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ABSTRACT

The ability to synthesise source code from input/output examples allows non-
experts to generate programs, and experts to abstract away a wide range of simple
programming tasks. Current research in this area has explored neural synthesis,
SMT solvers, and genetic programming; each of these approaches is limited, how-
ever, often using highly specialised target languages for synthesis. In this paper
we present a novel hybrid approach using neural networks to guide genetic pro-
gramming (GP), which allows us to successfully synthesise code from just ten I/O
examples in a generalised Turing complete target language, up to and including a
sorting algorithm. We show that GP by itself is able to synthesise a set of simple
programs, and show which hints (suggested lines of code for inclusion) are of most
utility to GP in solving harder problems. Using a form of unstructured curriculum
learning, we then demonstrate that neural networks can be used to determine when
to make use of these high-utility hints for specific I/O problems and thus enable
complex functions to be successfully synthesised. We apply our approach to two
different problem sets: common array-to-array programs (including sorting), and
a canvas drawing problem set inspired by So & Oh (2018).

1 INTRODUCTION

The ability to synthesise source code from examples, in which a source code implementation of a
function is created based on one or more demonstrations of input-output mapping, is a fundamental
question in machine learning. We specifically study this question in the form of scenarios where
large corpora of existing code are not available (e.g., human-written programs in open-source repos-
itories). The immediate applications of this would allow non-programmers to generate programs,
or experts to abstract away trivial coding tasks. In addition, from a machine learning perspective, it
allows complex functions to be generated in a symbolic and human-readable form – which can be
subjected to a wide range of static analysis tools to model generality or correctness.

To date this challenge has been studied using neural-network-driven synthesis, genetic program-
ming, and SMT solvers. However, at present these approaches are significantly constrained in the
complexity of the target language in which code is synthesised. Neural synthesis for example, such
as the DeepCoder architecture (Balog et al., 2017; Zohar & Wolf, 2018), shows success on sim-
ple domain-specific languages, but the search space of more realistic Turing-complete languages is
vast by comparison and is unlikely to be representable in a neural network on current or near-future
hardware. Genetic programming, meanwhile, is limited by our ability to specify a fitness function
which can successfully navigate to a solution for a particular problem – in the highly irregular and
often flat fitness landscape of program space (Kinnear, 1994; Renzullo et al., 2018). SMT solvers by
comparison lack the analytical power to handle loops without human guidance, constraining their
applicability (Srivastava et al., 2010a; So & Oh, 2018; Srivastava et al., 2010b).

In this paper we examine code synthesis from examples for a Turing-complete language which can
be cross-compiled into C/Java. We use just 10 input/output examples to describe each problem for
which we need to synthesise a matching function (i.e., providing unsorted and sorted arrays of in-
tegers to describe sorting); because our target language yields a total search space size of 5 ∗ 10119
possible program permutations, scalability of the synthesis technique is crucial. In this context, we
use a novel combination of genetic programming (GP) and neural networks (NNs); GP is used to
navigate within program space from a given starting point using a general-purpose fitness function,
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while NN methods are used to provide prediction of high-level features which help guide the GP
to higher-probability success areas in which to search. In essence this technique allows the NN to
model only highly abstract features of program space, allowing it to scale to vast program search
spaces, while the GP can then incrementally traverse program space from an NN-derived starting
point to a correct solution. We bootstrap this process by using an unstructured form of curriculum
learning, in which successfully-found functions are used as seed programs to generate synthetic
corpora on which to train new neural networks, leading to further high-utility source code feature
predictions for new problems. Initially this curriculum learning is based on programs that can be
successfully found using GP alone with our generic fitness function, which then allows us to syn-
thesise more complex programs using NN inference.

Our key results demonstrate that GP is able to solve simple synthesis problems unaided, and that
synthetic corpora generated from these problems allow popular neural network architectures to iden-
tify high-utility search hints on more complex problems to guide the genetic programming search. In
one of our problem sets, this has the effect of allowing the framework to successfully synthesise 7 of
the 10 programs that had never been found by GP alone, and among other programs moves success
rates from 38% to 55%. All of our source code is provided online (pending de-anonymisation).

2 RELATED WORK

Code synthesis from I/O examples has been studied using three major approaches: deductive solvers;
neural networks (NNs) with search; and genetic programming (GP). For code synthesis in a Turing-
complete language, deductive solvers have yet been shown to operate well with loop-based flow
control operators (although frameworks which manually define any non-linear program flow can
yield good performance (So & Oh, 2018)). Neural synthesis, by comparison, is limited by how
much of program space for a general-purpose target language can be captured in a NN model, while
GP is limited by the difficulty of deriving a fitness function to navigate to a solution (Renzullo et al.,
2018). In the remainder of this section we focus on NN and GP approaches in more detail.

Neural synthesis Neural synthesis works by training a neural network on a sub-sample of the
entirety of program space for the target language (e.g., sampling at a uniform interval or at random).
When presented with a new problem as an I/O example, the neural network will then be asked to
predict which lines of code (or particular operators) are likely to be present in the solution based
on similar I/O transforms observed in the training set from the above sub-sample. The system will
then perform an exhaustive search of program space to fill in the remaining (non-predicted) features.
Notable examples here include DeepCoder and RobustFill, among others (e.g., Balog et al. (2017);
Zohar & Wolf (2018); Devlin et al. (2017); Chen et al. (2019); Singh & Kohli (2017))

The key limitation to this approach is that it must be able to train on a detailed enough sub-sample
of program space, and store this sample inside a neural network, to make meaningful predictions
on program features for unseen problems. While this works for highly simplified languages (Deep-
Coder, for example, has no loop operators (Balog et al., 2017)), the search space size of a Turing-
complete language is astronomical by comparison. If we consider that the capacity of a feed-forward
ReLu neural network to differentiate between classes (in our case programs), termed its VapnikCher-
vonenkis (VC) dimension, at best grows as a linear function of w ∗ L ∗ log(w) where w is the total
number of weights and L the number of layers (Bartlett et al., 2019), it is unlikely that a neural
network on current hardware would be able to represent a useful sub-sample of possible program
permutations yielded by the search space of a general-purpose language.

Genetic programming GP relies on iterative travel through program space from a starting point
(often an empty program) to the solution, guided by a fitness function (Vanneschi & Poli, 2012;
Taleby Ahvanooey et al., 2019). The field has a long history (Forsyth, 1981) but still shows re-
sults (Miranda et al., 2019) that are competitive with neural networks (Ain et al., 2020), and an
ability to tackle complex problems mixing diverse datatypes (Pantridge & Spector, 2020).

Unlike neural synthesis, a GP approach does not need to encode the entirety of program space in a
model, and so can in theory work in a scalable fashion on high dimensional search spaces as long
as a fitness function is provided which can guide the search incrementally towards a solution. The
key problem with GP for code synthesis is that large areas of program space are difficult to navigate,

2



Under review as a conference paper at ICLR 2021

exhibiting large plateaus of neutrality (no behavioural change despite significant code change) and
highly irregular responses to code change (jagged fitness landscape) (Renzullo et al., 2018; Kinnear,
1994). A fitness function may also fail to capture higher level properties, for example “all outputs
are even” or “all values from the input are repeated in the output”, which may otherwise be identified
by a neural network.

