
only that if such samples are created, then they obey the consistency properties enforced by the
CNN architecture. In comparison, our work shows that the interpolation effect can arise from score
smoothing with NN architectures as simple as 2L MLPs.

Recent works including Wibisono et al. (2024); Baptista et al. (2025) considered other SF regularizers
such as the empirical Bayes regularization (capping the magnitude in regions where p

(n)
t is small)

or Tikhonov regularization (constraining the norm averaged over p
(n)
t ). In the linear subspace

setting, these methods tend to reduce the magnitude of the SF in not only the tangent but also the
normal directions, thus slowing down the convergence onto the subspace and resulting in a terminal
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distribution that still has a d-dimensional support. In contrast, the Smoothed PL-ESF preserves the
(linear) normal component and hence is not prone to this issue.

NN regularization (explicit or implicit) as non-smoothness penalty Savarese et al. (2019) showed
that the weight norm of an infinite-width two-layer ReLU NN on scalar inputs is equivalent to a
complexity measure in function space given by (10), which was later extended by Ongie et al. (2020)
to the case of multi-dimensional inputs. We use the result of Savarese et al. (2019) to motivate
a variational problem specific to score learning in diffusion models (11): minimizing the non-
smoothness R[f ] subject to the constraint of the score matching loss L(n)[f ]. Our novel theoretical
contribution on this front (Proposition 1) is the analysis of this variational problem, in particular
proving that a near-minimizer of this problem at small t is given by the Smoothed PL-ESF. This
required a novel analysis of the interplay among the score matching objective, the smoothness penalty,
and the geometry of the ESF, which is specific to our work. It will be very interesting for future work
to adapt our analysis in the multi-dimensional case to the complexity measure defined in Ongie et al.
(2020).

Though models in practice are not always trained with explicit regularization such as weight decay, a
similar effect could still occur through implicit regularization: it has been shown theoretically that
when trained with gradient-based algorithms for sufficiently long, certain classes of NNs can be
viewed as implicitly minimizing some complexity measure while fitting the target labels (Soudry
et al., 2018; Ji and Telgarsky, 2019; Lyu and Li, 2020). Notably, when we consider infinite-width
2-layer homogeneous NNs trained with logistic-type losses (and under certain assumptions), the
complexity measure agrees with in (10) (Chizat and Bach, 2020). Though the argument does not
apply directly in our setting as score estimation involves a different type of loss, it gives us reason to
hypothesize that score smoothing can occur through NN training even without explicit regularization.
It would be highly relevant to investigate this further in future work.

B ADDITIONAL NOTATIONS

We use big-O notations only for denoting asymptotic relations as t→ 0. Specifically, for functions
f, g : R+ → R+, we will write f(t) = O(g(t)) if ∃t1, C > 0 (they may depend on other variables
such as κ and ∆) such that ∀t ∈ (0, t1), it holds that f(t) ≤ Cg(t). In addition, in several situations
where f decays exponentially fast in 1/t as t→ 0 but the exact exponent is not of much importance,
we will simply write f(t) = O(exp(−C/t)), which is intended to be interpreted as ∃C > 0 such
that f(t) = O(exp(−C/t)) (and the value of C can differ in different contexts).

C GENERALIZATION TO n > 2

The analysis above can be generalized to the scenario where S consists of n > 2 points spaced
uniformly on an interval [−D,D], that is, yk := 2(k−1)∆−D for k ∈ [n], where ∆ := D/(n−1) =
(yk+1 − yk)/2. We additionally define zk := yk +∆ = (yk + yk+1)/2 for k ∈ [n− 1].

C.1 SCORE SMOOTHING

In this case, we can still express the ESF as (6) except for replacing (7) by

x̂
(n)
t (x) :=

∑n
k=1 ykpN (x− yk,

√
t)∑n

k=1 pN (x− yk,
√
t)

, (25)

and its PL approximation at small t is now given by

s̄
(n)
t (x) :=


(y1 − x)/t , if x ≤ z1 ,

(yk − x)/t , if x ∈ [zk−1, zk] for k ∈ {2, ..., n− 1} ,
(yn − x)/t , if x ≥ zn−1 .

(26)
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For δ ∈ (0,∆), we now define

ŝ
(n)
t,δ (x) :=


(y1 − x)/t , if x ≤ y1 + δ ,

(yn − x)/t , if x ≥ yn−1 − δ ,

(yk − x)/t , if x ∈ [yk − δ, yk + δ], ∃k ∈ [n] ,

δ/(∆− δ) · (x− zk)/t , if x ∈ [yk−1 + δ, yk − δ], ∃k ∈ [n− 1] ,

(27)

and it is not hard to show that Proposition 2 and Lemma 9 can be generalized to the following results,
with their proofs given in Appendix E.1 and E, respectively:

Proposition 6 Let δt = κ
√
t for some κ > 0. Then ∃t1, C > 0 such that ∀t ∈ (0, t1),

n−1
n F (κ)− C

√
t ≤ L

(n)
t [ŝ

(n)
t,δt

] ≤ n−1
n F (κ) + C

√
t , (28)

where t1 and C depend only on κ and F is a function that strictly decreases from 1 to 0 on [0,∞).