Combining neural network prediction with genetic programming Given the limitations of both
NNs and GP in themselves, we hypothesise that the combination of the two techniques may provide
the best features of both while mitigating their respective limitations in the context of code synthesis
in a Turing-complete language with a very large program search space.

While a NN cannot feasibly model all of program space, and so cannot be expected to predict each
line to be synthesised, it does have the potential to predicting a small number of higher-level features
which only require a very limited internal model of program space. This can be combined with a
GP search process which fixes these lines in place to constrain the search area, and can use this
partially-constructed program in combination with one or more generic fitness functions to guide
the search to a successful result. We further find that we can use successfully-found programs to
generate synthetic training sets for a NN focused on that area of program space, which then leads to
further high-value predictions of likely features for more complex programs.

3 METHODOLOGY

Our system accepts up to ten I/O examples from a user and synthesises the source code of a function
which converts those inputs to their corresponding outputs. We use 10 examples as a number which
a user may be willing to input while representing lower effort than writing the function manually.
If our system fails to synthesise source code for a given problem, the user can specify a simpler but
related I/O problem; the successful synthesis of this simpler problem can then lead to subsequent
success on the more complex problem. As a target programming language for synthesis, we use a
Turing-complete language (previously used by the authors of (Wild & Porter, 2019)) which can be
cross-compiled directly into C/Java/Python. The language features primitive loop operators, variable
declarations, and conditional branch operators; a full listing of its operators is given in appendix A.1.

We use a combination of GP guided by NN prediction to approach this problem, and show successful
synthesis of a wide range of programs including sorting. In this paper we study three specific parts of
the above overall framework: (i) the success rate of GP by itself of finding programs in our problem
sets; (ii) the effect of different hints (suggested lines of code) on the success rate of GP; (iii) the
ability of a NN to predict high-utility hints, after being trained on a synthetic corpus derived from
high-success program finds from the GP alone.

In the remainder of this section we describe our problem sets, genetic programming and NN imple-
mentations in more detail, then present the set of experiments that we conduct.

3.1 SPECIFICATION OF PROBLEM

We use two different problem sets which represent human-useful programs of the kind that may
be input into our system. Our first problem set is array-to-array programs such as extract even
numbers, append arrays, or sort. Our second problem set is provided with an image to draw on a
canvas and must synthesise the program which draws that image (this problem set is taken from So
& Oh (2018)).

Each problem within each problem set is presented to the system as a set of 10 IO examples. These
are generated for each problem by feeding in 10 inputs and corresponding outputs of the form the
problem requires (either a randomly generated input array and integer, or a canvas size). These
10 inputs are randomly generated from a fixed seed, to reduce internal variability between tests,
allowing more accurate evaluation of the changes made by alterations to parameters or by guidance
to the GP. This is designed to represent an unbiased input set.
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3.2 GENETIC PROGRAMMING

Our GP algorithm creates a population of 2,000 programs, each one the result of crossover and
mutation from among the 10 highest-ranked parents of the previous generation (or, for the first
generation, mutations of the empty program). Each program in a population is then ranked using a
general-purpose fitness function which was experimentally found to be good at locating programs
from various search space starting points. We integrate novelty search (Lehman & Stanley, 2010;
Doncieux et al., 2019) as part of our fitness function to avoid falling into the same local minima
repeatedly, which was found to further boost search success. Once all programs have been ranked,
a new generation of 2,000 members is then created, repeatedly, until the target program is found or
the system reaches a maximum number of generations (3,000) and reports failure.

Our fitness function, in detail, is formulated as error ∗ novelty penalty. The value for error is
calculated as the number of elements in the output of a candidate function which do not match those
expected for the corresponding input; this value is normalised into the range [0.0,−1.0] by dividing
it by the corresponding error which would have been produced by an empty output for that input.

The value for novelty penalty is calculated by first extracting the highest-fitness member of a
population, and removing all lines of code which do not contribute to its behaviour. This program is
stored as a repulsor which indicates how well-explored a given region of program space is. When
calculating the fitness of a new program, each repulsor adds a multiplicative value depending on the
distance D of that program from the repulsor. D itself is calculated by examining each line in the
first program and calculating how far away (in lines of code) the same line is in a second program.
Each repulsor adds max(0, 1 − D/15) to novelty penalty, such that multiple repulsors can exist
in the same area of program space, leading to stronger avoidance of those areas.

For each new generation during the GP search, parents are chosen using tournament selection with
tournament size of 10 (Miller & Goldberg, 1995). Crossover occurs by taking the first half of the
first parent, and appending the second half of the second parent (syntactically flawed offspring are
accepted into the population but receive minimal fitness when evaluated). Following crossover, we
apply a single mutation to a program with a probability of 0.35. Following each mutation a random
boolean value is selected, and if true another mutation is applied, to a maximum of 8 mutations.

Each mutation takes one of the following forms, selected uniformly at random:

1. Insert: this inserts a random line from all possible lines available in the language, and will
delete last lines of program if program is already at maximum length. It automatically adds
an ENDBLOCK operator if a flow-control operator was inserted.

2. Delete: sets a random line to NO-OP.

3. Mutate: changes a random operator/parameter on a line, ensuring the line remains valid.

4. Swap: exchanges position of any two lines of the program.

In all of the above, the parameter values relating to D and mutation probabilities were chosen as
values found to experimentally work well.

3.3 NEURAL NETWORK DESIGN

While no programs have yet been successfully synthesised by our system, we initially rely on GP as
above to locate simpler programs. Once at least one program has been located it is added to our set of
successfully found programs SF . We then augment GP with a neural network which provides hints
of one or more likely lines of code for a given unsolved problem, which correspond to likely areas
of program space in which the GP will search (rather than the GP starting its search from an empty
program). Our NN is trained on a synthesised training set of programs; the programs in this training
set are generated at random but must exhibit some of the program features present in programs in
SF . The intuition here is that the neural network will thus learn to recognise which program features
are likely to be present for unseen I/O examples, based on program features known to be useful in
other programs requested by users, which are then useful to guide the GP search.

Each synthesised training corpus based on SF has 20,000 programs for training and 2,000 for test-
ing. The 20,000 programs are divided into 10,000 which do have a particular program fragment
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of interest, and 10,000 which do not have that fragment, with the NN trained to determine whether
or not a given I/O example is likely to have that fragment in the corresponding implementation
program. Each program in each set of 10,000 is assured to be distinct in functionality from every
other program in the set, tested on its behaviour with respect to a fixed 10 I/O examples. Each new
program in a training set is generated by selecting uniformly at random two programs already ac-
cepted, applying a crossover, then applying between 1 and 8 mutations (as described above in the
GP section) while assuring that the fragment of interest still exists.

We use a range of NN architectures to study which ones work best in each problem set. Specifically
we use a feed-forward NN in both problem sets, as a shared baseline; in our array-to-array problem
set we then also use an LSTM-based recurrent network, and in our canvas problem set we use a
CNN. The details of all network architectures are described in appendix A.3.

3.4 EXPERIMENT SETUP

We use three different experiments to study each element of our approach. The details of each
experiment are given below, while the next section presents the results.

Experiment 1: Exhaustive Fragment Evaluation In our first experiment we examine the base-
line performance of GP alone on our two problem sets, then study the effect of each possible source
code hint that can be given for each problem (in terms of its effect on success rate).

For the latter we examine the set of 1 or 2-line code fragments which can be cleanly isolated (with
no dependencies) in the ground truth solution to each problem. We then run a GP pass with the
code fragment as a forced requirement, such that any program produced by the GP which does not
include them automatically receives a penalty fitness of -10,000. Each experiment in this series is
repeated 30 times to account for the inherent stochasticity in the GP process.

These results demonstrate the kinds of problem that can be solved using GP alone, and the extent
to which a GP algorithm can have its probability of finding a solution increased by constraining its
sampled programs to contain certain lines of code – which help identify the highest utility hints that
a NN can seek to find.

Experiment 2: Fragment Recognisability by Neural Network Having established that code
fragments can be used to improve GP find rates (including from zero to non-zero find rates), our
second experiment studies the use of synthetic NN training corpora based around these fragments –
and the extent to which NNs can successfully predict these features in unseen problems to assist GP.

For this experiment we need to assume that some programs have already been found by the GP
alone, and useful fragments identified, from which to automatically synthesise NN training sets as
described above.

For our array-to-array problem set, we select all programs which have find rates of 90% and above
using the GP alone from experiment 1. For our canvas problem set, we select the single highest find-
rate program using the GP alone for each ‘class’ of problem identified by So & Oh (2018) (such as
‘triangles’). These programs represent those which are most likely to have been found first without
the aid of the NN. From within the source code of these programs we select a set of individual
fragments from which to generate our synthetic NN training corpora. These fragments are chosen
using high-utility fragments identified from experiment 1, and augmented with further fragments of
interest that were manually chosen to gain a wider coverage of fragment predictability by a NN.

Altogether, these experiments indicate how well NNs can predict the presence of different program
features based on our synthetic training sets – a mechanism by which the solution to easy (high-find-
rate) problems can be used to find solutions to hard (low-find-rate) problems.

Experiment 3: Success of chosen fragments In the third experiment we test the success of our
GP algorithm when guided by NN-predicted source code fragments using the trained NNs from
experiment 2, using all problems in each problem set. To do this we apply a simple selection process,
choosing uniformly at random from among all fragments which were estimated by an NN to have
a probability of >= 0.5 presence in a program, and provide one such fragment to the GP process.
This shows how a full neurally-guided GP process would perform in our end-to-end system.
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Problem Baseline Maximum Best Operators

Append 0% 27% Var=Literal 1; Addition
Cumulative Abs Sum 0% 3% Loop; Read
Keep Evens 0% 7% Var=Literal 2; Make Array
Retain First Half 0% 13% Var=Literal 2; Divide
Reverse 58% 80% Var=Literal 1; Make Array
Shift Right 0% 13% Var=Literal 1; Loop
Shift Right Lossy 84% 80% Var=Literal 1
Sort (Bubblesort) 0% 0% (None)

Parallelogram 7% 30% Var=Literal 2; Divide
Mirrored Hollow Parallelogram 13% 60% Var=Literal 2; Divide
Hollow Right Triangle 87% 90% Var=Literal 1; Subtract
Hollow Mirrored Right Triangle 63% 93% Var=Literal 1; Subtract
Inverted Isosceles Triangle 46% 23% Var=Literal 2
Trapezoid 7% 10% Var=Literal 1

Table 1: Find rates for guided Genetic Programming Algorithm with forced inclusion of code frag-
ments from ground truth. Baseline is unguided GP. Maximum is single best performing fragments.
Best operators are those used in the highest-scoring fragment (first if tied) (n=30 per fragment, per-
centage success)

4 EVALUATION

Our evaluation was conducted on Tensorflow 1.14, Python 3.6.9, Java OpenJDK 11.0.6. Our source
code will be made available in camera-ready version

4.1 EXPERIMENT 1: GP BASELINE AND ITERATIVE REQUIREMENT SEARCH

In this experiment we first determine the baseline find rate of the GP with no assistance, and also
select a number of problems to study by supplying certain subsets of the lines as guidance to the
GP. This is done by fully running 30 GP search repeats with each valid (as described above) 2-line
fragment from the ground truth. From the first corpus we selected 8 problems, from the second
we select 6. From the first corpus we select mostly low-find-rate problems, to study which form
of fragments would be useful to provide to achieve success in the GP, while in the second corpus
we select a more representative sample, to study how constraint-forcing behaves in general. We
select two problems of the same class from the 2nd corpus (right triangles), to ensure that similar
fragments provide similar results in similar circumstances (to give confidence in generality of these
results). The baseline success, best find rate increase, and best fragment’s operators for selected
problems are presented in Table 4.1.

Here we clearly see that forcing the inclusion of even the simplest code elements (one or two lines
of the ground truth) into the GP’s population allows the GP to find previously unsolvable problems.
We can also see that fragments containing arithmetic operators (especially literal assignment) appear
to have a stronger influence on success, possibly as they are harder to find, as their effects are far
more subtle and complex than, say presence of a loop operator. These should therefore be studied
as high-utility candidates for deployment into GP processes we wish to guide in the future.

We also note that some examples show a decrease in success rate (e.g. “Shift Right Lossy”). While
no fragment reduced find rates to zero, we speculate that in some cases the provision of a fragment
places the GP into an area of program space from which it is harder to reach the solution using our
general-purpose fitness function (for example, meaning that this point in program space has larger
regions of neutral landscape around it which are harder to traverse over).

A full breakdown of all baseline GP find rates is presented in Appendix A.4, with fragments and
their successes presented in Appendix A.5.
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Fragment FFNN FFNN Test RNN RNN Test

Add 58 % 62 % 58 % 62 %
+1 Offset Loop 74 % 67 % 71 % 66 %
Length -1 Loop 76 % 66 % 77 % 65 %
Literal (2) 76 % 63% 71 % 60 %
Loop 97 % 78% 98 % 79 %
Loop+Conditional 72 % 62% 70 % 59 %
Loop+Read 65 % 61% 62 % 58 %
Nonstandard Array 81 % 68% 80 % 66 %
Read 76 % 63% 60 % 58 %
Subtract 61 % 56% 62 % 56 %
Average 74 % 65 % 71 % 63 %

Fragment FFNN FFNN Test CNN HU CNN Test

Add 58 % 67 % 78 % 86 %
Conditional 61 % 57 % 64 % 85 %
Half 61 % 62 % 87 % 87 %
Half Loop 65 % 60 % 82 % 87 %
Half Loop Depend 70 % 59 % 82 % 90 %
Loop Conditional 64 % 58 % 57 % 85 %
Loop Draw 65 % 58 % 70 % 85 %
Loop Loop 73 % 57 % 83 % 75 %
Loop Loop Subtract 60 % 55 % 64 % 77 %
Draw Draw 52 % 52 % 74 % 71 %
Average 63 % 58 % 74 % 83 %

Table 2: Percentage accuracy of two neural networks on two corpora, with regards to ability to
recognise presence of a code fragment within the source code of the function whose IO mapping
they are receiving as feature inputs. First NN architecture is a common FFNN implementation.
Accuracy is only that of the NNs which show success on known-ground-truth seed fragments (as
described in methodology, others discarded from results). Testing accuracy is accuracy on the 2,000
synthetic testing programs. Full description of fragments in Appendix Tables 24 and 25 (n=30)

4.2 EXPERIMENT 2: FRAGMENT RECOGNISABILITY

In this experiment we start with selected high-success seed programs from our first experiment.
For array-to-array problems, these are all programs with a 90% find rate or better via GP alone,
while for our canvas drawing problem set, these are the single highest-find-rate program in each
category such as ‘triangles’. We then take 10 source code fragments present in these seed programs
which exhibit a positive effect of find rates, and use these fragments to generate completely synthetic
training corpora for neural networks trained to predict whether or not an I/O example will include a
particular fragment in its source code solution.