Lemma 7 ∃t1, C > 0 such that ∀t ∈ (0, t1), it holds that

t · E
x∼p

(n)
t

[∥∥s̄(n)t (x)− ( d
dx log p

(n)
t )(x)

∥∥2] ≤ C exp(−δ2/(9t)) . (29)

C.2 DENOISING DYNAMICS

The backward-in-time dynamics of (13) can also be solved analytically in a similar fashion, where
(14) is replaced by

ϕs|t(x) :=


√

s
t (x− y1) + y1 , if x ≤ y1 + δt ,√
s
t (x− yn) + yn , if x ≥ yn − δt ,√
s
t (x− yk) + yk , if x ∈ [yk − δt, yk + δt], ∃k ∈ {2, ..., n− 1} ,

∆−δs
∆−δt

(x− zk) + zk , if x ∈ [yk + δt, yk+1 − δt], ∃k ∈ [n− 1] .

(30)

The formula (16) is then generalized to

p̂(n,t0)s (x) =



δt/δs · p̂(n,t0)t (δt/δs · x− (δt − δs)/δs · y1) , if x ≤ y1 + δs

δt/δs · p̂(n,t0)t (δt/δs · x− (δt − δs)/δs · yn) , if x ≥ yn − δs

δt/δs · p̂(n,t0)t (δt/δs · x− (δt − δs)/δs · yk) , if x ∈ [yk − δs, yk + δs]

(∆− δt)/(∆− δs) · p̂(n,t0)t ((∆− δt)/(∆− δs) · x+ (δt − δs)/(∆− δs) · zk) ,
if x ∈ [yk + δs, yk+1 − δs]

(31)

When s = 0, there is

ϕ0|t(x) =

{
(∆x− zkδt)/(∆− δt) , if x ∈ [yk + δt, yk+1 − δt], ∃k ∈ [n− 1] ,

yargmink |yk−x| , otherwise.
(32)

As ϕ0|t(x) is invertible when restricted to ∪k∈[n−1][yk + δt, yk+1 − δt], the terminal distribution can
be decomposed as

p̂
(n,t0)
0 =

n∑
k=1

akδyk
+
(
1−

n∑
k=1

akδyk

)
p̃
(n,t0)
0 , (33)

where p̃
(n,t0)
0 is a probability distribution defined as

p̃
(n,t0)
0 (x) =

{
(∆− δt)/∆ · p̂(n,t0)t ((∆− δt)/∆ · x+ δt/∆ · zk) , if x ∈ [yk, yk+1]

0 , otherwise .
(34)

and it holds for all t ∈ (0, t0] that

ak =


E
x∼p̂

(n,t0)
t

[
1x≥−D+δt

]
, if k = 1 ,

E
x∼p̂

(n,t0)
t

[
1x≥D−δt

]
, if k = n ,

E
x∼p̂

(n,t0)
t

[
1yk−δt≤x≤yk+δt

]
, if k ∈ {2, ..., n− 1} .

(35)
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C.3 HIGHER DIMENSIONS

Because the definition of R(d) is invariant to rotations and translations of the coordinate system,
we can assume without loss of generality that the training set lies on the [x]1-axis and is spaced
uniformly on the interval [−D,D].

Thanks to the decoupling across dimensions, the denoising dynamics associated with the generalized
Smoothed PL-ESF also follows (23) and (24). Hence, Proposition 5 still holds except with (14) - (17)
and (16) replaced by (30) - (32) and (34), respectively.

D PROOF OF PROPOSITION 1

The first claim is a straightforward consequence of Proposition 6: when t is small enough (with
threshold dependent on κ), there is

L
(n)
t [ŝ

(n)
t,δt

] ≤ n− 1

n
F (κ) + C

√
t < F (κ) ≤ F (F−1(ϵ)) = ϵ . (36)

Next we consider the second claim. On one hand, it is easy to compute that

R[ŝ
(n)
t,δt

] =

n−1∑
k=1

2

(
δt

t(∆− δt)
+

1

t

)
= 2(n− 1)

∆

t(∆− δt)
(37)

On the other hand, let f be any function on R that belongs to the feasible set of the minimization
problem (11), meaning that f is twice differentiable except on a set of measure zero and L

(n)
t [f ] < ϵ.

Define ϵk := t
∫∞
−∞ |f(x)−

d
dx log p

(n)
t (x)|2pN (x− yk;

√
t)dx for each k ∈ [n]. By the definition

of p(n)t , we then have
∑n

k=1 ϵk < nϵ. If we consider a change-of-variable x̃ = (x − yk)/
√
t and

define f̃k(x̃) :=
√
tf(yk +

√
tx̃), there is∫ yk+∆

yk−∆

|f(x)− s̄
(n)
t (x)|2pN (x− yk;

√
t)dx =

∫ yk+∆

yk−∆

∣∣∣f(x)− yk − x

t

∣∣∣2pN (x− yk;
√
t)dx

= t−1

∫ ∆/
√
t

−∆/
√
t

|f̃k(x̃) + x̃|2pN (x̃; 1)dx̃ .