Table 4.2 shows how effective our different trained neural networks architectures are at then correctly
predicting the presence of these fragments in the I/O examples from our two problem sets (which
are not part of the synthetic training sets).

This data show significant variance of prediction success (from 58% up to 97%) but overall shows
that our neural networks do exhibit the ability to accurately predict that a particular source code
fragment will exist in the solution to a given I/O problem – even though these neural networks are
trained on entirely synthetic data.

Examining the different neural network architectures, our baseline feed-forward NN shows success
in both problem sets and so is able to act as a viable generalist model. Our recurrent network, used
in the array-to-array corpus, shows prediction success that is generally lower than the feed-forward
NN. Our CNN meanwhile, used in our canvas drawing corpus, shows some significant gains in
prediction success compared to the feed-forward NN, though also shows some lower results (for
example on predicting the presence of a loop with a conditional). This suggests that a mixture-of-
experts approach may be desirable here, but also that a general feed-forward model is viable.
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In practice we would use these trained networks alongside a threshold of prediction when determin-
ing which fragments to recommend for inclusion in a GP search; we present this in the following
section.

4.3 EXPERIMENT 3: CHOSEN FRAGMENT DEPLOYMENT

In this experiment, the fragments from the above NN experiments were employed to guide the GP
process, based on the average estimates by the trained neural networks. This demonstrates the
efficacy of our end-to-end system in taking successfully-found solutions to easy problems and em-
ploying their characteristics, via trained NN predictors, to find solutions to more difficult problems.

We report the success rates here using two different approaches to selecting fragments for the GP. We
do this either using a uniform random choice of fragments which had an average presence probability
estimate of >= 0.5 (termed Uniform); or using a fragment which is predicted for the problem being
solved but has the lowest prediction rate across all other problems (which ideally therefore may be
the most information bearing fragment). For our array-to-array problem set we use both approaches,
while for our canvas problem set we see less clarity in lowest prediction rates across all problems
and so only use the uniform random style.

Corpus And Approach Find Rate (vs Baseline) Gained Lost

1st (1D Arrays), Uniform 46 % (38%) 5 1
1st (1D Arrays), Rarest Preferred 55 % (38%) 7 0
2nd (2D Array), Uniform 39 % (36%) 4 1

Table 3: Success of the GP when guided by the fragments selected by the neural network. ‘Gained’
are problems which have a > 0% find rate which have a baseline of 0%, ‘Lost’ are those which
previously had > 0% but now have 0%. (n=30)

As can be seen in Table 4.3, guiding the GP using this process produces notable improvements to
the overall program synthesis success rates. Average find rates were boosted, and crucially a number
of problems became solvable which were not before, with only a single problem in each problem
set failing to be solved. This set of newly-solved problems here includes instance in which the
bubblesort algorithm, considered by the authors to be the hardest problem in the set, was successfully
found.

This improvement was strongest on the approach which selected the estimated-rarest fragment for
use, clearly indicating that the fragments are not equivalent in their usefulness. The ideal way in
which to extract the most useful fragments for the GP to use, based on those available from NN
predictions, therefore remains a topic of future work.

The full set of guided GP results is available in detail in Appendix A.7.

5 CONCLUSION

In this paper we have presented a novel combination of genetic programming and neural network
prediction to synthesise code from just 10 I/O examples.

Our framework demonstrates the potential to create a system which searches for solutions to prob-
lems within a corpus, finds a subset, extracts code fragments from the successes, then trains a neural
network to recognise the presence of these fragments and determines which unsolved problems
would benefit from NN-guidance – thus boosting GP find rates on a subsequent pass. We demon-
strate that this process can render previously unfindable problems findable, and boost overall find
rates, including the successful synthesis of bubble sort.

Our approach is scalable to the search space of Turing-complete languages, and has been demon-
strated to work successfully in at least two distinct domains using a common target language which
can be cross-compiled to C/Java.
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A APPENDIX

A.1 OPERATORS OF THE LANGUAGE USED

Tables A.1 and A.1 provide lists of all the operators used for the two corpora used in the language
employed in the experiments. Language variants are improved in order to allow effective processing
of the two corpora’s specific problem domains.

Operator

Assign Variable To Array
Assign Variable From Array
Make Array
Variable To Literal
Add
Subtract
Multiply
Divide
Modulo
Assign Var from Var
Loop
Conditional (var > 0)
Conditional (var1 == var2)
Conditional (var1 > var2)

Table 4: Operators available for GP, when using the 1st (array-to-array) corpus
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Operator

Assign Variable To Array
Assign Variable From Array
Make Array
Variable To Literal
Add
Subtract
Multiply
Divide
Modulo
Assign Var from Var
Loop
Conditional (var > 0)
Conditional (var1 == var2)
Create 2D Array
Get 2D Array Size
Var to XY Point from 2D Array
Set 2D Array to 0 at XY Point
Set 2D Array to 1 at XY Point

Table 5: Operators available for GP, when using the 2nd (2D pattern) corpus

A.2 PROBLEMS IN CORPORA

Tables 6 and 7 provide a list of all human-provided problems used to test the system across the
experiments. These are defined by a source-code implementation in both the custom language used
in this paper, as well as in Java. An example of the behaviour of the array-to-array problems (First
corpus), has been given, using a fixed sample input, to illustrate the behaviour.
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Problem Example

Abs [4, -2, 1, 0, 3, -5] − > [4, 2, 1, 0, 3, 5]
ArrayLength [4, -2, 1, 0, 3, -5] − > [6, 0, 0, 0, 0, 0]
ArrayToZero [4, -2, 1, 0, 3, -5] − > [0, 0, 0, 0, 0, 0]
CumulativeAbsoluteSum [4, -2, 1, 0, 3, -5] − > [4, 6, 7, 7, 10, 15]
CumulativeSum [4, -2, 1, 0, 3, -5] − > [4, 2, 3, 3, 6, 1]
DivergentSequence [4, -2, 1, 0, 3, -5] − > [0, 0, 1, -1, 2, -2]
FirstElementOnly [4, -2, 1, 0, 3, -5] − > [4]
Identity [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 0, 3, -5]
IndexParity [4, -2, 1, 0, 3, -5] − > [1, 0, 1, 0, 1, 0]
IterativeDifference [4, -2, 1, 0, 3, -5] − > [4, -6, 3, -1, 3, -8]
KeepEvens [4, -2, 1, 0, 3, -5] − > [4, -2, 0, 0, 0, 0]
KeepNegatives [4, -2, 1, 0, 3, -5] − > [0, -2, 0, 0, 0, -5]
KeepOdds [4, -2, 1, 0, 3, -5] − > [0, 0, 1, 0, 3, -5]
KeepPositives [4, -2, 1, 0, 3, -5] − > [4, 0, 1, 0, 3, 0]
Negative [4, -2, 1, 0, 3, -5] − > [-4, 2, -1, 0, -3, 5]
Pop [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 0, 3]
RemoveFirstElement [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5]
RetainFirstHalf [4, -2, 1, 0, 3, -5] − > [4, -2, 1]
Reverse [4, -2, 1, 0, 3, -5] − > [-5, 3, 0, 1, -2, 4]
ShiftLeft [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5]
ShiftLeftZeroPadded [4, -2, 1, 0, 3, -5] − > [-2, 1, 0, 3, -5, 0]
ShiftRight [4, -2, 1, 0, 3, -5] − > [0, 4, -2, 1, 0, 3, -5]
ShiftRightLossy [4, -2, 1, 0, 3, -5] − > [0, 4, -2, 1, 0, 3]
ShuffleZerosToBack [4, -2, 1, 0, 3, -5] − > [4, -2, 1, 3, -5, 0]
Signum [4, -2, 1, 0, 3, -5] − > [1, -1, 1, 0, 1, -1]
Sort [4, -2, 1, 0, 3, -5] − > [-5, -2, 0, 1, 3, 4]
SquareValues [4, -2, 1, 0, 3, -5] − > [16, 4, 1, 0, 9, 25]
ToIterator [4, -2, 1, 0, 3, -5] − > [0, 1, 2, 3, 4, 5]
Add [4, -2, 1, 0, 3, -5] , 4 − > [8, 2, 5, 4, 7, -1]
Append [4, -2, 1, 0, 3, -5] , 4 − > [4, -2, 1, 0, 3, -5, 4]
ClipToMax [4, -2, 1, 0, 3, -5] , 4 − > [4, -2, 1, 0, 3, -5]
ClipToMin [4, -2, 1, 0, 3, -5] , 4 − > [4, 4, 4, 4, 4, 4]
ConstantAddition [4, -2, 1, 0, 3, -5] , 4 − > [4, 2, 9, 12, 19, 15]
FillArray [4, -2, 1, 0, 3, -5] , 4 − > [4, 4, 4, 4, 4, 4]
GreaterThan [4, -2, 1, 0, 3, -5] , 4 − > [-1, -1, -1, -1, -1, -1]
IterateFromStart [4, -2, 1, 0, 3, -5] , 4 − > [4, 5, 6, 7, 8, 9]
LessThan [4, -2, 1, 0, 3, -5] , 4 − > [1, 1, 1, 1, 1, 1]
MultiplesOf [4, -2, 1, 0, 3, -5] , 4 − > [0, 4, 8, 12, 16, 20]
Multiply [4, -2, 1, 0, 3, -5] , 4 − > [16, -8, 4, 0, 12, -20]
Subtract [4, -2, 1, 0, 3, -5] , 4 − > [0, -6, -3, -4, -1, -9]

Table 6: The first corpus of problems, taking either a single array, or an array and an integer. Exam-
ple provided of the behaviour of each problem, given a standard example input.
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Problem

Square
HollowSquare
Parallelogram
HollowParallelogram
MirroredParallelogram
MirroredHollowParallelogram
RightTriangle
HollowRightTriangle
MirroredRightTriangle
HollowMirroredRightTriangle
InvertedRightTriangle
HollowInvertedRightTriangle
InvertedMirroredRightTriangle
InvertedHollowMirroredRightTriangle
IsoceleseTriangle
HollowIsoceleseTriangle
InvertedIsoceleseTriangle
HollowInvertedIsoceleseTriangle
RectangleWithEmptyTrapezoid
InvertedRectangle
obtuseTriangle
hollowObtuseTriangle
mirroredObtuseTriangle
mirroredHollowObtuseTriangle
invertedObtuseTriangle
hollowInvertedObtuseTriangle
invertedMirroredObtuseTriangle
hollowMirroredInvertedObtuseTriangle
VShape
Trapezoid

Table 7: The second corpus, a set of 2D image generation tasks, drawing simple geometric shapes.

A.3 NEURAL NETWORK ARCHITECTURES

Feed Forward Neural Network The FFNN is a 5 layer structure with 128 nodes per layer, seLu
activation. Each layer is connected to all layers below (dense block). Each layer other than the last
has a dropout component, with a training dropout rate of pKeep = 0.75. The output is a single
sigmoidal unit, loss function is mean squared error. Batch size of 32, maximum steps of 512, early
stopping after 12 non-progress epochs on validation loss.

Recurrent Neural Network The RNN encodes both the input and output arrays in two architec-
turally symmetric branches for every example (so 20 branches). Each branch begins by encoding
the values in 2 dense layers with 11 nodes, reLu activation, with dropout with pKeep = 0.75 af-
ter each. After this encoding layer, a layer of 8 LSTM nodes was connected. These LSTM layers
represented the end of the two branches. All LSTM outputs are concatenated, along with the input
parameters, into a single representation of the IO examples. These are then processed by a set of 2
dense layers with 64 nodes, reLu activation. The output is a single sigmoidal unit, loss function is
mean squared error. Batch size of 32, maximum steps of 512, early stopping after 12 non-progress
epochs on validation loss.

Convolutional Neural Network Each of the 10 examples of problem output are split into their
own branch. Each branch contains a 2D input with width/height equal to the maximum input size,
32. We feed this into a 2D convolutional layer, with stride of 2 and kernel size of 3, reLu activation.
We then feed this into a max pooling layer of 2 by 2. We then feed through a second convolutional
layer of identical configuration to the first, and a second max pooling layer, again identical. Each
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branch then terminates in a single dense layer, 64 nodes, reLu activation. All branches are then
concatenated into a single dense layer, 64 nodes, reLu activation. The output is a single sigmoidal
unit, loss function is mean squared error. Batch size of 32, maximum steps of 512, early stopping
after 12 non-progress epochs on validation loss.

A.4 PROBLEM FIND RATES AND DESCRIPTIONS

The tables89 are the find rates for the genetic programming algorithm, without any constraints. Note
the high degree of variability between problems, with a number from both corpora achieving either
a 100% success rate of a 0%.

One remark is that the “Square” problem, which simply requires the entire canvas to be covered
(therefore requiring two loops and a write), did not achieve 100% success. This is believed to be
due to the genetic algorithm starting with a flawed partial solution, and being unable to move away
from this detrimental start due to the nature of the fitness landscape (trapped in local maximum).

A.5 FULL BREAKDOWN OF FRAGMENTS EVALUATED IN EXPERIMENT 1

Tables 10 to 23 describe each fragment evaluated by the exhaustive fragment testing process. Each
fragment is at most two lines, and has no variables which depend on being set in lines outside
the fragment (therefore the fragment stands alone in terms of functionality). The source code of the
ground-truth implementation is given, firstly as simply the operator used on that line, and secondly in
a C-like fashion (excluding braces). This C-like fashion is a programmatically generated translation
of the source code of the custom language implementation, provided for ease of readability (due to
the difficult-to-parse structure of the custom language). We then refer to the lines in this source code
by line number. Fragments cannot contain end-of-block operators (used to indicate the end point of
blocks started by the flow-control operators loop and conditional), nor can they contain the initial
definition of the 2D canvas.