(38)

Hence, using (62) with δ = ∆, we obtain that∫ ∆/
√
t

−∆/
√
t

|f̃k(x̃) + x̃|2pN (x̃; 1)dx̃ ≤ t

∫ ∞

−∞
|f(x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx

≤ t

∫ ∞

−∞
|f(x)− d

dx log p
(n)
t (x)|2pN (x− yk;

√
t)dx

+ t

∫ ∞

−∞

∣∣ d
dx log p

(n)
t (x)− s̄

(n)
t (x)

∣∣2pN (x− yk;
√
t)dx

≤ ϵk +O(exp(−∆2/(9t))) .

(39)

Thus, for t small enough such that
√
t < ∆/3, we can apply Lemma 8 from below to f̃k, from which

we obtain (after reversing the change-of-variable) that

inf
x∈[yk−1.5σ,yk+1.5σ]\N

f ′(x) ≤ (−1 + 2
√
ϵk)/t+O(exp(−∆2/(10t)))

inf
x∈[yk+1.5σ,yk+3σ]

f(x) ≤ − 0.5

sup
x∈[yk−3σ,yk−1.5σ]

f(x) ≥ 0.5 .

(40)

Hence, ∃ak ∈ [yk − 1.5σ, yk + 1.5σ] \N , bk,+ ∈ [yk + 1.5σ, yk + 3σ] and bk,− ∈ [yk − 3σ, yk −
1.5σ] such that f ′(ak) ≤ (−1 + 2

√
ϵk)/t + O(exp(−∆2/(10t))), f(bk,+) ≤ 0 and f(bk,−) ≥ 0.
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Furthermore, for t small enough such that
√
t < ∆/6, there is bk,+ < bk+1,− for k ∈ [n− 1], and

hence by the fundamental theorem of calculus, ∃ck ∈ [bk,+, bk+1,−] such that f ′(ck) ≥ 0.

Now, we focus on the sequence of points, a1 < c1 < a2 < ... < cn−1 < an. By the fundamental
theorem of calculus and the fact that f is twice differentiable except for on a finite set, there is∫ ck

ak

|f ′′(x)|dx ≥ |f ′(ck)− f ′(ak)| ≥ (1− 2
√
ϵk)/t−O(exp(−∆2/(10t)))∫ ak+1

ck

|f ′′(x)|dx ≥ |f ′(ak+1)− f ′(ck)| ≥ (1− 2
√
ϵk+1)/t−O(exp(−∆2/(10t)))

and hence it is clear that

R[f ] =

∫ ∞

−∞
|f ′′(x)|dx ≥

n−1∑
k=1

|f ′(ck)− f ′(ak)|+
n−1∑
k=1

|f ′(ak+1)− f ′(ck)|

≥ 2
(
n− 1−

n∑
k=1

2
√
ϵk

)
/t−O(exp(−∆2/(10t)))

≥ 2(n− 1− 2n
√
ϵ)/t−O(exp(−∆2/(10t))) .

(41)

Therefore, for 0 < ϵ < 0.015, as n ≥ 2, it holds for t sufficiently small that

R[ŝ
(n)
t,δt

]

R[f ]
≤ (n− 1)∆

(n− 1− 2n
√
ϵ)(∆− δt)−O(exp(−∆2/(10t)))

≤ 1 + 7.9
√
ϵ+O(

√
t) ,

(42)

which is bounded by 1 + 8
√
ϵ. Since this holds for any f in the feasible set, it also holds when the

denominator on the left-hand-side is replaced by the infimum, r∗t,ϵ.

□

Lemma 8 Suppose f is twice differentiable on R except on a set N of measure zero and
∫ 3

−3
|x+

f(x)|2pN (x; 1)dx < ϵ with 0 < ϵ < 0.03. Then we have

inf
x∈[−1.5, 1.5]\N

f ′(x) ≤ − 1 + 2
√
ϵ (43)

inf
x∈[1.5, 3]

f(x) ≤ − 0.5 (44)

sup
x∈[−1.5, −3]

f(x) ≥ 0.5 (45)

Proof of Lemma 8: We first prove (43) by supposing for contradiction that infx∈[−1.5, 1.5]\N f ′(x) =

−1 + k∆ with k∆ > 2
√
ϵ. By the fundamental theorem of calculus, this means that the function

x + f(x) is monotonically increasing with slope at least k∆ on [−1.5, 1.5]. Hence, there exists
x1 ∈ R such that |x+ f(x)| > k∆|x− x1| for x ∈ [−1.5, 1.5]. Therefore,∫ ∞

−∞
|x+ f(x)|2pN (x; 1)dx ≥

∫ 1.5

−1.5

|x+ f(x)|2pN (x; 1)dx

≥ (k∆)
2

∫ 1.5

−1.5

|x− x1|2pN (x; 1)dx

= (k∆)
2

∫ 1.5

−1.5

(x2 + 2xx1 + (x1)
2)pN (x; 1)dx

≥ (k∆)
2

∫ 1.5

−1.5

x2pN (x; 1)dx

> 0.25(k∆)
2 > ϵ ,

(46)

which shows a contradiction.
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Next, we prove (44) by supposing for contradiction that infx∈[1.5, 3]\N f(x) > −0.5, in which case
it holds that inf1.5≤x≤3 |f(x) + x| > 1, and hence∫ ∞

−∞
|x+ f(x)|2pN (x; 1)dx ≥

∫ 3

1.5

|x+ f(x)|2pN (x; 1)dx

≥
∫ 3

1.5

pN (x; 1)dx

> 0.03 > ϵ

(47)

which shows a contradiction. A similar argument can be used to prove (45).