A.6 FRAGMENTS EVALUATED FOR NN RECOGNISABILITY IN EXPERIMENT 2

The tables2425 describe the fragments (some of which contain requirements about variable depen-
dencies) used in experiment 2.

A.7 FULL RESULTS OF NN-SELECTED GUIDANCE FOR GP FROM EXPERIMENT 3

Tables 26,27,28 shows the success rate of the GP, if provided with hints by the neural network sets.
Two sets of experiments are done on the array to array corpus, one on the canvas corpus. Most
problems showed a success increase, including a number from both corpora which increased in
success chance from 0% to a non-zero value. Two problems were made unfindable by the less-
effective uniform fragment selection process, Iterative Difference and Trapezoid. As the baseline
find rate was low, this does not represent a major drop in success, and may potentially simply be
due to insufficient samples to determine the true success probability. We do not however reject
the possibility that our approach has a negative effect on find-rates for certain problems. It was
seen in Experiment 1 that some fragments, known to be present in the ground-truth implementation,
decreased find-rates. It is possible that the neural networks correctly identified fragment presence,
but that these degraded the GP’s performance. It is, of course, also possible that the NN incorrectly
estimated that a fragment was present when it was not, and that this erroneous hint harmed the GP.
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Problem Baseline Find Rate

Abs 8 %
ArrayLength 100 %
ArrayToZero 100 %
CumulativeAbsoluteSum 0 %
CumulativeSum 4 %
DivergentSequence 58 %
FirstElementOnly 28 %
Identity 100 %
IndexParity 100 %
IterativeDifference 4 %
KeepEvens 0 %
KeepNegatives 0 %
KeepOdds 0 %
KeepPositives 60 %
Negative 68 %
Pop 30 %
RemoveFirstElement 10 %
RetainFirstHalf 0 %
Reverse 58 %
ShiftLeft 10 %
ShiftLeftZeroPadded 40 %
ShiftRight 0 %
ShiftRightLossy 84 %
ShuffleZerosToBack 100 %
Signum 0 %
Sort 0 %
SquareValues 70 %
ToIterator 100 %

Add 24 %
Append 0 %
ClipToMax 18 %
ClipToMin 4 %
ConstantAddition 0 %
FillArray 100 %
GreaterThan 10 %
IterateFromStart 98 %
LessThan 8 %
MultiplesOf 90 %
Multiply 20 %
Subtract 18 %

Table 8: Find rates for a Genetic Algorithm as implemented above on the problems of the first
corpus, a set of functions which take an input array of integers only (functions above dividing line)
or an input array of integers and an integer. Both forms return a single array. n=30
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Problem Baseline Find Rate

Square 97 %
Hollow Square 100 %
Parallelogram 0 %
Hollow Parallelogram 0 %
Mirrored Parallelogram 7 %
Mirrored Hollow Parallelogram 13 %
Right Triangle 97 %
Hollow Right Triangle 87 %
Mirrored Right Triangle 60 %
Hollow Mirrored Right Triangle 63 %
Inverted Right Triangle 60 %
Hollow Inverted Right Triangle 83 %
Inverted Mirrored Right Triangle 100 %
Inverted Hollow Mirrored Right Triangle 100 %
Isocelese Triangle 0 %
Hollow Isocelese Triangle 13 %
Inverted Isocelese Triangle 47 %
Hollow Inverted Isocelese Triangle 50 %
Rectangle With Empty Trapezoid 3 %
Inverted Rectangle With Empty Trapezoid 3 %
Obtuse Triangle 3 %
Hollow Obtuse Triangle 27 %
Mirrored Obtuse Triangle 0 %
Mirrored Hollow Obtuse Triangle 0 %
Inverted Obtuse Triangle 0 %
Hollow Inverted Obtuse Triangle 10 %
Inverted Mirrored Obtuse Triangle 0 %
Hollow Mirrored Inverted Obtuse Triangle 3 %
V Shape 47 %
Trapezoid 7 %

Table 9: Find rates for a Genetic Algorithm (implementation described above) on the problems of
the second corpus, a set of functions which take an integer size for the returned canvas, and must
return the shape specified. n=30
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Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[7] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[7]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop
8 Write arrays[1][variables[2]] = variables[1];

Fragment Success Rate
1 3%
1, 2 27%
1, 4 10%
4 0%
4, 5 0%
4, 6 0%
4, 8 0%

Table 10: Fragments assessed from program “Append”. Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to
lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make Array arrays[1] = new int[vars[0]]
2 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
3 Literal variables[5] = -1;
4 Read variables[3] = arrays[0][variables[2]];
5 Condition if (variables[3]>0)
6 Else else
7 Multiply variables[3] = variables[3] * variables[5];
8 Endloop
9 Add variables[4] = variables[4] + variables[3];
10 Write arrays[1][variables[2]] = variables[4];
11 Endloop

Fragment Success Rate
1 0%
1, 2 0%
1, 3 0%
1, 5 0%
1, 6 0%
2 0%
2, 3 0%
2, 4 3%
2, 5 3%
2, 6 0%
3 0%
3, 5 0%
3, 6 0%
3, 7 0%
5 0%
5, 6 3%
6 0%

Table 11: Fragments assessed from program “Cumulative Absolute Sum”. Program’s code listed,
in C-like format, with operators listed ahead of each line for each of readability. Fragments then
described, in reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[4] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Read variables[3] = arrays[0][variables[2]];
5 Modulo variables[5] = variables[3] % variables[4];
6 Condition if (variables[5]==variables[6])
7 Write arrays[1][variables[2]] = variables[3];
8 Endloop
9 Endloop

Fragment Success Rate
1 0%
1, 2 6%
1, 3 3%
1, 5 3%
2 3%
2, 3 0%
3 0%
3, 4 0%
3, 7 0%

Table 12: Fragments assessed from program “Keep Evens”. Program’s code listed, in C-like for-
mat, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Literal variables[6] = 2;
2 Divide variables[3] = variables[0] / variables[6];
3 Make Array arrays[1] = new int[vars[3]]
4 Loop for (variables[2]=0;variables[2]<variables[3];variables[2]++)
5 Read variables[5] = arrays[0][variables[2]];
6 Write arrays[1][variables[2]] = variables[5];
7 Endloop

Fragment Success Rate
1 0%
1, 2 13%

Table 13: Fragments assessed from program “Retain First Half”. Program’s code listed, in C-like
format, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[7] = 2;
2 Make Array arrays[1] = new int[vars[0]]
3 Loop for (variables[2]=0;variables[2]¡variables[0];variables[2]++)
4 Subtract variables[6] = variables[0] - variables[2];
5 Subtract variables[6] = variables[6] - variables[7];
6 Read variables[5] = arrays[0][variables[6]];
7 Write arrays[1][variables[2]] = variables[5];
8 Endloop

Fragment Success Rate
1 63%
1, 2 80%
1, 3 77%
2 73%
2, 3 60%
3 63%
3, 4 80%
3, 7 77%

Table 14: Fragments assessed from program “Reverse”. Program’s code listed, in C-like format,
with operators listed ahead of each line for each of readability. Fragments then described, in refer-
ence to lines used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Literal variables[6] = 1;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[8]]
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Add variables[7] = variables[2] + variables[6];
6 Read variables[5] = arrays[0][variables[2]];
7 Write arrays[1][variables[7]] = variables[5];
8 Endloop