□

E PROOF OF PROPOSITION 2

Below we prove Proposition 6, which generalizes Proposition 2 to the case where n > 2.

Lemma 9 ∃t1, C > 0 such that ∀t ∈ (0, t1), it holds that

t · E
x∼p

(n)
t

[∥∥s̄(n)t (x)− ( d
dx log p

(n)
t )(x)

∥∥2] ≤ C exp(−δ2/(9t)) . (48)

Lemma 9 is proved in Appendix E.1. In light of it, we only need to show that

t

∫ ∞

−∞
|ŝ(n)t,δt

(x)− s̄
(n)
t (x)|2p(n)t (x)dx =

n− 1

n
F (κ) +O(

√
t) . (49)

By the definition of p(n)t , we can first evaluate the integral with respect to the density pN (x− yk;
√
t)

for each k ∈ [n] separately and then sum them up. We define

yk,− =

{
−∞ , if k = 1

yk − δt , otherwise
, yk,+ =

{
∞ , if k = n

yk + δt , otherwise
(50)

By construction, ŝ(n)t,δt
is a PL function whose slope is changed only at each yk,− and yk,+.

Let us fix a k ∈ [n]. Since ŝ
(n)
t,δt

(x) = s̄
(n)
t (x) when x ∈ [yk,−, yk,+], we only need to estimate the

difference between the two outside of [yk,−, yk,+].

We first consider the interval (yk,+, yk +∆] = (yk + δt, yk +∆] when k ∈ {1, ..., n− 1}, on which
it holds that

ŝ
(n)
t,δt

(x)− s̄
(n)
t (x) =

∆

t
· x− (yk + δt)

∆− δt
, (51)

by the piecewise-linearity of the two functions. Hence,

t

∫ yk+∆

yk+δt

|ŝ(n)t,δt
(x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx

=

(
∆

∆− δt

)2 ∫ yk+∆

yk+δt

∣∣∣∣x− yk√
t
− δt√

t

∣∣∣∣2 pN (x− yk;
√
t)dx

=

(
∆

∆− δt

)2(∫ ∞

yk+δt

∣∣∣∣x− yk√
t
− κ

∣∣∣∣2 pN (x− yk;
√
t)dx

−
∫ ∞

yk+∆

∣∣∣∣x− yk√
t
− κ

∣∣∣∣2 pN (x− yk;
√
t)dx

)
(52)

Note that by a change-of-variable x̃← (x− yk)/
√
t, we obtain that∫ ∞

yk+δt

∣∣∣∣x− yk√
t
− κ

∣∣∣∣2 pN (x− yk;
√
t)dx =

1

2
F (κ) , (53)
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where we define

F (κ) := 2

∫ ∞

κ

|u− κ|2pN (u; 1)du (54)

It is straightforward to see that, as κ increases from 0 to ∞, F strictly decreases from 1 to 0.
Therefore,

t

∫ yk+∆

yk+δt

|ŝ(n)t,δt
(x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx

=

(
∆

∆− δt

)2
(
1

2
F (κ)−

∫ ∞

∆/
√
t

|u− κ|2 pN (u; 1)dx

)

=
1

2
F (κ) +O(

√
t)

(55)

Next, we consider the interval [yk +∆,∞), in which we have

|ŝ(n)t,δt
(x)− s̄

(n)
t (x)| ≤ ∆

t
. (56)

Thus,

t

∫ ∞

yk+∆

|ŝ(n)t,δt
(x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx ≤ t

∫ ∞

yk+∆

∣∣∣∣∆t
∣∣∣∣2 pN (x− yk;

√
t)dx

=
∆2

t

∫ ∞

∆/
√
t

pN (u; 1)du

= O

(
t−1 exp

(
− ∆2

2t

)) (57)

Hence, we have

t

∫ ∞

yk+δt

|ŝ(n)t,δt
(x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx =

1

2
F (κ) +O(

√
t) . (58)

Similarly, for k ∈ {2, ..., n}, we can show that

t

∫ yk−δt

−∞
|ŝ(n)t,δt

(x)− s̄
(n)
t (x)|2pN (x− yk;

√
t)dx =

1

2
F (κ) +O(

√
t) . (59)

Thus, there is

t

∫ ∞

−∞
|ŝ(n)t,δt

(x)− s̄
(n)
t (x)|2pN (x− yk;

√
t)dx

=

{
F (κ) +O(

√
t) , if k ∈ {2, ..., n− 1}

1
2F (κ) +O(

√
t) , if k = 1 or n .

(60)

Summing them together, we get that

t

∫ ∞

−∞
|ŝ(n)t,δt

(x)− s̄
(n)
t (x)|2p(n)t (x)dx =

n− 1

n
F (κ) +O(

√
t) . (61)

This proves the proposition.

□

E.1 PROOF OF LEMMA 9

Below we prove Lemma 7, which generalizes Lemma 9 to the case where n > 2.

By the definition of p(n)t , it suffices to show that ∀k ∈ [n],∫
| ddx log p

(n)
t (x)− s̄

(n)
t (x)|2pN (x− yk;

√
t)dx = O(exp(−δ2/(9t))) . (62)
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Consider any k ∈ [n]. We decompose the integral into three intervals and bound them separately.
First, when x ≥ yk + 1

2∆ > yk, noticing that | ddx log p
(n)
t (x)|, |s̄(n)t (x)| ≤ (|x|+ 2D)/t, we obtain

that ∫ ∞

yk+
1
2∆

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2 pN (x− yk;
√
t)dx′

≤ 1√
2πt

∫ ∞

yk+
1
2∆

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2 exp(− (x′ − yk)
2

2t

)
dx′

≤ 1√
2πt

∫ ∞

yk+
1
2∆

4(|x′|+ 2D)2

t2
exp

(
− (x′ − yk)

2

2t

)
dx′

≤ 1√
2πt

∫ ∞

yk+
1
2∆

4(|x′ − yk|+ 4D)2

t2
exp

(
− (x′ − yk)

2

2t

)
dx′

≤ 8√
2πt3

∫ ∞

yk+
1
2∆

((
x′ − yk√

t

)2

+
16D2

t

)
exp

(
− (x′ − yk)

2

2t

)
dx′

=
8√
2πt3

∫ ∞

δ
2
√

t

(
(x̃)2 +

16D2

t

)
exp

(
− (x̃)2

2

)
dx̃

≤ 8√
2πt3

((
16D2

t
+ 1

)√
π

2
+

δ

2
√
t

)
exp

(
−δ2

8t

)
= O

(
exp

(
−δ2

9t

))
,

(63)

where for the last inequality we use Lemma 10 below.

A similar bound can be derived when the range of the outer integral is changed to between −∞ and
yk − 1

2∆.

Next, suppose x ∈ [yk − 1
2∆, yk + 1

2∆], which means that |x− yk| ≤ 1
2∆ while |x− yl| ≥ 3

2∆ for
l ̸= k. Thus, it holds for any l ̸= k that

pN (x− yk;
√
t)

pN (x− xl;
√
t)

= exp

(
−|x− yk|2 − |x− x2

l |
2t

)
≥ exp

(
∆δ

t

)
(64)

Hence, writing qt,k(x) := pN (x−yk;
√
t)∑n

l=1 pN (x−xl;
√
t)

, there is qt,k(x) ≥ 1 − (n − 1) exp
(
−∆δ

t

)
and for

l ̸= k, qt,l(x) < exp
(
−∆δ

t

)
. Therefore,∣∣∣ d

dx log p
(n)
t (x)− s̄

(n)
t (x)

∣∣∣ ≤ |(qt,k(x)− 1)yk|+
∑

l ̸=k |qt,k(x)yk|
t

≤ 2(n− 1)D

t
exp

(
−∆δ

t

)
= O

(
t−1 exp

(
−∆δ

t

))
.

(65)

Since pN (x− yk;
√
t) ≤ 1√

2πt
for any x′, we then have∫ yk+

1
2∆

yk− 1
2∆

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2 pN (x− yk;
√
t)dx′

≤ ∆+ w√
2πt

sup
yk− 1

2∆≤x′≤yk+
1
2∆

∣∣∣ d
dx log p

(n)
t (x′)− s̄

(n)
t (x′)

∣∣∣2
= O

(
t−3 exp

(
−2∆δ

t

)) (66)

Combining (63) with (66) yields the desired result.

□

Lemma 10 For u ≥ 0, ∫ ∞

u

e−x2/2dx ≤
√

π

2
e−u2/2 (67)∫ ∞

u

x2e−x2/2dx ≤
(√

π

2
+ u

)
e−u2/2 (68)
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Proof of Lemma 10: It known (e.g., Chang et al. 2011) that∫ ∞

u

e−x2

dx ≤
√
π

2
e−u2

, (69)

from which (67) can be obtained by a simple change-of-variable.

Next, using integration-by-parts, we obtain that∫ b

a

x2e−x2/2dx = x(−e−x2/2)
∣∣b
a
−
∫ b

a

1 · (−e− x2

2 )dx

= (ae−a2/2 − be−b2/2) +

∫ b

a

e−x2/2dx

(70)

Hence, ∫ ∞

u

x2e−x2/2dx ≤
∫ ∞

u

e−x2/2dx+ ue−u2/2

≤
(√

π

2
+ u

)
e−u2/2

(71)

□

F PROOF OF PROPOSITION 4

To make the dependence on d more explicit, below we add it as a super-script into p
(n,d)
t and L

(n,d)
t .

Our first observation is that the score matching loss L(n,d)
t [f ] can be decomposed as a sum over com-

ponents that depend separately the different output dimensions of f : L(n,d)
t [f ] =

∑d
i=1 L

(n,d)
t,i [[f ]i]

with L
(n,d)
t,i [f ] := t · E

x∼p
(n)
t

[∥f(x)− ∂i log p
(n)
t (x)∥2] . In particular, in each of the normal dimen-

sions, L(n,d)
t,i can achieve its global minimum of 0 if we set [f(x)]i = ∂i log p

(n)
t (x) = −[x]i/t for

i > 1. This motivates us to focus on candidate solutions of the following form:

Definition 11 Given g : R→ R, we define a flat extension of g along the normal directions to the
domain Rd, fg : Rd → R, by

fg(x) := g([x]1) , ∀x ∈ Rd . (72)
We then further define

fg(x) := [fg(x),−[x]2/t, ...,−[x]d/t] . (73)

Lemma 12 Given any g : R→ R, it holds that L(n,d)
t [fg] = L

(n,1)
t [g] and R(d)[fg] = R(1)[g].