Fragment Success Rate
1 3%
1, 2 13%
1, 4 20%
4 0%
4, 6 0%

Table 15: Fragments assessed from program “Shift Right”. Program’s code listed, in C-like for-
mat, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[6] = 2;
2 Add variables[8] = variables[0] + variables[6];
3 Make Array arrays[1] = new int[vars[0]]
4 Subtract variables[9] = variables[0] - variables[6];
5 Loop for (variables[2]=0;variables[2]¡variables[9];variables[2]++)
6 Add variables[7] = variables[2] + variables[6];
7 Read variables[5] = arrays[0][variables[2]];
8 Write arrays[1][variables[7]] = variables[5];
9 Endloop

Fragment Success Rate
1 80%
1, 2 73%
1, 3 63%
1, 4 63%
3 67%

Table 16: Fragments assessed from program “Shift Right Lossy”. Program’s code listed, in C-like
format, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Literal variables[5] = 1;
2 Subtract variables[1] = variables[0] - variables[5];
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Loop for (variables[3]=0;variables[3]<variables[1];variables[3]++)
5 Add variables[6] = variables[3] + variables[5];
6 Read variables[4] = arrays[0][variables[3]];
7 Read variables[7] = arrays[0][variables[6]];
8 Subtract variables[8] = variables[4] - variables[7];
9 Condition if (variables[8]>0)
10 Write arrays[0][variables[6]] = variables[4];
11 Write arrays[0][variables[3]] = variables[7];
12 Endloop
13 Endloop
14 Endloop
15 Make Array arrays[1] = new int[vars[0]]
16 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
17 Read variables[5] = arrays[0][variables[2]];
18 Write arrays[1][variables[2]] = variables[5];
19 Endloop

Fragment Success Rate
1 0%
1, 2 0%
1, 3 0%
1, 8 0%
1, 15 0%
1, 16 0%
3 0%
3, 8 0%
3, 15 0%
3, 16 0%
3, 17 0%
4 0%
4, 6 0%
8 0%
8, 9 0%
8, 15 0%
8, 16 0%
15 0%
15, 16 0%
16 0%

Table 17: Fragments assessed from program “Sort”. Program’s code listed, in C-like format, with
operators listed ahead of each line for each of readability. Fragments then described, in reference to
lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Loop for (variables[3]=0;variables[3]<variables[4];variables[3]++)
6 Add variables[7] = variables[2] + variables[3];
7 Write to 2D array[variables[7][variables[3]]=1;
8 Endloop
9 Endloop

Fragment Success Rate
2 23%
2, 3 30%

Table 18: Fragments assessed from program “Mirrored Parallelogram”. Program’s code listed, in
C-like format, with operators listed ahead of each line for each of readability. Fragments then
described, in reference to lines used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[6] = 2;
3 Divide variables[4] = variables[0] / variables[6];
4 Loop for (variables[2]=0;variables[2]<variables[4];variables[2]++)
5 Add variables[5] = variables[2] + variables[4];
6 Write to 2D array[variables[5][variables[10]]=1;
7 Write to 2D array[variables[2][variables[4]]=1;
8 Subtract variables[6] = variables[4] - variables[2];
9 Write to 2D array[variables[2][variables[6]]=1;
10 Write to 2D array[variables[5][variables[6]]=1;
11 Endloop
12 Literal variables[8] = 1;
13 Subtract variables[7] = variables[0] - variables[8];
14 Write to 2D array[variables[7][variables[10]]=1;

Fragment Success Rate
2 13%
2, 3 60%
2, 12 10%
12 13%
12, 13 40%

Table 19: Fragments assessed from program “Mirrored Hollow Parallelogram”. Program’s code
listed, in C-like format, with operators listed ahead of each line for each of readability. Fragments
then described, in reference to lines used followed by success rate using fragment as GP guidance
(n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[1] = 1;
3 Subtract variables[4] = variables[0] - variables[1];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[5][variables[2]]=1;
7 Write to 2D array[variables[2][variables[2]]=1;
8 Endloop

Fragment Success Rate
2 80%
2, 3 90%
2, 4 80%
4 90%
4, 6 63%
4, 7 87%

Table 20: Fragments assessed from program “Hollow Right Triangle”. Program’s code listed, in
C-like format, with operators listed ahead of each line for each of readability. Fragments then
described, in reference to lines used followed by success rate using fragment as GP guidance (n=30)

Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[3] = 1;
3 Subtract variables[4] = variables[0] - variables[3];
4 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
5 Write to 2D array[variables[2][variables[4]]=1;
6 Write to 2D array[variables[4][variables[2]]=1;
7 Subtract variables[5] = variables[0] - variables[2];
8 Subtract variables[5] = variables[5] - variables[3];
9 Write to 2D array[variables[2][variables[5]]=1;
10 Endloop

Fragment Success Rate
2 67%
2, 3 93%
2, 4 80%
4 67%
4, 7 80%

Table 21: Fragments assessed from program “Hollow Mirrored Right Triangle”. Program’s code
listed, in C-like format, with operators listed ahead of each line for each of readability. Fragments
then described, in reference to lines used followed by success rate using fragment as GP guidance
(n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[4] = 2;
3 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
4 Multiply variables[6] = variables[2] * variables[4];
5 Subtract variables[5] = variables[0] - variables[6];
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Add variables[7] = variables[3] + variables[2];
8 Write to 2D array[variables[7][variables[2]]=1;
9 Endloop
10 Endloop

Fragment Success Rate
2 23%
2, 3 20%
3 20%

Table 22: Fragments assessed from program “Inverted Isoceles Triangle”. Program’s code listed,
in C-like format, with operators listed ahead of each line for each of readability. Fragments then
described, in reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Line Operator As Code

1 Make 2D Array new 2DArray(size=variables[0]);
2 Literal variables[7] = 1;
3 Literal variables[4] = 2;
4 Divide variables[5] = variables[0] / variables[4];
5 Loop for (variables[2]=0;variables[2]<variables[0];variables[2]++)
6 Loop for (variables[3]=0;variables[3]<variables[5];variables[3]++)
7 Subtract variables[8] = variables[0] - variables[5];
8 Divide variables[8] = variables[8] / variables[4];
9 Subtract variables[8] = variables[8] - variables[3];
10 Add variables[9] = variables[8] + variables[7];
11 Condition if (variables[9]>0)
12 Subtract variables[9] = variables[2] - variables[8];
13 Condition if (variables[9]>0)
14 Subtract variables[9] = variables[0] - variables[8];
15 Subtract variables[9] = variables[9] - variables[2];
16 Condition if (variables[9]>0)
17 Write to 2D array[variables[2][variables[3]]=1;
18 Endloop
19 Endloop
20 Endloop
21 Endloop
22 Endloop

Fragment Success Rate
2 10%
2, 3 10%
2, 5 10%
3 3%
3, 4 0%
3, 5 10%
5 3%

Table 23: Fragments assessed from program “Trapezoid”. Program’s code listed, in C-like for-
mat, with operators listed ahead of each line for each of readability. Fragments then described, in
reference to lines used followed by success rate using fragment as GP guidance (n=30)
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Fragment Description

Add Simple addition. Requires the program to at some point contain
an addition operation