Proof of Lemma 12: For the first property, we note that

L
(n,d)
t,1 [fg] = t · E

x∼p
(n,d)
t

[∥fg([x])− ∂1 log p
(n,d)
t (x)∥2]

= t · E
x∼p

(n,d)
t

[∥g([x]1)−
d

d[x]1
log p

(n,1)
t ([x]1)∥2]

= t · Ex∼p
(n,1)
t

[∥g(x)− d

dx
log p

(n,1)
t (x)∥2]

= L
(n,1)
t [g] .

(74)

Hence, L(n,d)
t [fg] = L

(n,d)
t,1 [fg] = L

(n,1)
t [g].

For the second property, let us consider any w ∈ Sd−1. There is

∇wfg(x) = w · ∇fg(x) = [w]1g
′([x]1) , (75)

∇2
wfg(x) = [w]1∂wg′([x]1) = ([w]1)

2g′′([x]1) . (76)
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Meanwhile, thanks to the linearity in the normal dimensions, we have [∇2
wfg(x)]i ≡ 0, ∀i ∈

{2, ..., d}. Therefore,∫ ∞

−∞
∥∇2

wfg(wx+ b)∥dx =

∫ ∞

−∞
|∇2

wfg(wx+ b)|dx

= ([w]1)
2

∫ ∞

−∞
|g′′([w]1x+ [b]1)|dx

= |[w]1|R(1)[g] ≤ R(1)[g] .

(77)

Since we maximize over all w ∈ Sd−1 in the definition of R(d)
1 , we see that R(d)[fg] = R(1)[g].

□

Lemma 13 r∗t,ϵ,d ≥ r∗t,ϵ,1, ∀d ∈ Nd
+.

Proof of Lemma 13: Consider any f̃ : Rd → Rd in the feasible set (i.e., L(n,d)
t [f̃ ] < ϵ), and we let

f̃ = [f̃ ]1 denote its tangent dimension. This implies that L(n,d)
t,1 [f̃ ] ≤ L

(n,d)
t [f̃ ] < ϵ. On the other

hand, we have

L
(n,d)
t,1 [f̃ ] = t · Ex2,...,xd∼pN (0,

√
t)

[
Ex1∼p

(n,1)
t

[∣∣∣f̃(x1, x2, ..., xd)− d
dx1

log p
(n,1)
t (x1)

∣∣∣2]] ≥ l̃ ,

(78)

where we let l̃ := inf(x2,...,xd)∈Rd−1 Ex∼p
(n,1)
t

[|f̃(x, x2, ..., xd) − d
dx log p

(n,1)
t (x)|2]. For any given

ϵ0 > 0, we can find x∗
2, ..., x

∗
d ∈ Rd−1 such that

Ex∼p
(n,1)
t

[∣∣∣f̃(x, x∗
2, ..., x

∗
d)− d

dx log p
(n,1)
t (x)

∣∣∣2] < l̃ + ϵ0 (79)

We now define g̃ : R→ R by
g̃(x) := f̃(x, x∗

2, ..., x
∗
d) . (80)

Then (79) implies that L(n,1)
t [g̃] < l̃ + ϵ0 ≤ L

(n,d)
t,1 [f̃ ] + ϵ0. Since ϵ0 is arbitrary, we may choose

ϵ0 = ϵ− L
(n,d)
t,1 [f̃ ], which then implies L(n,1)

t [g̃] < ϵ,and hence g̃ is in the feasible set for the 1-D
variational problem. On the other hand, we see that

R(1)[g̃] =

∫ ∞

−∞

∣∣∣ d2

dx2 f̃(x, x
∗
2, ..., x

∗
d)
∣∣∣ dx

=

∫ ∞

−∞

∣∣∣∇2
wf̃(wx+ b)

∣∣∣ dx ≤ ∫ ∞

−∞

∥∥∥∇2
wf̃(wx+ b)

∥∥∥ dx ,

(81)

if we choose w = [1, 0, ..., 0] and b = [0, x∗
2, ..., x

∗
d]. This implies that R(1)[g̃] ≤ R(d)[f̃ ].

Since this argument applies to any f̃ in the feasible set, we can take infimum over f̃ to conclude that
r∗t,ϵ,d ≥ r∗t,ϵ,1.

□

Now we proceed to the proof of the proposition. Let ϵ and κ be specified as in the proposition
statement, and let t1 be determined in the same way as in Proposition 1. We observe that [ŝ(n)t,δt

]1 is the

flat extension of s(n)t,δt
to the domain Rd, and therefore, ŝ(n)t,δt

= f
s
(n)
t,δt

. By Lemma 12, this means that

L
(n,d)
t [ŝ

(n)
t,δt

] = L
(n,1)
t [s

(n)
t,δt

], and the right-hand-side is smaller than ϵ when t < t1 by Proposition 1.

Meanwhile, Lemma 12 also implies that R(d)[ŝ
(n)
t,δt

] = R(1)[s
(n)
t,δt

], and the right-hand-side is smaller
than (1 + 8

√
ϵ)r∗t,ϵ,1 when t < t1 Proposition 1, which is further bounded above by (1 + 8

√
ϵ)r∗t,ϵ,d

by Lemma 13. This completes the proof of Proposition 4.

G PROOF OF PROPOSITION 3

We consider each of three cases separately.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Case I: x ∈ [δt − 1, 1− δt]. In this case, it is easy to verify that xs =
1−δs
1−δt

x is a valid solution to
the ODE

d

ds
xs = −

1

2

δs
1− δs

xs

s
, (82)

on [0, t] that satisfies the terminal condition xt = x. It remains to verify that for all s ∈ (0, t), it
holds that xs ∈ [δs − 1, 1− δs] (i.e., the entire trajectory during [0, t] remains in region C).

Suppose that x ≥ 0. Then it is clear that xs ≥ 0, ∀s ∈ [0, t]. Moreover, it holds that

xs − (1− δs) =
1− δs
1− δt

(xt − (1− δt)) ≤ 0 (83)

Therefore, xs ∈ [0, 1− δs] ⊆ [δs − 1, 1− δs]. A similar argument can be made if x < 0.

Case II: x ≤ δt − 1. In this case, it is also easy to verify that xs =
√

s
t (x + 1) − 1 is a valid

solution to the ODE
d

ds
xs =

1

2

x+ 1

s
, (84)

on [0, t] that satisfies the terminal condition xt = x. It remains to verify that for all s ∈ (0, t), it holds
that xs ≤ δs − 1 (i.e., the entire trajectory during [0, t] remains in region A). This is true because

(xs + 1)− δs =

√
s

t
(x+ 1)− δs =

√
s

t
(x+ 1− δt) ≤ 0 . (85)

Case III: x ≥ 1− δt. A similar argument can be made as in Case II above.

□

H PROOF OF PROPOSITION 15

The proof relies on the following lemma, which allows us to relate the KL-divergence between p̂
(n,t0)
0

and the uniform density via that of p̂(n,t0)t0 :

Lemma 14 ∀t ∈ [0, t0], KL(u1||p̂(n,t0)0 ) = KL(u1−δt ||p̂
(n,t0)
t ).

Proof of Lemma 14:

KL(u1||p̂(n,t0)0 ) =

∫ 1

−1

1

2
· (− log 2− log(p̃

(n,t0)
0 (x)))dx

= − log 2− 1

2

∫ 1

−1

log(p̃
(n,t0)
0 (x))dx

= − log 2− 1

2(1− δt)

∫ 1−δt

δt−1

(
log(1− δt) + log(p̂

(n,t0)
t (x′))

)
dx′

=
1

2(1− δt)

∫ 1−δt

δt−1

log(1/(2(1− δt)))− log(p̂
(n,t0)
t (x′))dx′

= KL(u1−δt ||p̂
(n,t0)
t )

(86)

□
In light of Lemma 14, we choose t = t0 and examine the KL-divergence between u1−δt0

and p̂
(n,t0)
t0 .

By symmetry, we only need to consider the right half of the interval, [0, 1− δt0 ], on which there is
p̂
(n,t0)
t0 (x) = p

(n)
t0 (x) ≥ 1

2pN (x− 1;
√
t0). We have∫ 1−δt0

0

log
(
pN (x− 1;

√
t0)
)
dx =

∫ −δt0

−1

log
(

1√
2πt0

exp(−x2/t0)
)
dx

= − 1−δt0
2 (log(2π) + log(t0))− 1

t0

∫ −δt0

−1

x2dx

≥ − 1−δt0
2 (log(2π) + log(t0))− 1

3t0
.

(87)
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Therefore,

KL(u[0,1−δt0 ]
||p̂(n,t0)t0 ) =

1

1− δt0

∫ 1−δt0

0

− log(1− δt0)− log

(
1

2
pN (x− 1;

√
t0)

)
dx

≤ − log(1− δt) + log(2)− 1
1−δt0

(
− 1−δt0

2 (log(2π) + log(t0))− 1
3t0

)
≤ 1

3t0(1−δt0 )
+ log

( √
t0

1−δt0

)
+ log(2

√
2π) .

(88)

By symmetry, the same bound can be obtained for KL(u1−δt0
||p̂(n,t0)t0 ), which yields the desired

result when combined with Lemma 14.

I ADDITIONAL DISCUSSIONS

I.1 KL DIVERGENCE BOUND

(18) allows us to prove KL-divergence bounds for p̂(n,t0)0 based on those of p̂(n,t0)t . For example,
letting ua denote the uniform density on [−a, a], we have:

Proposition 15 Let κ > 0 and 0 < t0 < 1/κ2. If xt solves (13) backward-in-time with xt0 ∼ p
(n)
t0 ,

then there is KL(u1||p̂(n,t0)0 ) ≤ 1
3t0(1−κ

√
t0)

+ log
( √

t0
1−κ

√
t0

)
+ log(2

√
2π) <∞.