+1 Offset Loop Three Line Fragment
The first sets V ar1 to 1
The second is a loop operator
The third requires an addition operator such that
V ar2 = loop iterator + V ar1

Length -1 Loop Three Line Fragment
The first sets V ar1 to 1
The second requires an addition operator such that
V ar2 = input array size+ V ar1
The third is a loop operator bounded to V ar2

Literal (2) Requires a variable to be set to 2
Loop Requires the program to contain a loop
Loop Conditional Two line fragment. The first line requires a loop

The second line requires a conditional (var > 0)
Loop Read Two line fragment. The first line requires a loop

The second line requires a read operation
such that the index read is the loop’s iterator

Nonstandard Array One line fragment. Requires the output array to be created,
with a size V ar1 such that
V ar1 is not the variable defaulting to input array size

Read Requires the program to read from the input array
Add Simple subtraction. Requires the program to at some point contain

a subtract operation

Table 24: Fragments used in experiment 2, corpus 1, to determine whether the NN can recognise
their presence in a program’s source code based on its behaviour. If multiple lines are required they
are required to exist in order, but not necessarily consecutively. Variable numbering is not reflective
of source-code implementation and for descriptive purposes only.
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Fragment Description

Add Simple addition. Requires the program to at some point contain
an addition operation

Conditional Greater than 0 operator. The program must contain an operator which
executes a non-empty code block if a variable is greater than zero

Half Two line fragment. The first sets a variable V ar1 to the literal 2,
The second assigns a variable to desired output size/V ar1

Half Loop Three line fragment. The first sets a variable V ar1 to the literal 2,
The second assigns a variable V ar2 to desired output size/V ar1
The third defines a loop operator which runs from 0 to V ar2

Half Loop Depends Four line fragment. The first sets a variable V ar1 to the literal 2,
The second assigns a variable V ar2 to desired output size/V ar1
The third defines a loop operator which runs from 0 to V ar2
The fourth defines an operation setting a value on the 2D canvas, with
the requirement that the X position of the point be logically
dependent on the loop iterator

Loop Conditional Two line fragment. The first requires a loop operator
The second requires a conditional (var > 0) operator

Loop Draw Two line fragment. The first requires a loop operator
The second requires a 2D array write operation in which
the X position drawn to depends logically on the loop’s iterator

Loop Loop Two line fragment. The program must have two loops
(not necessarily nested)

Loop Loop Subtract Three line fragment. The program must have two loops
(not necessarily nested)
It must then have a subtract operator

Draw Draw Two line fragment. The program must have two
draw-to-2D-array operators

Table 25: Fragments used in experiment 2, corpus 2, to determine whether the NN can recognise
their presence in a program’s source code based on its behaviour. If multiple lines are required they
are required to exist in order, but not necessarily consecutively. Variable numbering is not reflective
of source-code implementation and for descriptive purposes only.
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Problem Success Rate Baseline

Abs 73% 7%
ArrayLength 100% 100%
ArrayToZero 100% 100%
CumulativeAbsoluteSum 0% 0%
CumulativeSum 33% 3%
DivergentSequence 63% 57%
FirstElementOnly 100% 27%
Identity 100% 100%
IndexParity 100% 100%
IterativeDifference 3% 3%
KeepEvens 0% 0%
KeepNegatives 27% 0%
KeepOdds 10% 0%
KeepPositives 47% 60%
Negative 67% 67%
Pop 100% 30%
RemoveFirstElement 83% 10%
RetainFirstHalf 0% 0%
Reverse 77% 57%
ShiftLeft 80% 10%
ShiftLeftZeroPadded 83% 40%
ShiftRight 17% 0%
ShiftRightLossy 77% 83%
ShuffleZerosToBack 80% 100%
Signum 10% 0%
Sort 3% 0%
SquareValues 77% 70%
ToIterator 100% 100%
Add 37% 23%
Append 47% 0%
ClipToMax 43% 17%
ClipToMin 70% 3%
ConstantAddition 7% 0%
FillArray 100% 100%
GreaterThan 23% 10%
IterateFromStart 100% 97%
LessThan 17% 7%
MultiplesOf 87% 90%
Multiply 30% 20%
Subtract 43% 17%

Table 26: Success rates for problems of the 1st corpus, using the rarest-first guidance strategy, with
the aggregate estimates from the feed-forward architecture network (n=30)
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Problem Success Rate Baseline

Abs 27% 7%
ArrayLength 100% 100%
ArrayToZero 100% 100%
CumulativeAbsoluteSum 0% 0%
CumulativeSum 20% 3%
DivergentSequence 83% 57%
FirstElementOnly 83% 27%
Identity 100% 100%
IndexParity 100% 100%
IterativeDifference 0% 3%
KeepEvens 0% 0%
KeepNegatives 53% 0%
KeepOdds 10% 0%
KeepPositives 40% 60%
Negative 63% 67%
Pop 73% 30%
RemoveFirstElement 57% 10%
RetainFirstHalf 0% 0%
Reverse 53% 57%
ShiftLeft 43% 10%
ShiftLeftZeroPadded 63% 40%
ShiftRight 0% 0%
ShiftRightLossy 53% 83%
ShuffleZerosToBack 77% 100%
Signum 10% 0%
Sort 0% 0%
SquareValues 77% 70%
ToIterator 100% 100%
Add 23% 23%
Append 7% 0%
ClipToMax 33% 17%
ClipToMin 20% 3%
ConstantAddition 3% 0%
FillArray 100% 100%
GreaterThan 13% 10%
IterateFromStart 97% 97%
LessThan 30% 7%
MultiplesOf 93% 90%
Multiply 30% 20%
Subtract 17% 17%

Table 27: Success rates for problems of the 1st corpus, using the uniform guidance strategy, with
the aggregate estimates from the feed-forward architecture network (n=30)
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Square 90% 97%
HollowSquare 100% 100%
Parallelogram 23% 0%
HollowParallelogram 7% 0%
MirroredParallelogram 43% 7%
MirroredHollowParallelogram 17% 13%
RightTriangle 93% 97%
HollowRightTriangle 97% 87%
MirroredRightTriangle 50% 60%
HollowMirroredRightTriangle 60% 63%
InvertedRightTriangle 67% 60%
HollowInvertedRightTriangle 57% 83%
InvertedMirroredRightTriangle 97% 100%
InvertedHollowMirroredRightTriangle 100% 100%
IsoceleseTriangle 10% 0%
HollowIsoceleseTriangle 43% 13%
InvertedIsoceleseTriangle 37% 47%
HollowInvertedIsoceleseTriangle 33% 50%
RectangleWithEmptyTrapezoid 3% 3%
InvertedRectangle 10% 3%
obtuseTriangle 23% 3%
hollowObtuseTriangle 53% 27%
mirroredObtuseTriangle 0% 0%
mirroredHollowObtuseTriangle 0% 0%
invertedObtuseTriangle 0% 0%
hollowInvertedObtuseTriangle 17% 10%
invertedMirroredObtuseTriangle 7% 0%
hollowMirroredInvertedObtuseTriangle 7% 3%
VShape 40% 47%
Trapezoid 0% 7%

Table 28: Success rates for problems of the 2nd corpus, using the uniform guidance strategy, with
the aggregate estimates from the convolutional architecture network (n=30)
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