This result is proved in Appendix H. Although the choice of the uniform density as the target to
compare p̂

(n,t0)
0 with is an arbitrary one (since the training set is fixed rather than sampled from the

uniform distribution), the result still rigorously establishes the smooth component of p̂(n,t0)0 that
interpolates the training set. In contrast, denoising with the exact ESF results in p

(n)
0 , which is fully

singular and has an infinite KL-divergence with any smooth density on [−1, 1].

I.2 COMPARISON WITH INFERENCE-TIME EARLY STOPPING

The effect of score smoothing on the denoising dynamics is different from what can be achieved by
denoising under the exact ESF but stopping it at some positive tmin. In the latter case, the terminal
distribution is still supported in all d dimensions and equivalent to corrupting the training data directly
by Gaussian noise. In other words, without modifying the ESF, early stopping alone is not sufficient
for inducing a proper generalization behavior.

J ADDITIONAL DETAILS ON THE NUMERICAL EXPERIMENTS

All experiments were run on a hosted Jupyter Notebook service with a single TPU (v3) as backend.
The code was written in JAX (Bradbury et al., 2018) and each experiment ran for less than 1 hour.

J.1 NN-LEARNED SF VS SMOOTHED PL-ESF IN 1-D

NN-learned SF. We trained a two-layer MLP with a skip linear connection from the input layer
to fit the ESF at t = 0.05. The model is trained by the AdamW optimizer (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019) for 6000 steps with learning rate 0.0002, and we consider four choices
of the weight decay coefficient: λ1 = 1.0, λ2 = 3.0, λ3 = 5.0 and λ4 = 7.0. At each training step,
the optimization objective is an approximation of the expectation in (3) using a batch of 1024 i.i.d.
samples from p

(n)
t . We considered four choices of λ: λ1 = 1.0, λ2 = 3.0, λ3 = 5.0 and λ4 = 7.0.

Smoothed PL-ESF. We chose t = 0.05 and four values of δ (δ1 = 0.648, δ2 = 0.548, δ3 = 0.453,
δ4 = 0.346), which were tuned to roughly match the corresponding curves in the left panel.
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Figure 6: Comparing three SF variants from Experiment 2 in their first (tangent) dimension at
different t. We see a close proximity between the Smoothed PL-ESF and the NN-learned SF, both of
which are smoother than the ESF especially at small t.

J.2 EXPERIMENT OF SECTION 6.1

The ESF is computed from its analytical expression (25). To ensure numerical stability at small t, we
truncate the sampled values of∇ log p

(n)
t based on magnitude. At t0 = 0.02, 20000 realizations of

xt0 are sampled from p
(n)
t0 . Then, the ODEs are numerically solved backward-in-time to t = 10−5

using Euler’s method under the noise schedule from Karras et al. (2022) with 200 steps and ρ = 2.

For the Smoothed PL-ESF, we choose δt = κ
√
t with κ = 1.2.

For the NN-learned SF, after a rescaling by
√
t (c.f. the discussion on output scaling in Karras

et al. 2022), we parameterize sNN
t with three two-layer MLP blocks (MLP1, MLP2, MLP3): MLP1

is applied to log(t) to compute a time embedding; MLP2 is applied to the concatenation of x and
the time embedding; MLP3 is also applied to log(t) and its output modulates the output of MLP2

similarly to the Adaptive Layer Norm modulation (Perez et al., 2018; Peebles and Xie, 2023). MLP1

and MLP3 share the first-layer weights and biases. The model is trained to minimize a discretized
version of (3) with T = t0, where the integral is approximated by sampling t from [10−6, t0] with
t1/3 uniformly distributed (inspired by the noise schedule of Karras et al. 2022) and then x from p

(n)
t .

The parameters are updated by the AdamW optimizer with learning rate 0.00005, batch size 1024
and a total number of 150000 steps, where weight decay (coefficient 3) is applied only to the weights
and biases of MLP2.
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Figure 7: Comparing three SF variants from Experiment 2 in their second (normal) dimension at
different t. We see all three SF are relatively similar in the normal direction, except for a mild
distortion of the NN-learned SF when t is small and [x]2 is large (where p

(n)
t has low density).
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Figure 8: Comparing three SF variants from Experiment 2 in their first (tangent) dimension at
different t when they are evaluated on the [x]1 axis. Again, we see a close proximity between the
Smoothed PL-ESF and the NN-learned SF, both of which are smoother than the ESF.
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Figure 9: ESF vs NN-learned SF with various strengths of weight decay regularization (λ) when
training data lie non-uniformly in 1-D. We see that the NN-learned SF becomes increasingly smooth
as λ increases.

J.3 EXPERIMENTS OF SECTION 6.2

Data on a circle The training data lies on a circle with radius 1 centered at the origin in R2, and we
choose t0 = 0.08 and n = 4, 8 and 16. The NN model is trained with learning rate 0.0001, batch
size 64 and no weight decay for 5000, 20000 and 80000 epochs respectively for the three choices of
n. The rest of the configuration is the same as described in Appendix J.2.

Randomly-spaced in 1-D The training data (with n = 6) are randomly perturbed from a uniform
grid. We choose t = 0.1. The NN model has the same architecture as described in Appendix J.1 and
is trained for 15000 steps using the AdamW optimizer with learning rate 0.00005.
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